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Potential energy surfaces for cluster emitting nuclei

Dorin N. Poenaru,1, 2, ∗ Radu A. Gherghescu,1, 2 and Walter Greiner2

1 Horia Hulubei National Institute of Physics and Nuclear Engineering,

RO-077125 Bucharest-Magurele, Romania
2Frankfurt Institute for Advanced Studies, J. W. Goethe Universität,

Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany

(Dated: September 27, 2005)

Potential energy surfaces are calculated by using the most advanced asymmetric two-center
shell model allowing to obtain shell and pairing corrections which are added to the Yukawa-plus-
exponential model deformation energy. Shell effects are of crucial importance for experimental
observation of spontaneous disintegration by heavy ion emission. Results for 222Ra, 232U, 236Pu
and 242Cm illustrate the main ideas and show for the first time for a cluster emitter a potential
barrier obtained by using the macroscopic-microscopic method.

PACS numbers: 24.75.+i, 25.85.Ca, 27.90.+b

INTRODUCTION

Recently we performed a systematic analysis [1] of the
experimental results concerning heavy particle radioac-
tivities [2] showing that our predictions within the ana-
lytical superasymmetric (ASAF) model (see [3] and the
references therein) have been confirmed and that the
strong shell effects of the daughter 208Pb were not fully
exploited. In this way we could make suggestions for the
candidates to be used in the future experiments.

In the present work we take advantage of using the
most advanced two center shell model [4] to study
the potential energy surfaces (PES) of cluster emitting
nuclei showing deep valleys due to the doubly magic
heavy fragments 208Pb and 132Sn. The Strutinsky’s [5]
macroscopic-microscopic method is used. A particularly
deep valley is that of 208Pb which proved to be of practi-
cal importance not only for the production of superheavy
nuclei but also for experimental search of cluster decay
modes. Even for alpha decay it is possible to see such a
valley if the emitter is 212Po or 106Te. In the later case
the heavy fragment 102Sn plays the important role. The
potential barrier shape for a heavy ion decay mode may
be obtained by cutting the PES at a given value of the
mass and charge asymmetry. In this way one can com-
pare the difference between the macroscopic barrier and
the total one with shell and pairing corrections taken into
account, providing a further justification of the ASAF
barrier shape.

MACROSCOPIC ENERGY

In a binary fission process AZ → A1Z1 + A2Z2 the
phenomenological energy EY +EM is calculated within
Yukawa-plus-exponential model (Y+EM) [6, 7] by tak-
ing into account the difference between charge and mass
asymmetry [8].

By requesting zero deformation energy for a spherical

shape, the potential energy is defined as

EY +EM = (EY − E0
Y ) + (Ec − E0

c )

= E0
Y [BY − 1 + 2X(Bc − 1)] (1)

where E0
Y = a2A

2/3{1 − 3x2 + (1 + 1/x)[2 + 3x(1 +
x)] exp(−2/x)}, E0

c = acZ
2A−1/3 are energies corre-

sponding to spherical shape and a2 = as(1 − κI2),
I = (N − Z)/A, x = a/R0, R0 = r0A

1/3. The parame-
ters as, κ, ac = 3e2/(5r0), and r0 are taken from Möller
et al. [9].

The relative Yukawa and Coulomb energies BY =
EY /E0

Y , Bc = Ec/E0
c are functions of the nuclear

shape. The dependence on the neutron and proton
numbers is contained in E0

Y , in the fissility parameter
X = E0

c /(2E0
Y ) and BY . For a binary fragmentation

with charge densities ρ1e and ρ2e, one has [8] a relative
energy

BY =
EY

E0
Y

=
a21

a20
BY 1 +

√
a21a22

a20
BY 12 +

a22

a20
BY 2 (2)

with axially-symmetric shape-dependent terms expressed
by triple integrals

BY 1 = bY

∫ xc

−1

dx

∫ xc

−1

dx′

∫ 1

0

dwF1F2QY (3)

BY 12 = bY

∫ xc

−1

dx

∫ 1

xc

dx′

∫ 1

0

dwF1F2QY (4)

BY 2 = bY

∫ 1

xc

dx

∫ 1

xc

dx′

∫ 1

0

dwF1F2QY (5)

in which bY = −d4(r0/2a2)a2R0A/E0
Y , d = (z′′−z′)/2R0

is the nuclear semilength in units of R0 and

F1 = y2 + yy1 cosϕ − x − x′

2

dy2

dx
(6)
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QY = {[
√

P (
√

P + 2a/R0d) + 2a2/(R0d)2] ·
exp(−R0

√
Pd/a) − 2a2/(R0d)2}/P 2 (7)

F2 is obtained from F1 by replacing dy2/dx with dy2
1/dx′.

