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Abstract 

This study is based on assessing the potential use of GIS and Remote Sensing in trying to fill 

the various soil maps of selected regions at different scales with spatial soil data. A variety of 

processes are available for use. These include band ratios, principal component analysis as 

well as use of a digital elevation model (DEM). With the advent of GIS and Remote Sensing, 

these principles in the new niche of study are investigated to check if they can be used to 

augment the current processes available in soil mapping techniques. Such processes as band 

ratioing, principal component analysis and use of Digital Elevation Models (DEMs) are 

investigated to check if they can be used in soil mapping techniques. From the results 

produced it is evident that these processes have the potential to be used in the Digital Soil 

Mapping process. Despite the limitation of remote sensing to a few centimetres of the topsoil 

these processes can be used together with the soil mapping techniques currently being used to 

come up with soil maps. 

Key words: digital soil mapping, band ratio, principal component analysis, digital elevation 

model.    
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Digital soil mapping can be described as “a tool that is used to create spatial soil information” 

(Behrens and Scholten, 2006). The International Working Group on Digital Soil Mapping 

defines the digital soil mapping process as “comprising the creation and population of a geo-

referenced soil database” (http://www.digitalsoilmapping.org). This soil database can be 

generated at specific resolutions by coupling field and laboratory observation methods. Soil 

maps have been produced using soil surveys. The results from the laboratory are mapped to 

show where it would be possible to find the soil types analysed.  This form of soil analysis 

has been referred to by many soil scientists as traditional soil mapping.   

Traditional soil mapping is time consuming because it requires identification, characterisation 

of soils and fitting of mapping units in a classification system and their placement in a spatial 

context (Weber et al, 2008). The result is the production of very few maps. This is because 

the process is incapable of supporting optimal production of adequate maps. Consequently, it 

is increasingly essential to provide alternative strategies for rapid production of soil maps.  

It is worth mentioning that the process of creating digital soil maps is different from soil 

mapping which is commonly known as soil survey. Soil mapping involves the compilation of 

thematic maps using criteria-based delineation of soil boundaries through digitising or 

thematic classification of remotely sensed imagery. The thematic maps do not become digital 

soil maps until soil related information has been added in a Geographic Information System 

(GIS) environment (Rossiter, 2005). Though digitisation has been used to compile maps at 

different scales, it often takes a lot of time to accurately capture the required information. 

Consequently, a lot of hard copy maps remain underutilised because of numerous constraints 

http://www.digitalsoilmapping.org/
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associated with their conversion into digital format.  The Digital soil mapping procedure 

utilises the ability to convert these paper maps to digital format using GIS. 

Remote sensing based soil mapping techniques offer viable alternatives to conventional soil 

mapping procedures. This is because soil maps can be accurately and rapidly produced 

through image classification. The process takes advantage in the technological and 

computational advances in the fields of digital soil mapping to come up with the desired 

digital maps. Technological advances include the use of Global Position System (GPS) 

receivers in ground truthing and field scanners. Computational advances include the use of 

GIS and digital elevation models as well as geo-statistical interpolation in the creation of the 

digital soil maps.  

The creation of digital soil maps is essential because soil exhibits different behaviours, that is, 

each soil type has unique properties (Aksoy et al, 2006). These unique features are mapped 

and used to determine the soil type. Variations in the spectral characteristics of different soil 

types facilitate detailed mapping because each soil type reflects incident light differently. 

Digital soil maps provide information that is vital for soil management and most policy 

formulation policies have been widely used for agriculture and land use management by 

supporting the monitoring of erosion and tillage practices. They provide vital information on: 

 Infiltrate/carbon storage capacity and the ability to support crop production. 

 Geographical representations of soil constraints such as aluminium toxicity, carbon 

deficits and sub-soil restrictions. All this can be done with confidence to help farmers 

in determining levels of nutrient application. 

 Spatial targeting for management recommendations and establishment of baseline 

conditions for change detection and impact assessment. 
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Digital soil maps are required in most activities related to land use management. They are 

important because they enhance our understanding of pedological processes by providing a 

site-specific/spatial information framework for land use management. The spatial dimension 

is important because of the need for accurate information on key environmental variables 

such as soil nutrient status, soil pH, texture, and salinity, vegetation and terrain. This 

information is also vital because it provides an objective basis for the creation of digital soil 

maps through the systematic classification.  

To cost-effectively compile digital soil maps at any scale requires extensive use of both 

legacy soil data and soil landscape knowledge (Hansen et al, 2009). This compilation process 

largely relies on modelling relationships between measured soil properties, and 

environmental co-variables such as surface reflectance and digital elevation that can be 

derived from satellite imagery. Data for each digital soil mapping unit, are calibrated to fit the 

region of interest. 

GIS has increasingly been used as a versatile means to store amounts of information 

contained is soil maps to overcome the problems associated with the storage of hard copy 

maps. GIS offers advantages over hard copies in that it provides digital storage of 

information in a database that can be easily accessed by different users at any given time. The 

same information can be used in creating other digital maps without the need of going to the 

field to acquire data or to the laboratory to analyse new soil samples. Digital soil mapping 

requires:  

 A base map derived independently of other variables that will be used in subsequent 

analysis, 

 Establishment of the relationship between the reference layer of interest and soil and 

determination error estimates and levels of accuracy. 
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GIS data can be coupled with satellite imagery for digital soil mapping. The choice of 

imagery is dependent on factors such as spatial and radiometric resolution. However, most 

digital soil maps have been created from the conventional satellite imagery data which 

include Landsat Thematic Mapper (TM) and Landsat Multispectral Scanner (MSS), ASTER, 

Advanced Very High Resolution Radiometer (AVHRR) from National Oceanic and 

Atmospheric Administration (NOAA) and Satellite Pour l’ Observation de la Terre (SPOT) 

imagery. Soil properties, availability of collateral GIS data and scale at which the map is 

produced will determine the type of imagery to be used. Image resolution affects the scale of 

the map output. Using satellite imagery and other forms of GIS data is important in digital 

soil mapping as these types of data enhance the establishment of relationships between soil 

properties and spectral reflectance characteristics.  

The increasing availability of state-of-the-art hardware and software that can be used in 

digital soil mapping has not done much to overcome limitation associated with the 

conversion of hard copy maps to digital format (Tomlinson and Boyle, 2001). Conventional 

soil mapping procedures have always required simultaneous verification of available 

information through field measurements and laboratory experiments. These are used to 

characterise soil samples. In more recent times, it has become increasingly possible to fast 

track the compilation of soil maps by tapping on remote sensing technology.  

1.2 Problem statement 

There is an incomplete coverage of soil maps by appropriate scale soil maps in South Africa.  

According to the Agriculture Research Council website, there are only 1:250 000 coverage of 

soil map in South Africa (http://www.arc.agric.za/arc-iscw/Product% 20Catalogue% 20 

Library/Land%20Type%20Maps%20and%20Memoirs.pdf). Though soil maps are generally 

available for most parts of South Africa, some of these maps do not provide appropriately 

http://www.arc.agric.za/arc-iscw/
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scaled information. This limitation is aggravated by the high costs of soil surveys and 

laboratory soil sample analysis. Though laboratory analysis provides indispensable 

information for soil mapping, remotely sensed data can be effectively used in lieu of 

conventional procedures that depend on the time-consuming and expensive field collection 

and analysis of soil samples. 

1.3 Significance of the problem 

There is a perceived need as well as rise for spatial soil information by multiple countries as 

well as provinces (Thompson et al, 2012). This information is needed to address resource 

issues that are needed to be solved. Local and global issues need to be solved by the 

availability of proper information on soils. Policy makers as well as environmental scientist 

need this information to assist them in giving proper decision on environmental issues. 

Failure to have properly managed spatial soil information may be disastrous as decisions may 

be passed from wrong information that has been provided from a given soil information 

database if the information it contains is not sufficient. 

There are numerous environmental and socio-economic models that require the use of soil 

parameters to give a desired outcome such as estimating the changes in our future life 

conditions (Dobos et al, 2000). However, soil information has some issues that need to be 

solved before the information can be of use in any organisation. Such issues include: 

i. Fixing the scale at which the soil information is viewed at, 

ii. Giving proper names to the different soil types and properties being mapped and 

iii. Improving on the quality of the soil data being mapped. 
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Most soil maps have been produced using field methods. This is where soil samples were 

collected from the field and studied in a laboratory. This process was slow and thus using the 

GIS and remote sensing it is envisaged that the process will be faster. 

1.4 Justification of the problem 

It is hoped that the methodology used in this project will provide a workaround strategy to 

increase the availability of soil maps in South Africa by offering affordable and user friendly 

procedures to fill gaps in spatial coverage. The methodology is versatile and robust because 

apart from saving time and reducing the prohibitively exorbitant costs associated with 

conventional mapping procedures, it is adaptable and user friendly and can be applied to 

maps at different spatial scales. These observations justify the need to make the proposed 

methodology more sharable by demonstrating its utility through a case study in which GIS 

and Remote Sensing techniques/data are synergistically used to compile soil maps that can be 

used to patch in gaps in different soil-map coverage.    

Soil information is important for many regional land analysis methods where this information 

will be needed to be able to deal with challenges such as land degradation and productivity. 

This will be done by showing the land use management within a given soil type.  It is known 

that traditional soil surveys do not provide quantitative data at detailed scale level and thus 

digital soil mapping should be able to rectify this by offering quantitative soil information at 

varying scales that have detailed soil information. 

From the above statements, it is clear that unless there are digital soil maps that are produced 

with great care, there is a possibility of producing misleading maps. In this study the 

principles in GIS and remote sensing are used to produce a map of soil type or soil properties. 

The knowledge obtained from this study will thus aid in using this technology more 

efficiently so as to get the desired soil maps quicker than it would be. 
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1.5   Objectives of the study 

1.5.1 Broad Based objectives 

The broad based objective of this study is to investigate if GIS and Remote Sensing can be 

potential tool to support Digital Soil Mapping techniques. 

1.5.2 Specific objectives 

The objectives for this research are to: 

a) Provide a cost-effective, user-friendly and adaptable methodology that will facilitate 

the rapid compilation of appropriately scaled soil maps from conjunctive use of GIS 

and Remote Sensing techniques/data.    

b) Demonstrate the utility of the proposed methodology through a case study initiative in 

which the derived maps are used to seamlessly patch-up gaps in soil maps 

c) Make recommendations for the way forward in order to facilitate adoption of the 

proposed gap-filling strategies by land-use planners and other stakeholders that 

routinely use soil maps in different ways and for multiple purposes.  

1.6 Research Hypothesis 

1.6.1 General Hypothesis 

There is missing soil map information in the soil map of South Africa. This has led to lack of 

proper decision making processes. 

1.6.2 Specific Hypothesis 

Emerging from the above general hypothesis, the missing soil information on the property 

and types of soils have to some extent led to poor decision making processes for different 

organisation that use soil  information.  
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Before a clearer appreciation of the major problems as outlined in the preceding sections can 

be grasped, it is essential to contextualise the problem by providing an outline of the 

biophysical setting of the study area. Chapter 3 therefore, provides some informative 

coverage of the physical characterisation of Tyume Valley. 

To fill on these gaps of missing information there will be need to come up with methods that 

can be used to assist in adding soil information data on the gaps. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a comprehensive overview of the literature on soil mapping with 

emphasis being placed on the general features of a) traditional and modern/digital soil 

mapping techniques and b) the specific features of the latter/modern/digital with particular 

reference to soil mapping in the Eastern Cape Province of South Africa. 

2.2 Soil mapping Techniques  

Soil mapping techniques can be subdivided into two broad categories. These comprise 

traditional (also known as conventional) soil mapping techniques and the more recent suit of 

techniques collectively referred to as modern soil mapping techniques. Soil mapping is often 

used in a manner that embraces digital soil mapping techniques because of the increased use 

of the latter in more recent times. 

2.2.1 Traditional Soil mapping  

Traditional soil mapping involves studying the soil profile only to come up with the desired 

soil maps for various users. The users vary depending on the purpose for which they want to 

use the map and its production scale.  This type of soil mapping can also be described as 

knowledge-driven and data-driven models (Rossiter, 2005). The knowledge-driven model 

uses surveyors’ knowledge of why each soil type is where it is while the data-driven model 

involves fieldwork and laboratory analysis.  

When map compilation is done in a digital environment, the following steps are often 

involved: 

i. Defining attributes of interest along with desired resolution and block size, 

ii. Assembling attribute data related,  
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iii. Spatial analysis of existing data in accordance with the resolution and block size, 

iv. Analysing data to determine field sampling plan and field compilation of geo-located 

soil samples, 

v. Fitting quantitative relationships in cognisance of spatial structure and 

vi. Compilation of predictive soil maps meet specific user requirements. 

The fourth stage of analysis which field sampling and laboratory analysis, is often time 

consuming. The entire method may not be very useful since most soils do not always require 

the availability of field samples to verify the type of soil being mapped (Rossiter, 2005). 

