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The gauge-gravity duality can be used to relate connected multipoint graviton functions to connected

multipoint correlation functions of the stress tensor of a strongly coupled fluid. Here, we show how to

construct the connected graviton functions for a particular kinematic regime that is ideal for discriminating

between different gravitational theories, in particular between Einstein theory and its leading-order string

theory correction. Our analysis begins with the one-particle irreducible graviton amplitudes in an anti-de

Sitter black brane background. We show how these can be used to calculate the connected graviton functions

and demonstrate that the two types of amplitudes agree in some cases. It is then asserted on physical grounds

that this agreement persists in all cases for both Einstein gravity and its leading-order correction. This

outcome implies that the corresponding field-theory correlation functions can be read off directly from the

bulk Lagrangian, just as can be done for the ratio of the shear viscosity to the entropy density.

DOI: 10.1103/PhysRevD.87.024005 PACS numbers: 04.50.�h, 11.25.Tq

I. INTRODUCTION

The gauge-gravity duality implies that a strongly
coupled gauge field theory in four dimensions should
have a dual description as a weakly coupled gravity theory
in five-dimensional anti-de Sitter (5D AdS) space [1,2].
Because the gauge theory lives at the outer boundary of
the AdS bulk spacetime, this is also a bulk-boundary or
‘‘holographic’’ correspondence [3].

String theory is a unitary and UV-complete theory.
Consequently, any consistent effective description of
the physics, on either side of the duality, must be unitary.
This observation leads us to the following conclusion
[4]: An effective theory describing small perturbations
about the gravitational background solution cannot have
more than two time derivatives in its linearized equation
of motion. In other words, such an effective theory of
gravity must either be Einstein’s two-derivative theory,
a member of the exclusive Lovelock class of higher-
derivative theories [5], or else be supplemented by bound-
ary conditions that enforce this two-derivative limit. We
will often use a term like ‘‘Lovelock’’ or ‘‘Gauss-Bonnet’’
(the four-derivative Lovelock theory) with the understand-
ing that either of the latter two scenarios is realized. See
Sec. 1.2 of Ref. [6] for further discussion.

Lovelock gravity consists of an infinite series of terms
that are arranged in order of increasing numbers of pairs of
derivatives. But, given a sensible perturbative expansion, it
is likely that the correction to the Einstein Lagrangian at
leading order will be the most easily accessed by experi-
ment (if at all), so that it makes sense to say that the
gravitational dual is Einstein gravity plus a Gauss-Bonnet
correction, or possibly just Einstein gravity. We will be
proceeding with this as our premise.

Our claims about the gravitational dual can be put to the
test, as we now elaborate. In a recent publication [6],

we systematically studied gravitational perturbations about
a black brane solution in 5D AdS space. We focused on a
certain kinematic region of ‘‘high momentum,’’ which will
be clarified early in the paper, but otherwise computed
all of the physical, on-shell one-particle irreducible (1PI)
graviton n-point amplitudes for both Einstein gravity and
its leading-order Gauss-Bonnet correction. Some of the
more important findings are listed as follows:
(1) All 1PI n-point functions with n odd are trivially

vanishing.
(2) All 1PI n-point functions involving the scalar gravi-

ton modes (or the sound channel [7]) are trivially
vanishing.

(3) All 1PI n-point functions involving the vector gravi-
ton modes (or the shear channel [7]) are essentially
featureless and theory independent.

(4) Except for the two-point function, any 1PI 2n-point
function consisting strictly of tensor graviton modes
depends on the scattering angles and in a theory-
dependent way.

(5) For Einstein gravity, the (tensor) four- and higher-
point functions all go as s, where s has its usual
meaning as the Mandelstam center-of-mass
variable.

(6) The contribution of the leading-order Gauss-Bonnet
correction goes as s2 for the four-point function
and sðsþ vÞ for higher-point functions, where v is
an independent angle that can be interpreted as a
‘‘generalized Mandelstam’’ variable.

In brief, what we have found is that both Einstein gravity
and its leading-order Gauss-Bonnet correction exhibit a
universal angular dependence in multipoint graviton func-
tions (at least for a particular kinematic region). The two
extra derivatives in Gauss-Bonnet gravity lead to a more
complicated angular dependence, which would become
increasingly more complex as the perturbative order of
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corrections is increased. But the added complexity only
becomes evident at the six-point (and higher) level and,
even then, only for a certain class of gravitons.

The black brane geometry provides a framework for
probing the hydrodynamic properties of a strongly coupled
fluid [8–10], such as the quark-gluon plasma [11]. The
gauge-gravity duality implies that there should be an
analogous list of statements to the above list about the
stress-tensor correlation functions of a strongly coupled
gauge theory. This point was already mentioned in our
previous work [6] and has since been made concrete in a
more recent article [12].

An obstacle to directly applying the duality for this
purpose is that the graviton amplitudes of Ref. [6] are the
1PI amplitudes. What is rather needed to make contact
with the gauge theory would be the connected graviton
functions. The reason being that the 1PI functions on the
field-theory side are not particularly useful because of
complications that arise in separating these from the con-
nected functions (see Refs. [13,14] for a recent discussion).
The best way to circumvent such issues is to have things
already worked out in the bulk before applying the duality.

The main objective of the current study is to fill in this
gap on the bulk-to-boundary chain and make clear how the
connected functions can be calculated from the 1PI ones.
Working in the high-momentum kinematic region, we are
able to show that the four-, six-, and eight-point connected
functions for Einstein gravity are the same as the 1PI ones.
Similar agreement is established for the four- and six-point
functions when the leading-order Gauss-Bonnet correc-
tions are included.

Following our presentation of explicit calculations, we
will assert, using general covariance and additional general
arguments, that this agreement between the connected and
1PI functions should persist for the higher-point ampli-
tudes as well. This is an interesting outcome in its own
right but is especially significant in the context of the
gauge-gravity duality.

What our findings make clear is that, at least for the
high-momentum regime, the multipoint correlation func-
tions of the gauge-theory stress tensor fall into universality
classes [12] in the same way that the ratio of the shear
viscosity to the entropy density famously does [15,16].
And, just as one can read off this ratio of two-point
correlators directly from the bulk Lagrangian [17–19],
the same can be done for the higher-point correlation
functions as well. Importantly, this provides a new means
for probing the gravitational dual of a strongly coupled
gauge theory.

The rest of the paper proceeds as follows: The next
section clarifies our choice of kinematic region and
Sec. III reviews some of the important results from our
previous article [6]. In particular, we recall our formula-
tions for the 1PI graviton functions and discuss how these
are related to correlation functions of the boundary theory.

Section IV is where we begin to address the relation
between the connected and 1PI amplitudes, starting with
a preliminary discussion about the combinatorics of
Feynman diagrams. In Sec. V, we show by explicit calcu-
lation that the one-particle-reducible (1PR) contribution
to the connected six-point function identically vanishes
(the four-point case is trivial). This outcome is extended
to all the reducible diagrams with a single internal line in
Sec. VI. Then, in Sec. VII, we present our argument as to
why these cancellations should universally persist.
Section VIII considers disconnected graviton functions,
which can also be useful for probing the gravitational
dual. Section IX ends the main text with a brief overview,
and the Appendix includes a calculation that is referred to
in Sec. VII.
Let us briefly mention coordinate conventions. We

assume a 5D bulk spacetime and use x ¼ ðt; x; y; zÞ to
denote the coordinates of the four-dimensional Poincaré-
invariant subspace of the brane. Without loss of generality,
z is designated as the direction of graviton propagation
along the brane (or along any other spacetime slice at
constant radius). For indices, a; b; � � � ¼ ft; x; y; zg. The
radial coordinate is denoted by r and ranges from r ¼ rh
at the black brane horizon to r ! 1 at the AdS boundary.

II. THE HIGH-MOMENTUM REGIME

Before continuing, we wish to clarify how the kinematic
region of high momentum is defined. Here, the focus is on
the bulk perspective; for the boundary point of view, see
Ref. [12].
Essentially, the frequencies and momenta (!’s and k’s)

of the gravitons should be large enough so that these
dominate over all radial derivatives, whether acting on
the gravitons or the background. In practice, this amounts
to requiring that any derivative acts on a graviton to pro-
duce an ! ¼ �irt ¼ �i@t or a k ¼ �irz ¼ �i@z [20].
This kinematic regime is most suitable for distinguishing
between Einstein gravity and higher-derivative corrections,
as it emphasizes the number of derivatives in an interaction
vertex.
The parameter � will serve as a dimensionless perturba-

tive coefficient which measures the strength of the higher-
derivative corrections to the Einstein Lagrangian, such that
the Gauss-Bonnet correction is linear in � [21]. Then the
number of derivatives is given by 2jþ1 for a term of
order �j. The restriction to high momenta is really the
same as asking that the Mandelstam invariant s be larger
than the AdS bulk curvature or s � 1=L2, where L is the
AdS curvature length.
As for an upper bound, the momenta should still be

small enough to ensure that any higher-order Lovelock
terms make parametrically small contributions to physical
quantities. This is necessary for keeping the perturbative
expansion under control and, more importantly, for con-
sistency with treating string theory as an effective theory of
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gravity. Now consider that each additional order in the
Lovelock expansion brings with it another factor of �.
For instance, a term with six derivatives can contribute
one more factor of s but at the cost of one more factor of �.
Hence, we require s� � 1=L2. And, because it follows on
general grounds that �� l2p=L

2 � 1 (lp is the 5D Planck

length and the right-hand side is a necessary requirement
for the viability of the gauge-gravity duality), the previous
inequality means s � 1=l2p. That is, all momenta must be

‘‘sub-Planckian.’’
This last constraint is rather trivial, but there is still

another one to consider. Because a black brane is dual to
a fluid, we are working (at least implicitly) in the hydro-
dynamic regime, and so the bound s � ð�TÞ2 is also
required. Here, T is the fluid temperature, which is equiva-
lent to the Hawking temperature on the brane. We then end
up with the high-momentum region being defined by the
finite range

1 � L
ffiffiffi
s

p � �TL: (1)

There is no danger of the right-hand inequality being in
conflict with the bulk solution because the gauge-gravity
duality can only be applied consistently in a black hole
(or brane) background when the horizon is much bigger
than the AdS scale L or, equivalently, much hotter than the
surrounding AdS space [24]. Since rh � �TL2, it follows
that �TL � 1.

