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Mr Vice-Chancellor, Colleagues, Ladies and Gentleman:

My first and pleasant duty is to pay tribute to my predecessors in the Department 

of Computer Science, all of whom have personally influenced my thinking on the 
subject.

The late Professor Rolf Braae of the Applied Mathematics Department had the 

vision to introduce Computer Science as a major subject at Rhodes University in 
1970. Those of you who remember Professor Braae will probably recall him, as 
I do, as a warm person who had an appropriate anecdote to go with any occasion. 
I would like to take a few moments to recount one of his anecdotes. Before 

Professor Braae came to Rhodes University, he was Professor of Electrical 
Engineering at the University of Stellenbosch. It so happened that the Professor 
of Botany lived next door to him at that time, and he leaned over the fence one 
day to ask Rolf Braae whether he might be able to repair an electric razor. The 
reply he received was something like this: "As the professor of Electrical

Engineering, I certainly know something about electrical appliances, and as the 

professor of Botany, you surely know something about gardens. So, if you would 

like to come around to my house, then I will repair your razor while you mow 

my lawn." The undergraduate computing laboratory in the Department of 

Computer Science has been named in memory of Professor Rolf Braae.

Professor Howard Williams was the first Professor of Computer Science when 
a separate Computer Science Department was established in 1980. He is now 
Research Director of Computer Science and Electrical Engineering at Herriot 

Watt University in Edinburgh, but he has maintained a personal and professional 
interest in Rhodes University, and will be the recipient of a DSc degree from 

Rhodes at a forthcoming graduation ceremony. In the latter 1970’s, Howard



Williams was the only staff member at Rhodes University whose time was wholly 
devoted to the teaching of Computer Science, and I marvel now at the size of his 
teaching load at that time. When I was nearing the end of my bachelor’s degree, 
Professor Williams told me that if I had any sense, I would resist the financial 
attractions of the job market (as it was then) and stay on for postgraduate study. 

So, he was a direct influence in one of the major career choices that brought me 
to where I stand tonight.

The headship of Computer Science rotated for a few years (until 1987) between 

the current head, Professor Patrick Terry, and Professor Denis Riordan, who is 
now at the Technical University of Nova Scotia. Professor Riordan was the only 
Rhodes Professor of Computer Science who was not a teacher of mine. 
Nonetheless, I learned much from him, particularly as a young member of staff 
in his department. Professor Terry, on the other hand, did teach me formally. 

The first lecture I attended at University was given by a new young lecturer who 
introduced himself as Dr Terry. He didn’t sing at that lecture’, but still managed 

to keep us extremely entertained by building a mathematical model of the mating 

habits of penguins in the Antarctic. That was the first meeting in what for me 

has become a long and rewarding association, and the influence he has had over 
my career choices has been considerable.

I would like to use this opportunity to acknowledge the intellectual and material 

contribution to my work of my colleagues and students. Many of the examples 
that I shall refer to later in this lecture are due to them.
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Three weeks before this inaugural lecture was delivered, Professor Terry delivered a public 
lecture (to mark his receipt of the Vice-Chancellor’s Distinguished Teaching Award) at which he sang 
to the audience.
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I would also like to pay a special tribute to my family: to my parents whose 
guidance and example shaped my value system; to my wife, Louisa, who has 
been more than a support - she has been a partner in building my career; and to 
my two boys who have encouraged me with their enthusiasm for what I do 
professionally.

To introduce my topic, I would like to tell you a story.

The Elves and the Shoemaker*
tIhere w as once a shoemaker who w as very honest and  

worthed very hard; b u t s tiff  he could not earn enough to  

(w e upon, an d a t Cast o ff he had in the w orld  w as gone, 

except ju s t enough feather to maJfe one more p a ir o f shoes.

