
PARALLEL COMPUTING:
THE STORY OF THE ELVES

AND THE SHOEMAKER

INAUGURAL LECTURE

DELIVERED AT RHODES UNIVERSITY

on 23 March 1994

by

PROFESSOR PETER G. CLAYTON

BSc (Hons) MSc PhD (Rhodes) FICS

GRAHAMSTOWN
RHODES UNIVERSITY

1994

PARALLEL COMPUTING:
THE STORY OF THE ELVES

AND THE SHOEMAKER

INAUGURAL LECTURE

DELIVERED AT RHODES UNIVERSITY

on 23 March 1994

by

PROFESSOR PETER G. CLAYTON

BSc (Hons) MSc PhD (Rhodes) FICS

GRAHAMSTOWN
RHODES UNIVERSITY

1994

First published in 1994
by Rhodes University
Grahamstown
South Africa

© PROF PG CLAYTON -1994

Peter G Clayton
Parallel computing:
The story of the elves and the shoemaker

ISBN: 0-86810-274-1

No part of this book may be reproduced,
stored in a retrieval system or transmitted,
in any form or by any means, electronic,
mechanical, photo-copying, recording or
otherwise, without the prior permission of
the publishers.

-1 -

Mr Vice-Chancellor, Colleagues, Ladies and Gentleman:

My first and pleasant duty is to pay tribute to my predecessors in the Department

of Computer Science, all of whom have personally influenced my thinking on the
subject.

The late Professor Rolf Braae of the Applied Mathematics Department had the

vision to introduce Computer Science as a major subject at Rhodes University in
1970. Those of you who remember Professor Braae will probably recall him, as
I do, as a warm person who had an appropriate anecdote to go with any occasion.
I would like to take a few moments to recount one of his anecdotes. Before

Professor Braae came to Rhodes University, he was Professor of Electrical
Engineering at the University of Stellenbosch. It so happened that the Professor
of Botany lived next door to him at that time, and he leaned over the fence one
day to ask Rolf Braae whether he might be able to repair an electric razor. The
reply he received was something like this: "As the professor of Electrical

Engineering, I certainly know something about electrical appliances, and as the

professor of Botany, you surely know something about gardens. So, if you would

like to come around to my house, then I will repair your razor while you mow

my lawn." The undergraduate computing laboratory in the Department of

Computer Science has been named in memory of Professor Rolf Braae.

Professor Howard Williams was the first Professor of Computer Science when
a separate Computer Science Department was established in 1980. He is now
Research Director of Computer Science and Electrical Engineering at Herriot

Watt University in Edinburgh, but he has maintained a personal and professional
interest in Rhodes University, and will be the recipient of a DSc degree from

Rhodes at a forthcoming graduation ceremony. In the latter 1970’s, Howard

Williams was the only staff member at Rhodes University whose time was wholly
devoted to the teaching of Computer Science, and I marvel now at the size of his
teaching load at that time. When I was nearing the end of my bachelor’s degree,
Professor Williams told me that if I had any sense, I would resist the financial
attractions of the job market (as it was then) and stay on for postgraduate study.

So, he was a direct influence in one of the major career choices that brought me
to where I stand tonight.

The headship of Computer Science rotated for a few years (until 1987) between

the current head, Professor Patrick Terry, and Professor Denis Riordan, who is
now at the Technical University of Nova Scotia. Professor Riordan was the only
Rhodes Professor of Computer Science who was not a teacher of mine.
Nonetheless, I learned much from him, particularly as a young member of staff
in his department. Professor Terry, on the other hand, did teach me formally.

The first lecture I attended at University was given by a new young lecturer who
introduced himself as Dr Terry. He didn’t sing at that lecture’, but still managed

to keep us extremely entertained by building a mathematical model of the mating

habits of penguins in the Antarctic. That was the first meeting in what for me

has become a long and rewarding association, and the influence he has had over
my career choices has been considerable.

