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THREE-CLUSTER NUCLEAR MOLECULES
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A three-center phenomenological model able to explain, at least from a qualitative
point of view, the difference in the observed yield of a particle-accompanied fission
and that of binary fission was developed. It is derived from the liquid drop model
under the assumption that the aligned configuration, with the emitted particle
between the light and heavy fragment is obtained by increasing continuously the
separation distance, while the radii of the light fragment and of the light particle
are kept constant. During the first stage of the deformation one has a two-center
evolution until the neck radius becomes equal to the radius of the emitted parti-
cle. Then the three center starts developing by decreasing with the same amount
the two tip distances. In such a way a second minimum, typical for a cluster
molecule, appears in the deformation energy. Examples are presented for 240Pu
parent nucleus emitting α-particles and 14C in a ternary process.

1 Introduction

Fission approach1 to the cluster radioactivities2 and α-decay has been system-
atically developed during the last two decades (see Ref. 1 and the references
therein) as an alternative to the many-body theory.3 One has to stress the
quantum nature of these decay modes and of the fission process as well. The
three groups of binary phenomena are taking place by tunneling through a
potential barrier. Fission theory has also been extended toward extremely
large mass asymmetry4 to study the evaporation of light particles from a hot
excited compound nucleus, going over the barrier. In a cold binary fission5,6,7

the fragments and the parent are neither excited nor strongly deformed, hence
no neutron is evaporated; the total kinetic energy of the fragments equals the
released energy.

A more complex phenomenon, the particle-accompanied fission (or
ternary fission) was observed both in neutron-induced and spontaneous fission.
It was discovered8,9 in 1946. Several such processes, in which the charged par-
ticle is a proton, deuteron, triton, 3−6,8He, 6−11Li, 7−14Be, 10−17B, 13−18C,
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15−20N, 15−22O, have been detected. Many other heavier isotopes of F, Ne,
Na, Mg, Al, Si, P, S, Cl, Ar, and even Ca were mentioned.10

A very powerful technique, based on the fragment identification by us-
ing triple γ coincidences in the large arrays of Ge-detectors, like GAM-
MASPHERE, was employed to discover new characteristics of the fission
process,11,12 and new decay modes13 (emission of an alpha particle and of
10Be, accompanying the cold fission of 252Cf, the double fine structure, and
the triple fine structure in binary and ternary fission, respectively).

The possibility of a whole family of new decay modes, the multicluster

accompanied fission, was recently envisaged.14,15 Besides the fission into two
or three fragments, a heavy or superheavy nucleus spontaneously breaks into
four, five or six nuclei of which two are asymmetric or symmetric heavy frag-
ments and the others are light clusters, e.g. α-particles, 10Be, 14C, 20O, or
combinations of them. Examples were presented for the two-, three- and four
cluster accompanied cold fission of 252Cf and 262Rf, in which the emitted clus-
ters are: 2α, α+6He, α+10Be, α+14C, 3α, α+6He + 10Be, 2α+6He, 2α+8Be,
2α+14C, and 4α.

The strong shell effect corresponding to the doubly magic heavy frag-
ment 132Sn was emphasized. From the analysis of different configurations
of fragments in touch, we concluded that the most favorable mechanism of
such a decay mode should be the cluster emission from an elongated neck
formed between the two heavy fragments. The fact that the potential barrier
height is lower, suggests that in a competition between aligned and compact
configurations, the former should prevail.

This idea is further exploited in the following for ternary fission, by sug-
gesting a formation mechanism of the touching configuration, based on a
three-center phenomenological model, able to explain the difference in the
observed yield of a particle-accompanied fission and that of binary fission. It
is derived from the liquid drop model under the assumption that the aligned
configuration, with the emitted particle between the light and heavy fragment
is obtained by increasing continuously the separation distance, while the radii
of the heavy fragment and of the light particle are kept constant. During the
first stage of the deformation one has a two-center evolution until the neck
radius becomes equal to the radius of the emitted particle. Then the three
center starts developping by decreasing with the same amount the two tip
distances. We shall show that in such a way a second minimum, typical for a
cluster molecule, appears in the deformation energy.
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2 Shape Parametrization

The basic condition to be fulfilled in the ternary decay process, AZ →
∑

3

1

AiZi, concerns the released energy (Q-value)

Q = M −

3
∑

1

mi (1)

which should be positive and high enough in order to assure a relatively low
potential barrier height. The hadron numbers are conserved. We took17,18

the masses (in units of energy), entering in the above equation, from the
compilation of measurements.16 We make the convention A1 ≥ A2 ≥ A3.