An additional comment is in order: Let us recall the
relation � ¼ g2YMN between gauge-theory parameters,
where � is the ’t Hooft coupling, gYM is the Yang-Mills
coupling and N is the number of colors. The holographic
dictionary applies when N ! 1 and gYM ! 0, with �
large but finite. Hence, we carry out our analysis at tree
level (loop diagrams are suppressed by inverse powers of
N). and the leading-order modifications to Einstein gravity
must then be at higher orders in ��1. This is consistent with
looking at higher-derivative extensions to the effective
string-theory Lagrangian [25].

III. GRAVITON MULTIPOINT FUNCTIONS

In this section, we recall some relevant parts of our
earlier work [6] as well as set up the basic framework.

The initial task is to calculate all the physical, 1PI
on-shell graviton multipoint amplitudes for an (asymptoti-
cally) AdS theory of gravity. We assume that the back-
ground solution is a five-dimensional black brane with a
Poincaré-invariant horizon because, as already mentioned,
this setting is useful for learning about the fluid dynamics
of the gauge-theory dual.

As also mentioned, the effective theory describing small
fluctuations about the background is constrained to have a
two-derivative equation of motion. It is assumed that this
effective theory limits to Einstein gravity in the IR and has
a sensible perturbative expansion in terms of the number
of pairs of derivatives. It follows that each term in the

Lagrangian is suppressed by a factor of � relative to
its predecessor with two derivatives fewer. Hence, to lead-
ing order, we need only consider the four-derivative cor-
rection to Einstein’s theory, so that the theories of interest
are Einstein gravity and Einstein gravity plus a Gauss-
Bonnet extension.
The premise is to expand the Einstein and Gauss-Bonnet

Lagrangians in numbers of gravitons. A graviton h��

represents a small perturbation of the metric from its
background value, g�� ! g�� þ h��. The nth-order term

of the expansion can be identified with the graviton n-point
function, which can be represented by a 1PI Feynman
diagram. This becomes a Witten diagram [3] in the limit
that r ! 1.
Let us introduce the following ansatz and labeling con-

vention for the gravitons: hðjÞ�� ¼ �ðrÞ exp½i!jt� kjz�. We

work in the radial gauge, for which hrr ¼ har ¼ 0 for any
choice of a. This choice leads to a decoupling of the
gravitons into three distinct classes [7]: tensors, vectors
and scalars or, respectively, h2 ¼ fhxyg, h1 ¼ fhzx; htxg and
h0 ¼ fhtt; hzz; hzt; hxx þ hyyg, with redundant polarizations
omitted.
As previously motivated, we work in the kinematic

region of high momentum, meaning that only terms with
the highest allowed power of ! and k are included.
Given that the calculations are on-shell and in the region

of high momentum, we are able to discard any n-point
function involving scalar modes. This, in turn, means that
graviton functions with odd values of n vanish, as general
covariance dictates that vectors and tensors must come in
pairs.
The case against vector modes is somewhat more subtle.

Avector mode is analogous to a field-strength tensor [8], so
it must be differentiated to be physical. Moreover, any
nonvanishing n-point function that includes vector modes
is limited to exactly two derivatives [6], both of which are
necessarily constrained to act on the vectors. Because of
this simplicity, this class of functions is of limited value to
the current analysis and will subsequently be ignored.
Thus, we are left with only the tensor modes. Later on,

we will calculate connected functions for the tensors by
convolving pairs of 1PI amplitudes, and so it is important
to understand why vector and scalar modes can be ignored
in the internal lines. Generally speaking, all types of modes
can appear because, unlike those appearing on external
lines, internal gravitons are not constrained to be on-shell.
However, on-shell or off-, the scalar modes are not physical
(i.e., can be gauged away) in the absence of an external
source. (See, e.g., Ref. [26].) And, since the vector modes
can be identified with eletromagnetic gauge fields [8], they
must likewise be sourced to be physical. One might then
ask how our results would differ when such sources are
present, as could well be the case in a string-theory context.
We will make an argument that, in the high-momentum
regime and at least to order �, all internal lines-irrespective
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of the internal propagating modes-do not contribute.
We will return to this matter at the end of Sec. VII.

As explained in Ref. [6], we have found the complete list
of 1PI multipoint functions for the tensor modes at arbi-
trary r. But, for current purposes, it is most useful to focus
on the limit of the AdS outer boundary, this being the
location of the gauge-theory dual. In this case,

lim
r!1hh2h2iE ¼

�
L

r

�
3
k2 ðwith k2 � k21 ¼ k22Þ; (2)

lim
r!1hh2h2h2h2iE ¼ 9

4

�
L

r

�
7
s; (3)

lim
r!1hh

6
2iE ¼ 75

8

�
L

r

�
11
s; (4)

lim
r!1hh2h2iGB¼

�
L

r

�
3
�
1�8�

L2

r2

�
k2 ðwith k2�k21¼k22Þ;

(5)

lim
r!1hh2h2h2h2iGB ¼ 3

4

�
L

r

�
7
�
3sþ �

L2

r2
s2
�
; (6)

lim
r!1hh

6
2iGB ¼ 15

8

�
L

r

�
11
�
5sþ 21�

L2

r2
sðsþ vÞ

�
; (7)

where E and GB, respectively, denote Einstein and Gauss-
Bonnet corrected gravity, the five-dimensional Newton’s
constant has been fixed according to 16�G5 ¼ 1, and the
kinematic variables s and v are made explicit below.We have
also employed the boundary limit of the AdS brane metric,

limr!1ds2 ¼ � r2

L2 dt
2 þ L2

r2
dr2 þ r2

L2 ½dx2 þ dy2 þ dz2�.
More generally, for 2n ¼ 4; 6; 8 . . . ,

lim
r!1hh

2n
2 iE ¼ ð2n� 1Þ�½nþ 1

2�ffiffiffiffi
�

p
�½n� 1�

�
L

r

�
4n�1

s; (8)

lim
r!1hh

2n
2 iGB ¼ lim

r!1hh
2n
2 iE þ 2

5
�

2n
4

� �
�½nþ 3

2�ffiffiffiffi
�

p
�½n� 1�

�
�
L

r

�
4nþ1

sðsþ vÞ; (9)

with the understanding that v ¼ 0 for 2n ¼ 4.
The external gravitons are symmetrized in our ex-

pressions, with the center-of-mass variable s and the
generalized Mandelstam variable v accounting for the
symmetrization,

s ¼ � 1

2nð2n� 1Þ
X2n
i¼1

X2n
j¼1
j�i

k
�
i kj�; (10)

v ¼ � 1

2nð2n� 1Þð2n� 2Þð2n� 3Þ

� X2n
i1¼1

X2n
i2¼1
i2�i1

X2n
i3¼1

i3�i1;2

X2n
i4¼1

i4�i1;2;3

X2n
j¼1

j�i1;2;3;4

k�i1kj�: (11)

The Gauss-Bonnet corrections depend only on the
Riemann-tensor-squared term, as the other four-derivative
terms (Ricci-tensor-squared and Ricci-scalar-squared) can
be transformed away with a suitable choice of field rede-
finitions [6,27,28]. Also, to arrive at the above expressions,
we employed the transverse/traceless gauge for the tensors
(which is compatible with our previous choice of radial
gauge).
Let us briefly explain the above outcomes from a

Feynman-diagram perspective: With knowledge that these
are really the 1PI graviton amplitudes, we are essentially
computing a functional derivative of the form (see, e.g.,
Ref. [29])

hh2ni ¼ ð�iÞ2nþ1 �2n

ð�JÞ2n ln

�Z
D½h�ei ffiffiffiffiffi�g

p
L½g;r;h�þiJh

�
;

(12)

where an h should be regarded as a tensor, J is an external
source, there is an implied spacetime integral in the expo-
nent and, since tensor modes come in pairs, the Lagrangian
density in the exponent can be expanded out as

ffiffiffiffiffiffiffi�g
p

L½g;r; h� ¼ L0½g� þ h2

2!
L2½g;r� þ h4

4!
L4½g;r�

þ h6

6!
L6½g;r� þ � � � : (13)

Now, taking the variations and then setting J ¼ 0, we
have

hh2ni ¼ �i

R
D½h�h2nei ffiffiffiffiffi�g

p
L½g;r;h�R

D½h�ei ffiffiffiffiffi�g
p

L½g;r;h� : (14)

A Taylor expansion of the exponentials then leads to the
outcome

hh2ni ¼ 1

ð2nÞ!
R
D½h�h2nðh2nL2n½g;r�Þei

2h
2L2½g;r�R

D½h�ei
2h

2L2½g;r� þ � � � ;

(15)

with the ellipsis indicating contributions that are not 1PI
[30].
To proceed, one contracts together the pair of mono-

mials (each of order 2n) within the upper integral of
Eq. (15). This can be done in ð2nÞ! different ways, [31]
with this number canceling the graviton symmetrization
factor in the denominator. After the standard process of
amputating the external lines, the result of the contraction
is simply L2nðg;rÞ. Equations (2)–(9) are these quantities
in momentum space.
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An important feature of these multipoint functions is
how they depend on the scattering angles of the gravitons.
As evident from the above expressions, the two-point
function has no angular dependence (an outcome that
follows from momentum conservation), whereas the
higher-point functions do depend on the angles, with
distinct signatures for the Einstein and Gauss-Bonnet
corrected parts.