2.2.2 Remote Sensing and GIS soil mapping techniques 

Soil maps are vital sources of information for many environmental and agro-economic 

analysis related fields (Henverlink, 2006). Most information on soils includes topography, 

geology and land use. Land use mapping substantially depends on the availability of satellite 

imagery which provides vital information on current and historic land management activities. 

Studies that can be done at the digital mapping level can be designed to: 

i. Explore digital soil mapping techniques and to compare their advantages 

/disadvantages with those of traditional soil mapping techniques, 

ii. Develop geostatistical methods that map a selected soil type and/ or property from 

auxiliary soil information or point data, and 

iii. Applying modified digital soil mapping techniques to studies that involve the 

collection of validation data for soil classification accuracy assessment. 

 

Optical remote sensing measurements record the radiation emitted from the soil surface as 

there is little penetration of electromagnetic radiation through the soil body (Matternich et al, 
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2003). Soil reflectance signals from the inherent spectral behaviour of the heterogeneous 

combination of the biochemical constituents, geometrical optical scattering and moisture 

conditions of the surface result from the presence or absence, as well as the position of 

certain absorption features of its constituents.   

Matternich et al, 2003 describes the composition of the soil as being not straightforward to 

evaluate, as soil is made up of both inorganic and organic constituents. This therefore may 

mean that some constituents of the soil may not be detected by different sensors from 

satellites that are used in the remote sensing technique of mapping soils or it may also mean 

that their spectral reflectance which these sensors receive may not be adequate in the soil 

mapping process. To quantify soil reflectance and determine the difference between soil 

reflectance spectra, early studies were done by Condit in 1970, Huete and Escadafal in 1991 

and Stoner in 1981. These four researchers found that: 

i. Under laboratory conditions there are three main types of soil curves in the range of 

0.32 to 1µm, 

ii. The five distinct soil reflectance curves are based on curve shapes, the presence or 

absence of absorption bands, the predominance of soil organic matter and iron oxide 

composition in the range of 0.50 to 2.32µm, 

iii. The four spectral curves that were identified using spectral decomposition and 

mixture modelling technique in the range of 0.40 to 0.90µm represent soil brightness, 

red iron oxides, and organic carbon and reduced iron oxide (goethite) content. 

The early researchers and soil scientists also found out that there was a good correlation 

between soil reflectance and soil properties such as organic matter, soil moisture, particle 
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distribution, iron oxide content, colour, soil mineralogy, salts and parent material which they 

reported on. 

The production of digital soil maps has been made possible by the advent of GIS, GPS and 

remote sensing technologies (Santhosh et al, 2011). These technologies have made it easier 

to integrate information from different sources and stimulated the development of numerous 

studies and projects. The scarcity of spatial data on soil has activated the development of 

digital modelling techniques that spatialise soil classes, types and properties. The main 

challenge confronting digital soil mapping is to make the process less time consuming than 

traditional method and shortage of GIS and remote sensing. These limitations have been 

aggravated by the general absence of techniques that provide dependable data on the exact 

nutrient compositions (range of nutrients and quantities) of different soils. 

 

DEMs are of great importance in digital soil mapping because they can be manipulated to 

produce many kinds of data that can assist soil surveyors in the mapping and quantitative 

description of landform and soil variables (Aksoy et al, 2006).  Information from DEMs can 

yield slopes, aspect and elevation maps that can be used with satellite imagery to enhance the 

soil mapping capabilities. A DEM can be used to predict soil types if information on surface 

and subsurface geology is available while slope class maps derived from DEMs can similarly 

be used in soil surveying and land use planning. 

Remote sensing is now in a strong position to provide meaningful spatial data to soil science 

because of the advances that have taken place in soil science-related research (Anderson and 

Croft, 2009). Recent advances in the assessment of soil structure have emerged from the use 

of optical remotely sensed imagery from satellite platforms such as Landsat TM, MSS and 

Landsat Enhanced Thematic Mapper plus (ETM+) , SPOT and NOAA. Soil moisture studies 
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have also benefited from the use of microwave remote sensed imagery from platforms such 

as RadarSAT due to the ability of radar waves to penetrate the soil surface.   

GIS and remote sensing technologies involve mapping and characterisation of soils at 

different levels (Manchanda et al., 2002). The spatial dimension of soil and its components is 

used to derive information from remotely sensed data. From 1972 satellite image data in 

digital and analogue formats was used for making small scale resource maps that show oil 

sub groups and their associations. From the mid-1980s onwards, medium resolution Landsat 

TM and Indian Remote Sensing (IRS) satellite LISS II data became available. This 

availability enabled soil scientists to map soils at the 1:50 000 scale for district-level 

planning. At this scale soils can be delineated as associations of soils i.e. family level 

characterisation. The availability of SPOT and IRS-Pan data offered stereo capabilities that 

have improved soil mapping efforts. ASTER satellite imagery has also enhanced the mapping 

of individual minerals found in specific soil groupings because of its superior spectral 

resolution compared to with Landsat imagery.  

The spectral behaviour of soils is determined by a number of properties that affect the 

spectral response curve. These properties include colour, texture, structure, mineralogy, 

organic matter content, concentration of free carbonates, salinity, moisture and the 

oxides/hydroxides of iron and manganese. Chemical composition influences spectral 

signatures by mediating the absorption processes. Most absorption occurs in the near infra-

red and mid infra-red regions of the electromagnetic spectrum.  

Molecular rotation and transition occurring in the soil pores where gas and water molecules 

reside and may also induce high absorption in the mid infrared regions of the spectrum. Soil 

water exhibits absorption peaks around 1450 nm, 1880nm and 266nm.  Transition elements 

like iron, manganese and titanium decrease reflectance at lower wavelengths. Organic matter 
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absorbs strongly in the short wave lengths and infrared regions because of the presence of 

various functional groups and conjugate bonds from different particles that make up the 

organic matter. Larger grain sizes exhibit wavelengths less than 1600nm and smaller grains 

exhibit fewer or less developed features in this region and well developed features at 

wavelengths greater than 1600nm.   

A good soil dataset is a key factor to building an accurate Digital Soil Mapping function and 

to evaluate the quality of its outputs (Lagacherie et al., 2006). The collection of soil data has 

been and still remains a limiting factor that can break the DSM process severely. To 

overcome this problem, three ways can be explored: 

i. Develop optimal sampling methods, 

ii. Use as much as possible legacy soil data, 

iii. Develop new soil sensors for accurate and cost-effective estimation of soil profiles. 

Developing optimal sampling methods make use of methods aimed at optimising the 

coverage of geographical space, the coverage of soil covariate space or both. These methods 

are derived from well-known statistical and geostatistical techniques and they do not take into 

account more sophisticated sampling criteria that is often considered in classical soil survey. 

According Lagacherie (2006) the use of legacy soil data represents a large reservoir that can 

be used in many countries, thus, it can be used as input to the DSM procedure or in valuation 

tests. Most of this legacy data is in the form of existing soil maps or soil profiles. These two 

need to be first distinguished before they can be used as legacy data. However, the use of 

legacy soil data is made impossible in many countries by the unavailability of numeric data, 

lack of harmonisation and imprecision of soil description, imprecise geo-referencing and the 

non-optimal location of soil data.  
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Lagacherie (2006) explains the use of soil assessment framework in DSM as being crucial in 

soil related decision- and policy-making. This therefore requires the products of the DSM 

process to be of known quality. However, defining and applying a common accuracy 

assessment framework is one of the greatest challenges in the digital soil mapping process. 

As such some points described by Lagacherie (2006) will need to be taken into consideration 

as per the deliberations of the soil scientist at the Montpellier workshop on DSM. These are: 

i. Defining precisely the type of quality indicators that are needed. Generic indicators 

are from the map maker point of view and these are well known (e.g. attribute 

accuracy, positional uncertainty). The quality must be assessed from the user point of 

view. 

ii. DSM’s advantage over other approaches such as classical survey is that it can predict 

the quality of the outputs. However, it is important to note that quality predictions are 

based on model assumptions that may hold in reality. These quality predictions are 

often calculated from the same data that was used to build DSM function. 

Caution has to be taken to validate like data at like scales. This means that new error matrix 

must be proposed to compare area soil predictions with the “kind of truth” that represents soil 

maps used as validation data.   

Soil properties are constantly being modified by internal factors and anthropogenic impacts 

generating complex spatial data (Grunewald, 2009). The ability to understand and describe 

soil properties has undergone tremendous changes with the introduction of digital 

technologies. Such technologies include remote sensing and soil survey, computer processing 

speed, management of spatial data, quantitative method to describe soil patterns and 

processes and the scientific visualisation methods (Grunewald, 2009). These have provided 
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new opportunities to predict soil properties and processes. Numerous soil properties influence 

the suitability of the soil as a medium for rooting (Barnes et al, 2003). Some of these 

properties include soil water holding capacity, water infiltration rate, texture, structure, bulk 

density, organic matter, pH, fertility, soil depth, landscape features (slope and aspect), 

presence of resistive soil layers and the distribution and quality of crop residues. These 

properties are complex and vary spatially and temporally within the fields. However due to 

the emergence of variable-rate technologies, there is need to quantify the variations is soil 

properties at finer spatial resolutions and more emphasis is now being put on the use of 

remote sensing data to quantify the differences in soil physical properties. 

According to Barnes et al, (2003) the characterisation of soil properties was one of the 

earliest applications of remote sensing in agriculture. Most studies have quantitatively 

examined relationships between remote sensed data and soil properties have focused on the 

reflective region of the electromagnetic spectrum (0.3-2.8µm).  However, some relationships 

have been established from data in the thermal and microwave regions of the spectrum. 

A variety of remote sensing imagery has been used to map a variety of soil characteristics. 

These range from Landsat MSS, TM and ETM+ to ASTER imagery (Abdi et al, 2012). In 

order to provide a better description of soil particles satellite that has more bands in the infra-

red regions of the electromagnetic spectrum will be more desirable. Having a better spectral 

resolution means most soil particles will be able to be recognised and differentiated from the 

other association of soils. Landsat and ASTER have been used in soil mapping studies. 

However, ASTER has been used mostly due to its better spectral resolution as compared to 

Landsat group of satellite sensors.  This is because ASTER has 14 bands while Landsat TM 

has 7 bands.  
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The availability and accessibility of 14-band multi-spectral data from ASTER has created 

new opportunities for geologists in mapping regolith, potentially mineralised rocks and 

alteration in mineral assemblages (Gozzard, 2006). This is due to the increased spectral 

resolution of the ASTER data in the geologically important short wave infrared (SWIR) and 

the thermal infrared (TIR) bands of the electromagnetic spectrum. ASTER data have the 

potential to provide detailed information on the mineralogy, chemistry and morphology of the 

earth’s surface (Gozzard, 2006). The processing of the multi-spectral data to derive surface 

compositional information requires a chain of processes significantly different from image 

processing techniques of Landsat imagery. The ASTER satellite can therefore be considered 

as the geologic successor of Landsat TM due to its ability to provide more information on the 

composition of the Earth’s surface at a higher spatial resolution (20m) than Landsat TM’s 

30m resolution. The ASTER instrument collects data in 14 bands by using one stereo 

backward-looking band. The instrument consists of 3 separate subsystems with each having 

its own telescope. These instruments capture up-whaling radiation in the visible and infrared 

(VNIR), short wave infrared (SWIR) and TIR. The composite ASTER instrument has a 

mixture of resolutions ranging from 15m in the visible part of the spectrum to 30m in the 

SWIR and 90m in the TIR regions of the spectrum. Like SPOT it has a 60km*60km swath 

width but it is on the same orbit as Landsat TM with a half hour delay. The instrument is able 

to map a range of minerals due to its higher spectra, and radiometric resolutions especially in 

the SWIR region of the spectrum. 

 

Landsat’s remotely sensed spectral data represent useful environmental covariates for 

digitally mapping soil distribution on the landscape (Boettinger et al, 2008). Unique soils are 

the products of unique sets of soil-forming factors. Landsat spectral data can represent 
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environmental covariates for vegetation in the form of NDVI, fractional vegetation cover and 

parent material and /or soil (Hartemink et al., 2008).  

The launch of Landsat1 in 1972 saw the use of digital image data becoming widely available 

and being used for land remote sensing applications even though at that time the theory and 

practice of digital image processing was at its infancy. The cost of digital computers was very 

high and their computational capabilities were very low when compared with the modern 

standards. Recently, access to low cost, efficient computer hardware and software is common 

and the sources of digital images are varied ranging from commercial and governmental earth 

resource satellites systems to the meteorological satellites, airborne scanner data, to digital 

camera data which are used to image data generated by photogrammetric scanners and other 

high resolution digitising systems. 