For the first stage of the process, we adopt the shape parametrization of
two intersected spheres with radii R1 and R2. By placing the origin in the
center of the large sphere, the surface equation can be written in a cylindrical
system of coordinates as:

ρ2

s =

{

ρ2

sl = R2

1
− z2 , −R1 ≤ z ≤ zs1

ρ2

sr = R2

2
− (z − R)2 , zs1 ≤ z ≤ R + R2

(2)

in which zs1 is the position of the separation plane, and R is the distance
between the two centers. This equation is valid as long as R ≤ Rov3 defined
below. The fragment radius, R1, is kept constant during the deformation, and
for a given separation distance, R, the radius R1 is derived from the volume
conservation and matching conditions. The final fragments and the initial

Figure 1. The assumed sequence of aligned shapes for the ternary fission of 240Pu, leading
to 14C accompanied cold fission with 132Sn and 98Sr fragments.

parent nucleus are assumed to posses spherical shapes with radii R1, R2, R3,

and R0, where Rj = 1.2249A
1/3

j fm (j = 0, 1, 2, 3). Within the range of R
from Ri = R0 − R1 up to Rov3 one has a configuration of two overlapping
spheres.

At R = Rov3 (see the second position in Fig. 1) the neck radius ρneck1 =
R3; R3 is also kept constant. From that moment, the third fragment comes
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into play and one has two necks and two separating planes instead of one,
hence:

ρ2

s =







ρ2

sl = R2

1
− z2 , −R1 ≤ z ≤ zs1

ρ2
sc = R2

3 − (z − z3)
2 , zs1 ≤ z ≤ zs2

ρ2

sr = R2

2
− (z − R)2 , zs2 ≤ z ≤ R + R2

(3)

In order to arrive safely at the final aligned configuration of fragments in
touch with a corresponding decrease of the neck radii ρneck1 and ρneck2, we
assume a further elongation with a corresponding decrease of the neck radii
ρneck1 and ρneck2 in a particular way, allowing to have the same (smaller and
smaller) tip distance between the (overlapping) fragments 13 and 32 when R
increases from Rov3 to Rt = R1 + R2f + 2R3. In such a way the geometry is
perfectly determined by giving one independent shape parameter, R, and the
mass numbers of the parent and fragment nuclei.
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Figure 2. Deformation energy for the binary and ternary (accompanied by α emission)
fission of 240Pu. In both cases the heavy fragment is the double magic nucleus 132

50
Sn82.

The light fragments for binary- and ternary processes are 108Ru and 104Mo, respectively.
The region due to the devolopment of the light particle, from Rov3 to Rt is emphasized.
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3 Deformation Energy

According to the liquid-drop model (LDM),19 by requesting zero energy for a
spherical shape, the deformation energy is defined as

Edef = (Es − E0

s ) + (EC − E0

C) = E0

s [Bs − 1 + 2X(BC − 1)] (4)

where E0
s = as(1−κI2)A2/3 and E0

C = acZ
2A−1/3 are energies corresponding

to spherical shape. The relative surface and Coulomb energies Bs = Es/E0

s ,
BC = EC/E0

C are only functions of the nuclear shape. The dependence
on the neutron and proton numbers is contained in E0

s and in the fissility
parameter X = E0

C/(2E0

s ). The constants are as = 17.9439 MeV, κ = 1.7826,
ac = 3e2/(5r0), e2 = 1.44 MeV·fm, r0 = 1.2249 fm.
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Figure 3. Deformation energy for the binary and ternary fission (accompanied by 14C emis-
sion) of 240Pu. In both cases the heavy fragment is the double magic nucleus 132

50
Sn82. The

light fragments for binary- and ternary processes are 108Ru and 94Sr, respectively. The
region due to the devolopment of the light particle, from Rov3 to Rt is emphasized.

To the deformation energy expressed in eq. (4), we add a small phe-
nomenological shell correction, allowing to reproduce, at R = Ri, exactly the
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experimental Q-value in a system in which the origin of energy is taken as the
sum of self energies of the fragments separated at infinity.

ELDM (R) = Edef (R)+Qth+(Qexp−Qth)[1−(R−Ri)/(Rt−Ri)]−Qexp (5)

which is Edef (R) + (Qth − Qexp)(R − Ri)/(Rt − Ri), where Qth = E0 −

(E0

1 + E0

2 + E0

3 ) = E0

s + E0

C −
∑

3

1
(E0

si + E0

Ci). In this manner the barrier
height increases if Qexp < Qth and decreases if Qexp > Qth. The correction is
increased gradually with R up to Rt and then remains constant for R > Rt.
Apart this correction, after the touching point configuration, R ≥ Rt, one
is left with the Coulomb interaction energies. For spherical fragments this
has the same expression as that would be obtained for points placed into the
fragment centers and carying their whole charge.