In the above equations P = y2+y2
1−2yy1 cosϕ+(x−x′)2,

w = ϕ/2π, and xc is the position of separation plane be-
tween fragments with -1, +1 intercepts on the symmetry
axis (surface equation y = y(x) or y1 = y(x′)). The
integrals are computed numerically by Gauss-Legendre
quadratures.

In a similar way the Coulomb relative energy is given
by

Bc =
Ec

E0
c

=

(

ρ1e

ρ0e

)2

Bc1+
ρ1eρ2e

ρ2
0e

Bc12+

(

ρ2e

ρ0e

)2

Bc2 (8)

and for axially symmetric shapes

Bc1 = bc

∫ xc

−1

dx

∫ xc

−1

dx′F (x, x′) (9)

Bc12 = bc

∫ xc

−1

dx

∫ 1

xc

dx′F (x, x′) (10)

Bc2 = bc

∫ 1

xc

dx

∫ 1

xc

dx′F (x, x′) (11)

where bc = 5d5/8π. In the integrand

F (x, x′) = {yy1[(K − 2D)/3] ·
[

2(y2 + y2
1) − (x − x′)2+

3
2 (x − x′)

(

dy2

1

dx′
− dy2

dx

)]

+

K
{

y2y2
1/3 +

[

y2 − x−x′

2
dy2

dx

]

·
[

y2
1 − x−x′

2
dy2

1

dx′

]}

}a−1
ρ (12)

K and K ′ are the complete elliptic integrals of the first
and second kind, respectively:

K(k) =

∫ π/2

0

(1 − k2sin2t)−1/2dt (13)

K ′(k) =

∫ π/2

0

(1 − k2sin2t)1/2dt (14)

and a2
ρ = (y + y1)

2 + (x − x′)2, k2 = 4yy1/a2
ρ, D =

(K −K ′)/k2. The elliptic integrals may be calculated by
using Chebyshev polynomial approximation. For x = x′

the function F is not determined. In this case, after
removing the indetermination, we get F (x, x′) = 4y3/3.

Starting from the touching point configuration, R ≥
Rt, for spherical shapes of the fragments, one can use an-

alytical relationships. The Coulomb interaction energy of

a system of two spherical nuclei, separated by a distance
R between centers, is Ec12 = e2Z1Z2/R, where e is the
electron charge.

Within a liquid drop model (LDM) there is no con-
tribution of the surface energy to the interaction of the
separated fragments; the barrier has a maximum at the
touching point configuration. The proximity forces act-
ing at small separation distances (within the range of
strong interactions) give rise in the Y+EM to an inter-
action term expressed as folllows

EY 12 = −4
(

a
r0

)2 √
a21a22

exp(−R/a)
R/a

·
[

g1g2

(

4 + R
a

)

− g2f1 − g1f2

]

(15)

where

gk =
Rk

a
cosh

(

Rk

a

)

− sinh

(

Rk

a

)

(16)

fk =

(

Rk

a

)2

sinh

(

Rk

a

)

(17)

In many cases the interaction energy is maximum at a
certain distance Rm > Rt = R1+R2, which can be found
by solving numerically the following nonlinear equation

ex + p1 + x(p1 + xp) = 0 ; x = R/a (18)

in which

p = −a3

r2
0

√
a21a22

g1g2

e2Z1Z2
(19)

p1 = p(4 − f1/g1 − f2/g2) (20)

and the interval xt = Rt/a, xt + 5 may be given as in-
put data of a program using Müller’s iteration scheme of
succesive bisections and inverse parabolic interpolation.

SHELL AND PAIRING CORRECTIONS

In the following we would like to outline the calcula-
tions of the shell [5] and pairing [10] corrections δE =
δU + δP leading to the total deformation energy

Edef (R, η) = EY +EM (R, η) + δE(R, η) (21)

More details are given in the book [2]. By choosing two
intersected spheres for nuclear shape parametrization one
can take the separation distance between fragment cen-
ters, R, as a deformation parameter. Initially, for a
parent nucleus Ri = R0 − R2. At the touching point
Rt = R1 + R2. The mass asymmetry η = (A1 − A2)/A.