Hy the tim e he had painstakingly cu t them ou t, the 

dayligh t w as gone an d he w en t to  bed exhausted from  his 

labours. In the morning, a fter he had sa id  h is prayers, he 

sa t down to  com plete h is warfa to  fin d , to  h is delight, th a t 

the shoes sto o d  already com pleted upon the table. The good  

man d id  n ot (n ow  w h at to m a(e th is strange event; but, 

being in u igent need o f a m eal, he w en t out and so ld  the 

shoes, and, a fter sa tisfyin g  his hunger, had money otter to  

buy leather enough fo r  tw o more pairs o f shoes. In the 

evening, he la id  the leather ou t apprehensively, and w ent 

to  bed  early, an d again, when he g o t up in the morning, 

the w o r( w as already done fo r  him. H e quichjy fou n d  tw o

Adapted from the folk tale collected by the Brothers Grimm.
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Buyers, eager to  rew ard him. handsom ely fo r  his goods, and  

so he Bought leather enough fo r  fo u r pairs more. A gain he 

la id  ou t the leather an d fou n d  the w or((fin ish ed  in the 

morning as 6efore; an d so it  w en t on, night a fter night; 

an d so h is fortu ne g rew  exponentially w ith  his ou tpu t, 

u n til he w as extrem ely w ealthy, and more than a little  

curious about the m ysterious source o f h is fortune.

One evening, he sa id  to  him self: "I w ill s it up an d ((cep 

w atch  tonigh t, th a t I  m ay see the source o f th is lucrative 

pro d u ctivity increase in m y Business." So he le ft a lamp 

Burning dim ly, an d h id  h im self in the com er o f the room to  

observe. On the strode o f m idnight, there appeared a host 

o f little  elves, who worthed aw ay fu riously w ith  their little  

fin gers, u n til the jo b  w as quite fin ished, and the shoes 

sto o d  ready fo r  use upon the table.

Of course, what the shoemaker had stumbled across was the technique now 

known as parallel processing, which is the simultaneous working together of 

many parts for a common purpose. By himself, he was unable to complete even 

a single pair of shoes in one day, but the combined effort of the elves produced 
a huge capacity for this sort of work.

Doing things in parallel is a familiar concept to humans. At an individual level, 

we are designed to perform several tasks simultaneously. Even as you sit still in 
your seat, you are controlling the muscles of your body to maintain your balance, 

your eyes are focusing on images and passing them to your brain for processing, 

your ears are receiving signals, you are sorting them into word patterns and trying



to make semantic sense of them.

At an interpersonal level, we are used to cooperating with other humans to 
achieve a common goal. This form of parallel activity, combining efforts of 
many, is the acknowledged method of accomplishing a substantial task in a 
reasonable amount of time; sometimes it is the only way of completing a task at 
all. Indeed, throughout human problem-solving history, parallel approaches have 

been used to overcome complex engineering and organisational challenges. Great 

structures are built, large organisations are managed, and formidable enemies are 

conquered not by individuals, but by team work. So, in everyday life, parallel 

activity is the norm; individual sequential activity is the limiting exception.

Well, if the notion of parallel activity is so obviously commonplace, how does 

it qualify as a field of specialist endeavour? The answer to this question lies in 

the fairy tale abstraction with which humans tend to regard parallel domains. The 
story of the elves and the shoemaker provides an appealing archetype for this 

kind of abstraction. The problem of making shoes is simply scaled up in a linear 

fashion, without any consideration of the distribution of responsibilities, the 

coordination of different tasks, the dividing up of raw materials, the sharing of 
tools, or the finite size of the workspace. These details are defined away by the 
nature of the workers: elves are supernatural beings with magical properties.

Arthur C. Clarke, the popular science commentator and science fiction writer, 

once remarked that "any sufficiently advanced technology is indistinguishable 
from magic", which is a fine point of view for anyone except the one charged 

with the responsibility of creating the advanced technology. In parallel problem 
domains, moving from an abstract idea to a concrete implementation requires 

substantial effort, mainly in the area of coordinating activities that require the
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cooperation of more than one participant.

When independent entities act simultaneously, all contributing to a common 
objective, behavioural complexity grows very quickly. For example, one entity 

might be capable of cycling through 6 steps in the solution of a problem. It 

would thus have 6 unique states. Two such entities working together would have 
62=36 unique states corresponding to the number of permutations of their 
individual events. 20 such entities working on the same problem would be 
capable of 620* 3.7 million-billion (3.7xl015) unique states. In systems of this 
degree of complexity, ensuring that desirable combinations of events occur 

timeously, and that undesirable combinations of events never occur, requires 
specific coordination strategies.