I would like to use this opportunity to acknowledge the intellectual and material

contribution to my work of my colleagues and students. Many of the examples
that I shall refer to later in this lecture are due to them.

- 2 -

Three weeks before this inaugural lecture was delivered, Professor Terry delivered a public
lecture (to mark his receipt of the Vice-Chancellor’s Distinguished Teaching Award) at which he sang
to the audience.

- 3 -

I would also like to pay a special tribute to my family: to my parents whose
guidance and example shaped my value system; to my wife, Louisa, who has
been more than a support - she has been a partner in building my career; and to
my two boys who have encouraged me with their enthusiasm for what I do
professionally.

To introduce my topic, I would like to tell you a story.

The Elves and the Shoemaker*
tIhere w as once a shoemaker who w as very honest and

worthed very hard; b u t s tiff he could not earn enough to

(w e upon, an d a t Cast o ff he had in the w orld w as gone,

except ju s t enough feather to maJfe one more p a ir o f shoes.

Hy the tim e he had painstakingly cu t them ou t, the

dayligh t w as gone an d he w en t to bed exhausted from his

labours. In the morning, a fter he had sa id h is prayers, he

sa t down to com plete h is warfa to fin d , to h is delight, th a t

the shoes sto o d already com pleted upon the table. The good

man d id n ot (n ow w h at to m a(e th is strange event; but,

being in u igent need o f a m eal, he w en t out and so ld the

shoes, and, a fter sa tisfyin g his hunger, had money otter to

buy leather enough fo r tw o more pairs o f shoes. In the

evening, he la id the leather ou t apprehensively, and w ent

to bed early, an d again, when he g o t up in the morning,

the w o r(w as already done fo r him. H e quichjy fou n d tw o

Adapted from the folk tale collected by the Brothers Grimm.

- 4 -

Buyers, eager to rew ard him. handsom ely fo r his goods, and

so he Bought leather enough fo r fo u r pairs more. A gain he

la id ou t the leather an d fou n d the w or((fin ish ed in the

morning as 6efore; an d so it w en t on, night a fter night;

an d so h is fortu ne g rew exponentially w ith his ou tpu t,

u n til he w as extrem ely w ealthy, and more than a little

curious about the m ysterious source o f h is fortune.

One evening, he sa id to him self: "I w ill s it up an d ((cep

w atch tonigh t, th a t I m ay see the source o f th is lucrative

pro d u ctivity increase in m y Business." So he le ft a lamp

Burning dim ly, an d h id h im self in the com er o f the room to

observe. On the strode o f m idnight, there appeared a host

o f little elves, who worthed aw ay fu riously w ith their little

fin gers, u n til the jo b w as quite fin ished, and the shoes

sto o d ready fo r use upon the table.

Of course, what the shoemaker had stumbled across was the technique now

known as parallel processing, which is the simultaneous working together of

many parts for a common purpose. By himself, he was unable to complete even

a single pair of shoes in one day, but the combined effort of the elves produced
a huge capacity for this sort of work.

Doing things in parallel is a familiar concept to humans. At an individual level,

we are designed to perform several tasks simultaneously. Even as you sit still in
your seat, you are controlling the muscles of your body to maintain your balance,

your eyes are focusing on images and passing them to your brain for processing,

your ears are receiving signals, you are sorting them into word patterns and trying

to make semantic sense of them.

At an interpersonal level, we are used to cooperating with other humans to
achieve a common goal. This form of parallel activity, combining efforts of
many, is the acknowledged method of accomplishing a substantial task in a
reasonable amount of time; sometimes it is the only way of completing a task at
all. Indeed, throughout human problem-solving history, parallel approaches have

been used to overcome complex engineering and organisational challenges. Great

structures are built, large organisations are managed, and formidable enemies are

conquered not by individuals, but by team work. So, in everyday life, parallel

activity is the norm; individual sequential activity is the limiting exception.

