Rise Time of the Amplitudes of Time Harmonic Fields
in Multicell Cavities *

H.-W. Glock, M. Kurz, P. Hiilsmann, H. Klein

Institut fiir Angewandte Physik
Robert-Mayer-Strafie 2-4, D-6000 Frankfurt am Main, Fed. Rep. of Germany

Abstract

Wall losses can cause a coupling between eigenmodes in
a cavity. The magnitude of the effect can be determined by
means of eigenmode expansion. The influence on rise time of
forced oscillations is calculated. Results for a brick resonator
and a six-cell iris structure are presented.

I. INTRODUCTION

The operation of superconducting and conventional
linear colliders under multibunch conditions requires the
recovery of the accelerating field and damping of wake fields
being completed before the arrival of the next bunch in the
train. In either case the study of time behaviour of the
accelerating resp. wakefields is essential. For example, for
TESLA [1] a train of 800 bunches, following each other in
lps distance, is foreseen. For TESLA accelerator sections
there have been experiments and calculations based on
lumped circuit theory showing good agreement between
measurement and calculations [2].

In order to investigate the time behaviour of generator or
beam driven cavities we decided to use a more general
approach.

II. GENERAL THEORY

A.  Basic Equations

We consider a driven cavity and want to express the
solutions of the time dependent Maxwell equations (1) in
terms of cavity eigenmodes.

VXH=808¢E+J , VXE=—antH (D
The eigenmodes satisfy the following set of equations [3]:
VXHj =i0)jE()Ej s VXEj =—i0)j|.l()Hj (2)

The solutions of the time dependent equations (1) may be
expanded as

E(r,t) = X aj(DE;(r) , H(r,t) = X bj()H;(r) 3)
J }

ifthe driving term can be expressed in the same way.
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As shown in (5) the eigenmodes are normalized to unity.
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Wall losses are taken into account by assuming the following
boundary condition for the parallel electric field on the
surface, R, being the surface impedance [3].

Eun = (1 +1)RaHpun X0 (6)

We multiply equations (1) with E;, H." resp., use (3), (4), and
(5), integrate both equations over the cavity volume and
apply Gauss’ integral identity. The appearing integral of the
function E x H; can be evaluated (using (6)) to a sum of b(t)
with coefficients depending only on the magnetic eigenfields.
These interaction terms are denoted by A,,.

$ (Exﬂ;) ‘nds=(1+iRa T by(t) § H; - Hyds
v k v

= (1+0)R, % Ajc b (t) M

Now we are able to set up a first order system of linear
differential equations describing the behaviour of the
coefficients for the evaluation of the fields. The dimension is
twice the number of modes under consideration.

35 ~iwjbi(t) = 2550

. 8
b;(t) ~iwja;(t) +(1 +1)R, )k:(Ajkbk(t)) =0 ®

This is equivalent to a second order system:
. . - Wi
b +(1+DRa X (Ajkbk(t)) + wfbj(t) = —E(‘;"Cj(t) ®
k

One can observe the driven harmonic oscillator characteristic
which is modified by the mode interaction in the first order
time derivative terms.

B.  Treatment of the Exchange Terms A,

The AR, are proportional to the wall losses in the mode
j. The single-mode Q is given by:



W;
A;R,

Qj= (10)
The A,, describe power exchange between modes. From (7) it
is apparent that:

Ag=Aj, (1)

Further it can be shown with aid of the sentence of
Bunjakowski-Schwarz [4] that there is an upper limit for the
value of the A,,.

[Ax] < JAjA (12)

For some simple geometries like brick or pillbox
cavities there are analytical solutions for the A,,. In general a
numerical determination of fields has to be done, e.g. use of
MAFIA [5] or similar codes.

III. NUMERICAL AND ANALYTICAL
EXAMPLE

Starting with (8) one first seeks the solution of the
homogenous system. For simplicity, in the following we
restrict ourselves to two modes. This is no limitation of the
procedure. ’

a, 0 iw,; 0 0 a,
b, _| ier —1+DRAL 0 ~(1+DRA, b, (13)
a, 0 0 0 0, a,
b, 0 —(1+)R,A}, iw, —{1+DR,Ap b,

The general solution of the homogenous system can be
written as:

f(ty=u,Viet'+ ... +u Vqer (14

where f' = (a,,b,,a,,b,), A; and V; are the eigenvalues and
eigenvectors of the system matrix, and u, are arbitrary
constants. To solve the inhomogenous system variation of
constants u, is used. With the assumption of the same
harmonic time dependence of both ¢, ¢, (they may differ in

phase and amplitude) we get for the inhomogenous part of
(8):

i Ky
1 0 i®ot iyt
—_ =Ke'®lgt) = el®tg(t 15
8| oy o=\ ® (15
0 0

where s(t) is an arbitrary function controlling the complex
amplitude of the excitation. The solution is, e.g. u,(t):

t

det (x,V,,V3,V,) J )
det (VI,VZ’V31V4)

u(t)= dt (16)

° el,t
Inserting into (14) gives the result.

The figures 1.-4. show the envelope of the values |a,|, |a,|
of the forced exp(imyt)-oscillations. The eigenvectors and
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Figure 1. Brick resonator driven slightly below reso-

nance of both degenerated modes (TM,,,, TE,,). In the
parameter block the generator (OMEQ), the two angular
eigenfrequencies (OME1, OME2), direct coupling
constants according to (15) (KAP1, KAP2), the A, and
the wall impedance are printed.
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Figure 2. Brick resonator driven very close to resonance.
fa,| reaches about 10% of [a,|.
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Figure 3. Brick resonator driven above resonance.
Stabilization of second mode takes twice the time of the
first.
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Figure 4. Six-cell iris structure. First mode is ©/6, second
mode is m/3. Excitation at eigenfrequency of second
mode. The relatively far distance to ®, causes a fast

oscillation of |a,|. [a,| reaches about 0.5% of |a,|.

eigenvalues as well as the y(t) were calculated numerically.
The function s(t) has been chosen

0.5[1 —cos(%n)} 1<Ty an

s(t) =
1 > Tst

that analytical time integration is possible.

For the brick resonator ideal degeneration of modes is
possible. Therefore we investigated the interaction between
the TM,,, and the TE,, mode. The A, werde determined
analytically.

As an example of a multicell structure we chose a
six-cell iris cavity. The TM,,,-n/6 and the neighbouring n/3
mode were calculated by means of MAFIA, then the
magnetic surface fields had to be extracted from the result
file in order to compute the A,,.

IV. CONCLUSIONS

There is a coupling between modes due to wall losses.
The effect depends on the distance of frequencies of the
involved modes, the value of wall impedance, and the
geometrically determined interaction terms A,,. The coupling
strength is limited according to (12). In most cases there is no
need to take care of the effect. But it can be of some
importance for degenerated modes or multicell accelerator
structures with low coupling between cells, equivalent to
narrow passbands. A similar coupling mechanism is to be
expected for HOM-damped structures.
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