Just as the word algorithm' is used to describe the set of rules and instructions 

to be followed in the problem solving procedure of sequential computer 

programs, it is also used to describe the solution to a parallel problem. 
(Algorithm in a computer context has roughly the same meaning as the word 
recipe does in a cooking context.) An integral part of a parallel algorithm is its 

coordination strategy.

The coordination strategy for every parallel application needs to be designed 
specifically to cater for the needs of that particular problem area. Fortunately, 

though, several broad classes of coordination strategy exist which are known to 
be useful across a range of problems. An example of such an algorithmic class 
in everyday life is a factory assembly line. All assembly lines comprise a 
pipeline of activities, and a conveyor belt (or similar arrangement) to

After the 9th century Persian mathematician al-Khwarizmi.
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communicate data and state information through the system. Individual assembly 
lines vary in the function and duration of their activity stages, but all problems 
that are solved in this way need to have the common characteristic that a stream 
of individual items is able to be developed in stages, to produce a stream of 

products. The coordination strategy that simplifies the assembly line is that items 
move forward in lock step, and that the speed of the line is constrained by the 
speed of its slowest activity.

The activity of giving a lecture is an example of another algorithmic class, one 

commonly known as farming. The lecturer farms out some opinions and facts 

to the audience, and they assess what she has to say, in parallel. At the end of 

the lecture, the lecturer might gather in the responses of the audience, and 

tabulate them into an overall result. This would have been far more efficient than 

if she had approached each member of the audience individually, in sequence, 
with what she had to say. The coordination of individual activities in a lecture 
situation is achieved through the protocol that has been agreed upon before the 
start of the lecture; in this case it is a very simple strategy, the lecturer speaks 

and the audience listens. To implement this coordinated activity, all participants 
make use of the a shared resource, the air. This carries the sound waves from 
the lecturers mouth to the ears of the audience, which works well for the lecture 

situation, but would not necessarily work for a different class of problems.

Imagine if the lecturer were to set each member of the audience the task of 
swapping life stories with the person in the room whose birthday was closest to 
theirs. If they were all to keep their original seating positions, we might end up 
with the undignified situation of some people at the front of the hall having to 

yell at partners in the back row, while others on the left of the room attempted 
to shout them down to communicate with their partners on the right, and so on.
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There would certainly be a lot of interference and communication breakdown. 
The seating arrangement would not be a satisfactory configuration for solving the 

problem. It might be more appropriate to allow the audience to move positions 
and form functional groupings, and to use the air in a localised way to whisper 
to each other. Alternatively, if the swapping of life stories was only a portion of 
the problem, and the rest of the solution benefitted in some way from the original 
seating arrangement, then it might make sense for members of the audience to 
write notes and get intermediate people to pass them on.

So, it should be noted that there is no single recipe for solving problems in 

parallel. The nature, organisational layout, and communications interfaces of a 
parallel system constrain the range of problems which can be solved using it. In 
terms of the examples I have offered, the coordination approach of the assembly 
line would not work well in a lecture situation, and vice versa.

Parallel Computing3
So far, I have said a fair amount about the general concept of working in parallel, 

but not much specifically about computing. Parallel computing is about programs 

that are intended for execution on many processors simultaneously. Each 
processing element works on a piece of the problem, and their computations 
contribute towards a common purpose. The analysis of parallel software is a 
special instance of the broader art and science of analyzing coordinated systems 
in general.

The most frequent use of parallel computing is to enhance the computational 

performance of a system. No matter how fast a computer processor might be, 

two of them working together should be faster, and more than two should be



even faster, and, even then, they will not be able to satisfy all current 

computational needs.

There are unsolved problems in science and engineering that are able to consume 
almost any amount of computer resources. Here are some examples:

Quantum Chemistry in which Schrodinger’s equation has only been 
fully solved for the simplest cases;

biology and biochemistry where the analysis of DNA structures is 

immensely complex;

fields which produce immense amounts of data such as remote sensing; 

and areas such as computational fluid dynamics, materials science, 
climatology, and cosmology, in which increasing the resolution 
of finite element modelling provides more precise results.

The appetite for computational power is not restricted to science and engineering. 

The amount of data required by decision makers in modem commerce and 
industry has mushroomed in recent years, and parallel processing has been 

applied to the implementation of data base searches and decision support systems. 