Well, if the notion of parallel activity is so obviously commonplace, how does

it qualify as a field of specialist endeavour? The answer to this question lies in

the fairy tale abstraction with which humans tend to regard parallel domains. The
story of the elves and the shoemaker provides an appealing archetype for this

kind of abstraction. The problem of making shoes is simply scaled up in a linear

fashion, without any consideration of the distribution of responsibilities, the

coordination of different tasks, the dividing up of raw materials, the sharing of
tools, or the finite size of the workspace. These details are defined away by the
nature of the workers: elves are supernatural beings with magical properties.

Arthur C. Clarke, the popular science commentator and science fiction writer,

once remarked that "any sufficiently advanced technology is indistinguishable
from magic", which is a fine point of view for anyone except the one charged

with the responsibility of creating the advanced technology. In parallel problem
domains, moving from an abstract idea to a concrete implementation requires

substantial effort, mainly in the area of coordinating activities that require the

- 6 -

cooperation of more than one participant.

When independent entities act simultaneously, all contributing to a common
objective, behavioural complexity grows very quickly. For example, one entity

might be capable of cycling through 6 steps in the solution of a problem. It

would thus have 6 unique states. Two such entities working together would have
62=36 unique states corresponding to the number of permutations of their
individual events. 20 such entities working on the same problem would be
capable of 620* 3.7 million-billion (3.7xl015) unique states. In systems of this
degree of complexity, ensuring that desirable combinations of events occur

timeously, and that undesirable combinations of events never occur, requires
specific coordination strategies.

Just as the word algorithm' is used to describe the set of rules and instructions

to be followed in the problem solving procedure of sequential computer

programs, it is also used to describe the solution to a parallel problem.
(Algorithm in a computer context has roughly the same meaning as the word
recipe does in a cooking context.) An integral part of a parallel algorithm is its

coordination strategy.

The coordination strategy for every parallel application needs to be designed
specifically to cater for the needs of that particular problem area. Fortunately,

though, several broad classes of coordination strategy exist which are known to
be useful across a range of problems. An example of such an algorithmic class
in everyday life is a factory assembly line. All assembly lines comprise a
pipeline of activities, and a conveyor belt (or similar arrangement) to

After the 9th century Persian mathematician al-Khwarizmi.

- 7 -

communicate data and state information through the system. Individual assembly
lines vary in the function and duration of their activity stages, but all problems
that are solved in this way need to have the common characteristic that a stream
of individual items is able to be developed in stages, to produce a stream of

products. The coordination strategy that simplifies the assembly line is that items
move forward in lock step, and that the speed of the line is constrained by the
speed of its slowest activity.

The activity of giving a lecture is an example of another algorithmic class, one

commonly known as farming. The lecturer farms out some opinions and facts

to the audience, and they assess what she has to say, in parallel. At the end of

the lecture, the lecturer might gather in the responses of the audience, and

tabulate them into an overall result. This would have been far more efficient than

if she had approached each member of the audience individually, in sequence,
with what she had to say. The coordination of individual activities in a lecture
situation is achieved through the protocol that has been agreed upon before the
start of the lecture; in this case it is a very simple strategy, the lecturer speaks

and the audience listens. To implement this coordinated activity, all participants
make use of the a shared resource, the air. This carries the sound waves from
the lecturers mouth to the ears of the audience, which works well for the lecture

situation, but would not necessarily work for a different class of problems.

Imagine if the lecturer were to set each member of the audience the task of
swapping life stories with the person in the room whose birthday was closest to
theirs. If they were all to keep their original seating positions, we might end up
with the undignified situation of some people at the front of the hall having to

yell at partners in the back row, while others on the left of the room attempted
to shout them down to communicate with their partners on the right, and so on.

- 8 -

There would certainly be a lot of interference and communication breakdown.
The seating arrangement would not be a satisfactory configuration for solving the

problem. It might be more appropriate to allow the audience to move positions
and form functional groupings, and to use the air in a localised way to whisper
to each other. Alternatively, if the swapping of life stories was only a portion of
the problem, and the rest of the solution benefitted in some way from the original
seating arrangement, then it might make sense for members of the audience to
write notes and get intermediate people to pass them on.