This distinction between the Einstein and Gauss-Bonnet
angular dependence can be attributed to the two extra
derivatives available in the Gauss-Bonnet part of the
Lagrangian. The point is that both Einstein and Gauss-
Bonnet gravity have a two-derivative (linearized) field
equation, but only Einstein gravity is truly a two-derivative
theory. This is what restricts and simplifies the higher-point
functions of Einstein gravity [32,33]. On the other hand,
the four- and higher-point functions of any Lovelock the-
ory will generally be sensitive to the additional derivatives
and, therefore, not subject to the same degree of constraint.
Still, one can constrain any Lovelock theory to some
degree by limiting the order of �, just like we are doing
here.

A. The gauge-theory perspective

We are interested in the stress-tensor multipoint corre-
lation functions for the boundary gauge theory [12]. The
gauge-gravity duality implies that the stress-tensor corre-
lation functions are related to the connected graviton
n-point functions. To make the connection explicit, an
appropriate process of holographic renormalization has to
be applied. This process is straightforward in our case
because, in the high-momentum regime, the connected
and 1PI graviton amplitudes agree. This will be shown
explicitly for several cases, after which a general argument
will be provided.

To put this on a more formal level, we need to apply the
standard rules of holographic renormalization [34–36] to
the bulk multipoint functions. This is essentially a three-
step procedure: The first step (which has already been
carried out) is to extrapolate the bulk quantity to the
boundary [37]. The second step is to multiply the extrapo-
lated functions by a factor �q, where � is an appropriate
conformal factor and the power q is determined by the
conformal dimension of the operators whose correlation
function is being calculated. The third step is to subtract off
any divergences by using suitable boundary counterterms
(these essentially compensate for contributions from the
background geometry). One then only retains the part that
survives in the r ! 1 limit.

Let us elaborate on the second step. The conformal
factor can be deduced from the asymptotic form of the
AdS metric [see below Eq. (7)]. From this, the appropriate
conformal factor can now be identified as � ¼ r=L, and
one then multiplies by�q such that q ¼ �� 3. Here, each
operator of (mass) conformal dimension�i contributes this

amount to� ¼ P
i�i, while the subtraction of 3 is meant to

‘‘strip off’’ the metric determinant. The operators in our
case are the gravitons for which �h ¼ 2 (this can be
deduced from the boundary behavior of the metric) and
the derivatives for which �r ¼ 1.
Following the described procedure, we find that all

powers of r and L are stripped away from our previous
expressions. For instance,

hh62iE;REN ¼ lim
r!1�

6�2þ2�3hh62iE ¼
�
r

L

�
11 75

8

�
L

r

�
11
s¼ 75

8
s

(16)

and similarly for the others.
What is left is a quantity that is finite and well defined at

the boundary. Hence, the first and third steps turn out to be
of no direct consequence in the specific case that we
consider. Subleading contributions to the metric could be
important in principle but, in our case, only show up in
terms that are asymptotically vanishing.
One might still wonder about hidden implications from

the third step, as the subtraction process is the only subtle
element of the bulk-boundary dictionary. However, there
are none in the high-momentum regime. To understand
why, recall that the subtraction is tantamount to a pro-
cess of matching and stripping off the (divergent) bulk
and boundary conformal factors and then eliminating
contributions from the AdS background geometry. That
this is the underlying premise is made clear in some of
the precursory works to holographic renormalization
[3,38–40]. And such a process would not have any bearing
on our basic forms because the metric components gtt and
gzz are dispersed democratically in all our amplitudes and
exhibit the same radial dependence at the boundary.
Alternatively, from the counterterm perspective, we will
see later that contributions from these have no opportunity
to enter into the formal calculations of the graviton ampli-
tudes. All of this simplicity hinges heavily upon the high-
momentum regime being in effect.

IV. A REMINDER ON COMBINATORICS
OF FEYNMAN DIAGRAMS

We include this discussion for completeness. The reader
who is well versed in Feynman diagrams is advised to skip
ahead to Eq. (22).
Let us start by considering a generic n-point function for

a general theory. Working out the Feynman combinatorics
amounts to (i) collecting the various terms that contribute
to a Gaussian integral of the schematic form

Z
d��ne�1

2�
2þa

3!�
3þb

4!�
4þ c

5!�
5þd

6!�
6þ��� (17)

and then (ii) enumerating the different ways of pairing up
the �’s.
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The monomial �n represents the external legs and the
exponent is an expansion of the Lagrangian in powers of � .
The expansion coefficients a; b; c; . . . are theory-dependent
numbers that play no role in the combinatoric part of the
analysis. The symmetrization factors are, however, important.

Expanding out the exponent, we have

e�1
2�

2
�n
�
1þ a

3!
�3 þ 1

2!

a2

ð3!Þ2 �
3�3 þ � � �

�

�
�
1þ b

4!
�4 þ 1

2!

b2

ð4!Þ2 �
4�4 þ � � �

�
� � � � ; (18)

with the once-exponentiated monomials now representing
interaction vertices. A term in this expansion makes a
contribution to a full n-point function h�niFul whenever it
contains an even number of � ’s, and the weight of this
contribution is determined by counting the number of
distinct ways of contracting the available �’s in pairs. In
short, one is counting the associated number of Feynman
diagrams.

Connected and 1PI functions are more constrained than
the full functions. A connected function h�niCon requires
that two �’s from the same monomial cannot be contracted
together, whereas a 1PI function h�ni1PI (or a connected
function with no internal lines) further requires that any �
from a once-exponentiated monomial can only be con-
tracted with a � from the external monomial �n.

Since we are working at tree level, even more constraints
apply to the connected functions. First consider an arbi-
trary term in the expansion, which is a product of mþ 1
monomials,

OnþPm
i¼1

ji
¼ �n

�j1

j1!

�j2

j2!
� � � �

jm

jm!
: (19)

One can use the ‘‘conservation of ends,’’ 2I þ E ¼ V [29],
to calculate the number of internal lines I, given the
knowledge of the number of external lines E and the total
number of lines ending on a vertex V. Here, E ¼ n and

V ¼ P
m
i¼1 ji. Some simple considerations then lead to the

number of loops going as L ¼ I þ 1�m [29]. Putting this
all together, one finds

L¼ 1

2

�Xm
i¼1

ji� 2ðm� 1Þ�n

�

¼ 1

2

�
ðm3þ 2m4þ 3m5þ 4m6þ���Þ� ðn� 2Þ

�
; (20)

wheremi counts the number of occurrences of �i. The tree-
level constraint means restricting to L ¼ 0.
Let us apply this general methodology to the current

scenario, starting with the graviton four-point function in
the high-momentum region. Since the three-point function
is identically vanishing, the only tree-level contribution in
this kinematic region comes from m4 ¼ 1 and mi ¼ 0
otherwise. Then n ¼ V ¼ 4 and so I ¼ 1

2 ð4� 4Þ ¼ 0,

which identifies this as a 1PI function. Hence, it follows
that

hhhhhiCon ¼ hhhhhi1PI; (21)

must be trivially true. This is depicted in Fig. 1.
The first nontrivial case is the six-point function. The

tree-level possibilities are either m6 ¼ 1 or m4 ¼ 2 and,
otherwise,mi ¼ 0. The former is the 1PI six-point diagram
and the latter represents the convolution of a pair of
four-point functions, making it a 1PR contribution to the
connected function. These identifications lead us to

hhhhhhhiCon ¼ hhhhhhhi1PI þ c6

�hhhhhiConhhhhhiCon
hhhi

�
;

(22)

as shown in Fig. 2. Here, the hhhi in the denominator
represents an inverse propagator which ‘‘compensates’’
for the propagator from the internal line and c6 is a nu-
merical coefficient that measures the relative weight of the
1PR contribution. The next step is to determine c6.
Applying the previously discussed rules, we find that

c6 ¼ 10. The 1PI case requires contracting �6�6=6! with
no pairs from the same monomial. This can be done in 6!
ways, leading to 6!=6! ¼ 1. Meanwhile, the 1PR case
entails the contraction of �6�4�4=2!ð4!Þ2. Drawing a single
� out of each of the �4’s can be done in 42 ways. The drawn
pair is contracted. Then the remainder �3�6�3=2!ð3!Þ2,
when subjected to the discussed rules, amounts to
�6�6=2!ð3!Þ2 and so 6!=2!ð3!Þ2 ¼ 10 follows.

=

FIG. 1. Four-point function. The connected function on the left
is equal to the 1PI function on the right.