The two-center shell model [4] gives at every pair of
coordinates (R, η) the sequence of doubly degenerate
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discrete energy levels ǫi = Ei/h̄ω0
0 in units of h̄ω0

0 =
41A−1/3, arranged in order of increasing energy. The
smoothed-level distribution density is obtained by aver-
aging the actual distribution over a finite energy interval
Γ = γh̄ω0

0 , with γ ≃ 1,

g̃(ǫ) = {∑nm

i=1[2.1875 + yi(yi(1.75 − yi/6)

−4.375)]e−yi} (1.77245385γ)−1 (22)

where y = x2 = [(ǫ − ǫi)/γ]
2
. The summation is per-

formed up to the level nm fulfilling the condition |xi| ≥ 3.
The Fermi energy, λ̃, of this distribution is given by

Np = 2

∫ λ̃

−∞

g̃(ǫ)dǫ (23)

with Np = Z for proton levels and Np = A − Z for neu-

tron levels, leading to a non-linear equation in λ̃, solved
numerically. The total energy of the uniform level distri-
bution

ũ = Ũ/h̄ω0
0 = 2

∫ λ̃

−∞

g̃(ǫ)ǫdǫ (24)

In units of h̄ω0
0 the shell corrections are calculated for

each pair (R, η):

δu(n, R, η) =

n
∑

i=1

2ǫi(R, η) − ũ(n, R, η) (25)

n = Np/2 particles. Then δu = δup + δun.

0.0 0.2 0.4 0.6 0.8 1.0
(R-Ri)/(Rt-Ri)

-5

0

5

E
(M

eV
)

sh+p corr.
pair corr.
shell corr.

FIG. 1: Shell and pairing corrections for a symmetric (η = 0)
fission of 236Pu.

Similarly, for pairing corrections we take the doubly
degenerate levels {ǫi} in units of h̄ω0

0 . Z/2 levels are
occupied with n levels below and n′ above Fermi energy
contributing to pairing, n = n′ = Ωg̃s/2. The cutoff

energy, Ω ≃ 1 ≫ ∆̃ = 12/
√

Ah̄ω0
0 . The gap ∆ and Fermi

energy λ are solutions of the BCS system of two eqs:

0 =

kf
∑

ki

ǫk − λ
√

(ǫk − λ)2 + ∆2
(26)

2

G
=

kf
∑

ki

1
√

(ǫk − λ)2 + ∆2
(27)

where ki = Z/2 − n + 1, kf = Z/2 + n′, and

2

G
≃ 2g̃(λ̃) ln

(

2Ω

∆̃

)

(28)

As a consequence of the pairing correlation, the lev-
els below the Fermi energy are only partially filled, while
those above the Fermi energy are partially empty. Occu-
pation probability by a quasiparticle (uk) or hole (vk) is
given by

v2
k = [1 − (ǫk − λ)/Ek] /2; u2

k = 1 − v2
k (29)

The quasiparticle energy is expressed as

Eν =
√

(ǫν − λ)2 + ∆2. (30)

The pairing correction δp = p − p̃, represents the dif-
ference between the pairing correlation energies for the
discrete level distribution

p =

kf
∑

k=ki

2v2
kǫk − 2

Z/2
∑

k=ki

ǫk − ∆2

G
(31)

and for the continuous level distribution

p̃ = −(g̃∆̃2)/2 = −(g̃s∆̃2)/4 (32)

Compared to shell correction, the pairing correction is
out of phase and smaller (see Fig.1) leading for η = con-
stant to a smoother total curve δe(R) = δu(R) + δp(R)
where δp = δpp + δpn.