So, it should be noted that there is no single recipe for solving problems in

parallel. The nature, organisational layout, and communications interfaces of a
parallel system constrain the range of problems which can be solved using it. In
terms of the examples I have offered, the coordination approach of the assembly
line would not work well in a lecture situation, and vice versa.

Parallel Computing3
So far, I have said a fair amount about the general concept of working in parallel,

but not much specifically about computing. Parallel computing is about programs

that are intended for execution on many processors simultaneously. Each
processing element works on a piece of the problem, and their computations
contribute towards a common purpose. The analysis of parallel software is a
special instance of the broader art and science of analyzing coordinated systems
in general.

The most frequent use of parallel computing is to enhance the computational

performance of a system. No matter how fast a computer processor might be,

two of them working together should be faster, and more than two should be

even faster, and, even then, they will not be able to satisfy all current

computational needs.

There are unsolved problems in science and engineering that are able to consume
almost any amount of computer resources. Here are some examples:

Quantum Chemistry in which Schrodinger’s equation has only been
fully solved for the simplest cases;

biology and biochemistry where the analysis of DNA structures is

immensely complex;

fields which produce immense amounts of data such as remote sensing;

and areas such as computational fluid dynamics, materials science,
climatology, and cosmology, in which increasing the resolution
of finite element modelling provides more precise results.

The appetite for computational power is not restricted to science and engineering.

The amount of data required by decision makers in modem commerce and
industry has mushroomed in recent years, and parallel processing has been

applied to the implementation of data base searches and decision support systems.

For the individual computer user, increased computing power supports more
sophisticated user interfaces, which are designed to communicate in a manner
more intuitive to humans. This extends the computer’s accessibility to less
specialised users. A current commercial example of this trend is the graphical
user interface. More advanced laboratory examples are speech synthesis,

handwriting recognition, and virtual reality*.

- 9 -

A head-mounted stereo display unit, along with data gloves and tracking devices, can be applied
in the computer generation of an artificial world in which the user is able to move around. This
creates a virtual reality for the user. The stereo display presentation is changed as the head is moved,
and the data gloves are used to manipulate computer-generated objects.

- IO -

Anything that can be done in a parallel environment can also be done in a
sequential environment, it just takes longer. A prominent factor which drives the
pursuit of parallel computing is the need for what is known as real time response.
The term real time implies a feedback situation in which a computer system

produces results sufficiently promptly to allow its user or environment to take
immediate action, which could take the form of further, more informed queries.

For example, if a medical practitioner were to send you to see a radiologist with

instructions to return in a few days time with an ultrasound scan, this would not

be a real time activity. The elapsed time between consultation, scan, and follow-
up consultation would decouple the activities of the scan and the diagnosis. On
the other hand, if the medical practitioner were to pull out some ultrasound
equipment and take a scan during the consultation, and make a decision on the
basis of the scan immediately, such as to perform another scan from a slightly

different angle to home in on a possible problem, we would then say that the
scan was being used in real time to make a diagnosis.

The time lag which can be tolerated between a query and a result in a real time
system depends entirely on the nature of the application. A computer animation,
for example, whose composition can be determined by the viewer, requires that
each still picture in the animation sequence should be rendered in not more than

1/25th of a second. To give the impression of smooth motion, at least 25 separate
still pictures, called frames, are required by the human eye every second. With
currently available technology, this is a serious challenge, and it is one of the

primary considerations in the development of virtual reality systems. One of the

most important general uses of computer systems is to assist humans in extracting

information from sets of data, and one of the most successful techniques for
representing the information contained in complex data sets is through the use of
graphical visualisation. Parallel methods are widely used in graphical

-11 -

visualisation, to render pictures sufficiently quickly so as to allow the user to alter
the angle of view and zoom in on features of interest. Of course, large amounts
of computational power are required to produce a real time responses from any
complex data, or from the application of any complex process.