Due to the advent of the internet in the 21st century, satellite imagery is now available for 

download on the web. These webpages provide the concerned users with options to view the 

images before downloading so that such things as noise, radiometry and geometry can be 

checked at hand before buying or downloading. Some of these images can be downloaded 

with some of radiometry and geometry having been corrected such that the processing time of 

this satellite imagery has been reduced for the different applications that researchers and 

users want to perform. This has also been made so that even the clients that have little or no 

knowledge on how satellite imagery are corrected for radiometry and geometry are able to 

use the data without having to apply the different equations or processes that are applied 

before ordering the various scene. However, raw satellite data can still be ordered but one has 

to be an expert on how to apply the above correction before the data can be used for the 

different applications.  
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Band ratio is a technique used to enhance contrast between high features of interest from the 

features with less interest (Ngcofe and Billay, 2008). Band ratios are effective in utilising the 

full potential of spectral formation. To generate a band ratio, the high digital reflectance 

values of a specific material is divided by the corresponding digital reflectance value with the 

lowest reflectance. This elevates the digital reflectance values of a specific material compared 

to its surroundings. This should produce a range of new values of pixels from zero to infinity.  

Due to the limited range in each band and the strong correlation between bands, band ratios 

seldom fall outside the range 0.0-4.0. Displaying an image of the ratio requires rescaling the 

floating point values to the 0-255 range of integers, which is an 8-bit signed integer. 

Individual bands of remotely sensed images show the effect of varying illumination caused 

by topography. The sun illuminates a flat surface homogeneously. However, where there is 

any relief, the lighting of slopes away from the sun receives less or little radiation. As a 

result, a surface with uniform reflectance properties will show varying DNs across the scene. 

This can lead to added confusion especially in a surface that has different surface types.  

Theoretically, any surface should receive the same properties of energy in all waveband 

irrespective of orientation to the sun (Drury, 2001). It should also reflect energy in the 

proportions controlled by its properties. The ratio between the two bands therefore should be 

the same for the pixels representing the same scene irrespective of the slope orientation. For 

this to be true the surface must reflect radiations equally in all directions. This is never 

possible in the natural conditions because reflections reach a maximum in a direction 

controlled by the structure of the surface and the angle of illumination. This is as shown in 

the figure below (Fig 2.1)  
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Fig 2.1: Effect of topography on band ratios. (The direction of the sun is shown by the 

green arrow). 

In the diagram above the part that receives more sunshine and thus will reflect more radiation 

to the sensor is B. A receives little of the radiation from the sun and thus it will reflect little 

energy to the sensor. If a ratio is calculated for the red and near infrared region of the 

electromagnetic spectrum, for both the sun lit slope B and the shadowed slope we expect to 

have the same ratio for the two slopes. An example is as calculated on table 2.1 below. 

Table 2.1: The ratios of the sunlit and shadowed side on the image in Fig 2.1 

    

  

     

Sunlight                                                               Dark side 

The most important property of a ratio image is that it accentuates features in the spectral 

signature curve of a particular surface material. When combined in pairs as ratios, they 

express well aspects of a material’s spectral signature. Ratios between bands describe the 

Unit Red NIR R/NIR 

A 45 60 0.75 

B 20 40 0.50 

Unit Red NIR R/NIR 

A 60 80 0.75 

  B 30 60 0.50 
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spectral colour of an object although colour perceived by humans corresponds to the visible 

range. 

Advantage of band rationing are that ratios do not reduce the effects of the slope and shadow 

to a marked degree. Atmospheric correction before ratio generation reduces the effect 

considerably. Band ratios enhance spectral difference between surface materials that are 

difficult to detect in raw RGB image bands. The information obtained from band ratios 

cannot be obtained from the individual bands. The disadvantages are that it’s “ironing out” of 

topography effects and the suppression of differences in albedo. Rationing hides important 

information. Various classification and analysis methods, like optimum index factor, 

principal component analysis, supervised and unsupervised classification, can be used to 

recognise meaningful soil landscape patterns.  

Training sites can be selected or the existing sites can be used to check the accuracy of the 

various classifications used. The use of Landsat scenes is because of their spatially explicit, 

physical representations of environmental covariates on the land surface. The 30m spatial 

resolution and fairly coarse spectral resolution may limit some applications. However, the 

wide availability and low expense should facilitate the utility of Landsat spectral data in 

digital soil mapping.   

Landsat spectral bands, particularly in the short wave infrared (SWIR) region, can be used to 

represent the environmental covariates of the parent material and/or soil. Different mineral 

assemblages will have different spectral reflectance which may be separable by analysing 

bands 1-5 and 7. Landsat images can be visually interpreted only 3-bands at time, assigned to 

the red, green and blue guns. The 3-band combination has the maximum covariance and 

minimum duplication within the scene can be selected by calculating the optimum index 

factor (OIF). By using the OIF to select Landsat 7 ETM+ band combination; band 1, 5, 7 can 
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be used to visually analyse areas with gypsum soils while band combination 4, 5, 7 can be 

used to visually analyse nitric soils. Soil enhancement ratios of Landsat spectral band ratios 

3/2, 3/7, 5/7 have been interpreted to accentuate carbonate radicals, ferrous iron and hydroxyl 

radicals in exposed soils or geological materials (Hartemink, 2008). Normalised difference 

ratios of Landsat spectral bands, similar in form to NDVI, may be developed to target 

specific signatures of soils and/or parent material (Hartemink, 2008). Gypsum soils can be 

mapped by focusing on the spatial response of gypsum which can be analysed by using the 

high reflectance of band 5 and the low reflectance band 7 in the ratio [(5-7)/ (5+7)]. Band 5 

and band 2 can be diagnostic for calcareous soils or rocks [(5-2)/ (5+2)] (Zeilhofer, 2006; 

Hartemink et al., 2008). Principal Component Analysis (PCA) can be valuable to enhance 

Landsat spectral data. Raw data are transformed into new PCA images that can compress vast 

amount of information contained in a data scene into few principal components. The 

transformation can make the image easier to interpret visually for distinguishing parent 

material as well as vegetation.  

Principal component analysis is a technique which allows the production of images where the 

correlation between the images is zero. For n-dimensional dataset, n principal components 

can be produced. If one considers a system with six bands and assuming all bands carry equal 

amounts of information, even though it is never the case, then a standard false colour 

composite formed from the three input bands will display 50% of the information in the 

scene. If the PCA technique is applied to the images it is found that the first three principal 

components will have 98% variance of the total scene information from the six bands. A false 

colour composite formed by projecting Principal component 1 (PC1) on the red gun, PC2 on 

the green gun and PC3 on the blue gun, will contain a variance of the six input bands. Even 

though the highest principal component images (e.g. PC6) contain little variance and are 
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usually noisy they should be examined because the information they contain may not well be 

represented at lower principal components.  

A principal component can easily be visualised in two-dimensions. The DN plot for two 

bands can simply be represented in a feature-space by an ellipse. If the bands are highly 

related the ellipse will be very eccentric whereas, for less correlated bands the ellipse for 

bands 1 and 2 are x and y. It is however possible to create new axis principal components by 

means of rotation and translation. The long axis of the ellipse is the first principal component 

(PC1) and the variance (z) is along the axis along either if the two input bands. The second 

component is at right angles to the PC1.  

 

The principal components transform the input digital numbers in the original bands in terms 

of the new principal components axes. The visualisation of principal components is simple, 

however to create the axis it is necessary to calculate the length of the principal components 

and their direction. These are computed by determining the eigenvalues (length) and 

eigenvectors (direction) from the covariance matrix. A number of minerals found in space 

can be mapped by the ASTER instrument making it easy to discriminate the various 

constituents of the soil material. In the SWIR region it is able to discriminate alunite, 

pyrophylite, kaolinite, and illite-muscovite-serite and MgOH-carbonate minerals. In the TIR 

region the instrument can discriminate feldspar, quartz, carbonate, amphibole and clay. The 

discrimination of these minerals requires complex processing to remove temperature and 

atmospheric effect from the data.  

SWIR consists of 6 bands. Band 4 has a similar wavelength to Landsat TM band 5 and is 

located where most minerals have maximum reflectivity. Regions 5-9 cover a region of –OH 

bearing minerals and carbonate minerals that have absorption characteristics. Bands 5-8 

approximately cover the wavelength limits of Landsat TM band 7.TIR bands measure 
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radiance in the 8.1-11.7µm wavelength region and are the only available multi-spectral 

thermal data from space-borne systems like ASTER. The 90m resolution band is useful in 

identifying surface silification.  

Spatial variations of soils are supposed to have an important impact on ecological process and 

vegetation distribution in any given area (Zeilhofer, 2006). Detailed map products with 

explicit statistical or rule-based models should be elaborated as a basis for the development of 

strategies for habitat preservation and sustainable land use. Remote sensing is the key 

technology for mapping soil classes or properties particularly in areas of difficult access and 

poor on-site information for prediction. In case where the soil surface is permanently and 

densely covered by vegetation or on a hilly landscape, no correlation can be made between 

backscatter and soil types and properties. This therefore means that there has to be other 

means of getting soil data in vegetation covered surfaces and on hilly landscapes.    

There is need for quantitative soil mapping information for environmental monitoring and 

modelling (Minasny, 2008). The digital soil mapping process responds to this by producing 

digitally based variables. The Soil, Climate, Organisms, Parent Material, Age and Spatial 

position (SCORPAN) factors are derived from various sources like DEMs, satellite imagery 

and existing soil maps (Lagacherie, 2006). These are quantified and the data captured in 

digital format in the form of a database where most of the information consists of statistically 

optimal predictions. 

Though soil scientists generate large quantities of soil data, the challenges associated with the 

management of these data have been alleviated by the development of methods and 

instruments that expedite data acquisition and facilitate, storage, retrieval, analysis, 

interpretation, manipulation, modelling, simulation, accessibility and distribution (Summer, 

2000). With the rapid development and availability of powerful data acquisition facilities and 



 

25 

 

the rapidly emerging technology and use of GIS and GPS, recurrent challenges are 

confronting soil scientists. These challenges relate to integration of new technologies into 

their efforts to provide objective decision-support systems for the soil management and 

monitoring so that they can be used by most soil scientists globally. 

Institutions and organisations involved in applied research at a global scale have a definite 

need for soil information. These institutions and organisations include those involved in 

climate change, the greenhouse effect and other studies in the agriculture fields. This is 

because this data is of importance as input models that simulate crop growth and calculate 

anticipated yields and water balance or assess the environmental impact of land use practices. 

The different types of models and their soil data requirements can be summarised in table 2.2 

below. 

Table 2.2: Types of models and their soil parameter requirements 

Model example Key soil parameters used 

Bio-geochemical  C, N, P, water retention, depth, clay, sand 

and stone content 

Agriculture and Plant resource  

Agro-ecological zoning Soil type, texture, slope, soil phase 

Sediment yield Texture, water retention, and transmission, 

depth, carbon, erodibility 

Water balance Water retention and transmission 

Trace gas C,N, texture, pH and redox potential 

Landform history Soil type, isotope 

Carbon dioxide, methane,  C, bulk density, depth, soil moisture 
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nitrogen oxide inventories 

Climate Water and heat capacity, surface reflectance 

Environmental impact Soil fertility, soil erodibility 

 

In soil mapping, archived data is often sufficient and available at low cost. Integration of 

remote sensing within a GIS database can even decrease the cost, reduce the time and 

increase the information gathered for the soil survey to take place. Also research into digital 

soil mapping has indicated that methodologies such as those from pedometric techniques can 

be extended to a field setting where they could help enhance the quality and scientific 

foundation of soil surveys as well as time and money. 

Reflectance and emission data can be analysed to extract information about the earth and its 

resources (Boettinger et al, 2008). This is because the physical and chemical properties of 

different surfaces vary across the electromagnetic spectrum. Conceptual models of soil 

information have been used to predict the patterns of soil map units in traditional soil surveys 

which were based on the interpretation of aerial photographs with field verification of soils 

and associated landscape features. However, with the increasing availability of spatial 

explicit digital data such as remotely sensed spectral data and digital elevation models, and 

the hardware and software for processing and analysing vast amount of spatial data, 

prediction on soil distribution on the landscape can be done quantitatively. McBratney et al., 

(2003) and Boettinger et al., (2008) proposed that to represent soil and the related 

environmental factors in a spatial extent and express these relationships, the SCORPAN 

model will have to apply and McBratney, 2003 says:  

“At a point in space and time, soil (as either soil class, Sc or soil attribute, Sa) is an 

empirical quantitative function of the soil (s, as a class or as a directly or remotely 
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sensed property), climate(c), organism (o), relief(r), parent material (p), age (a) and 

spatial position (n).” 