= +

FIG. 2. Six-point function. The connected function has a 1PI part and a reducible part.
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If we were evaluating the Feynman diagrams for a
theory of interacting scalars, this would be the end of the
calculation. However, our actual interest is the Witten
diagrams [3] for a theory of spin-2 gravitons, and so things
are more involved.

The full calculation necessitates two additional steps.
In the first, or ‘‘Step 1,’’ we momentarily ignore all tensor
indices and use holographic techniques to convolve a pair
of four-point functions into an explicit six-point form.
‘‘Step 2’’ then accounts for the previously neglected tensor
structure. We will discuss each of these in turn, beginning
with the case of pure Einstein gravity and then the leading-
order Gauss-Bonnet correction in the sequel.

V. THE 1PR SIX-POINT FUNCTION

A. For Einstein gravity

1. Step 1

Let us start here with the position-space representation
of the connected or, equivalently, 1PI four-point function.
This function is depicted on the right-hand side of Fig. 3.
When integrated, this leads to the amplitude

h4i1PI¼ lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞhðr;xÞ

�rehðr;xÞrehðr;xÞ; (23)

where all tensor structure has been suppressed (as this
will be accounted for in Step 2) and the holographic limit
of r ! 1 has been imposed. We also suppress labeling

indices on the gravitons, with the understanding that all

gravitons in a 1PI function and all external gravitons in a

1PR function are symmetrized. Take notice of the two

derivatives. This number is fixed for Einstein gravity in

the high-momentum regime.
The current objective is to convolve a pair of these four-

point functions and then see what it takes to manipulate

this into an explicit six-point form. Now consider that each

four-point function must ‘‘donate’’ precisely one internal

graviton; otherwise, the six-point function would not be

connected. Since each four-point function carries two de-

rivatives, there are three distinct cases: (i) the two internal

gravitons are both differentiated, (ii) both undifferentiated

or (iii) ‘‘mixed’’ (one is differentiated and one is not).

The six-point function and the different cases are shown

in Fig. 4.

Starting with the first of the three cases, we have

h6iðiÞ ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞrehðr;xÞ

� hrehðr;xÞ~rfhð~r; ~xÞi~rfhð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ; (24)

where the expectation value is used to represent the pair of internal gravitons and a superscript is included on the left-hand
side to distinguish between the three cases.

For the purpose of recasting this into a six-point form, we first apply integration by parts to obtain

h6iðiÞ ¼ � lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞrehðr;xÞ

� hrehðr;xÞhð~r; ~xÞi~rf½~rfhð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ� (25)

or, using the linearized field equation rarahðr;xÞ ¼ 0 [41] along with the product rule,

h6iðiÞ ¼ �2 lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞrehðr;xÞ

� hrehðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ: (26)

Next, we interchange the gravitons (because they are symmetric), use the inverse of the product rule to write

=

FIG. 3. Connected four-point function with two derivatives.
The connected function is equal to the 1PI function. The differ-
entiated gravitons are depicted as a double line and the undiffer-
entiated gravitons, as a single line.
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h6iðiÞ ¼ � 2

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
re½hðr;xÞhðr;xÞhðr;xÞ�

� hrehðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ (27)

and then integrate by parts a second time, giving

h6iðiÞ ¼ 2

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞhðr;xÞ

� rerehhðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ: (28)

Finally, we apply the Green’s function form of the field equation [42],

rarahhðr;xÞhð~r; ~xÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðr;xÞp �ð4Þðx� ~xÞ�ðr� ~rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gð~r; ~xÞp �ð4Þðx� ~xÞ�ðr� ~rÞ; (29)

to arrive at

h6iðiÞ ¼2

3
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞhðr;xÞhðr;xÞ�ð4Þðx�~xÞ�ðr�~rÞ~rfhð~r;~xÞ~rfhð~r;~xÞhð~r;~xÞ (30)

or, after integrating over the (~r, ~x) coordinates,

h6iðiÞ ¼ 2

3
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞhðr;xÞhðr;xÞhðr;xÞrfhðr;xÞrfhðr;xÞ: (31)

This final result is the desired six-point function, containing the correct number of both derivatives and gravitons.
Importantly, the process picked up a numerical factor of þ2=3.

It is straightforward to apply the same basic procedure to the other two cases. Let us now suppose that both internal
gravitons are undifferentiated as in the diagram marked ðiiÞ in Fig. 4. We begin here with

h6iðiiÞ ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rehðr;xÞrehðr;xÞhðr;xÞ

� hhðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (32)

then apply the inverse of the product rule

h6iðiiÞ ¼ 1

2
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rehðr;xÞre½hðr;xÞhðr;xÞ�

� hhðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (33)

integrate by parts

= +

++

(i () ii) (iii)

FIG. 4. Six-point function. Single lines denote undifferentiated gravitons and double lines, differentiated gravitons. The three
diagrams ðiÞ, ðiiÞ, ðiiiÞ differ in the way that the internal gravitons are contracted.
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h6iðiiÞ ¼ � 1

2
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rehðr;xÞhðr;xÞhðr;xÞ

� rehhðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (34)

reapply the inverse of the product rule

h6iðiiÞ ¼ � 1

6
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
re½hðr;xÞhðr;xÞhðr;xÞ�

� rehhðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (35)

again integrate by parts

h6iðiiÞ ¼ 1

6
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞhðr;xÞrerehhðr;xÞhð~r; ~xÞi

� ~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (36)

call upon Eq. (29)

h6iðiiÞ ¼1

6
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞhðr;xÞhðr;xÞ�ð4Þðx�~xÞ�ðr�~rÞ~rfhð~r;~xÞ~rfhð~r;~xÞhð~r;~xÞ; (37)

and integrate over the (~r, ~x) coordinates to obtain

h6iðiiÞ ¼ 1

6
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞhðr;xÞhðr;xÞhðr;xÞrfhðr;xÞrfhðr;xÞ: (38)

This case comes with a numerical factor of þ1=6.
This leaves the mixed case (one internal with a derivative and one without) that is depicted in diagram ðiiiÞ in Fig. 4.

So we now consider

h6iðiiiÞ ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞrehðr;xÞ

� hrehðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (39)

then apply the inverse of the product rule

h6iðiiiÞ ¼ 1

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
re½hðr;xÞhðr;xÞhðr;xÞ�

� rehhðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (40)

integrate by parts

h6iðiiiÞ ¼ � 1

3
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞhðr;xÞrerehhðr;xÞhð~r; ~xÞi

� ~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (41)

employ Eq. (29)

h6iðiiiÞ ¼ � 1

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞhðr;xÞhðr;xÞ�ð4Þðx� ~xÞ�ðr� ~rÞ~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ;

(42)

and then end by integrating

h6iðiiiÞ ¼ � 1

3
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞhðr;xÞhðr;xÞhðr;xÞrfhðr;xÞrfhðr;xÞ: (43)

In this case, the numerical factor is �1=3.
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2. Step 2

The next step is to determine the numerical factor that
comes from the tensor structure. Let us first observe that a
four-point function with two derivatives has the following
form (up to additional irrelevant numerical factors and the
metric determinant):

h4i1PI ¼ XabcdrehadrehbcYpqrshpshqr; (44)

where

Yabcd � 1

2
½gacgbd þ gabgcd�; (45)

Xabcd � 1

2
½gacgbd � gadgbc�: (46)

This structure follows from the fact that the gravitons are
contracted in pairs. Undifferentiated gravitons originate
from the expansion of the metric determinant or a contra-
variant metric as symmetric contractions, whereas differ-
entiated gravitons originate from the expansion of the
Riemann tensor as antisymmetric contractions. The trans-
verse/traceless gauge is also relevant to the stated form.

Other than determining the placement of the tensors X
andY, the derivatives play no role in this discussion, so we
can subsequently ignore their presence (or, equivalently,
work in momentum space).

Like before, there is an important distinction between
the choice of contracted gravitons, and we again start with
the case that both of these are differentiated. Then the
convolution of two four-points can be expressed as

h6iðiÞ ¼ YijklhilhjkXabcdhadhhbchpsihqrXpqrshtwhuvYtuvw:

(47)

We next make use of the well-known tensor structure of
the graviton propagator in momentum space [43,44],

hhabhcdi ¼ Gabcd � 1

2
½gacgbd þ gadgbc � gabgcd�: (48)

We have presented the flat-space form only for simplicity.
The sole effect of the AdS curvature is to alter the coeffi-
cient of the ‘‘trace’’ (or third) term inG. As can be verified,
this term never contributes in any of the cases, so we will
subsequently drop it. It is worth noting that boundary
counterterms (as necessary for holographic renormaliza-
tion; see Sec. III A) are nondynamical and would therefore
similarly only alter the trace.
Hence, the above convolution becomes

h6iðiÞ ¼ Yijklhilhjk½XabcdhadGbcpshqrXpqrs�htwhuvYtuvw:

(49)