For the individual computer user, increased computing power supports more 
sophisticated user interfaces, which are designed to communicate in a manner 
more intuitive to humans. This extends the computer’s accessibility to less 
specialised users. A current commercial example of this trend is the graphical 
user interface. More advanced laboratory examples are speech synthesis, 

handwriting recognition, and virtual reality*.
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A head-mounted stereo display unit, along with data gloves and tracking devices, can be applied 
in the computer generation of an artificial world in which the user is able to move around. This 
creates a virtual reality for the user. The stereo display presentation is changed as the head is moved, 
and the data gloves are used to manipulate computer-generated objects.
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Anything that can be done in a parallel environment can also be done in a 
sequential environment, it just takes longer. A prominent factor which drives the 
pursuit of parallel computing is the need for what is known as real time response. 
The term real time implies a feedback situation in which a computer system 

produces results sufficiently promptly to allow its user or environment to take 
immediate action, which could take the form of further, more informed queries. 

For example, if a medical practitioner were to send you to see a radiologist with 

instructions to return in a few days time with an ultrasound scan, this would not 

be a real time activity. The elapsed time between consultation, scan, and follow- 
up consultation would decouple the activities of the scan and the diagnosis. On 
the other hand, if the medical practitioner were to pull out some ultrasound 
equipment and take a scan during the consultation, and make a decision on the 
basis of the scan immediately, such as to perform another scan from a slightly 

different angle to home in on a possible problem, we would then say that the 
scan was being used in real time to make a diagnosis.

The time lag which can be tolerated between a query and a result in a real time 
system depends entirely on the nature of the application. A computer animation, 
for example, whose composition can be determined by the viewer, requires that 
each still picture in the animation sequence should be rendered in not more than 

1/25th of a second. To give the impression of smooth motion, at least 25 separate 
still pictures, called frames, are required by the human eye every second. With 
currently available technology, this is a serious challenge, and it is one of the 

primary considerations in the development of virtual reality systems. One of the 

most important general uses of computer systems is to assist humans in extracting 

information from sets of data, and one of the most successful techniques for 
representing the information contained in complex data sets is through the use of 
graphical visualisation. Parallel methods are widely used in graphical
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visualisation, to render pictures sufficiently quickly so as to allow the user to alter 
the angle of view and zoom in on features of interest. Of course, large amounts 
of computational power are required to produce a real time responses from any 
complex data, or from the application of any complex process.

However, computational speed is not the only reason for making use of parallel 

systems. A second physical attribute of parallel computing is its improved 

performance in terms of reliability. Due to inherent redundancy in the processing 
hardware, life critical systems or systems which cannot easily be accessed for 
maintenance can be designed to be robust. If one processing element 
malfunctions, the computation can proceed on another one. This approach is 
taken in the design of such systems as artificial organs which are implanted inside 
patients, and satellites which are placed in space.

A further attractive attribute of parallel designs, this one logical rather than 

physical, is that they provide a sensible model of the real world. I have already 

pointed to the fact that, in every day life, parallelism is the norm. When the 

solution to a parallel problem is formulated in terms of a sequential program, the 
mapping of the solution onto the sequential platform is unnatural, and therefore 
it is error prone, difficult to maintain, and unreliable. This is one of the reasons 
why it is increasingly common for single processor computer systems to pretend 
to be parallel systems. A pseudo-parallel environment is provided by switching 
execution between entities capable of executing simultaneously. To distinguish 

these from genuine parallel systems, they are known as concurrent or multi

tasking systems. The UNIX operating system and the MS-Windows environment

Other reasons for this approach to single processor system design is that it decreases the 
proportion of time that a processor might be idle waiting for the current task to complete a 
communication, and it facilitates multiple user access to the computer.
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are common examples. MS-DOS, the operating system currently used on most 
of our personal computers, does not fall into this category, and it is the lack of 
this facility, more than any other, that limits its usefulness to us in the future.

The architecture of early and current electronic computers can be traced back to 
the concepts outlined by John von Neumann and others in a paper published in 

1946 2, in which the ideas of a serial computing machine, subsequently known 

as the von Neumann Architecture, originated. The vast majority of computers 

available today are in this category. When one considers the immense cost of 
computer processors in the 1950s, ’60s and ’70s, it comes as no surprise that 
conventional computing developed around sequential computers with single 
processing elements. The sheer cost of computer processors made stringing them 
together in parallel prohibitive.