The increase in computation and information technology has resulted in vast amounts of data 

in the field of soil science where a vast creation of regional, national and world databases has 

not been left out in this evolution (McBratney et al., 2003). Understanding these large 

amounts of data, statistical tool have been created to analyse the data so that we get to 

understand the data better. These new tools in the field of statistics have spawned new areas 

such as data mining and machine learning. The increasing power of tools such as GIS and 

GPS, remote and proximal sensors and data sources such as those provided by Digital 

Elevation Models (DEMs) are suggesting new ways of gathering soil information. The 

availability of the new technologies has led to organisations using these new technologies to 

substitute for the old engine of soil survey where soil resource assessment using GIS is done 

with little costs. Production of digital maps is moving from research phase to production of 

maps for regions and catchments as well as whole countries. There are three resolutions that 

have been suggested for mapping soils at local, regional and national level. These are <20m, 

20m-2km and >2km. Table 2.3 shows the scales that are used to choose the proper resolution 

that one would have to choose for the Digital Soil mapping procedures. These are based on 

the descriptions from USDA surveys (McBratney et al., 2003): 

Table 2.3: Scales used to choose the proper resolution in DSM procedures.  

Name USDA 

Order 

Pixel Size Cartographic 

Scale  

Resolution Nominal 

Spatial Res. 

Extent 

D1 0 <5 x 5m >1:5 000 <25x25m <10x10m <50x50km 

D2 1,2 5x5-20x 20m 1:5000- 1:20 

000 

25x25-

100x100m 

10x10-

40x40m 

500x500-200x200km 
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An assessment of the properties of soils and their response to management is required in 

agriculture and forestry for informed decision making in rural and urban planning, for 

feasibility and design studies in land development projects and many other engineering works 

(Dent and Young, 1981). For this objective to be achieved Allen Dent and Anthony Young 

(1981) suggest that there be a way to determine the pattern of the soil cover and divide the 

pattern to relatively homogeneous units and mapping these distribution  units. This will 

enable the characterization of the mapped units in such a way that useful statements can be 

made about their land use potential and response to changes in management, thus, this 

process will be applied in an environment mostly dedicated to soil in an agriculture 

environment.  

South Africa’s soil mantle is highly complex and diverse as a result of soil formation and 

weathering processes (de Villiers et al., 2010). As much as 81% of the land surface is 

characterized by eutrophic and calcareous soils often of shallow depth with 12% mesotrophic 

and 7% dystrophic. Over 30% comprise sandy soils, of which less than 10% are clay soils. 

Almost 60% of the soils have low organic matter content, conducive to low productivity and 

soil degradation. These soils de Villiers and his group say represent 70 different forms and 

thousands of ecosystems (de Villiers et al., 2010).  

D3 3,4 20 x 20-200 

x200m 

1:20 000-1:200 

000 

100x100m-

1x1km 

40x40-

400x400m 

2x2-2000x2000km 

D4 5 200x200m-

2x2km 

1:200k-1:2m 1x1-

10x10km 

400x400m-

4x4km 

20x20-

20000x20000km 

D5 5 >2x2km >1:2m >10x10km >4x4km >200x200km 
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Eight percent of South Africa soils are arable which comprise 51.6% agricultural land which 

is underlain by coal deposits. Arable areas in the higher rainfall regions of South Africa are 

limited due to the large parts are steep underlying hills or are large mountains, or are covered 

by non-arable soils derived from parent materials giving unstable, highly erodible soils. 

South Africa’s estimate soil loss annually is 2.5 tons per hectare (de Villiers, 2010). This is 

mostly by erosion. This by far exceeds the estimated soil formation rate of 0.3 tons per 

hectare. This is in the case of 1m thick solum of tropical soil. More than half of South 

Africa’s total surface area is under threat of desertification. Without proper soil management 

practices this may happen sooner than expected and thus the need for a soil management 

database that will help in educating the general population concerned with soil management 

on better soil management practices in South Africa (de Villiers et al., 2010). Arid, semi-arid 

and even sub-humid ecosystems are made poor by the combined effect of human activities 

and climatic conditions. There are many uncertainties around desertification but the country’s 

soil and vegetation productive potential has already been greatly reduced. This must be 

reduced before desertification manifest in South Africa. 

2.3 Advances and developments in Digital Soil Mapping  

Modern Soil Information Systems make it possible not only to incorporate soil maps in 

digitised form but also to create new forms with the use of digital technologies at all stages of 

mapping (Kozlov and Konyushkova, 2009).  

The International Working Group of Digital Soil Mapping holds biennial workshops to 

discuss advances in digital soil mapping in the world. The first global workshop was held in 

2004 in Montpellier, France (Lagacherie, 2006).  
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At the Montpellier 2004 Soil Mapping Workshop, where the first workshop dedicated to 

digital soil mapping was held, different scientists from 17 countries discussed skills and tools 

that are expected  to play a major role in the future of digital soil mapping. These skills and 

tools included soil surveying techniques, soil information systems, expert systems, GIS, 

pedometric and data mining techniques and remote sensing procedures. According to 

Lagacherie, 2008, the workshop recommended consideration of the following: 

i. Use of a variety of environmental covariates and Digital Elevation Model (DEMs) as 

inputs for digital soil mapping. This conjunctive approach provided a workaround 

strategy worth exploring in the production of soil maps.  The increased availability of 

multi-sensor/multi-resolution remotely sensed imagery makes the use of these data 

types and DEMs practically feasible. Remotely sensed data provide a valuable source 

of information because the conventional range of satellite imagery (Landsat, Spot 

ASTER and many others) has in more recent times been augmented by gamma ray 

spectrometry or hyper spectral images that offer enhanced soil-mapping capabilities.  

ii. The environmental variables of elevation, slope and vegetation indices were to be 

used in the process of digital soil mapping and several pre-processing procedures 

conducted to produce sophisticated covariates that represent soil variations more 

accurately  

The most common pre-processing procedures comprise: 

- Derivation of soil covariates that represent the spatial variability of specific  

pedological processes, 

- Identification of soil mantle structuring elements such as landscape units and 

regolith catenary units and, 

- The decomposition of the initial image of a soil covariate into several spatial 

elements of variable resolution with multi-scaled soil landscape relations. 
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The theme for the workshop was: “Digital Soil Mapping: An Introductory Perspective.” The 

second such global workshop was held in 2006 in Rio de Janeiro, Brazil under the theme: 

“Digital Soil Mapping for regions and countries with sparse Soil Data Infrastructures.” The 

third global workshop was held at Logan State University in Utah, USA. The theme for this 

workshop was: “Digital Soil Mapping: Bridging research, production and environmental 

applications”. At the Utah workshop, the research output was aligned: 

i. Exploring new sampling schemes and environmental covariates in DSM. 

ii. Evaluating and using legacy data in DSM.   

iii. Using integrated sensors or other new technologies for inferring soil properties or 

status. 

iv. Innovative inference systems (new technologies for predicting soils classes and 

properties and estimating uncertainties) 

v. Using DSM products and their uncertainties for soil assessment and environmental 

applications 

vi. Protocol and capacity building for making DSM operational. 

The fourth global workshop on DSM took place in May 2010 in Rome, Italy. It was held 

under the theme, “From Digital Soil Mapping to Digital Soil Assessment: Identifying key 

gaps from fields to continents”.  Emphasis was made on the below domains of soil science: 

i. From global to local DSM. 

ii. Innovative Inference Systems, DSM issues and operational tools and dynamic 

assessment in DSM 

iii. Quality Data Assessment, Modelling Uncertainties in DSM and DSA. 
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In scientific expeditions, issues pertaining to DSM were looked into and a new directive was 

achieved that the various scientists took to their respective countries to study and also guide 

them in the various research they are conducting. From the 2010 workshop attention is now 

shifting from global to local DSM where scientist will have to assess the data they have on 

soils to make sure that it can be used in a DSM process or application. 

In South Africa, the Agriculture Research Council through its Institute of Soil, Climate and 

Water (ARC-ISCW) is involved in collecting soil data for the country. They have been 

involved in soil surveys since 1902 so as to gain knowledge on South Africa’s soil mantle 

and to promote sustainable agricultural development.  In 1971 a national systematic soil 

survey at 1:250 000 map scale, called the land type survey, demarcated homogeneous soil 

types, terrain forms and macro-climates to ensure sustainable land use and land use planning. 

The survey was completed in 2002 (Soil Classification Working Group, South Africa, 1991). 

This was following surveys in parts of the country which were formerly self-governing states. 

This prompted the development of a variety of soil-related structural databanks and a 

geographic system to provide structural framework for the acquisition, storage, retrieval, 

analysis and display of data within a spatial reference system. This led to the development of 

AGIS which ARC-ISCW maintained together with other national soil databanks including 

SOTER, national agricultural meteorological databank and the NOAA databank.  

Based on the above review of the various works that been done by the different authors, it can 

be concluded that Digital Soil Mapping has a variety of techniques that can be used to 

achieve a desired result. The nature of the processes that the creator of DSM data proposes to 

use in coming up with DSM datasets will determine the results that will be produced at the 

end of the processing. The type of data also plays a major role in determining the type of 
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products one would produce as well as the length of time to be taken in producing the desired 

results.  

Advances in geomorphology and hydrology have further laid foundations for the spatial 

exploration of soil system dynamics within a landscape context. Information on soils is 

needed spatially and temporally to assist in erosion and runoff simulation models and in the 

agriculture engineering land management sectors. 

With all these remote sensing processes mentioned in this section, it is advantageous to use 

remote sensing processes in the DSM process. The obvious reasons being that they will cut 

the time in which the results were obtained and that there will be less pollution as this will be 

a desktop process. 

In this thesis a variety of techniques and processes will be proposed to be used in the study 

area. However, the reader of this work should take note that not all of the named processes 

were completed in time for inclusion in this thesis. This is due to other factors such as 

availability of the data and the length of processing of the data. The nature of the data and the 

processes to be undertaken will be discussed in the coming chapters. 
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CHAPTER 3: STUDY AREA 

3.1 Introduction 

This chapter describes the location of the study area. The explanation includes the types of 

soils that would be expected to be found on the area.  

3.2 Location of the study area 

The area (~1 068 531 km²) is drained by two rivers namely Tyume and Keiskamma. The 

extents of where the study area is situated are 26º49 E and 27º 02’E and; 32º 44’ 22S and 32º 

55S. The satellite path and row are 170 and 083 respectively.  

 

Figure 3.1: Map of study area 
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3.3 Description of the Study Area 

Four villages are found within the study area and these are Alice, Ngwenya, Komkhulu and 

Elalini. Two rivers make up the study area namely Tyume and Keiskamma River.  

3.3.1 Physiographic properties of the Study Area 

Medium-textured shallow, young soils, generally on shale or sandstone predominate in areas 

around Alice town in the Eastern Cape Province (INCO-DC, 1998-99 report). This area also 

covers the areas intended for this study in this research. According to the South African Soil 

Classification System 1991, the majority of the soils are of the Glenrosa form which 

correspond to Dystric Cambisols and Regisols in the FAO Classification, Mayo form and 

Mispah form. Mayo soils can be moderately fertile if adequately deep, while the others are 

normally very shallow with limited water storage capacities and poor chemical fertility. 

In the more densely populated areas, overgrazing is a serious problem, leading to soil 

degradation and high erosion hazard. However, patches of moderate to fairly deep and 

potentially productive soils occur in the valleys of the major river systems like the Tyume 

and Keiskamma. These patches are typically used for the intensive production of maize, 

pumpkins, vegetables and fruits (citrus) under irrigation. The soils in these areas are mainly 

of the Hutton, Oakleaf and Westleigh forms. Some of these alluvial soils are among the best 

soils in Ciskei. 

Based on information from Agriculture Research Council’s Institute of Soil, Water and 

Climate (ARC-ISCW), about 17 land types are found in the selected study area. These 

include Fb816, Fb818, Ea366, Ia225, Ae380 and Bd64. These land types are comprised of a 

variety of soil series/land classes which are mainly composed of mudstone, shale or 

sandstone from the Balfour Formation with grey or red mudstone or both and/ or sandstone 
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from the Middleton Formation of the Adelaide Subgroup from the Ecca Group. Dolerites and 

sills are common volcanic intrusions that are found within this study area as well. 

These land classes cover different depths of the soil profiles of the sites where they were 

collected. However, most of these land types have their deepest land class at 1.2m deep. 

Some of the common land classes that are common for each land type include Mispah Ms10, 

Shorrocks Hu36, Jozini Oa36 and Limpopo Oa46. The details of the different land type and 

their associated land classes are available on the appendix section. 

3.4 Developments in Digital Soil Mapping  

In the Eastern Cape Province, there are digital soils maps that have been produced in the 

study area. The Agriculture Research Council’s Institute of Soil, Climate and Water have 

produced some soil maps at varying scales. However, these soil maps that ARC-ISCW has 

are land type maps where information from the last paragraph was obtained from for the 

study area. 