Some straightforward tensor algebra then yields

h6iðiÞ ¼ 1

4
Yijklhilhjk½hadð�a

s�
d
p þ �a

p�
d
s

� 2gadgpsÞhqrXprqs�htwhuvYtuvw

¼ 1

8
Yijklhilhjk½hadðgaqgdr þ gargdq

þ 2ðd� 2ÞgadgqrÞhqr�htwhuvYtuvw

¼ 1

4
Yijklhilhjk½habhab�htwhuvYtuvw; (50)

where haa ¼ 0 has been used in the last line and d is meant
as the dimensionality of the graviton sector.
Notice that only the initial partners of the internal modes

are involved in this process, with the rest of the gravitons
simply ‘‘along for the ride.’’ Also, the factor of 1=4 should
be kept in mind.
The other two cases follow along similar lines. If the two

internal gravitons are both undifferentiated, then

h6iðiiÞ ¼ Xijklhilhjk½YabcdhadGbcpshqrYpqrs�htwhuvXtuvw ¼ 1

2
Xijklhilhjk½hadð�a

s�
d
p þ �a

p�
d
sÞhqrYprqs�htwhuvXtuvw

¼ 1

2
Xijklhilhjk½hadðgaqgdr þ gargdqÞhqr�htwhuvXtuvw ¼ 1 �Xijklhilhjk½habhab�htwhuvXtuvw: (51)

And, when the internal gravitons are ‘‘mixed,’’

h6iðiiiÞ ¼ Yijklhilhjk½XabcdhadGbcpshqrYpqrs�htwhuvXtuvw

¼ 1

4
Yijklhilhjk½hadð�a

s�
d
p þ �a

p�
d
s � 2gadgpsÞhqrYprqs�htwhuvXtuvw

¼ 1

4
Yijklhilhjk½hadðgaqgdr þ gargdq � 2gadgqrÞhqr�htwhuvXtuvw

¼ 1

2
Yijklhilhjk½habhab�htwhuvXtuvw: (52)

Again take note of the numerical factors, respectively, 1 and 1=2.
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3. Putting it all together

Let us first recall the relative weight factor of c6 ¼ 10
that was obtained from Feynman combinatorics. One can
see that half of this or a factor of 5 should be attributed to
the mixed case, whereas a factor of 5=2 should be assigned
to either case with a matched pair.

We are finally in a position to determine the net relative
weight of the 1PR contribution to the Einstein theory
six-point function. The contribution of any one case is
given by the product of its numerical factors for Steps 1
and 2 times the above combinatoric factor. The three out-
comes are then summed together.

When the two internal gravitons are both differentiated,
2
3 � 1

4 � 5
2 ¼ 5

12 ,

both undifferentiated,
1
6 � 1� 5

2 ¼ 5
12 ,

and when there is one of each,
� 1

3 � 1
2 � 5 ¼ � 5

6 ,

for a total of 5
12 þ 5

12 � 5
6 or zero!

B. For Gauss-Bonnet gravity

1. Initial considerations

Let us now consider the leading-order Gauss-Bonnet
correction to the preceding 1PR calculation. By insisting
on the high-momentum regime and working to order �, we

must have either hhhhhi�0hhhi�1
�0
hhhhhi�1 or hhhhhi�1 �

hhhi�1
�0
hhhhhi�0 . Hence, there will be six derivatives in

total and, since the process of contraction reduces this
by two, the end result is Gauss-Bonnet’s s2 signature.
Otherwise, the general procedure closely follows the pre-
vious Einstein theory calculations.

2. Step 1

At order �1, there are only two possible cases, as at least
one internal graviton must be differentiated. These are
depicted in diagrams ðiÞ and ðiiÞ in Fig. 5. Suppose that
both internal gravitons are differentiated, then the starting
point is

h6iðiÞ;� ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rdhðr;xÞrdhðr;xÞrehðr;xÞ

� hrehðr;xÞ~rfhð~r; ~xÞi~rfhð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ: (53)

Proceeding just like before, we first apply the inverse of the product rule

h6iðiÞ;� ¼ 1

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
re½rdhðr;xÞrdhðr;xÞhðr;xÞ�

� rehhðr;xÞ~rfhð~r; ~xÞi~rfhð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ; (54)

integrate by parts

h6iðiÞ;� ¼ � 1

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞrdhðr;xÞrdhðr;xÞrerehhðr;xÞ

� ~rfhð~r; ~xÞi~rfhð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ; (55)

reapply the inverse product rule

h6iðiÞ;� ¼ 1

3
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞrdhðr;xÞ

� rdhðr;xÞrerehhðr;xÞhð~r; ~xÞi~rf½~rfhð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ�; (56)

again integrate by parts

h6iðiÞ;� ¼ 2

3
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞrdhðr;xÞ

� rdhðr;xÞrerehhðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (57)

= +

+

(i () ii)

FIG. 5. Six-point function at order � resulting from the GB
term.
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incorporate the Green’s function identity (29)

h6iðiÞ;�¼2

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞrdhðr;xÞrdhðr;xÞ�ð4Þðx�~xÞ�ðr�~rÞ~rfhð~r;~xÞ~rfhð~r;~xÞhð~r;~xÞ;

(58)

and finish by integrating over the (~r, ~x) coordinates

h6iðiÞ;� ¼ 2

3
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞrdhðr;xÞrdhðr;xÞhðr;xÞrfhðr;xÞrfhðr;xÞ; (59)

which is the expected s2 form. As usual, take note of the factor þ2=3.
Suppose now that only one internal graviton is differentiated, then

h6iðiiÞ;� ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rdhðr;xÞrdhðr;xÞrehðr;xÞ

� hrehðr;xÞhð~r; ~xÞihð~r; ~xÞ~rfhð~r; ~xÞ~rfhð~r; ~xÞ: (60)

Applying the inverse product rule

h6iðiiÞ;� ¼ 1

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
re½rdhðr;xÞrdhðr;xÞhðr;xÞ�

� rehhðr;xÞhð~r; ~xÞihð~r; ~xÞ~rfhð~r; ~xÞ~rfhð~r; ~xÞ; (61)

integrating by parts

h6iðiiÞ;� ¼ � 1

3
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rdhðr;xÞrdhðr;xÞhðr;xÞrerehhðr;xÞhð~r; ~xÞihð~r; ~xÞ

� ~rfhð~r; ~xÞ~rfhð~r; ~xÞ; (62)

utilizing Eq. (29)

h6iðiiÞ;� ¼ � 1

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞrdhðr;xÞrdhðr;xÞ�ð4Þðx� ~xÞ�ðr� ~rÞ

� ~rfhð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (63)

and then integrating over ~r and ~x, we have

h6iðiiÞ;� ¼ � 1

3
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
hðr;xÞrdhðr;xÞrdhðr;xÞhðr;xÞrfhðr;xÞrfhðr;xÞ: (64)

This time the relevant factor is �1=3.

3. Step 2 and beyond

The results of Step 2 at order � are identical to those of
the Einstein theory calculation. The salient points are that
the order-� limit constrains all the background structure
(X, Y, G) to be fixed at order �0 [45] and the additional
differentiated gravitons are only ‘‘along for the ride.’’ And
so there is a resulting factor of 1=4 when the two internal
gravitons are differentiated and a factor of 1=2 when only
one is differentiated.

As for Feynman combinatorics, we again recall the
relative weight factor c6 ¼ 10, but there is now an extra
factor of 2 because of the two ways of placing the �. It is
easy to see that this number should be distributed evenly

between the two viable cases, leading to a common factor
of 10 � 2=2 ¼ 10.
Finally, let us put it all together.
When the two internal gravitons are both differentiated,
2
3 � 1

4 � 10 ¼ 5
3 ,

and when there is one of each,
� 1

3 � 1
2 � 10 ¼ � 5

3 ;

so that, even at order �, the net contribution conspires to
vanish.

VI. GENERAL 1PR FUNCTIONS

We will next show that the previously observed
cancellation persists for any diagram with a single internal
line.
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A. For Einstein gravity

We begin with pure Einstein gravity and consider a 1PR
function that is formed by convolving a single pair of
amplitudes but is otherwise general,

hh2ni2p�2q ¼ hh2pi1PIhh2qi1PI
hhhi ; (65)

where 2p, 2q 	 4 and 2n ¼ 2pþ 2q� 2. See Fig. 6.
It is a straigthforward exercise to generalize the steps of

the previous 2n ¼ 6 analysis. This is because the number
of external gravitons only has bearing on the use of the
product rule (and its inverse) in Step 1 and the distribution
of the Feynman combinatoric factor. Nothing has changed
regarding Step 2.

Let us show exactly how this works, starting with
Step 1 for the case of of both internal gravitons being
differentiated,

h2niðiÞ2p�2q ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
½hðr;xÞ�2p�2rehðr;xÞ

� hrehðr;xÞ~rfhð~r; ~xÞi~rfhð~r; ~xÞ½hð~r; ~xÞ�2q�2: (66)

The same manipulations as in VA1 can be applied. We first integrate by parts

h2niðiÞ2p�2q ¼ � lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
½hðr;xÞ�2p�2rehðr;xÞ

� hrehðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfð½hð~r; ~xÞ�2q�2Þ; (67)

then apply the product rule

h2niðiÞ2p�2q ¼ �ð2q� 2Þ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
½hðr;xÞ�2p�2rehðr;xÞ

� hrehðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞ½hð~r; ~xÞ�2q�3; (68)

next apply the inverse of the product rule

h2niðiÞ2p�2q ¼ �
�
2q� 2

2p� 1

�
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
reð½hðr;xÞ�2p�1Þ

� hrehðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rfhð~r; ~xÞ½hð~r; ~xÞ�2q�3; (69)

integrate by parts for a second time

h2niðiÞ2p�2q ¼
�
2q� 2

2p� 1

�
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
½hðr;xÞ�2p�1rerehhðr;xÞhð~r; ~xÞi