However, computational speed is not the only reason for making use of parallel

systems. A second physical attribute of parallel computing is its improved

performance in terms of reliability. Due to inherent redundancy in the processing
hardware, life critical systems or systems which cannot easily be accessed for
maintenance can be designed to be robust. If one processing element
malfunctions, the computation can proceed on another one. This approach is
taken in the design of such systems as artificial organs which are implanted inside
patients, and satellites which are placed in space.

A further attractive attribute of parallel designs, this one logical rather than

physical, is that they provide a sensible model of the real world. I have already

pointed to the fact that, in every day life, parallelism is the norm. When the

solution to a parallel problem is formulated in terms of a sequential program, the
mapping of the solution onto the sequential platform is unnatural, and therefore
it is error prone, difficult to maintain, and unreliable. This is one of the reasons
why it is increasingly common for single processor computer systems to pretend
to be parallel systems. A pseudo-parallel environment is provided by switching
execution between entities capable of executing simultaneously. To distinguish

these from genuine parallel systems, they are known as concurrent or multi

tasking systems. The UNIX operating system and the MS-Windows environment

Other reasons for this approach to single processor system design is that it decreases the
proportion of time that a processor might be idle waiting for the current task to complete a
communication, and it facilitates multiple user access to the computer.

- 12 -

are common examples. MS-DOS, the operating system currently used on most
of our personal computers, does not fall into this category, and it is the lack of
this facility, more than any other, that limits its usefulness to us in the future.

The architecture of early and current electronic computers can be traced back to
the concepts outlined by John von Neumann and others in a paper published in

1946 2, in which the ideas of a serial computing machine, subsequently known

as the von Neumann Architecture, originated. The vast majority of computers

available today are in this category. When one considers the immense cost of
computer processors in the 1950s, ’60s and ’70s, it comes as no surprise that
conventional computing developed around sequential computers with single
processing elements. The sheer cost of computer processors made stringing them
together in parallel prohibitive.

All this changed in the early 1980s with the appearance of VLSI (very large scale

integrated) microprocessing chips. The manufacturing process had an inherent

economy of scale, which drove down the prices of computing devices by orders

of magnitude. Personal computers appeared at the same time, also driven by the
microchip technology.

By the mid 1980s, microchip technology had made it possible to construct a
powerful microcomputer with memory, processor, and communications on a
single device. The ability to link such devices to each other in arbitrary
topologies encouraged the construction of high-speed parallel processing systems

at relatively modest costs. One such computing device which is widely used as

a building block for parallel systems is the transputer8. The name transputer has

been made up from the words TRANSistor and comPUTER, so named because
it enables whole computers to be used as discrete components to build massively

- 13 -

parallel computer systems, following the more conventional practice of using
transistors as circuit building blocks.

Software
But there is a problem: there has been no breakthrough in software technology
for parallel computing that matches the developments in microchip technology.
Whereas sequential programming notations have matured over a period of forty

years into a range of useful and powerful notations, parallel programming, the

more complex of the two, has had only ten years of effort and experience in this
direction.

The most powerful and the best understood notations in the parallel programming
world are extensions of sequential programming notations, which rely on physical
shared memory locations for communicating between their constituent parts. This
poses a particular problem for the more affordable kinds of parallel systems, in

which processors have no memory in common and all communication is done by

sending messages across networks. Because of this dilemma, parallel computers

have developed in two directions: the shared-memory multiprocessor and the
multicomputer.

The shared-memory multiprocessor comprises a small number of processing

elements connected to a common pool of memory. These computers handle
information sharing quite easily, but suffer from contention which arises when
accessing the common memory, which is a shared resource. To limit the amount

of memory contention to a manageable level, only small numbers of processors

are connected together in this way. This is usually compensated for by making
the processors more powerful, and so we can think of this as a herd of elephants
approach. Shared-memory multiprocessors are typically expensive machines.