The other information that can be obtained on soils is at the Soil Science Department at 

University of Fort Hare. However, most of this information cannot be used in a GIS 

application as the coordinates of where the soil samples were collected are not available. This 

information is crucial so that any user of the data can be able to go to the point where the 

samples were collected to verify the data but if these coordinates are not available it renders 

the soil data unusable for this dissertation. Most information on soils for the study area will 

be collected from satellite imagery and processed.  
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CHAPTER 4: METHODOLOGY 

4.1 Introduction 

This chapter discusses how the data collected was used to come up with the results. It begins 

by discussing how the data was collected and processed to get the desired results.  

4.2 Data used and how it was acquired 

Studies related to the study of minerals and/or soils require satellite imagery that will be able 

to distinguish the various mineral assemblages that can be found in a given unit of soil. 

Failure to get such imagery will lead to undesirable results being obtained from the various 

processing techniques that will have to be applied on the data. Landsat and ASTER satellite 

data are one of the common data sets that have been used in these kinds of studies with the 

latter being the most of the two due to its better spectral resolution as compared to the former. 

ASTER covers a wider range of the electromagnetic spectrum when compared with Landsat 

which mostly covers the visible part of the spectrum. Due to the numerous bands in the 

infrared region of the spectrum, ASTER is able to discriminate most mineral assemblages in 

the soil.  

 

In this study the use ASTER imagery was therefore the preferred choice. However, due to the 

unavailability of ASTER imagery, Landsat ETM+ imagery was used. The cause of 

unavailability of ASTER was due to an error with the Terra the instrument which carries 

ASTER developed by NASA (National Aeronautical Space Agency, www.nasa.gov ), and 

also reported on their 1B datasets. These are data sets that have been corrected for errors from 

the sensor’s radiance values and the data has been geo-referenced and corrected 

radiometrically. Due to this error, the ASTER dataset was not available for download. 

 

http://www.nasa.gov/
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The details of Landsat satellite data download are given in table 4.1: 

Table 4.1: Details of satellite images downloaded  

Type Path/Row Date collected 

Landsat 7 ETM+ 170/083 23 September 1999 

Landsat 7 ETM+ 170/083 04 September 2008 

 

In this study, satellite imagery that was downloaded from the United States Geological 

Society (USGS) satellite was Landsat ETM+. This data archive had radiometry and geometry 

corrections already applied as well as geo-referencing. The details of the data downloaded are 

as shown in the next page (Table 4.2).  

The two satellites images downloaded were checked for their quality to check if they could 

be used in this study. The 4 September 2008 images had many stripes making it unsuitable 

for use in this project. De-striping the images was not also going to help since the images 

were not usable at all.  

The Landsat 7 ETM+ bands that were collected have the following characteristics shown in 

Table 4.2. 

4.4 Image Pre-processing done 

The software that was used to process the satellite imager was TNTMips. The following 

image pre-processing techniques were applied to the satellite imagery acquired from USGS: 

• Removal of the Imported contrast stretch 

• Auto normalise contrast stretch 

• Sub setting 

• Masking 

• Ground truthing 



 

39 

 

Table 4.2: Landsat 7 ETM+ bands information 

 

4.4.1 Sub setting 

In some cases, Landsat TM scenes are much larger than a project study area. In these 

instances it is beneficial to reduce the size of the image file to include only the area of 

interest. This does not only eliminate the extraneous data in the file, but it speeds up 

processing due to the smaller amount of data to process. This is important when utilizing 

multiband data such as Landsat TM imagery. This reduction of data is known as subsetting. 

Satellite Altitude 705km 

Sensor Digital 7 multispectral scanner with a 

panchromatic band (ETM+) 

Size of Full Scene 185 * 185 km 

Temporal Resolution (Repeat coverage interval) 16 days 

Radiometric resolution 8 bits 

Inclination 98.2º 

Bands Pixel size 

   S
p

a
ti

a
l 

R
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o
lu
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n

 

Band 1 (blue) 30m 

Band 2( green) 30m 

Band 3 (red) 30m 

Band 4 (near infra-red) 30m 

Band 5 (near infrared) 30m 

Band6(thermal infrared) 60m 

Band 7 (mid infra-red) 30m 

Band 8 (panchromatic) 15m 
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This process cuts out the preferred study area from the image scene into a smaller more 

manageable file. In this study a subset of the study area was extracted from the original 

satellite imagery. This sub set was used in the processing techniques that were applied in this 

study.  

4.4.2 Contrast Stretching 

Many natural features within a given landscape have a low range of reflectance in a specific 

waveband (Gibson and Power, 2000). Sensors onboard remote sensing satellites such as 

Landsat and MSS are designed to read the reflectance of any surface that they image. An 8 bit 

detector can be able to record 255 grey levels where a value of 255 being the highest may 

represent snow as an example and a value of 0 may represent a darkest rock. It has been 

noted however that the average scene of reflectance Digital Number (DN) in sensor data 

rarely extends over the entire image. In order to view an image, it is therefore necessary to 

stretch the data. This is so that the range of 0 to 255 is filled by the DNs from the scene being 

viewed.  

When the images were downloaded from the USGS website they came up with an imported 

contrast stretch already applied on the imagery. This contrast stretch was removed so as to be 

able to view the images in TnT MIPS software. Failure to remove this contrast stretch was 

going to make it impossible for any other form of contrast stretch to be applied on the 

imagery. After the removal of the IMPORTED contrast enhancement, an AUTO-

NORMALIZE contrast stretch was applied on all the seven bands for the image to appear in 

the same way as it was downloaded and the only difference being that the lighter pixels will 

appear brighter and this will be the same with darker pixels in the satellite imagery.  

4.4.3 Masking buildings 

A building mask was created to mask all the built up areas so that the results obtained are not 

affected by the presence of the built up areas. A 321 natural colour composite was used. This 
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was so that the built- up areas could be visible. The identification of the building was done 

using visual image interpretation techniques. These are association, detection, recognition, 

identification, tone, shape, texture, shadow, size and pattern.  

                    

Figure 1: Building Mask 

4.4.4 Ground truth  

Using Land type data obtained from ARC-ISCW, about 200 points were assigned within the 

study areas. These points were used as a way of validating the results from the processing 

that was done on the satellite imagery. The points were placed within the study area based on 

the size of each land type.  



 

42 

 

4.5 Processing Done 

The processing done for this study is a shown in the flow chart below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2: Flow chart for the processing done 

Image processing which was done includes: 

1. Band rationing 

2. Principal components analysis 

3. Masking of buildings 

4.5.1 Band ratios 

In this study different kinds of band ratios were applied to check the different kinds of soil 

minerals present in the study area. These band ratios included: 
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• TM 5/ TM 7 which was used to map areas where clay minerals were common 

• TM 3/TM 1 was used to map all red soils which were dominated by iron (II) 

oxide(Fe₂O₃)- hematite 

• TM 5/TM 4 was used to map areas of ferrous mineral hematite. 

• TM 4/ TM 3-was used to map areas with geothite minerals 

• TM 4/ TM 5- was used to map areas with hydroxyl minerals  

All these ratios were processed and colour palettes were applied to each one of them showing 

that they were found within the study area. The results from the band ration process was in 

the form of raster imagery. To aid in further analysing the soil minerals mapped form the 

band ration process, vectorisation was applied on all the results. 

4.5.2 Principal component Analysis (PCA) 

In Landsat TM, which is the satellite imagery used in this study, six bands (TM 1, TM2, TM3 

TM4, TM5 and TM7) were used as inputs to the PCA technique. TM band 6 due to its 

different spatial resolution (120 km while other TM bands are 30 km) was not used in the 

PCA process.  

According to Rajesh (2004) a variety of PCA techniques can be used for n-bands. An 

example is in the identification of hydroxyl-minerals where a variant PCA on TM bands 1, 4, 

5 and 7 will enhance the hydroxyl-rich minerals. The analysis of the PCAs of the four bands’ 

eigenvectors should allow the identification of principal components that contain spectral 

information about specific minerals as well as the contribution of each specific original bands 

to the components in relation with the spectral response of the minerals of interest (Kariuki et 

al., 2004). The PCA technique to enhance the hydroxyl- rich minerals was undertaken 

together with the general PCA of the six bands.  
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CHAPTER 5: FINDINGS AND RESULTS  

5.1 Introduction 

In this chapter the finding and results that were obtained from the methodology in the 

previous chapter are presented. The reason for using these techniques is also given in the 

explanation.  

5.2 Results  

5.2.1 Band ratios 

The results from the band ratio process were presented in a map. The map showed the 

relative location of each of the soil mineral mapped. Fig 5.1 on shows that the location of the 

various minerals. These results show that the study area is predominantly composed of clay 

minerals which dominate the low lying areas. The minerals from iron namely goethite and 

ferrous were located in the mountainous areas and on the low lying areas alongside the rivers. 

In most areas, the minerals were not and these are shown as greys areas in the map. 

Fig 5.1: Soil minerals mapped 
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5.2.2 Building masking 

It can be said with about 80% confidence that the visual interpretation that was used in 

identifying the various built up areas was correct. The 321 colour composite was used in this 

visual interpretation. The map of the building masks overlaid with the minerals mapped is 

shown on Fig 5.2. 

 

Fig 5.2: Building mask overlaid with minerals mapped 

The previous section results on band ratios indicate that, the building mask does not affect the 

result that was produced from the band ratio process. 
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5.2.3 Principal Component Analysis 

The Principal Component Analysis process used two types of techniques. These techniques 

were the Crosta PCA which used 4 band as input and the normal PCA which used 6 band as 

input. 

The results from Crosta technique show that: 

  Component 1 was able to show the features in the image better than the other 

components. 

 Component 2 showed a mixture of darker features with light features in the mid and 

upper parts of the image. 

 Component 3 showed linear feature partially visible. The one that could be 

distinguished were roads. 

 Component 4 managed to show linear feature of rives. 

 

Fig 5.3: Results from Crosta technique PCA 
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The results from the PCA with 6 input bands showed that: 

 Component 1 was able to show the features in the image better than the other 

components. This component had a clear image. 

 Component 2 showed a mixture of darker features with light features in the upper 

parts of the image. 

 Component 3 showed linear features. These included both rivers and roads. 

 Component 4 managed to show darker features in the image. 

 Components 5 and 6 images were fuzzy and the “salt and pepper” affected them. 

There was nothing from these components. 

 

Fig 5.4: Results from PCA with 6 input bands 
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CHAPTER 6: DATA ANALYSIS  

6.1 Analysis 

Remote Sensing data can only penetrate a few micrometres in the very near infra-red region, 

to a few centimetres in the thermal infra-red region and some metres in the microwave 

region. A remote sensing data interpreter will have to rely on incident clues such as the 

general geologic setting of the study area, the alteration zones, associated rock structure, 

lineaments, oxidation products, morphology, and drainage and vegetation anomaly. This is 

because it is rarely impossible to directly pin point the occurrence and mineralogy of a 

deposit, even soils based solely on remote sensing data.  Therefore, this data analysis shows 

the minerals mapped from the band ratio methods as well as the principal component method. 

It also gives an explanation as to why where these minerals mapped in these location. The 

chapter will end by validating the data using the accuracy assessment method. 

6.2 Band Ratios 

The remote detection of iron oxide and clay zones in the presence of vegetation proved to be 

difficult. This was due to the similarities in the reflectance spectra of these minerals. If 

Landsat was used to provide information regarding the distribution of ferric oxide minerals, 

the effects of vegetation need to be minimised. Different techniques for image processing of 

Landsat TM to detect and map minerals in soils are aimed at reducing substantially the 

effects of vegetation from the underlying substrate. The absorption feature at wavelengths 

less than 0.55µm and is responsible for the strong red coloration of rocks rich in iron oxide 

and hydroxides. This coloration is at times masked by mixing iron materials with large 

amounts of other minerals which reflect strongly in all wavelengths, for example quartz. The 

albedo of such a mixture will be so high such that it appears white in natural or false colour 

images. However, if we use the Landsat TM image ratio of red (TM3) to blue (TM1) 
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reflectance, we will enhance the small contribution of iron minerals; given the pixels of iron 

bearing rocks have a higher value when compared to those of quartz. The position of Fe-O 

feature is different for haematite and geothite with haematite being the absorbent in the green 

part of the visible spectrum of the electromagnetic spectrum. This results in haematite being 

cherry red and geothite being orange brown. The red/green (TM3/TM2) can be used to 

discriminate between the two minerals (Rajesh, 2004: Kiriuki et al., 2004). In this study area 

the band ratio TM3/TM1 shows little amount of the occurrence of the mineral haematite but 

there is an abundance of geothite in the mountains of Hogsback mountain range (top right 

corner in the study area).   

Several airborne and orbital imagery studies have shown that the feasibility of remote sensing 

techniques to detect certain minerals that are associated with hydrothermal processes and 

these include: 

• Iron-bearing minerals (haematite, geothite and jarosites) 

• Hydroxyl-bearing minerals (clays and micas) 

• Hydrate sulphate (gypsum and alunite) 

These show diagnostic spectral features that permit their remote identification. 