� ~rfhð~r; ~xÞ~rfhð~r; ~xÞ½hð~r; ~xÞ�2q�3; (70)

use the Green’s function identity (29),

h2niðiÞ2p�2q ¼
�
2q� 2

2p� 1

�
lim

r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
½hðr;xÞ�2p�1�ð4Þðx� ~xÞ�ðr� ~rÞ

� ~rfhð~r; ~xÞ~rfhð~r; ~xÞ½hð~r; ~xÞ�2q�3; (71)

and end by integrating over the (~r, ~x) coordinates,

h2niðiÞ2p�2q ¼
�
2q� 2

2p� 1

�
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
½hðr;xÞ�2ðn�1Þrfhðr;xÞrfhðr;xÞ: (72)

. .
 .2p-2

. . . 2q-2

(i)

FIG. 6. A reducible 2p� 2q diagram with 2pþ 2q ¼ 2n.
This is one of the three 1PR diagrams contributing to the
2n-point function.
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The resulting 1PR contribution appears to picks up a factor of
2q�2
2p�1 . But, on the other hand, hadwe reversed the roles played

by p and q, the factor would rather be 2p�2
2q�1 . This is only an

apparent ambiguity, as we have not yet accounted for the fact
that the external gravitons should be symmetrized. This sym-
metrization can be implemented by weighing the choice to

integrate first over r, x by 2p�1
2pþ2q�2 and the choice to integrate

first over ~r, ~x by 2q�1
2pþ2q�2 ; with theweights determined by the

relative numbers of external gravitons (this rulewill be further
motivated below). Hence, the correct factor becomes
2p�1

2pþ2q�2 � 2q�2
2p�1 þ 2q�1

2pþ2q�2 � 2p�2
2q�1 ¼ pþq�2

pþq�1 .

Similarly, the case of two undifferentiated gravitons

picks up a factor of 2p�1
2pþ2q�2 � 1

ð2p�1Þð2p�2Þ þ 2q�1
2pþ2q�2 �

1
ð2q�1Þð2q�2Þ ¼ 1

4
pþq�2

ðpþq�1Þðp�1Þðq�1Þ . The mixed case is a bit

different than before, as the identity of the differentiated
internal graviton becomes important [46]. If the derivative
is carried by the internal graviton ‘‘on the left’’ (or that from

the 2p function), then the factor goes according to 2p�1
2pþ2q�2 �

½� 1
2p�1� þ 2q�1

2pþ2q�2 � ½� 2p�2
ð2q�1Þð2q�2Þ� ¼ � 1

2ðq�1Þ
pþq�2
pþq�1 . If

the derivative is rather ‘‘on the right,’’ then � 1
2ðp�1Þ

pþq�2
pþq�1 .

As mentioned, Step 2 gives the same outcomes as before
(factors of 1=4, 1=2 and 1 for the three cases, respectively).
As for Feynman combinatorics, it is a simple matter to
generalize the six-point case, as in Sec. IV. Here, the
Feynman relative weight is 2p � 2q � ð2pþ 2q� 2Þ!=
ð2pÞ!ð2qÞ! ¼ 4pqw with w � ð2nÞ!=ð2pÞ!ð2qÞ! [47].

Next, consider that there is either a 1=p or 1=q chance
that any given internal graviton is differentiated and,
respectively, a ðp� 1Þ=p and ðq� 1Þ=q chance that it is
not. Meaning that the weight factor should be distributed in
the following way: 1

p � 1
q � 4pqw ¼ 4w for two differenti-

ated internals, p�1
p � q�1

q � 4pqw ¼ 4ðp� 1Þðq� 1Þw for

two undifferentiated internals, 1
p�q�1

q �4pqw¼4ðq�1Þw
when there is one differentiated internal on the left and
p�1
p � 1

q � 4pqw ¼ 4ðp� 1Þw when there is one differenti-

ated internal on the right.
Let us now combine the various factors:
When the two internal gravitons are both differentiated,
pþq�2
pþq�1 � 1

4 � 4w ¼ wpþq�2
pþq�1 ,

when the two internal gravitons are both undifferentiated,
1
4

pþq�2
ðpþq�1Þðp�1Þðq�1Þ�1�4ðp�1Þðq�1Þw¼wpþq�2

pþq�1 ,

when only the one on the left is differentiated,

� 1
2ðq�1Þ

pþq�2
pþq�1 � 1

2 � 4ðq� 1Þw ¼ �wpþq�2
pþq�1

and when only the one on the right is differentiated,

� 1
2ðp�1Þ

pþq�2
pþq�1 � 1

2 � 4ðp� 1Þw ¼ �wpþq�2
pþq�1 ;

all of which sums to zero, irrespective of the values of p
and q.

Notice that any of the four types of diagrams makes

a contribution that goes, up to 
w, as pþq�2
pþq�1 ¼ 2n�4

2n .

This is relevant because it adds credence to our rule

for symmetrizing the external gravitons. The point is
that from a momentum-space perspective, which grav-
itons are on which side is completely irrelevant. Hence,
the net contributions (prior to the final summation) can
only depend on the total number of external gravitons
2n, which is exactly what is found here [48].
Indeed, given that the symmetrization process must be

unambiguous, reduce to the correct procedure when p ¼ q
and its intermediary results can only depend on the sum
2pþ 2q, it seems likely that our rule is the unique one.

B. For Gauss-Bonnet gravity

We now show that the same type of cancellation persists
for the order-� contributions from Gauss-Bonnet gravity.
Step 1 (and of course Step 2) works the same as for the
Einstein gravity calculation, as the formalism automati-
cally handles the situations when two undifferentiated
internal gravitons are not viable (p or q ¼ 2). What is
now different is the distribution of the Feynman combina-
toric factor, as discussed next.
Let us assume for the time being that � goes with the

2p-point function. With � fixed, the relative weight factor
is the same as it was for pure Einstein gravity, 4pqw. What
is different is the fraction of internal gravitons that is
differentiated-2=p on one side but 1=q on the other. The
fraction that is undifferentiated is, respectively, ðp� 2Þ=p
and ðq� 1Þ=q, meaning that the relative weight factor
should now be redistributed according to 2

p � 1
q � 4pqw ¼

8w for two differentiated internals, p�2
p � q�1

q � 4pqw ¼
4ðp� 2Þðq� 1Þw for two undifferentiated internals, 2

p �
q�1
q � 4pqw ¼ 8ðq� 1Þw for only one differentiated inter-

nal on the left and p�2
p � 1

q � 4pqw ¼ 4ðp� 2Þw for only

one differentiated internal on the right.
The combined factors then go as follows:
When the two internal gravitons are both differentiated,
pþq�2
pþq�1 � 1

4 � 8w ¼ 2wpþq�2
pþq�1 ,

when the two internal gravitons are both undifferentiated,
1
4

pþq�2
ðpþq�1Þðp�1Þðq�1Þ�1�4ðp�2Þðq�1Þw¼wp�2

p�1
pþq�2
pþq�1,

when only the one on the left is differentiated,

� 1
2ðq�1Þ

pþq�2
pþq�1 � 1

2 � 8ðq� 1Þw ¼ �2wpþq�2
pþq�1

and when only the one on the right is differentiated,

� 1
2ðp�1Þ

pþq�2
pþq�1 � 1

2 � 4ðp� 2Þw ¼ �wp�2
p�1

pþq�2
pþq�1 [49].

The above sums to zero, as must also be the case when
the 2q-point function carries the �. So that, even at order �,
the same cancellations persist.

VII. THE CASE AGAINST 1PR FUNCTIONS

The results of the previous subsection are enough to tell
us that the 1PI and connected four- and six-point functions
are equal up to order �.
What about higher-point functions? Of course, their 1PR

contributions involve more complicated arrangements than
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we have so far dealt with. For instance, the connected
twelve-point function can be formed out of (a) three
four-point functions plus a six-point function, (b) two
six-point functions plus a four-point function and (c) two
four-point functions plus an eight-point function, as well as
(d) contributions with a single internal line. These combi-
nations are shown in Fig. 7. Such calculations are expo-
nentially more involved than those of the 2p-2q type. Yet,
it can be argued on general grounds that any of these 1PR
contributions must similarly vanish.

First, consider that the generating functionals for the
connected and 1PI amplitudes are the same up to a
Legendre transformation. In either case, the generating
functional contains an exponentiated action (the physical
action for the connected generating functional and the
effective action for the 1PI generating functional) and
one can (in principle) read off the coefficients of the
amplitudes from a Taylor expansion of the exponential.
For a general theory, there is no reason for the connected
and 1PI coefficients to be equal. Einstein gravity in the
high-momentum regime is, however, different. General
covariance and the restriction to two derivatives conspire
to severely constrain the form of either expansion [6,33].
Essentially, all the relevant terms in both expansions
depend on a single number, the numerical coefficient of
the Ricci scalar. As the Legendre transformation has no
bearing on this number, the two expansions have to be
equal.