All this changed in the early 1980s with the appearance of VLSI (very large scale 

integrated) microprocessing chips. The manufacturing process had an inherent 

economy of scale, which drove down the prices of computing devices by orders 

of magnitude. Personal computers appeared at the same time, also driven by the 
microchip technology.

By the mid 1980s, microchip technology had made it possible to construct a 
powerful microcomputer with memory, processor, and communications on a 
single device. The ability to link such devices to each other in arbitrary 
topologies encouraged the construction of high-speed parallel processing systems 

at relatively modest costs. One such computing device which is widely used as 

a building block for parallel systems is the transputer8. The name transputer has 

been made up from the words TRANSistor and comPUTER, so named because 
it enables whole computers to be used as discrete components to build massively
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parallel computer systems, following the more conventional practice of using 
transistors as circuit building blocks.

Software
But there is a problem: there has been no breakthrough in software technology 
for parallel computing that matches the developments in microchip technology. 
Whereas sequential programming notations have matured over a period of forty 

years into a range of useful and powerful notations, parallel programming, the 

more complex of the two, has had only ten years of effort and experience in this 
direction.

The most powerful and the best understood notations in the parallel programming 
world are extensions of sequential programming notations, which rely on physical 
shared memory locations for communicating between their constituent parts. This 
poses a particular problem for the more affordable kinds of parallel systems, in 

which processors have no memory in common and all communication is done by 

sending messages across networks. Because of this dilemma, parallel computers 

have developed in two directions: the shared-memory multiprocessor and the 
multicomputer.

The shared-memory multiprocessor comprises a small number of processing 

elements connected to a common pool of memory. These computers handle 
information sharing quite easily, but suffer from contention which arises when 
accessing the common memory, which is a shared resource. To limit the amount 

of memory contention to a manageable level, only small numbers of processors 

are connected together in this way. This is usually compensated for by making 
the processors more powerful, and so we can think of this as a herd of elephants 
approach. Shared-memory multiprocessors are typically expensive machines.
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In the multicomputer, each processing element has its own memory, and there is 
no shared resource to impose an upper limit on the number of processors which 
can be connected together. Communication between processors occurs through 
a high speed network. Since the number of processors is not constrained, we can 

achieve the same (or greater) computing power as the herd of elephants approach 
by connecting together massive numbers of less powerful processing elements. 

We might call this the army of ants approach. The transputer devices described 

earlier fall into this class. Multicomputers can be built to be cheaper and more 
powerful than shared-memory multiprocessors or traditional single-processor 
mainframes, but are proving to be a lot more difficult to programme. Though 
much effort is currently being invested in the development of effective 
programming notations for these computers, the problems of scaling computation 
up to large numbers of processors, and of communicating via message passing 

networks, remain challenging.

Typically, dividing up the problem into smaller problems to be solved 
independently is the least demanding aspect of designing a parallel algorithm, the 
tricky part is getting the right data to the right place at the right time, so as to 
keep all processing elements busy. This requires innovative coordination 

techniques, and a suitably large data set.

The issue of the scale of parallel activity (the large data set) is known as the 

Amdahl effect', after Gene Amdahl an early computer architect, and is a much 

studied area of parallel processing. Put simply, it makes the rather obvious claim 
that if you have many parallel participants, you will need to have a lot of work 
to justify their presence. The story of the Elves and the Shoemaker uses a 
reasonable scale of operation. It does not suggest, for example, that 10 elves 

could make a single shoe in 1/10 of the time that it would take one elf, it simply
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states that a lot of elves could make a lot of shoes in one night.

The problem of a communications bottleneck between processors is often solved 

by migrating a parallel algorithm down onto dedicated VLSI circuitry. This is 
facilitated by the existence of programming language to silicon compilers. Where 
this option exists, the algorithm is the important product of the programming 
effort, not the prototype implementation. This is becoming a fairly common 
practice 5.