- 14 -

In the multicomputer, each processing element has its own memory, and there is
no shared resource to impose an upper limit on the number of processors which
can be connected together. Communication between processors occurs through
a high speed network. Since the number of processors is not constrained, we can

achieve the same (or greater) computing power as the herd of elephants approach
by connecting together massive numbers of less powerful processing elements.

We might call this the army of ants approach. The transputer devices described

earlier fall into this class. Multicomputers can be built to be cheaper and more
powerful than shared-memory multiprocessors or traditional single-processor
mainframes, but are proving to be a lot more difficult to programme. Though
much effort is currently being invested in the development of effective
programming notations for these computers, the problems of scaling computation
up to large numbers of processors, and of communicating via message passing

networks, remain challenging.

Typically, dividing up the problem into smaller problems to be solved
independently is the least demanding aspect of designing a parallel algorithm, the
tricky part is getting the right data to the right place at the right time, so as to
keep all processing elements busy. This requires innovative coordination

techniques, and a suitably large data set.

The issue of the scale of parallel activity (the large data set) is known as the

Amdahl effect', after Gene Amdahl an early computer architect, and is a much

studied area of parallel processing. Put simply, it makes the rather obvious claim
that if you have many parallel participants, you will need to have a lot of work
to justify their presence. The story of the Elves and the Shoemaker uses a
reasonable scale of operation. It does not suggest, for example, that 10 elves

could make a single shoe in 1/10 of the time that it would take one elf, it simply

- 15 -

states that a lot of elves could make a lot of shoes in one night.

The problem of a communications bottleneck between processors is often solved

by migrating a parallel algorithm down onto dedicated VLSI circuitry. This is
facilitated by the existence of programming language to silicon compilers. Where
this option exists, the algorithm is the important product of the programming
effort, not the prototype implementation. This is becoming a fairly common
practice 5.

I will illustrate this with an everyday example. If there was a need for one to

travel between one city and another more quickly, there are two ways in which
this could be achieved. The first might be to find a faster means of transport;

but, if the fastest feasible means of transport was already being used, then the

second method would be to move the two cities closer together. This might not
sound like a feasible solution in geography, but it is exactly what is done in
computer circuit design. As a case in point, it is well known that the speed of
the microprocessor doubles approximately every two years. This is not as a

result of increasing the speed with which computer circuitry operates. Over the
last 14 years, circuit switching speeds have increased by a factor of about 10,

whereas overall execution speeds have increased by a factor of about 128. The

additional speedup is due to the incorporation of parallel processing principles in
the microcomputer itself; modem microprocessors are able to execute several

instructions simultaneously in what are known as superscalar architectures.

Formal methods
But, of course, computer systems often have errors in them. People in the

computer programming community are fond of using that very American saying
"garbage in - garbage out", which is a less eloquent version of the Biblical saying

- 16 -

"you will reap what you sow". If you sow garbage at a computer, you will reap

garbage, probably tenfold. The exceptional thing about this (as those of us who
have tried to query our electricity account or our bank statement will know), is
that this garbage, once it has passed through a computer, is somehow ennobled,
and no one should dare criticise it.

Complex parallel computations propagate errors in complex ways, and the

methods of trial and error testing, or hacking, that is prevalent amongst the
programmers of sequential computers is hopelessly inadequate. The number of

different permutations of actions that occur in parallel programs rises

exponentially with the number of processes and the complexity of each process

(this is called a state space explosion), and it becomes impossible to design
empirical tests on millions of different execution paths. This is a sobering effect
that has driven Computer Scientists to turn to their mother discipline, which is

Mathematics, for a solution.