RESULTS

In the following we shall present results for 222Ra, 232U,
236Pu, and 242Cm, which are emitters of 14C, 24Ne, 28Mg,
and 34Si, respectively. All have been experimentally ob-
served. In order to obtain a relatively smooth PES we
made the approximation η = ηA = (A1 − A2)/A ≃ ηZ =
(Z1 −Z2)/Z. In this way the fragment nucleon numbers
N1, Z1 and N2, Z2 (plotted in figures 6, 11, 16, 21) are
linear functions of η. We prefer to use the dimensionless
separation distance ξ = (R−Ri)/(Rt −Ri) instead of R.
In this way one can clearly see the initial parent nucleus
at ξ = 0 and the touching point configuration at ξ = 1.
We adopt the usual convention of having zero deforma-
tion energy and shell plus pairing corrections for the ini-
tial spherical shape, leading to Edef = EY +EM = δE = 0
at R = Ri for all values of η and at η = ±1 for all values
of R.
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FIG. 2: PES of 222Ra vs (R−Ri)/(Rt−Ri) ≥ 0 and η = (A1−

A2)/(A1 +A2). Y+EM (bottom), Shell + Pairing corrections
(center), and total deformation energy (top). The energies
are expressed in MeV.

222
Ra

The PES versus the normalized separation distance
(R − Ri)/(Rt − Ri) and the mass asymmetry η = (A1 −
A2)/(A1 + A2) are plotted in Fig. 2. The macroscopic
Y+EM deformation energy is shown at the bottom, fol-
lowed by the microscopic shell plus pairing corrections
(center), and their sum (the total deformation energy)
at the top.

Three valleys around η ≃ 0.8; 0.3 and 0.1 can be seen
in the center of Fig. 2 and on the corresponding contour
plot (Fig. 3). We only count the number of valleys for
η ≥ 0 because the mirror η ≤ 0 gives the same num-
ber for complimentary heavy fragments becoming light
ones and vice-versa. In figure 6 we shall see that they
are produced due to the magicity of the nucleon num-
ber of the fragments. Such cold valleys were used in

the sixtieth by Walter Greiner to motivate the search for
superheavy elements, and the development of Heavy Ion
Physics worldwide and in Germany, where GSI was built.
These valleys may be also seen on the total PES at the
top of Fig. 2. Here the deepest valley remains that at a
small value of η not far from the minimum of the macro-
scopic Y+EM energy at η = 0, which is responsible for
the cold fission. At a large value of η, the 208Pb + 14C

FIG. 3: Contour plot of shell and pairing corrections for 222Ra
vs (R − Ri)/(Rt − Ri) and η.
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FIG. 4: A cut through the PES of 222Ra at symmetry η = 0
(top) and for 14C radioactivity with 208Pb daughter (bottom).

valley, favouring the 14C radioactivity of 222Ra, is laying
on the Businaro-Gallone mountain, hence it is shallower
despite the fact that it is very pronounced in the shell
correction surface. On the contour plot (figure 3) one
can see how it evolves from lower mass asymmetry at a
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FIG. 5: Deformation energies at the touching point configu-
rations (R = Rt) of 222Ra vs the asymmetry η: EY +EM and
Edef (top); shell + pairing corrections and only shell correc-
tions (bottom).
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FIG. 6: Variation of the neutron and proton numbers of
the two fragments with the mass asymmetry at the touch-
ing point, R = Rt for 222Ra.

small value of separation distance, ξ, to the larger η at
the touching point, ξ = 1.

Two plots obtained by cutting the total PES and that
of Y+EM at a given value of the asymmetry parameter
are shown in Fig. 4. In the upper part one can see a two
humped barrier at η = 0. The typical example for 14C
emission from 222Ra, shown at the bottom, provide justi-
fication for one of the basic assumption of the analytical
superasymmetric fission model, which was very successful
in predicting the half-lives of cluster decay modes. It is
remarkable to see for the first time for a cluster emitter
a potential barrier obtained by using the macroscopic-
microscopic method. Having a smaller height and width
compared to the (dotted line) macroscopic Y+EM bar-
rier, it is very similar to the barrier used in ASAF which
was lower and narrower than the Myers-Swiatecki’s [11]
LDM barrier.

One can see how deep are the two main valleys on the
PES by plotting in Fig. 5 a cut of the PES at the touching
point configuration, R = Rt. In the upper part of this
figure the macroscopic energy, EY +E (the smooth dashed
line), and the total deformation energy, E (heavy line)

can be seen. In the lower part of Fig. 5 there are two other
curves representing the shell plus pairing correction (dot-
ted curve) and only the shell corrections (dashed line).
As we already mentioned when the Fig. 1 was discussed,
there are two effects of pairing corrections leading to a
smoother variation and to a shallower valley.