Both the surface and Coulomb energies are calculated by performing nu-
merical integration.20,21 The relative surface energy is proportional to surface
area. By expressing the nuclear surface equation in cylindrical coordinates
ρ = ρ(z, ϕ), one has

Bs =
1

4πR2

0

∫ z′′

z′

dz

∫

2π

0

ρ

[

1 +

(

∂ρ

∂z

)2

+

(

1

ρ

∂ρ

∂ϕ

)2
]1/2

dϕ (6)

where z′, z′′ are the intersection points of the nuclear surface with Oz axis.
Generally speaking, the Coulomb energy, EC , for a system of three fragments
with different charge densities, is defined by the following six fold integrals

EC =

3
∑

1

ρ2

ie

2

∫

Vi

d3r1

∫

Vi

d3r2

r12

+

∑

j 6=k

ρjeρke

∫

V j

d3r1

∫

V k

d3r2

r12

(7)

where the first three terms belong to individual fragments and the other three
represent their interaction. Here r12 = |r1 − r2|. The charge densities of the
compound nucleus and of the three fragments are denoted by ρ0e, ρ1e, ρ2e

and ρ3e respectively. The six-fold integral is reduced to a four-fold one of the
following kind.

EC =
ρ2

e

10

∫ z′′

z′

dz

∫ z′′

z′

dz1

∫

2π

0

dϕ

∫

2π

0

dϕ1

(

ρ2 −
z

2

∂ρ2

∂z

)

[

ρ2

1
−

ρρ1 cos(ϕ − ϕ1) + ρ
∂ρ1

∂ϕ1

sin(ϕ − ϕ1) +
(z − z1)

2

∂ρ2

1

∂z1

]

[ρ2 +

ρ2

1
− 2ρρ1 cos(ϕ − ϕ1) + (z − z1)

2]−1/2 (8)
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for a general shape without axial symmetry. One can get three-fold integrals
for shapes possesing a symmetry axis, as for example:

Bc1 = bc

∫ xc

−1

dx

∫ xc

−1

dx′F (x, x′) (9)

where bc = 5d5/8π, d = (z′′ − z′)/2R0, and xc is the position of separation
plane between fragments with -1, +1 intercepts on the symmetry axis (surface
equation y = y(x) or y1 = y(x′)). In the integrand

F (x, x′) = {yy1[(K − 2D)/3] ·
[

2(y2 + y2

1) − (x − x′)2 +
3

2
(x − x′)

(

dy2
1

dx′
−

dy2

dx

)]

+

K

{

y2y2

1/3 +

[

y2 −
x − x′

2

dy2

dx

] [

y2

1 −
x − x′

2

dy2

1

dx′

]}

}a−1

ρ (10)

K and K ′ are the complete elliptic integrals of the first and second kind,
respectively:

K(k) =

∫ π/2

0

(1 − k2sin2t)−1/2dt (11)

K ′(k) =

∫ π/2

0

(1 − k2sin2t)1/2dt (12)

and a2

ρ = (y + y1)
2 + (x − x′)2, k2 = 4yy1/a2

ρ, D = (K − K ′)/k2. In our
computer program the elliptic integrals are calculated by using Chebyshev
polynomial approximation. For x = x′ the function F is not determined. In
this case, after removing the indetermination, we get F (x, x′) = 4y3/3.

4 Results

Two examples of deformation energies are presented in Figures 2 and 3. They
were obtained for the α-particle-(Fig. 2) and 14C (Fig. 3) accompanied fission
of 240Pu, by assuming a double-magic heavy fragment 132

50
Sn82. The corre-

sponding deformation energy for the binary cold fission of the same nucleus
is also shown.

We would like to stress two striking features of these plots. Besides the
first (ground state) minimum there is a second minimum, proving the nuclear
molecule character of the aligned configuration of three fragments in touch
[(132Sn, 4He, 104Mo) and (132Sn, 14C, 94Sr), respectively].
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On the second hand, by comparing the surface areas under the deforma-
tion energy curve of the binary and ternary pocesses, one can see the difference
explaining at least qualitatively the increased yield of the binary relative to
that of the ternary cold fission.
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6. D. N. Poenaru, M. Ivaşcu and W. Greiner in Particle Emission from

Nuclei Vol III (CRC Press, Boca Raton, FL, 1989) 203.
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