We can clarify the above argument as follows: The
generating functional for the Einstein theory connected
amplitudes can be cast in the standard form (indices are
suppressed),

iW ½J�¼ ln

�Z
D½h�ei

R
dx5½ ffiffiffiffiffi�g

p ðaRþb�ÞþJh�
�
; (73)

whereR is the Ricci scalar,� is the cosmological constant,
J is an external source, a, b are numbers and (here only) x
represents all five spacetime coordinates. The connected
2n-point function is then obtained from the relation,

hhðx1Þ � � � hðx2nÞi ¼ ð�iÞ2nþ1

�
�nW

�Jðx1Þ � � ��Jðx2nÞ
�
J¼0

:

(74)

The basic idea in forming connected functions is that each
variation of a source pulls down an external graviton, while
the Taylor expansion of the Lagrangian provides for the rest
of the structure, the vertices and propagators.
Now consider that any of the connected functions of

interest must contain exactly two derivatives and, there-
fore, must be linear in the Ricci scalar. Hence, each such
amplitude contains exactly one factor of a

ffiffiffiffiffiffiffi�g
p

R. But this

is all that it can contain because, in the high-momentum
regime, the cosmological constant is of no consequence.
The only opportunity for the constant to enter into the
formalism is through an internal propagator but, as dis-
cussed in VA2, its presence never impacts upon the calcu-
lations. And so the connected 2n-point function can have
only a single vertex, which is given by a

ffiffiffiffiffiffiffi�g
p

R expanded

to order 2n in number of gravitons. But, as discussed in
Sec. III, this is precisely what defines the 1PI 2n-point
function! To summarize,

hh2niECon ¼ a½ ffiffiffiffiffiffiffi�g
p

R�O½h2n� ¼ hh2niE1PI: (75)

Verifying this identity for all n would mean showing that
every conceivable 1PR function vanishes, a futile task!
Nonetheless, one such example is presented in the Appendix.
A similar reasoning applies to Gauss-Bonnet’s order-�

corrections. In this case, the Lagrangian is aRþ b�þ
�R��	
R��	
, where we have used a field redefinition

(a) (b)

(c) (d)

FIG. 7. Four examples of reducible contributions to the twelve-point function.
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[6,43,44] to transform the Gauss-Bonnet combination.

Now, since these connected diagrams must contain exactly

four derivatives and one power of �, they are necessarily

linear in �
ffiffiffiffiffiffiffi�g

p
R��	
R��	
. There is no room to include

two derivatives from a Ricci scalar and, as before, no

opportunity to incorporate the cosmological constant.

In equation,

hh2niGBCon ¼ �½ ffiffiffiffiffiffiffi�g
p

R��	
R��	
�O½h2n� ¼ hh2niGB1PI: (76)

However, let us emphasize that limiting to linear order in
� is critical to the last conclusion. Had we, for instance,
extended to order �2, then a connected function could be
constructed out of a pair of Riemann-tensor-squared terms.
This is already evident for the simplest case of an �2-order
1PR six-point function. Here, we start with the basic form

h6i�2 ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rdhðr;xÞrdhðr;xÞrehðr;xÞ

� hrehðr;xÞ~rfhð~r; ~xÞi~rfhð~r; ~xÞ~rchð~r; ~xÞ~rchð~r; ~xÞ; (77)

then integrate by parts

h6i�2 ¼ �2 lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rdhðr;xÞrdhðr;xÞrehðr;xÞ

� hrehðr;xÞhð~r; ~xÞi~rfhð~r; ~xÞ~rchð~r; ~xÞ~rf ~rchð~r; ~xÞ; (78)

apply the inverse product rule and again integrate by parts

h6i�2 ¼ 2

3
lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
rdhðr;xÞrdhðr;xÞhðr;xÞrerehhðr;xÞhð~r; ~xÞi

� ~rfhð~r; ~xÞ~rchð~r; ~xÞ~rf ~rchð~r; ~xÞ; (79)

employ Eq. (29) to integrate over the (~r, ~x) coordinates

h6i�2 ¼ 2

3
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
rdhðr;xÞrdhðr;xÞhðr;xÞrfhðr;xÞrchðr;xÞrfrchðr;xÞ; (80)

and, finally, use integration by parts followed by the inverse product rule to arrive at

h6i�2 ¼ � 2

15
lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q
rdhðr;xÞrdhðr;xÞrfhðr;xÞrfhðr;xÞrchðr;xÞrchðr;xÞ: (81)

The Feynman relative weight and Step 2 bring in another
factor of 10=4 ¼ 5=2, but the essential point is that this is
the only possible arrangement of the derivatives-there can
be no cancellation! Meanwhile, the corresponding 1PI
function is provided by the next order in the Lovelock
expansion, the six-derivative correction to Einstein gravity.

The general rule is that, at order �k, the 1PI function is
given by the 2ðkþ 1Þ-derivative Lovelock extension,
whereas 1PR functions can be constructed out of any
number of lower-order Lovelock terms (including the
Einstein-theory term) provided that the total number of
derivatives adds up to the same amount of 2ðkþ 1Þ (any-
thing less would be in violation of the high-momentum
regime). All this is a consequence of Einstein gravity being
the sole two-derivative theory of gravity and, thus, the only
one with a built-in mechanism to prevent the proliferation
of derivatives in its connected amplitudes.

Finally, let us readdress the issue of neglecting vector
and scalar modes in the internal lines. Internal vector
modes are inconsequential by the same reasoning that we
applied to the internal tensors. This is because the trace
term in the propagator is just as irrelevant for the vectors as

it is for the tensors, from which the rest of the argument
follows in parallel.
But having scalar modes on an internal line is a different

matter. For scalars, the trace term in the propagator is now
relevant to Step 2 and thus allows for the cosmological
constant to contribute to amplitudes. Nonetheless, we
maintain that scalar modes are unphysical in the absence
of any external source.
To understand this, let us consider the simple case of a

pair of three-point functions convolved into a four-point
amplitude such that both internal gravitons are scalars.
Up to an overall constant, the Einstein three-point function
with a single scalar and two tensors goes as (withH used to
indicate the scalar mode)

h3ihhH ¼ lim
r!1

Z
dr

�
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
rehrehH

a
a þrehrfhH

f
e

þ hhrereH
a
a � hhrerfH

f
e

�
: (82)
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We next make the gauge choice raHb
a ¼ �rbHa

a,
where �will eventually be set to � ¼ 1. This gauge choice
is consistent with the previous choice of radial gauge.
Then, in similar fashion to previous calculations, we can
use integration by parts and the inverse of the product rule
to manipulate the above into a single term. For instance,

h3ihhH ¼ lim
r!1

3

4
ð1� �Þ

Z
dr

Z
d4x

ffiffiffiffiffiffiffi�g
p

hhrereH
a
a:

(83)

For � ¼ 1, the three-point function vanishes. So, h3ihhH
is unphysical and, therefore, cannot play a role in the
calculation of a physical quantity such as the connected
four-point function. We could have, just as well, first
computed the 1PR contribution to the connected four-point
and then imposed the gauge; the same outcome and con-
clusion would persist. For higher-point functions, the pro-
cedure is expected to be more complicated but, without a
source, the outcome should be similarly harmless.

Our intention is to use the results of this paper in an AdS/
CFT context and, therefore, a string-theory framework.
Then we do need to consider the situation when a source
for the scalar gravitons is present. More generally, we
should consider a possible source for the scalars that
originates from compactifications of string theory. In this
event, such contributions can no longer be gauged away
and, as already mentioned, the cosmological constant term
could be relevant to the computation of the connected
amplitudes. What saves us from this enormous comp-
lication is that the additional contributions are higher
order in �.

In the effective field theory of gravity that is induced by
string theory, any such source for scalars comes with a
coupling that scales at least as order � [50]. Hence, by

introducing a scalar onto an internal line, one is suppress-
ing the amplitude by another factor of � without increasing
the number of derivatives. Hence, for the high-momentum
region in particular, a physical scalar mode is subleading to
the connected multipoint functions of the tensor gravitons.

VIII. DISCONNECTED FUNCTIONS

Although neglected so far, disconnected graviton func-
tions can provide a useful check on consistency when it
comes time to match our theoretical predictions with
experiment.
To see how this works, let us first consider the discon-

nected portion of the four-point function

hhhhhiDis ¼ 4!

ð2!Þ2 hhhi
2; (84)

where the ratio of factorials accounts for the differing
symmetrization factors. This is shown in Fig. 8(a).
As the above relation makes clear, one can use the value

of the disconnected four-point function as an alternative
means for evaluating the propagator. All that is required
is the relevant combinatorics, so as to distinguish between
the disconnected and connected portions of the full four-
point function. As per the discussion in Sec. IV, the
‘‘Feynman weight’’ of the disconnected part is determined
by the number of ways of contracting h2 � h4 � h2 such that
connectivity is broken but without any loops. The answer
is 4!=2!, [51] and so a relative weight (in comparison to
the connected (equivalently, 1PI) four-point function of
4!
2!

1
4! ¼ 1

2! . Hence,

4!

ð2!Þ3 hhhi
2 ¼ hhhhhiFul � hhhhhiCon (85)

or

= +

= + +

(a)

(b)

FIG. 8. Full functions as sums of their connected and disconnected components.
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hhhi ¼ 1

3

½hhhhhiFul � hhhhhiCon�
hhhi ; (86)

where the denominator on the right-hand side side now
indicates division by a two-point function and not an
inverse propagator.

Also having utility is the disconnected portion of the
six-point function,

hhhhhhhiDis ¼ 6!

1!

6!

4! � 2! hhhhhiConhhhi þ
6!

3!

6!

ð2!Þ3 hhhi
3;

(87)

where the first fraction in front of either term represents the
Feynman weight (as per the previous paragraph) and the
second fraction accounts for the symmetrization factors
[as per Eq. (84)]. These are depicted in Fig. 8(b).

Now, suppose that the intent is to find an alternative
means of deducing the connected four-point function. Then
we should be looking at

1

1!

6!