I will illustrate this with an everyday example. If there was a need for one to 

travel between one city and another more quickly, there are two ways in which 
this could be achieved. The first might be to find a faster means of transport; 

but, if the fastest feasible means of transport was already being used, then the 

second method would be to move the two cities closer together. This might not 
sound like a feasible solution in geography, but it is exactly what is done in 
computer circuit design. As a case in point, it is well known that the speed of 
the microprocessor doubles approximately every two years. This is not as a 

result of increasing the speed with which computer circuitry operates. Over the 
last 14 years, circuit switching speeds have increased by a factor of about 10, 

whereas overall execution speeds have increased by a factor of about 128. The 

additional speedup is due to the incorporation of parallel processing principles in 
the microcomputer itself; modem microprocessors are able to execute several 

instructions simultaneously in what are known as superscalar architectures.

Formal methods
But, of course, computer systems often have errors in them. People in the 

computer programming community are fond of using that very American saying 
"garbage in - garbage out", which is a less eloquent version of the Biblical saying
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"you will reap what you sow". If you sow garbage at a computer, you will reap 

garbage, probably tenfold. The exceptional thing about this (as those of us who 
have tried to query our electricity account or our bank statement will know), is 
that this garbage, once it has passed through a computer, is somehow ennobled, 
and no one should dare criticise it.

Complex parallel computations propagate errors in complex ways, and the 

methods of trial and error testing, or hacking, that is prevalent amongst the 
programmers of sequential computers is hopelessly inadequate. The number of 

different permutations of actions that occur in parallel programs rises 

exponentially with the number of processes and the complexity of each process 

(this is called a state space explosion), and it becomes impossible to design 
empirical tests on millions of different execution paths. This is a sobering effect 
that has driven Computer Scientists to turn to their mother discipline, which is 

Mathematics, for a solution.

A number of mathematically rigorous notations have been developed which 

support formal reasoning about parallel programs. These notations are supported 

by computer software systems which act as workbenches to facilitate the 

reasoning process. Commonly used examples of such notations are:
Hoare’s notation for Communicating Sequential Processes (CSP) 4, 
Milner’s Calculus of Communicating Systems (CCS) 6, and 
extended forms of the Petri Net 7.

Bringing the precise mathematical meaning of the system to the fore with the aid 
of a mathematical notation yields two avenues for profit. 'Firstly, a formal 

specification acts as a single, reliable reference for all involved with system 

development, maintenance, and use. Secondly, it provides a secure mathematical
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foundation for reasoning about properties of the program, for detecting and 
avoiding abstruse errors, and for verifying the correctness of the design.

Regrettably, the degree of rigour required for a detailed formal analysis is 
typically tedious for all but the most modest of systems, and implementors are 
frequently unfamiliar with the mathematical methods required. All the same, 
formal verification methods are no longer the exclusive property of academic 

experimentalists, and are being used increasingly for commercial purposes. While 
it is often not practical to apply formal verification methods to complete hardware 
or software systems, they are being employed in the development of sub- 

assemblies in which the complexity, novelty, or subtlety of the design justifies the 
effort required for formal analysis.

These formal notations are new areas of mathematics, and it is my hope that 
more of them will find their way into mathematics curricula so that undergraduate 
mathematics programmes will eventually provide as much support to the 
computing sciences as they currently do to the natural sciences.

Parallel computing in developing countries
As we pass through the current transition phase in our country, it is appropriate 
the we reassess the relevance of what we do with our resources. Parallel 
processing research can be an expensive pastime, and it might be argued that it 
is better left to wealthy Western Universities to pursue.

One of the problems in developing countries is that finance is seldom available 
for purchasing special purpose equipment. I have stated that VLSI technology 

has made the construction of high-speed parallel computers relatively cheap. The 

operative word here is relatively; there are many institutions in South Africa
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which could benefit from high speed computing, but which could not afford 

special purpose equipment. However, most universities and businesses already 
have large numbers of personal computers and workstations, connected by low 
speed networks. The combined computing power of these networks could 
constitute a powerful parallel computer during periods when the computers are 
not being used for normal work. Computer networks are, perhaps, an even more 

important basis for parallelism in our kind of economy than having many 
processing elements packed into a single box.

However, network based parallel processing faces yet more problems. On the 

technical side, the networks are set up for purposes other than high speed 
computing, and factors such as topology and communication speed cannot be 
altered to suite parallel computations. On the personal side, the users of 
computers purchased for particular purposes are usually reluctant to have remote 
users reducing their response time.