A number of mathematically rigorous notations have been developed which

support formal reasoning about parallel programs. These notations are supported

by computer software systems which act as workbenches to facilitate the

reasoning process. Commonly used examples of such notations are:
Hoare’s notation for Communicating Sequential Processes (CSP) 4,
Milner’s Calculus of Communicating Systems (CCS) 6, and
extended forms of the Petri Net 7.

Bringing the precise mathematical meaning of the system to the fore with the aid
of a mathematical notation yields two avenues for profit. 'Firstly, a formal

specification acts as a single, reliable reference for all involved with system

development, maintenance, and use. Secondly, it provides a secure mathematical

- 17 -

foundation for reasoning about properties of the program, for detecting and
avoiding abstruse errors, and for verifying the correctness of the design.

Regrettably, the degree of rigour required for a detailed formal analysis is
typically tedious for all but the most modest of systems, and implementors are
frequently unfamiliar with the mathematical methods required. All the same,
formal verification methods are no longer the exclusive property of academic

experimentalists, and are being used increasingly for commercial purposes. While
it is often not practical to apply formal verification methods to complete hardware
or software systems, they are being employed in the development of sub-

assemblies in which the complexity, novelty, or subtlety of the design justifies the
effort required for formal analysis.

These formal notations are new areas of mathematics, and it is my hope that
more of them will find their way into mathematics curricula so that undergraduate
mathematics programmes will eventually provide as much support to the
computing sciences as they currently do to the natural sciences.

Parallel computing in developing countries
As we pass through the current transition phase in our country, it is appropriate
the we reassess the relevance of what we do with our resources. Parallel
processing research can be an expensive pastime, and it might be argued that it
is better left to wealthy Western Universities to pursue.

One of the problems in developing countries is that finance is seldom available
for purchasing special purpose equipment. I have stated that VLSI technology

has made the construction of high-speed parallel computers relatively cheap. The

operative word here is relatively; there are many institutions in South Africa

- 18 -

which could benefit from high speed computing, but which could not afford

special purpose equipment. However, most universities and businesses already
have large numbers of personal computers and workstations, connected by low
speed networks. The combined computing power of these networks could
constitute a powerful parallel computer during periods when the computers are
not being used for normal work. Computer networks are, perhaps, an even more

important basis for parallelism in our kind of economy than having many
processing elements packed into a single box.

However, network based parallel processing faces yet more problems. On the

technical side, the networks are set up for purposes other than high speed
computing, and factors such as topology and communication speed cannot be
altered to suite parallel computations. On the personal side, the users of
computers purchased for particular purposes are usually reluctant to have remote
users reducing their response time.

At Rhodes University, we have used networks of computers for a number of

parallel computing projects. The most notable has been a platform for

accomplishing what is known as adaptive parallelism. Here the parallel program
is designed to adapt to the shape and size of the available network, and to survive
unreliable processing elements. If a part of the computation is being performed
on a computer belonging to another party, it will regularly monitor the host
computer, and will back off and complete the computation elsewhere when the

rightful owner of that computer wishes to make use of its full resources. This
system is able to run on networks of heterogeneous computers, and effectively

uses up spare processor cycles during large background runs. We have had this
system running on up to forty Sun workstations and IBM PCs simultaneously,

and have used it for a range of parallel applications, including graphical

- 19 -

visualisation and parallel database searches.

Future breakthroughs for program development
In discussing some of the benefits and challenges of parallel computing, I have
concentrated on what is possible right now, albeit only in the experimental
laboratory in some instances. I hope I have been able to show that practical
parallel computing rests upon two presumptions:
1. the availability of many low-cost, high-speed computers, that are able to

share a computational load; we have these in the form of special

purpose VLSI (very large scale integrated) processor devises, and in the
form of networks of general purpose computers;

2. the existence of programming development tools and strategies to
partition problems into smaller components and coordinate their
simultaneous execution. These facilities are fairly crude at this stage in
the development of economical forms of parallel computing, and finding
powerful ways of managing programs which run on multicomputers is
a holy grail of current research.