Iron produces an absorption band between 0.85 and 0.92µm owing to an electron transfer 

transition within this region of the electromagnetic spectrum. This feature fell within the 

Landsat TM band 4. The high reflectance for all minerals fell within the Landsat TM band 5. 

Therefore, the ratio of band 5 to band 4 showed higher values of oxidised iron rich rocks than 

for other types. The Al-OH and Mg-OH rotational transition associated with clays and other 

hydroxylated minerals resulted in absorption within Landsat TM band 7. Therefore, dividing 

band 7 by band 5 resulted in clay rich minerals being mapped.  
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The limitation of using Landsat TM or ETM+ according to Steve Drury (2006) is that only 

four spectral band ratios form the spectral limit to surface discrimination using ratio 

techniques, even though there are about 30 possible combinations of the six reflected TM 

bands (TM1, TM2, TM3, TM4, TM5 and TM7) that can be chosen to discriminate different 

surface features.  An example was the ratio TM4/TM3 which was used to show the regions 

where geothite was likely to be found. 

TM band 6 due to its different spatial size (60m and the other 6 TM band are 30m) is not used 

in the band ratio processes.  However, using JERS-1, ASTER and hyper spectral devices, 

many other features can be investigated using narrower bands within the same reflected range 

as in Landsat TM or ETM+. Advantages of using ratios are that they do not reduce the effects 

of slope and shadows to a marked degree. Atmospheric correction before ratio generation 

reduces this effect considerably. The disadvantages in band rationing are in the “ironing out” 

of topographic effects and the suppression of differences in albedo.  

 

6.3 Principal Component Analysis 

The Principal Component Analysis process used two types of techniques. These techniques 

distinguished the hydroxyl minerals from vegetation as well as iron oxide. 

These bands were selected due to their ability to characterise the OH and the vegetation. The 

table below shows the Landsat TM bands used for high reflectance and absorption for 

hydroxyl, iron oxide and vegetation. The bands were selected and inputted in the PCA 

process to discriminate the hydroxyl minerals from other bands as well as vegetation.  
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Table 6.1: Absorption and reflectance bands for iron oxide, hydroxyl and vegetation 

Material High reflectance Absorption 

Iron oxide TM 3,TM5 and TM7 TM1 and TM2 

Hydroxyl TM5 TM7 

Vegetation TM2 and TM4 TM1,TM3 and TM7 

 

6.3.1 Statistics from the Crosta technique PCA 

From the analysis of resulting principal components in the Crosta technique it is found that: 

• PC1 had high loadings from band 5 (72.72% of the data covariance) and this was 

assigned to its albedo 

• PC2 gave dark pixels due to the positive contribution from band 4 and negative from 

band 1 

• PC3 gave strong positive loadings for TM7 and relatively strong negative for PC4 and 

thus were assumed to show hydroxyl pixels as dark pixels. 

The results from the above analysis are supported by the statistics obtained from the PCA 

process. These are represented by the eigenvectors in table 6.2 below 

Table 6.2: Eigenvectors from the Crosta technique 

AXIS BAND 1 BAND 2 BAND 3 BAND 4 

1 0.1437 0.3242 0.7272 0.5877 

2 -0.0362 0.8765 0.0043 -0.4800 

3 -0.3686 -0.3243 0.6687 -0.5548 

4 -0.9177 0.1465 -0.1548 0.3352 

  

From the mean raster values, Band 5 of Landsat ETM+ influenced the way the Crosta 

technique PCA was processed. The mean value of this band was found to be 92.7%. Table 
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6.3 shows the mean value of each input band. These values show that the percentage 

influence that each band had on the final components produced from the Crosta technique. 

 

Table 6.3: The Mean raster values from Crosta technique 

Raster Mean 

Band 1 65.8 

Band 4 70.5 

Band 5 92.7 

Band 7 66.3 

 

The correlation between the input bands and the principal components shows that all bands 

had an influence in the PC 1. However, band 5 had a slight advantage as it dominated more in 

this PC. Table 6.4 show the correlation of the input bands and the principal components. 

Table 6.4: The correlation between the input bands and the principal components 

AXIS BAND 1 BAND 4 BAND 5 BAND 7 

1 0.8367 0.8367 0.9931 0.9742 

2 -0.0493 0.5317 0.0014 -0.1864 

3 -0.2723 -0.1066 0.1159 -0.1175 

4 -0.4726 0.0336 -0.0187 -0.0492 

 

6.3.2 Statistics from the PCA with 6 input band 

Six bands of Landsat TM or ETM+ (bands 1, 2, 3, 4, 5 and 7), were taken as inputs to the 

PCA. This being the normal or the most common PCA, it would be expected that it will show 

better results than the Crosta technique. 

On analysing the resultant Principal component and the resulting statistic of the 6 bands: 
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• PC1 was assumed to consist of information on the albedo the major contributing 

factor being from TM5 (66.24%) 

• PC2 gave a stronger contribution from band 5 and gave built up areas as bright 

pixels. 

• PC3 gave a strong loading from PC4 (62.48%) thus assigned to healthy 

vegetation. 

• PC4 is thought to map hydroxyl minerals as bright pixels due to high negative 

contribution by TM7 (70.20%) 

• PC5 and PC6 were incoherent due to a lot of noise in the form of “salt and 

pepper” effect, which is the overall noise from the six bands. These two principal 

components were not used. 

The above analysis is supported by table 6.5 which shows the eigenvectors from the PCA 

with 6 input bands. 

Table 6.5: Eigenvectors from PCA with 6 input bands 

   AXIS BAND 1 BAND 2 BAND 3 BAND 4 BAND 5 BAND 7 

1 0.1362 0.2066 0.3481 0.2959 0.6624 0.5397 

2 -0.0857 -0.0601 -0.2217 0.8608 0.1187 -0.4300 

3 -0.3023 -0.4545 -0.6248 -0.2082 0.4911 0.1647 

4 0.1563 0.1140 0.2068 -0.3499 0.5519 -0.7020 

5 0.7298 0.3523 -05821 -0.0219 0.0046 0.0628 

6 0.5706 -0.7810 0.2404 0.0722 -0.0372 0.0059 

 

From the mean raster values, Band 5 of Landsat ETM+ influenced the way the PCA was 

processed. The mean value of this band was found to be 92.7%. Table 6.6 shows these mean 
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value of each input band. This values shows the percentage influence that each band had on 

the final components produced from the 6 input band PCA technique. 

Table 6.6: The Mean raster values from the 6 input band PCA 

Raster Mean 

Band 1 65.8 

Band 2 54.4 

Band 3 59.4 

Band 4 70.5 

Band 5 92.7 

Band 6 66.3 

 

The correlation between the input bands and the principal components shows that all bands 

had an influence in the PC 1. However, band 5 had a slight advantage as it dominated more in 

this PC. Table 6.7 show the correlation of the input bands with the principal components. 

 

Table 6.7: The correlation between the input bands and the principal components 

AXIS BAND 1 BAND 2 BAND 3 BAND 4 BAND 5 BAND 7 

1 0.8649 0.9109 0.9341 0.8358 0.9864 0.9756 

2 -0.1183 -0.0577 -0.1293 0.5284 0.0384 -0.1690 

3 -0.3576 -0.3755 -0.3123 -0.1095 0.1363 0.0555 

4 0.1007 0.0510 0.0563 -0.1002 0.0834 -0.1287 

5 0.2876 0.0964 -0.0970 -0.0038 0.0004 0.0070 

6 0.1311 0.1247 0.0233 0.0074 -0.0020 0.0004 
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6.2 Data Validation 

The data that was used in this thesis was mainly Landsat satellite imagery collected from the 

earth explorer website. To prove the results collected from the processing and analysis of this 

satellite imagery, there was need to collect samples from the study area so as to verify if the 

topsoil mapped by the remote sensing process was coinciding with the information obtained 

from the soil samples. Due to little or no experience in the study of soils of the author of this 

thesis, ancillary data in the form of soil profiles were obtained from the Soil Science 

department and the Agriculture and Rural Development Research Institute (ARDRI) at the 

University of Fort Hare. These were used to validate if the results were to some degree 

agreeing on the types of soils mapped.  

Through the help of Mr Allan Manyevere (at the completion of this thesis he had moved to 

North West University) who has been involved in the study of soils using remote sensing 

before and being a PhD student in the soil science department, he provided his expertise in 

the validation. Dr J van Tol, a lecturer at the department of Soil Science also provided soil 

profiles which were used in the validation process. The advantage of using soil profile 

information from the soil science department was that the information contained the 

composition of each mineral mapped within each land type obtained from ARC-ISCW data 

used. 
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Fig 6.9: Validation points 

To validate if the minerals mapped were correctly mapped, a Kappa coefficient was used to 

check the level of significance of the mapped minerals to the information obtained by the soil 

science department.  Each mineral was validated using validation points which were covering 

the study area. To check on the validity of the data collected from the 200 points, for each 

mineral mapped, it was checked if it coincided with a given land type within the study area. 

Each land type was studied to check if it contained the mineral being mapped. If the pointed 

showed that the mineral being mapped coincided with the respective point then a score of 1 

was given to the corresponding point. If the point did not coincide with the mapped mineral a 

point was not allocated to that point. These values were then added to the Kappa co-efficient 

to calculate the level of validity of the results. The Kappa coefficient (also called the K static) 

is used to check the percentage of errors that were avoided in the study. These errors are 
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calculated from the results obtained from the methodology as discussed in chapters 4 and 5. 

The calculation is as below: 

Table 6.8: The classification accuracy assessment of the band ratioing process 

 

Grand Percentage correct= sum of diagonal entries = 157 = 78.50% 

                                             Total observations           200 

Expected agreement by chance= total diagonal entries = 157 = 0.1548                               

                                                         Grand total                1014 

K= observed- expected = 0.7850- 0.1548 = 0.6302 = 0.7456 

1- Expected                1-0.1548             0.8452 

From the above K-statistic calculation it can be concluded that about 74.56% of errors in the 

methodology used were avoided. These errors could have been generated from the band 

rationing processes where the band could have not produced the desired results. This 

accuracy assessment shows that the accuracy obtained from the band rationing process 

indicates that the performance of the proposed methodology was satisfactory. This therefore, 

  CLA

Y 

FERROUS GEOTHITE GEOTHITE_

2 

HYDROXYL TOTA

L 

Pa Ua 

CLAY 87 40 17 8 5 157 54.4% 54.4% 

FERROUS 40 40 40 40 40 200 36.4% 20% 

GEOTHIT

E 

17 17 17 17 17 85 19.5% 20% 

GEOTHITE

_2 

8 8 8 8 8 40 47.1% 20% 

HYDROX

YL 

5 5 5 5 5 25 6.66% 20% 

TOTAL 157 110 87 78 75       
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shows that there is possibility of potentially using GIS and Remote Sensing in the Digital Soil 

Mapping process. The data from soil science department showed that there are two dominant 

minerals in this study area. This was shown from the 5 land types that were in the study area 

to contain some soil information from the ARC-ISCW. The iron minerals could not be split 

between goethite and ferrous but it was assumed that iron content in the soil could contain 

both ferrous and goethite. The hydroxyl mineral could not be validated if it was present in the 

minerals mapped from the remote sensing process. From the analysis of the table 6.9 below it 

is evident that clay minerals dominate the study area with a few traces of iron and other 

minerals like Al and CO. According to Soil Science department data found in the soil profile 

of some of the land type in the study area. 

 

Table 6.9: Mineral composition for each land type  

Profile number Land type Mineral composition (%) 

Fe(iron) Clay 

12803 Ea366 4.25 60 

12808 Fb816 3.4 47.5 

12809 Fb820 2.89 64 

12810 Fb819 1.25 32.1 

12811 Ae380 2.96 70.1 

 

The challenge with the ancillary data that was used to validate and verify that the remote 

sensing process was correct in the location of the points used in the study by van Averbeke 

and Marais. Their study concentrated mostly on the Fort Hare farm and the surrounding 
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agricultural lands under irrigation namely Phandulwazi Agricultural farm. The points 

statistically never covered most of the studies area and from the remote sensing process, the 

points seem to be in two minerals namely clays and ferrous minerals. This is a shown in Fig 

6.1 above. If there was a way of getting these points covering a bigger part of the study area a 

proper validation and verification could have given a better picture on the effectiveness of 

using the remote sensing and GIS techniques in mapping soils. Another challenge was the use 

of the data was in the year that it was produced. The data was collected in 1989 and the 

document published in 1991. Since then some of the land uses in this area have changed and 

there is no recent data that could have been used. 
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CHAPTER 7: CONCLUSION AND DISCUSSION  

7.1 Introduction 

After having done the processing and analysis in chapter 5, this chapter concentrates on the 

discussion of the results obtained. The chapter proceeds to look into the limitations of the 

study and the project before looking at the recommendations based on what was noticed 

during the course of the studies in this thesis work. The chapter proceeds by linking all the 

chapters with a conclusion. 