FIG. 7: PES of 232U vs (R − Ri)/(Rt − Ri) and η = (A1 −

A2)/(A1 +A2). Y+EM (bottom), Shell + Pairing corrections
(center), and total deformation energy (top). The energies
are expressed in MeV.

We can better understand how the deep valleys ap-
pear in figure 5 if we plot in figure 6 the variation of the
neutron and proton numbers of the two fragments with
the mass asymmetry at the touching point, R = Rt, for
222Ra. Every time a nucleon number reaches a magic
value, the corresponding shell correction has a local min-
imum. The very deep valley at η > 0.8 (for different mass
and charge asymmetry at ηA = 0.874 and ηZ = 0.864) is
produced by reaching almost simultaneously three magic
numbers N1 = 126, N2 = 8, and Z1 = 82 (the decay
222Ra → 208Pb + 14C). The next one, at an intermedi-
ate value of η (ηA = 0.369, ηZ = 0.363), is mainly due
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to the Ni (Z2 = 28) light fragment (222Ra → 152Nd +
70
28Ni42). Finally the valley at a small asymmetry param-
eter (ηA = 0.189 and ηZ = 0.136) corresponds to the cold
fission process (222Ra → 132Sn + 90Sr).

FIG. 8: Contour plot of shell and pairing corrections for 232U
vs (R − Ri)/(Rt − Ri) and η.
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FIG. 9: A cut through the PES of 232U at symmetry η = 0
(top) and for 24Ne radioactivity with 208Pb daughter (bot-
tom).

232
U

Three PES versus the normalized separation distance
and the mass asymmetry are plotted in Fig. 7: the
macroscopic Y+EM deformation energy at the bottom;
the microscopic shell plus pairing corrections at the cen-
ter, and their sum (the total deformation energy) at the

top. There are again three valleys on the shell plus pair-
ing corrections and on the contour plot (Fig. 8) around
η ≃ 0.8; 0.3, and 0.15. Unlike on the figure 2 for 222Ra
in which the valley due to Sn at a low mass asymmetry
is not so deep, now this cold fission valley is well shaped
and the trend continues for heavier nuclei such as 236Pu
and 242Cm. An intermediate valley is produced by the
magic neutron number N2 = 50 of the light fragment.
They are also present on the total PES at the top of
Fig. 7. Here the deepest valley remains that of Sn, which
is responsible for the cold fission; the 208Pb + 24Ne val-
ley, explaining the 24Ne radioactivity of 232U, is laying
on the Businaro-Gallone mountain, hence it is shallower.
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FIG. 10: Deformation energies at the touching point config-
urations (R = Rt) of 232U vs the asymmetry η: EY +EM and
Edef (top); shell + pairing corrections and only shell correc-
tions (bottom).
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FIG. 11: Variation of the neutron and proton numbers of
the two fragments with the mass asymmetry at the touching
point, R = Rt for 232U.

In the upper part of Fig. 9 one can see a two humped
barrier at η = 0. The example for 24Ne emission from
232U, shown at the bottom, provide justification for one
of the basic assumption of the analytical superasymmet-
ric fission model already mentioned in the previous sub-
section.

A cut of the PES at the touching point configura-



7

tion, R = Rt is shown in Fig. 10 with the EY +EM (the
smooth dashed line) and the total deformation energy
Edef (heavy line) in the upper part. The three valleys
mentioned above are present both on the total deforma-
tion energy (top) and in the lower part where the shell
plus pairing correction (dotted curve) and only the shell
corrections (dashed line) are plotted.

FIG. 12: PES of 236Pu vs (R−Ri)/(Rt −Ri) and η = (A1 −

A2)/(A1 +A2). Y+EM (bottom), Shell + Pairing corrections
(center), and total deformation energy (top). The energies
are expressed in MeV.

The figure 11 showing the variation of the neutron
and proton numbers of the two fragments with the mass
asymmetry at the touching point, R = Rt, for 232U al-
lows us to understand how the deep valleys from figure 10
are produced. The very deep valley around η = 0.8
(ηA = 0.793, ηZ = 0.783) is produced by the negative
shell corrections due to two magic numbers N1 = 126
and Z1 = 82 (24Ne radioactivity 232U → 208Pb + 24Ne).
Another doubly magic heavy fragment, 132Sn, produces
the cold fission valley (232U → 132Sn + 100Mo) at low

mass and charge asymmetry (ηA = 0.138, ηZ = 0.087).