4! � 2! hhhhhiConhhhi

¼ hhhhhhhiFul � hhhhhhhiCon � 1

3!

6!

ð2!Þ3 hhhi
3 (88)

or

hhhhhiCon ¼ 1

15

½hhhhhhhiFul � hhhhhhhiCon�
hhhi � hhhi2:

(89)

IX. CONCLUSION

To summarize, we have shown how to translate our
previous results on the 1PI graviton amplitudes [6] into
their connected-function counterparts. This is an important
ingredient if the gauge-gravity duality is to be used for
determining the corresponding stress-tensor correlation func-
tions on the field-theory side. As explained in Ref. [12], such
correlation functions would then provide the means for ex-
perimentally probing the gravitational dual of a strongly
coupled fluid.

We have shown by explicit calculation that a large class
of the 1PR connected diagrams cancel off and have argued
that this cancellation persists for all 1PR contributions in
the high-momentum regime for both Einstein gravity and
its leading-order correction.

In many instances, a vanishing outcomewhere it was not
expected can be the result of a symmetry principle. Is there
such a principle here? We are looking at a specific kine-
matic region for which the radial derivatives are neglected

and in essence are assumed to vanish. Away from the high-
momentum regime, the radial derivatives will have some
nonvanishing value which would correspond to spontane-
ously breaking the unknown associated symmetry. In this
sense, the radial degree of freedom could be viewed as a
Goldstone mode.
From the perspective of the boundary gauge theory, the

radial coordinate represents an energy scale. Radial differ-
entiation corresponds to a flow in this scale. That the flow
has been rendered inert suggests a conformal fixed point of
the gauge theory. Hence, the observed cancellations could
indicate an unbroken conformal symmetry of the boundary
theory for a finite N.
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APPENDIX: ‘‘FOUR-FOUR-FOUR’’

Here, it will be shown that, at least in one instance, a
reducible function consisting of more than two compo-
nents (i.e., more than one internal line) does indeed vanish.
Our test case is the convolution of three four-point func-
tions into an eight-point function,

hh8i4�4�4 ¼ hhhhhi1PIhhhhhi1PIhhhhhi1PI
hhhihhhi : (A1)

We consider Einstein’s theory and start by convolving
the interior four-point function with one on the exterior.
This is a different calculation than that of VA because the
interior four-point function has only two external gravi-
tons. Hence, this is more akin to a 2p-2q (p � q) con-
volution. Also, it is now important to keep careful track of
the various structures.
This first convolution consists of eight distinct cases,

which then leads to 16 different diagrams depending on
how the derivatives are initially arranged. We will work
through one case in detail and then report the findings of
the other seven.
Let us thus consider the two diagrams in Fig. 9,

(1) (2)

FIG. 9. Two diagrams of 4-4-4 depicting the case discussed in
detail in the text. The initial convolution is between the left-most
and interior four-point functions. The difference between the two
diagrams is in the right-most part of the diagram where the
double lines and single lines are exchanged.
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h6�ið1;2Þ ¼ lim
r;~r!1

Z
dr

Z
d4x

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðr;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hðr;xÞhðr;xÞrehðr;xÞ

� hrehðr;xÞ~rfhð~r; ~xÞi~rfh
�ð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ; (A2)

where the superscript on the left side denotes the particular
diagram(s) and the meaning of the asterisk on the graviton
is the following: The interior four-point function contains
two internal gravitons, one of which is to be contracted in
the convolution of Eq. (A2) and one of which remains to be
contracted in the convolution to follow. The former is, as

usual, included within the expectation value, while the
latter is marked with an asterisk for future reference.
Starting with integration on the left (the (r, x) coordi-

nates) and applying the usual manipulations, we arrive at
two distinct terms, denoted as b1 and b2, corresponding
respectively to diagrams (1) and (2) in Fig. 9,

b1 ¼ �1 lim
~r!1

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hð~r; ~xÞhð~r; ~xÞhSð~r; ~xÞ~rfh

�
Sð~r; ~xÞ~rfhð~r; ~xÞhð~r; ~xÞ; (A3)

b2 ¼ �2 lim
~r!1

Z
d~r

Z
d4~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gð~r; ~xÞ

q
hð~r; ~xÞhð~r; ~xÞhSð~r; ~xÞ~rf ~rfh

�
Sð~r; ~xÞhð~r; ~xÞhð~r; ~xÞ; (A4)

where �1 and �2 are relative weights that are determined
below.

Notice that the process of tensor contraction has, for either
b1 or b2, induced a symmetric contraction between the sur-
viving internal graviton and its new partner. (The end product
of Step 2 is always a symmetric contraction; cf., VA2.)
Because of the various integrations by parts, the distinction
between symmetric and antisymmetric contractions is no
longer as simple as looking for which gravitons are differ-
entiated.As far as the surviving internal graviton is concerned,
this distinction is important in the sequel, and sowe label both
it and its new partner with a subscript of S or A, accordingly.

Next, b1 and b2 are assigned the respective relative
weights of

�1 ¼ 3

5
� 2 � 1

3
� 1
4
� 1
2
� 1
6
¼ 1

120
: (A5)

�2 ¼ 3

5
� 1 � 1

3
� 1
4
� 1
2
� 1
6
¼ 1

240
: (A6)

Let us explain how these weights are obtained,
focusing on �1 (�2 follows similarly). From left to
right, 3

5 is due to our symmetrization rule, the next two

numbers are a consequence of integrating by parts
(2 from the product rule and 1

3 from the inverse of the

product rule), 1
4 is the contribution from Step 2, 1

2 is the

relative ratio for the case in which the left-most internal
graviton is differentiated and 1

6 is the relative ratio for the

case in which both of the right-side internal gravitons are
differentiated.
If we, rather, integrate over the (~r, ~x) coordinates first,

there is only one result,

b3 ¼ �3 lim
r!1

Z
dr

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðrÞ;xÞ

q
hðr;xÞrehðr;xÞrehSðr;xÞh�Sðr;xÞhðr;xÞhðr;xÞ; (A7)

with a weight of

�3 ¼ 2

5
� 2 � 1

3
� 1
4
� 1
2
� 1
6
¼ 1

180
: (A8)

Let us summarize this case using abridged notation and call it case (b) as represented in Fig. 10, case b

h6�iðbÞ ¼
ZZ

hhrhhrhrhirh�hh ¼ 1

120

Z
hhhSrh�Srhhþ 1

240

Z
hhhSrrh�Shhþ 1

180

Z
hrhrhSh�Shh: (A9)

The other seven cases and their outcomes go as follows: case a

h6�iðaÞ ¼
ZZ

rhrhhhhhih�rhrh ¼ 1

72

Z
rhrhhSh

�
Shh; (A10)
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case c

h6�iðcÞ ¼
ZZ

rhrhhhhhihrhrh� ¼ 1

60

Z
hhhhrhArh�A þ 1

90

Z
rhrhhhhAh�A; (A11)

case d

h6�iðdÞ ¼
ZZ

rhrhhhhrhirh�hh ¼ � 1

120

Z
hhhSrh�Shrh� 1

240

Z
hhhSrrh�Shh� 1

180

Z
rhrhhSh�Shh; (A12)

case e

h6�iðeÞ ¼
ZZ

hhrhhrhhih�rhrh ¼ � 1

120

Z
hhhSh

�
Srhrh� 1

180

Z
hrhrhSh�Shh; (A13)

case f

h6�iðfÞ ¼
ZZ

hhrhhrhhihrhrh� ¼ � 1

60

Z
hhhhrhArh�A � 1

90

Z
rhrhhhAh�A; (A14)

case g

h6�iðgÞ ¼
ZZ

hhrhhrhrhirhhh� ¼ 1

120

Z
hhhrhrhSh

�
S þ

1

120

Z
hhhrhhSrh�S þ

1

90

Z
hrhrhhhSh�S; (A15)

case h

h6�iðhÞ ¼
ZZ

rhrhhhhrhirhhh� ¼ � 1

90

Z
rhrhhhhSh

�
S �

1

60

Z
hhrhhhSrh�S: (A16)

Summing up the results of the eight cases, we find just a pair of terms,

h6�i ¼ 1

120

Z
hhhrhrhSh

�
S �

1

120

Z
hhhrhhSrh�S: (A17)

(a) (b)

(d) (e)

(g) (h)

(c)

(f)

FIG. 10. Eight diagrams of 4-4-4. Each of the diagrams represents one of the cases in the text, with the initial convolution being
between the left-most and interior four-point functions. The right-most four-point function depicts the last term in Eq. (A18). First row,
from left to right, cases (a-c), second row, cases (d-f), third row, cases (g-h). Each of the diagrams has a partner diagram (not shown),
where the double lines and single lines on the right are exchanged as in Fig. 9.
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It is straightforward to show that the convolution of either
of these with the remaining four-point function,

h4�i ¼ 1

2

Z
rhrhhSh

�
S þ

1

2

Z
hhrhArh�A; (A18)

is vanishing. These calculations follow exactly as in VIA
with two caveats. First, for the purposes of Step 2, if an

internal graviton is labeled with an S (A), it is treated as
undifferentiated (differentiated). Second, relative-ratio fac-
tors have already been assigned. This is also true for the
four-point function when expressed in the above form.
Finally, since hh8i6�4 ¼ 0 from the considerations of

Sec. VI, the preceding result allows us to conclude that
hh8iCon ¼ hh8i1PI at least to order �0.
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