7.2 Discussion 

The aim of this study was to find if it is possible to use GIS and Remote Sensing processes in 

the Digital Soil Mapping process. This was done through the use of different Remote Sensing 

techniques to map soils in the Hogsback area near Alice. The main objectives was to generate 

fill the missing soil maps in the Amatole District Municipality of Eastern Cape Province. 

This was going to help to demonstrate the advantages of remote sensing in the Digital Soil 

Mapping process. 

The specific objectives of this study were (a) to investigate if GIS and Remote Sensing can be 

potential tool to support Digital Soil Mapping techniques and (b) to provide a cost effective, 

user friendly and adaptable methodology that will facilitate the “rapid” compilation of 

appropriately scaled soil maps through the conjunctive use of GIS and Remote Sensing 

techniques/data. This method was used to demonstrate the utility of the proposed 

methodology through a case study initiative in which the derived maps would be used to 

seamlessly patch-up gaps in soil maps. The hypothesis of this thesis was that there was a 

missing soil map information in the soil map of South Africa. The lack of information has led 
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to improper decision as regards processes pertaining to soils. There was a need to come up 

with a solution that could assist in the filling of the gaps in the Eastern Cape soil map. 

The methodology that was used in this thesis was based on the band ratio as well as principal 

component analysis. The band ratio process showed that there is a concentration of clay 

minerals in the study area. This was so as there was some evidence of commercial 

agricultural activity. This was identified as the Fort hare farm. 

Most iron minerals and hydroxyl mineral were found in the high lying and low lying areas 

within the study area. This was attributed to the weathering processes in the area in and 

around the Hogsback mountain range.  The area also receive a substantial amount of rainfall. 

Thus the mixing of rainfall water with the weathered residue could have caused these 

minerals to be exposed. These minerals were also carried downstream and resulted in them 

being mapped in the low lying areas. The PCA process only proved to show the difference 

between vegetation, iron oxide as well as hydroxyl mineral.  

The results of this study showed that the DSM process can utilise the remote sensing process 

in mapping soils. The Kappa coefficient showed that about 74.56% of errors were avoided in 

the methodology that was used in this study. This means that the results obtained from the 

methodology used in the study were satisfactory.  The aim of the study was to show the 

potential use of GIS and Remote Sensing techniques in mapping soils. The result therefore 

shows that these techniques can be used in the DSM process. 

The only challenge was that the technique can only map the top soils of any soil type or 

profile.  Optical Remote Sensing processes or techniques can only detect reflected energy or 

radiation from a few centimetres of the top soil. This therefore means that there will be need 
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to have some ancillary data to be able to supplement the data collected from the remote 

sensing process. 

The advantage of using remote sensing techniques is that it facilitates mapping of 

inaccessible areas by reducing the need for excessive time-consuming and costly field 

surveys. The ability to apply remote sensing methods to improve coherence in soil and terrain 

mapping on a global scale could contribute to the Global Earth Observing System of Systems 

(GEOSS) to meet the need for land resource information.    

It should be noted however that regardless of whether the data is collected in various forms, a 

GIS system will be needed in the storage of the data so as for various people and 

communities concerned with soil management can be able to access the GIS database and be 

able to view where the various soils were collected. 

It should be noted that the remote sensing process of mapping the soil minerals is only 

limited to the top soils of any soil profile. This process therefore means that the remote 

sensing process may need to be couple. 

The authors that were used in the literature review section of this document have agreed to 

the notion that GIS and remote sensing can be used in the DSM process.  These include 

Gibson and Power, 2000; Mather, 1987; Rajesh, 2004 and Scull et al, 2003. They have shown 

through various process as that GIS and remote sensing can use in the DSM process. Some of 

these processes include the PCA and band ratio process as used in this thesis. However, there 

is still need to check other remote sensing processes such as active remote sensing. These can 

help in mapping the soil as they can penetrate the soil body further than in optical remote 

sensing. 
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7.3 Limitations 

The only limitation with remote sensing data is in its penetration to the ground surface, the 

incident light can only penetrate a few centimetres of the ground. This makes it possible to 

study only the topsoil and not the whole profile of the soil. Therefore there will be need for 

ground verification of all the data that will be produced through remote sensing techniques. 

There was no funding that was involved in this study that could have necessitated the author 

to collect some soil samples from the study area and use them to validate data produced from 

remote sensing processes. Most data used was downloaded from the internet, collected from 

other Masters students, some departments and research institutes within the university as well 

from my supervisors. This was one limitation that could have made this thesis and project not 

to be a success but thanks to the Soil Science department and ARDRI for providing the 

ancillary data that was used in the validation of the data produced. 

Remote sensing may offer possibilities for extending existing soil maps and survey data. 

There are many ways of doing this and these may include: 

o Segmenting the landscape into internally more or homogeneous soil-landscape 

units for which soil composition can be assessed by sampling using classical or 

more advanced  methods 

o  Using physically based or empirical methods to derive soil properties. 

o As data source supporting digital soil mapping. 

7.4 Recommendations 

Based on the results that were produced from the study area, it is possible to use remote 

sensing techniques as a way of mapping the soil in a given landscape and terrain. However, 
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without validating the results obtained from the remote sensing processes, the whole process 

may seem impossible as the results may not coincide with what is on the ground. It should be 

noted that remote sensing only makes use of satellites that are mounted many kilometres 

away from the surface of the earth. Their interaction with the surface of the earth is through 

sending beams of light which are also affected by various conditions upon reaching earth 

before and after interacting with the target. Thus the results may not really show what was 

mapped. There is also need to consider other mapping techniques which soil scientists use. 

Though their methods are costly they come up with results which are usable as well. 

There are many remote sensing techniques that can be used to come up with soil maps. Some 

of these techniques may require some degree of expertise to be able to manipulate the 

processes they involve. It is essential for the various remote sensing technicians and 

professional to be familiar with the process they want to use and make sure that they will 

produce the results they want. 

If the study of soils is going to be very effective there is need for funding so as to aid in the 

data collection and processing within the study area. This will assist in verifying what the 

GIS and Remote Sensing processes produce with the data collected in the field. 

7.5 Conclusion 

In conclusion remote sensing and GIS techniques can be used to support digital soil mapping 

within South Africa. However, there is need for the remote sensing experts to have some 

knowledge of soils and geology so as to understand how to map the soils. There are a variety 

of ways of mapping soils and it is up to the author and designer of a given project to choose 

the processes that will be suitable for a given location of the study area. 
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It can also be said that the slope and occurrence of soil minerals influence the spatial 

distribution of soils within the study area. This is because most of these minerals mapped 

have either been found along the valleys or following a stream meaning that the flow of the 

river or on the crests. Also the slope influenced the type of minerals where deposited within 

the spatial extent of the study area. The relief of the area and the area having shown the 

occurrence of some weathering, could have influenced which type of minerals were detected 

by the sensor on the band ratio process.  

Coupling results obtained from the remote sensing techniques with soil science or 

geomorphology principles or analysing soils shows that a credible result is possible to get. 

Therefore, the soil survey processes which though they take time, can be put into good use 

when validating the results of remote sensing techniques. 
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APPENDICES 

  APPENDIX 1: PRINCIPAL COMPONENT ANALYSIS STATISTICS 

For the six input bands 

Table 1: Mean Raster Values 

Landsat Band Mean 

Band 1 65.8 

Band 2 54.4 

Band 3 59.4 

Band 4 70.5 

Band 5 92.7 

Band 7 66.3 

 

Table 2: Variance / Covariance Matrix  

Raster Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Band 1       

Band 2 24.0956         

Band 3 38.3864    58.2742        

Band 4 27.4532    43.8851    69.8794    

Band 5 61.0337    92.4211   156.9994   139.4733     

Band 7 51.8323    78.0922   133.6713   102.5187   252.7120    
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Table 3: Correlation Matrix  

Raster Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Band 1 1.0000      

Band 2 0.9448     1.0000     

Band 3 0.9158     0.9656     1.0000    

Band 4 0.6894     0.7654     0.7416     1.0000   

Band 5 0.8081     0.8500     0.8785     0.8215     1.0000  

Band 7 0.8330     0.8718     0.9079     0.7329     0.9527     1.0000 

 

Table 4: Eigenvalues and Associated Percentages 

Axis Eigenvalues Percentages Cumulative 

1 714.1083         91.1235         91.1235 

2 33.7425          4.3057         95.4292 

3 24.7876          3.1630         98.5922 

4 7.3454          0.9373         99.5295 

5 2.7518          0.3511         99.8807 

6 0.9353          0.1193        100.0000 
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Table 5: Eigenvectors 

Axis Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

1 0.1362     0.2066     0.3481     0.2959     0.6624     0.5397 

2 -0.0857    -0.0601    -0.2217     0.8608     0.1187    -0.4300 

3 -0.3023    -0.4545    -0.6248    -0.2082     0.4911     0.1647 

4 0.1563     0.1140     0.2068    -0.3499     0.5519    -0.7020 

5 0.7298     0.3523    -0.5821    -0.0219     0.0046     0.0628 

6 0.5706    -0.7810     0.2404     0.0722    -0.0372     0.0059 

Total variance = 783.6708 

Determinant = 11291651.5246 

Translation vector = 158.9783   21.0921 -39.9587    8.7150   35.6388   11.3133 

Table 6: Transformation Matrix 

Axis Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

1 0.0622     0.0944     0.1590     0.1352     0.3026     0.2466 

2 -0.0482    -0.0338    -0.1248     0.4844     0.0668    -0.2420 

3 -0.1346    -0.2024    -0.2782    -0.0927     0.2187     0.0733 

4 0.0751     0.0548     0.0994    -0.1682     0.2652    -0.3373 

5 0.4162     0.2009    -0.3319    -0.0125     0.0026     0.0358 

6 0.3342    -0.4575     0.1408     0.0423    -0.0218     0.0034 
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Table 7: Correlation between Input raster and Principal Components  

Axis Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

1 0.8649     0.9109     0.9341     0.8358     0.9864     0.9756 

2 -0.1183    -0.0577    -0.1293     0.5284     0.0384    -0.1690 

3 -0.3576    -0.3735    -0.3123    -0.1095     0.1363     0.0555 

4 0.1007     0.0510     0.0563    -0.1002     0.0834    -0.1287 

5 0.2876     0.0964    -0.0970    -0.0038     0.0004     0.0070 

6 0.1311 -0.1247     0.0233     0.0074    -0.0020     0.0004 

 

 

For the Crosta Technique 

 Table 8: Mean Raster Values 

Landsat Band Mean 

Band 1 65.8 

Band 4 70.5 

Band 5 92.7 

Band 7 66.3 

 

Table 9: Variance / Covariance Matrix 

Raster Band 1 Band 4 Band 5 Band 7 

Band 1     

Band 4 27.4532       

Band 5 61.0337   139.4733     

Band 7 51.8323   102.5187   252.7120    
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Table 10: Correlation Matrix  

Raster Band 1 Band 4 Band 5 Band 7 

Band 1 1.0000    

Band 4 0.6894     1.0000   

Band 5 0.8081     0.8215     1.0000  

Band 7 0.8330     0.7329     0.9527     1.0000 

 

Table 11: Eigenvalues and Associated Percentages  

Axis Eigenvalues Percentages Cumulative 

1 600.4562         92.6962         92.6962 

2 32.9432          5.0856         97.7818 

3 9.6700          1.4928         99.2747 

4 4.6985          0.7253        100.0000 

 

Table 12:  Eigenvectors 

Axis Band 1 Band 4 Band 5 Band 7 

1 0.1437     0.3242     0.7272     0.5877 

2 -0.0362     0.8765     0.0043    -0.4800 

3 -0.3686    -0.3243     0.6687    -0.5584 

4 -0.9177     0.1465    -0.1548     0.3352 

Total variance = 647.7679 

Determinant = 898734.7288 

Translation vector = 138.7307   27.9881 -22.1355 -42.1426 
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Table 13: Transformation Matrix 

Axis Band 1 Band 4 Band 5 Band 7 

1 0.0806     0.1818     0.4079     0.3297 

2 -0.0259     0.6274     0.0031    -0.3436 

3 -0.1920    -0.1689     0.3483    -0.2908 

4 -0.5905     0.0942    -0.0996     0.2157 

 

 

Table 14: Correlation between Input raster and Principal Components 

Axis Band 1 Band 4 Band 5 Band 7 

1 0.8367     0.8395     0.9931     0.9742 

2 -0.0493     0.5317     0.0014    -0.1864 

3 -0.2723    -0.1066     0.1159    -0.1175 

4 -0.4726     0.0336    -0.0187     0.0492 
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APPENDIX II: DESCRIPTION OF SOILS OF THE STUDY AREA 

A. Description of the Fort Hare Jozini ecotope 

Soil Name 

South Africa name: Oakleaf Jozini 

FAO name: Orthic Luvisol 

Soil Taxonomy: Typic Haplustalf 

 

Location  

Alice, Fort Hare Research Farm. 