FIG. 13: Contour plot of shell and pairing corrections for
236Pu vs (R − Ri)/(Rt − Ri) and η.
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FIG. 14: A cut through the PES of 236Pu at symmetry η = 0
(top) and for 28Mg radioactivity with 208Pb daughter (bot-
tom).

The intermediate one (ηA = 0.293, ηZ = 0.304), quite
shallow, is due to the neutron magic number of the light
fragment N2 = 50 (232U → 150Nd + 82

32Ge50).

236
Pu

PES versus the normalized separation distance and the
mass asymmetry are plotted in Fig. 12, where Y+EM
deformation energy is shown at the bottom, the shell
plus pairing corrections at the center, and their sum (the
total deformation energy) at the top. Very deep valleys
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due to the doubly magic fragments 208Pb and 132Sn can
be seen in the center of Fig. 12 and on the corresponding
contour plot (Fig. 13) around η ≃ 0.75 and η < 0.1,
respectively. At an intermediate value of the asymmetry
parameter, η ≃ 0.28 there is another valley not so deep.
These valleys may be also seen on the total PES at the
top of Fig. 12. Here the deepest valley remains that of
Sn, which is responsible for the cold fission; the 208Pb +
28Mg valley, explaining the 28Mg radioactivity of 236Pu,
is laying on the Businaro-Gallone mountain, hence it is
shallower.

Two plots obtained by cutting the PES at a given value
of the asymmetry are shown in Fig. 14: a two humped
barrier at η = 0 in the upper part and the barrier for 24Ne
spontaneous emission from 236Pu, shown at the bottom.
The last one provides a qualitative microscopic justifica-
tion for the chosen barrier shape within the phenomeno-
logical ASAF.
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FIG. 15: Deformation energies at the touching point configu-
rations (R = Rt) of 236Pu vs the asymmetry η: EY +EM and
Edef (top); shell + pairing corrections and only shell correc-
tions (bottom).

0.0 0.2 0.4 0.6 0.8 1.0
= (A1 - A2)/A

0

20

40

60

80

100

120

140

N
an

d
Z

of
fr

ag
m

en
ts

Z2

N2

Z1

N1

FIG. 16: Variation of the neutron and proton numbers of
the two fragments with the mass asymmetry at the touching
point, R = Rt for 236Pu.

One can see how deep are the three valleys by plot-
ting in Fig. 15 a cut of the PES at the touching point
configuration, R = Rt. In the upper part of this fig-

ure the macroscopic energy, EY +E (the smooth dashed
line), and the total deformation energy, Edef (heavy line)
can be seen. They exhibit few valleys of which that of
Sn at lower values of η and that of Pb at higher η are
the deepest ones. In the lower part of this figure there
are two other curves representing the shell plus pairing
correction (dotted curve), δEsh+p, and only the shell cor-
rections (dashed line), δEshell. The valley at the inter-
mediate value of the asymmetry parameter, η ≃ 0.28, is
quite shallow.

FIG. 17: PES of 242Cm vs (R−Ri)/(Rt −Ri) and η = (A1 −

A2)/(A1 +A2). Y+EM (bottom), Shell + Pairing corrections
(center), and total deformation energy (top). The energies
are expressed in MeV.

The variation of the neutron and proton numbers of the
two fragments with the mass asymmetry at the touching
point, R = Rt, for 236Pu (figure 16) shows the occurence
of magic numbers which generate the minima of the shell
and pairing corrections producing the valleys on PES.
The very deep valley around η = 0.75 (ηA = 0.763, ηZ =
0.745) is produced by reaching simultaneously two magic
numbers N1 = 126 and Z1 = 82, 236Pu → 208Pb +
28Mg. The cold fission valley (236Pu → 132Sn + 104Ru)
at a small asymmetry (ηA = 0.119, ηZ = 0.064) is the
result of two magic numbers Z1 = 50 and N1 = 82. The
intermediate valley (ηA = 0.288, ηZ = 0.277) is produced
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FIG. 18: Contour plot of shell and pairing corrections for
242Cm vs (R − Ri)/(Rt − Ri) and η.

by the magicity of the light fragment N2 = 50, 236Pu
→ 152Nd + 84

34Se50.