At Rhodes University, we have used networks of computers for a number of 

parallel computing projects. The most notable has been a platform for 

accomplishing what is known as adaptive parallelism. Here the parallel program 
is designed to adapt to the shape and size of the available network, and to survive 
unreliable processing elements. If a part of the computation is being performed 
on a computer belonging to another party, it will regularly monitor the host 
computer, and will back off and complete the computation elsewhere when the 

rightful owner of that computer wishes to make use of its full resources. This 
system is able to run on networks of heterogeneous computers, and effectively 

uses up spare processor cycles during large background runs. We have had this 
system running on up to forty Sun workstations and IBM PCs simultaneously, 

and have used it for a range of parallel applications, including graphical
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visualisation and parallel database searches.

Future breakthroughs for program development
In discussing some of the benefits and challenges of parallel computing, I have 
concentrated on what is possible right now, albeit only in the experimental 
laboratory in some instances. I hope I have been able to show that practical 
parallel computing rests upon two presumptions:
1. the availability of many low-cost, high-speed computers, that are able to 

share a computational load; we have these in the form of special 

purpose VLSI (very large scale integrated) processor devises, and in the 
form of networks of general purpose computers;

2. the existence of programming development tools and strategies to 
partition problems into smaller components and coordinate their 
simultaneous execution. These facilities are fairly crude at this stage in 
the development of economical forms of parallel computing, and finding 
powerful ways of managing programs which run on multicomputers is 
a holy grail of current research.

In the last ten years, five new computing approaches moved out of research 

laboratories to become land mark technologies. I have mentioned four of them 
in this lecture. The first is parallel computing. The second is the use of 
mathematically rigorous techniques, or formal methods, to aid in the development 

of software. The potential now exists for proving mathematically that programs 
are correct. The third is the widespread use of networks to connect individual 
computers into vast distributed computing facilities, and the fourth is the use of 

graphics to simplify human interfaces by using more pictures and less text.

The fifth development is object-orientated programming, which has not been
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mentioned in this lecture. This is a rapidly maturing descendant of the structured 
approaches to computer program design that swept through the computer industry 
in the 1970s.

I believe that future breakthroughs in program development tools for parallel 
computing will require innovative combinations of these five technologies.

The Elves and the Shoemaker again
To end, I will return to the story of the Elves and the Shoemaker to tell you how 
it turned out. The ending that the Brothers Grimm put to this story was a happy 
ever after form of closure, a fantasy contrived to avoid upsetting the children. 
In the reality of human nature, the story ends somewhat differently.

The shoem aker soon 6eccame accustom ed to the trappings o f 

luxury, and greed  overtook  h is b etter judgem ent. He  began 

to  loo k  fo r  way s  to  organise his  workforce to  make his  

w ealth  grow  even fa ster, and decided to  apply stricter 

con tro l over the elves’ hours o f w ork. In  t he face o f the 

shoem aker's seeming ingratitude, the elves quickly tired  o f  

their a ltru istic endeavours, and they escaped into another 

fa iry  ta le to  become m ischievous little  hobgoblins. W ith 

them  vanished the m ystica l secret o f p a ra llel abstraction, 

w hich is the reason w hy the designers and managers o f 

com plex system s struggle today to  fin d  su itable coordination 

strategies, appropriate scaling mechanisms, and arbitration  

m ethods fo r  shared resources.

A n d   as fo r  the shoemaker? W ell, he too aspired to  a more
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prom inent p a rt in a grander story, and, having  been 

unsuccessful a t using his  riches and h is merry disposition to  

secure the role o f O ld  K ing Cole, he made the claim  th a t all 

the achievem ents in the story had Seen w holly as a result 

o f h is person al coordinating skills , and th a t he had alw ays  

been in to ta l con tro l o f a ll th a t had transpired in his 

w orkshop. D espite the ridiculousness o f th is claim, it w as 

precisely the appropriate creden tial to  land him a leading 

role in another fa iry  tale ... th a t o f president o f 

Bophuthatsw ana*.

A week before this inaugural lecture was delivered, chaos broke out in the South African 
homeland of Bophuthatswana over its president’s refusal to allow the homeland to participate in 
elections about to take place in greater South Africa. With his homeland on the brink of civil war 
and with a totally collapsed administration, the President of Bophuthatswana announced that he was 
in total control, and would participate in the elections, confident of the support of his people.
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