Latitude: 32º 47’ 51S and Longitude: 26º50’55E 

Altitude: 508m 

 

Landform 

General: dissected coastal plateau 

Regional: alluvial valley of the Tyume River 

Local: Most recent alluvial terrace 

Slope 

Flat or nearly flat land, sloping gently down in a south eastern direction with a gradient of 

0.5% 

Vegetation and land use 

Annually cropped land, which has been under irrigation for at least the past 50 years. 

Climate 

Mean annual temperature: 18.1ºC 
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Mean Annual rainfall 

575mm with a distinct winter minimum and more or less pronounced spring and autumn 

maximum. 

Parent material 

Alluvial deposit which consists mainly of fine sand and silt,  and contains significant amounts 

of clay. Mineralogically the sand fraction consists mainly of quartz and lesser amounts of 

plagioclase, rock fragments and iron and manganese oxides. In the clay fraction both 1:1 and 

2:1 clay minerals are present. 

Description of top soil 

Depth 0-300mm 

Dry: dark brown 

Moist: brown 

Fine sandy loam, generally massive buy in places weak medium sub angular blocky, hard 

(dry), friable (moist), slightly sticky and slightly plastic (wet) many fine roots, clear smooth 

transition, broken in places. 

B. Description of the Alice Bluebank ecotope 

Locality: Fort Hare Farm 

Coordinates: 32º47’ 50” S and 26º51’55”E 

Climate: Semi-arid 

Parent material 

No. of kinds: single 

Lithology: mudstone 

Underlying material: mudstone 

Topography 

Altitude: 510m 
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Terrain morphological unit: 4 

Slope: 1.5% 

Kind: Concave 

Aspect: 280ºW 

Mode of accumulation: colluvium 

Factors of soil formation 

Chemical weathering: strong 

Physical weathering: strong 

Vegetation: open tree veld 

Description of topsoil 

Depth: 0-160mm 

Dry; dark greyish brown moist and light grey dry; silt loam; weak fine and medium sub 

angular blocky in places tending to coarse granular due to faunal (animal) activity. Hard (dry) 

friable (moist); slightly sticky; non plastic (wet); many to very fine roots; clear smooth 

boundary.   

C. Description of the Alice Jozini Ecotope 

 

Form: Oakleaf 

Series: Jozini 

Locality: Fort hare farm, Alice 

Coordinates: 32º47’30”S and 26º50’45”E 

Climate: Semi-arid 

Parent material 

No of kinds: single 

Lithology: alluvium 
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Underlying material: alluvium 

Mode of accumulation: river deposit 

Weathering 

Physical: weak 

Chemical: weak 

Topography 

Altitude: 508m 

Terrain morphological unit: 5, valley bottom 

Slope: 0.5% 

Kind: plane 

Aspect: 90ºE 

Vegetation 

Cultivated land 

Description of topsoil 

Depth: 0-200mm 

Moist/dry, dark brown, moist and brown dry, fine sandy loam; weak fine to medium sub-

angular blocky, medium sized crumbs also present. Slightly hard (dry), very friable (moist), 

slightly sticky and slightly plastic (wet), many fine roots with gradual smooth transition. 

 

D. Description of the Alice Limpopo ecotype 

Form: Oakleaf  

Series: Limpopo 

Location: Fort hare Farm, Alice 

Coordinates: 32º48’00”S and 26º51’ 30’E 

Climate: Semi-arid 
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Parent material 

No of kinds: single 

Lithology: alluvium 

Underlying material: old alluvium 

Mode of accumulation: river deposit 

Soil formation factors 

Physical weathering: weak 

Chemical weathering: weak 

Topography 

Altitude: 498m 

Terrain morphological unit: 5, valley bottom 

Slope: 0% 

Kind: flat 

Aspect:- 

Vegetation 

Cultivated land 

Description of topsoil 

Depth: 0-200mm 

Dry brown, moist and brown dry, loam, massive to weak fine and medium sub-angular 

blocky, hard(dry), many fine roots with gradual smooth transition. 

E. Description of the Alice Lindley ecotope 

Form: Valsrivier  

Series: Lindley 

Location: Fort hare Farm, Alice 

Coordinates: 32º47’30”S and 26º51’ 45’E 
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Climate: Semi-arid 

Parent material 

No of kinds: probably binary 

Lithology: mudstone and probably influence of dolerite 

Underlying material: mudstone 

Mode of accumulation: colluvium 

Soil formation factors 

Physical weathering: strong 

Chemical weathering: strong 

Topography 

Altitude: 530m 

Terrain morphological unit: 3, middle slope 

Slope: 7.5% 

Kind: slightly concave 

Aspect: 240ºSW 

Vegetation 

Thorn bush veld 

Description of topsoil 

Depth: 0-155mm 

Dry and very dark brown moist; very dark greyish brown and dry with upper 30mm dark 

greyish brown dry, silt loam. Weak to moderate fine sub-angular blocky in upper 30mm and 

moderate medium sub-angular blocky lower down, hard (dry) many fine roots with gradual 

smooth transition. 

F. Description of the Alice Robmore ecotope 

Form: Glenrosa  
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Series: Robmore 

Location: Fort hare Farm, Alice 

Coordinates: 32º48’00”S and 26º52’ 00’E 

Climate: Semi-arid 

Parent material 

No of kinds: single 

Lithology: mudstone 

Underlying material: mudstone 

Mode of accumulation: colluvium and in situ weathering of rock 

Soil formation factors 

Physical weathering: strong 

Chemical weathering: weak 

Topography 

Altitude: 518m 

Terrain morphological unit: 3, middle slope 

Slope: 5% 

Kind: straight 

Aspect: 270º 

 

Vegetation 

Cultivated land 

Description of topsoil 

Depth: 0-260mm 
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Dry and very weak greyish brown, dry loam. Moderate, fine angular blocky, hard dry with 

many fine roots. Few small Fe/Mn concentrations and mudstone fragments with clear wavy 

transition. 

 

G. Description of the Alice Rosemead ecotope 

Form: Escourt  

Series: Rosemead 

Location: Fort hare Farm, Alice 

Coordinates: 32º47’00”S and 26º51’ 00’’E 

 

Climate: Semi-arid 

Parent material 

No of kinds: single 

Lithology: mudstone 

Underlying material: mudstone 

Mode of accumulation: combination of colluvium and weathering in situ 

 

Soil formation factors 

Physical weathering: strong 

Chemical weathering: strong 

 

Topography 

Altitude:  

Terrain morphological unit: 4, old terrace 

Slope: 3.8% 
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Kind: straight 

Aspect: 120º ESE 

Vegetation 

Annually cropped land 

Description of topsoil 

Depth: 0-230mm 

Dry dark brown, moist and greyish brown dry, loam, massive to weak; fine to medium sub-

angular blocky, hard(dry), very small Fe/Mn concentrations; many fine roots with gradual 

smooth transition. 

 

H. Description of the Alice Sterkspruit ecotope 

Form: Sterkspruit  

Series: Sterkspruit 

Location: Fort hare Farm, Alice 

Coordinates: 32º47’30”S and 26º50’ 45’’E 

 

Climate: Semi-arid 

Parent material 

No of kinds: binary 

Lithology: old alluvium covered by recent colluvium 

Underlying material: old alluvium 

Mode of accumulation: old alluvium deposit with a more recent colluvium cover. 

 

Soil formation factors 

Physical weathering: strong 
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Chemical weathering: strong 

 

 

Topography 

Altitude: 510m 

Terrain morphological unit: 3/4, old river terrace 

Slope: 4% 

Kind: slightly convex 

Aspect: 270º W 

 

Vegetation 

Cultivated land 

 

Description of topsoil 

Depth: 0-170mm 

Dry: dark yellowish brown, moist and yellowish brown dry, loam, weak fine and medium 

sub-angular blocky, slightly hard (dry), many fine roots with clear smooth transition. 

 

 

D. Description of the Ngwenya Swartland ecotope 

Form: Swartland  

Series: Swartland 

Location: Ngwenya 

Coordinates: 32º51’20”S and 26º56’ 10’’E 
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Climate: Semi-arid 

Parent material 

No of kinds: single 

Lithology: mudstone 

Underlying material: mudstone 

Mode of accumulation: colluvium plus weathering in situ 

 

Soil formation factors 

Physical weathering: strong 

Chemical weathering: moderate 

 

Topography 

Altitude: 585m 

Terrain morphological unit: 3, middle slope 

Slope: 3.7% 

Kind: plane 

Aspect: 45º NE 

 

Vegetation 

Cultivated land 

Description of topsoil 

Depth: 0-200mm 

Moist: very dark greyish brown, dry loam, massive to very weak fine and medium sub-

angular blocky, friable (moist), many fine roots with gradual smooth transition. 

 



 

87 

 

D. Description of the Ncera Kinross ecotope 

Form: Shortlands  

Series: Kinross 

Location: Ncera 

Coordinates: 32º44’ 45”S and 26º51’50’’E 

 

Climate: Semi-arid to sub humid 

Parent material 

No of kinds: 1 

Lithology: dolerite 

Underlying material: dolerite 

Mode of accumulation: colluvium and weathering in situ 

 

Soil formation factors 

Physical weathering: weak 

Chemical weathering: strong 

Topography 

Altitude: 700m 

Terrain morphological unit: 1/3, upper middle slope 

Slope: 5.5% 

Kind: slightly convex 

Aspect: 45º NE  

Vegetation 

Ploughed land 
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Description of topsoil 

Depth: 0-200mm 

Dry: dark reddish brown, moist, yellowish red dry clay loam. Weak medium sub-angular 

blocky, hard (dry), few fine roots with clear smooth transition. 
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APPENDIX III: Selected platforms by instrumentation, operation status, spatial 

coverage, spatial and temporal resolution 

(Table provided courtesy of Prof. Hamandawana) 

 Instrumentation  Service period Spatial coverage Resolution 

From To Spatial Temporal 

SPOT 1 HRV 1986 Present 6400 km2 10-20m 26 days 

SPOT 2 HRV 1990 Present 6400 km2 10-20m "      " 

SPOT 3 HRV 1993 Failure 6400 km2 10-20m "      " 

SPOT 4 HRVIR 1998 Present 14 400 km2 10-20m "      " 

TERRA ASTER 1999 Present 3600 km2 15-90m 5-16 days 

TERRA MODIS 1999 Present No data 250-1000m 1-2 days 

IKONOS No data 1999 Present 121 km2 1-4m No data 

QuickBir

d 

No data 2001 Present 484 km2 0.61-0.73m "      " 

Landsat 1 MSS 1972 1978 34225 km2 79m 14 days 

Landsat 2 MSS 1975 1982 34225 km2 57m "      " 

Landsat 3 MSS 1978 193 34225 km2 57m "      " 

Landsat 4 MSS + TM 1982 1993 34225 km2 57m (MSS) "      " 
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Landsat 5 MSS + TM 1984 Present (MSS) 

34 000 km2 

(TM) 

30-120m 

(TM) 

"      " 

Landsat 6 ETM 1993 Failure  Not applicable Not 

applicable 

"      " 

Landsat 7 ETM+ 1999 2003 34 000 km2 15, 30, 120m "      " 

Abbreviations 

MSS = Multispectral Scanner 

ETM = Enhanced Thematic Mapper 

HRVIR = High Resolution Visible and Infrared 

MODIS = Moderate Resolution Imaging Spectro-radiometer 

HRV = High Resolution 

Visible 

IRS = Indian Remote Sensing Satellite 

ASTER = Advanced Spaceborne Thermal Emission and Reflection Radiometer 

Temporal coverage  

SPOT: 18 

yrs 

ASTER:5 

yrs 

MODIS:5 

yrs 

IKONOS: 5 

yrs 

QuickBird: 3 

yrs 

Landsat: 32 

yrs 

Sources: MTPE/EOS 1997; Mather, 2004; Lauer et al., 1997; Lillesand and Kiefer, 2000; 

Drury, 1998. 
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Criteria table used to guide data-type selection from individual platforms 

Platform/ 

Sensor 

 Criteria 

 Spatial Temporal Spectral 

Resolution 

Software 

compatibility 

Cost Total 

score 

Decisio

n  

Res Cov Res Cov 

 

C
ri

te
ri

a 
sc

o
re

 

         

Spot 1 1 1 1 1 1 0 6 R 

Terra/Aster 1 1 1 0 1 1 1 6 R 

Terra/MODI

S 

0 2 0 0 1 0 1 4 R 

IKONOS 0 0 0 0 1 1 0 2 R 

QuickBird 0 0 0 0 1 1 0 2 R 

Landsat 1 1 2 2 1 1 1 8 A 

Platform 

categories 

Category 1 Category 2 Category 3 

SPOT and ASTER MODIS, IKONOS and Quick Bird Landsat 

Score ratings Very suitable = 2; Suitable = 1;  

Unsuitable = 0 

Decision: R = reject;  

A= accept 

 

 