242
Cm

There are four valleys on the PES of figure 17 for 242Cm
at η ≃ 0.7; 0.4; 0.3, and 0.1. They are also present on
the corresponding contour plot (Fig. 18). At the top of
Fig. 17 the deepest valley remains that of cold fission
due to a doubly magic heavy fragment 132Sn, and the
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FIG. 19: A cut through the PES of 242Cm at symmetry η = 0
(top) and for 34Si radioactivity with 208Pb daughter (bottom).

silicon-and-lead valley the 208Pb + 34Si, explaining the
34Si radioactivity of 242Cm.
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FIG. 20: Deformation energies at the touching point configu-
rations (R = Rt) of 242Cm vs the asymmetry η: EY +EM and
Edef (top); shell + pairing corrections and only shell correc-
tions (bottom).
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FIG. 21: Variation of the neutron and proton numbers of
the two fragments with the mass asymmetry at the touching
point, R = Rt for 242Cm. Every time a nucleon number
reaches a magic value, the corresponding shell correction has
a local minimum. The very deep valley around η = 0.719
is produced by reaching simultaneously three magic numbers
N1 = 126, N2 = 20, and Z1 = 82.

Two plots obtained by cutting the PES at a given value
of the asymmetry are shown in Fig. 19. In the upper
part one can see the two humped barrier and at the bot-
tom the barrier for 34Si emission from 242Cm. Having a
smaller height and width compared to the (dotted line)
macroscopic Y+EM barrier, it is very similar to the bar-
rier used in ASAF which was lower and narrower than
the the Myers-Swiatecki’s LDM barrier.

One can see how deep are the four valleys on the PES
by plotting in Fig. 20 a cut of the PES at the touch-
ing point configuration, R = Rt. In the upper part of
this figure the macroscopic energy, EY +E , (the smooth
dashed line) and the total deformation energy, E, (heavy
line) can be seen. In the lower part there are two other
curves representing the shell plus pairing correction (dot-
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ted curve), δEsh+p, and only the shell corrections (dashed
line), δEshell.

The figure 21 shows the variation of the neutron and
proton numbers of the two fragments with the mass
asymmetry at the touching point, R = Rt, for 242Cm.
Like in the preceding subsections, the deepest valley on
the shell and pairing corrections is produced by the very
strong shell effect of the heavy fragment 208Pb (242Cm
→ 208Pb + 34

14Si20) at ηA = 0.719 and ηZ = 0.708;
here there is also a contribution coming from the neu-
tron number of the light fragment, N2 = 20. The deepest
valley on the total deformation energy is the cold fission
one at ηA = 0.091, ηZ = 0.042, where 242Cm → 132Sn +
110Pd. The two intermediate valleys are produced mainly
by N2 = 50 and Z2 = 28. One has at ηA = 0.306,
ηZ = 0.292 the decay 242Cm → 158Sm + 84

34Se50 and at
ηA = 0.421, ηZ = 0.417 242Cm → 172Er + 70

28Ni42.
In conclusion the strong shell effect associated to the

doubly magic character of the daughter 208Pb, observed
in the systematic analysis of experimental results [1],
comes from a valley present on the potential energy sur-
faces of cluster emitters at a relatively high value of the
asymmetry parameter η ≃ 0.7 − 0.8. Despite its high
depth on the microscopic corrections PES, on the total
deformation energy it appears shallower since it is added
to the Businaro-Gallone mountain of the Y+EM macro-
scopic energy. The potential barrier shape of heavy ion
radioactivity obtained from the first time by using the
macroscopic-microscopic method provides further sup-
port for the particular choice of the barrier within the
analytical superasymmetric model. The depth of the cold
fission valley produced by the doubly magic heavy frag-
ment 132Sn, which is small for 222Ra, increases with the
mass number of the parent nucleus being comparable to

the lead valley on the microscopic corrections PES of
242Cm. Some other intermediate shallower valleys are
produced by the magicity of the light fragment: Z2 = 28
for 222Ra parent; N2 = 50 for 232U parent; N2 = 50 for
236Pu; N2 = 50 and Z2 = 28 for 242Cm.
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