In the last ten years, five new computing approaches moved out of research

laboratories to become land mark technologies. I have mentioned four of them
in this lecture. The first is parallel computing. The second is the use of
mathematically rigorous techniques, or formal methods, to aid in the development

of software. The potential now exists for proving mathematically that programs
are correct. The third is the widespread use of networks to connect individual
computers into vast distributed computing facilities, and the fourth is the use of

graphics to simplify human interfaces by using more pictures and less text.

The fifth development is object-orientated programming, which has not been

- 20 -

mentioned in this lecture. This is a rapidly maturing descendant of the structured
approaches to computer program design that swept through the computer industry
in the 1970s.

I believe that future breakthroughs in program development tools for parallel
computing will require innovative combinations of these five technologies.

The Elves and the Shoemaker again
To end, I will return to the story of the Elves and the Shoemaker to tell you how
it turned out. The ending that the Brothers Grimm put to this story was a happy
ever after form of closure, a fantasy contrived to avoid upsetting the children.
In the reality of human nature, the story ends somewhat differently.

The shoem aker soon 6eccame accustom ed to the trappings o f

luxury, and greed overtook h is b etter judgem ent. He began

to loo k fo r way s to organise his workforce to make his

w ealth grow even fa ster, and decided to apply stricter

con tro l over the elves’ hours o f w ork. In t he face o f the

shoem aker's seeming ingratitude, the elves quickly tired o f

their a ltru istic endeavours, and they escaped into another

fa iry ta le to become m ischievous little hobgoblins. W ith

them vanished the m ystica l secret o f p a ra llel abstraction,

w hich is the reason w hy the designers and managers o f

com plex system s struggle today to fin d su itable coordination

strategies, appropriate scaling mechanisms, and arbitration

m ethods fo r shared resources.

A n d as fo r the shoemaker? W ell, he too aspired to a more

- 21 -

prom inent p a rt in a grander story, and, having been

unsuccessful a t using his riches and h is merry disposition to

secure the role o f O ld K ing Cole, he made the claim th a t all

the achievem ents in the story had Seen w holly as a result

o f h is person al coordinating skills , and th a t he had alw ays

been in to ta l con tro l o f a ll th a t had transpired in his

w orkshop. D espite the ridiculousness o f th is claim, it w as

precisely the appropriate creden tial to land him a leading

role in another fa iry tale ... th a t o f president o f

Bophuthatsw ana*.

A week before this inaugural lecture was delivered, chaos broke out in the South African
homeland of Bophuthatswana over its president’s refusal to allow the homeland to participate in
elections about to take place in greater South Africa. With his homeland on the brink of civil war
and with a totally collapsed administration, the President of Bophuthatswana announced that he was
in total control, and would participate in the elections, confident of the support of his people.

- 22 -

References
1. Amdahl, G. (1967), Validity of the single processor approach to

achieving large scale computing capabilities, in: AFIPS Conference
Proceedings 30 (April), Thompson Books, Washington D.C., 483-485.

2. Burks, K., Goldstein, H., and von Neumann, J. (1946), Preliminary

discussion o f the logical design of an electronic computing instrument,

Princeton University.
3. Carriero N. and Gelernter D. (1992), How to write Parallel Programs:

A First Course, MIT Press, Cambridge.
4. Hoare, C.A.R. (1985), Communicating Sequential Processes, Prentice-

Hall, Englewood Cliffs, N.J.
5. Hoare, C.A.R (1994), Hardware and Software: The Closing Gap, Proc.

Conference on Programming Languages and System Architectures

(March), Zurich, Switzerland.
6. Milner, R. (1989), Communication and Concurrency, Prentice-Hall,

Englewood Cliffs, NJ.
7. Peterson, J.L. (1981), Petri Net Theory and the Modelling of Systems,

Prentice-Hall, Englewood Cliffs, NJ.

8. Walker, P. (1985), The Transputer: A Building Block for Parallel

Processing, Byte, 10(5), 219-235.

