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Abstract

We study the possibility of producing a new kind of nuclear systems which in addition to

ordinary nucleons contain a few antibaryons (B = p, Λ, etc.). The properties of such systems

are described within the relativistic mean–field model by employing G–parity transformed inter-

actions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei

from 4He to 208Pb. It is demonstrated that the presence of a real antibaryon leads to a strong

rearrangement of a target nucleus resulting in a significant increase of its binding energy and

local compression. Noticeable effects remain even after the antibaryon coupling constants are

reduced by factor 3 − 4 compared to G–parity motivated values. We have performed detailed

calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic

approach. It is shown that due to significant reduction of the reaction Q–values, the in–medium

annihilation rates should be strongly suppressed leading to relatively long–lived antibaryon–

nucleus systems. Multi–nucleon annihilation channels are analyzed too. We have also estimated

formation probabilities of bound B + A systems in pA reactions and have found that their ob-

servation will be feasible at the future GSI antiproton facility. Several observable signatures are

proposed. The possibility of producing multi–quark–antiquark clusters is discussed.

PACS numbers: 25.43.+t, 21.10.-k, 21.30.Fe, 21.80.+a
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I. INTRODUCTION

Antibaryons are extremely interesting particles for nuclear physics. They are building

blocks of antimatter which can be produced in the laboratory. When in close contact

baryons and antibaryons promptly annihilate each other producing mesons in the final

state. These reactions have been actively studied in 80’s and 90’s, most extensively at

LEAR (see reviews [1, 2]). In particular, many attempts have been made to find NN

bound states with mass close to the threshold [3], but up to now no clear evidence was

found (see, however, the recent paper [4]).

In contrast to elementary BB interactions, much less is known about antibaryon-

nuclear interactions. Main information in this case is provided by antiprotonic atoms

and scattering data. However, due to strong absorption this information is limited

to a far periphery of the nuclear density distribution. As follows from the analysis of

Refs. [5, 6], the real part of the antiproton optical potential in nuclei might be as large

as −(200 ÷ 300) MeV with uncertainty reaching 100% in the deep interior. The imaginary

part is also quite uncertain in this region.

On the other hand, many interesting predictions concerning the antibaryon behavior

in nuclear medium have been made. In particular, appearance of antinucleon bound

states in nuclei is one of the most popular conjectures. This possibility was first studied

in early 80’s [5, 7–9] using antinucleon optical potentials consistent with the p–atomic

data. However, much deeper antinucleon potentials have been obtained [10, 11] on the

basis of relativistic nuclear models [12, 13]. They predict a large number of deeply bound

antinucleon states in nuclei [14, 15]. Several observable signatures of such states have been

discussed in Refs. [14, 16–18]. Besides, it was demonstrated in Ref. [19] that in-medium

reduction of the antibaryon masses may lead to enhanced yields of baryon-antibaryon

pairs in relativistic heavy-ion collisions. This mechanism was also used in Refs. [20, 21]

to explain subthreshold antibaryon production in pA and AA collisions.

The Relativistic Mean–Field (RMF) models [22, 23] are widely used now for describing

nuclear matter and finite nuclei. Within this approach nucleons are described by the Dirac

equation coupled to scalar and vector meson fields. Scalar S and vector V potentials
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generated by these fields modify the spectrum of the Dirac equation in homogeneous

isospin–symmetric nuclear matter as follows

E±(p) = V ±
√

(mN − S)2 + p2 , (1)

where mN and p are the vacuum mass and 3-momentum of a nucleon, respectively. The

+ sign corresponds to nucleons with positive energy

EN(p) = E+(p) = V +
√

(mN − S)2 + p2 , (2)

and the − sign corresponds to antinucleons with energy

EN(p) = −E−(−p) = −V +
√

(mN − S)2 + p2. (3)

Changing sign of the vector potential for antinucleons is exactly what is expected from the

G–parity transformation of the nucleon potential. As follows from Eq. (1), the spectrum

of single–particle states of the Dirac equation in nuclear environment is modified in two

ways. First, the mass gap between positive– and negative–energy states, 2(mN − S), is

reduced due to the scalar potential and, second, all states are shifted upwards due to the

vector potential.

It is well known from nuclear phenomenology that a good description of nuclear ground

state is achieved with S ≃ 350MeV and V ≃ 300MeV so that the net potential for

slow nucleons is V − S ≃ −50MeV. Using the same values one obtains for antinucleons

a very deep potential, −V − S ≃ −650MeV. Such a potential would produce many

strongly bound states in the Dirac sea. However, when these states are occupied they are

hidden from the direct observation. Only creating a hole in this sea, i.e. inserting a real

antibaryon into the nucleus, produces an observable effect. If this picture is correct one

can expect the existence of strongly bound states of antinucleons in nuclei. Qualitatively

the same conclusions can be made about antihyperons (Λ,Σ,Ξ, . . .) which are coupled to

the meson fields generated by nucleons.

Of course, these bound antibaryon–nuclear systems will have limited life times because

of unavoidable annihilation of antibaryons. The naive estimates based on the vacuum

annihilation cross sections would predict life times of the order of 1 fm/c. However, due
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to strong reduction of phase space available for annihilation in medium, these life times

can be much longer. When calculating the structure of bound antibaryon–nuclear systems

we first consider them as stationary objects. Afterwards their life times are estimated on

the basis of kinetic approach taking into account in–medium effects.

In our previous paper [24] we have performed self-consistent calculations of bound

antibaryon–nuclear systems which take into account rearrangement of nuclear structure

due to the presence of a real antibaryon. We have found not only a significant increase in

the binding energy but also a strong local compression of nuclei induced by the antibaryon.

The calculations were mainly done for antiprotons with potentials obtained by G-parity

transformation. In the present work we extend our study in several directions. We

report on new results for antiprotons and antilambdas for wider range of target nuclei.

Calculations for reduced couplings of antibaryons to the meson fields are done too in order

to simulate effects which are missing in a simple mean–field approximation. We have also

performed a detailed study of the annihilation processes which determine the life time

of the antibaryon–nuclear systems. The possibility of a delayed annihilation due to the

reduction of the available phase space is demonstrated by direct calculations. Different

scenarios of producing bound antibaryon–nuclear systems by using antiproton beams are

considered and their observable signatures are discussed. In particular, we point out the

possibility of inertial compression of nuclei and deconfinement phase transition induced

by antibaryons.

Our paper is organized as follows. In Sect II we describe the formalism used in calcula-

tions of antibaryon–nuclear systems and briefly explain the numerical procedure applied

for solving the RMF equations. The limiting case of infinite matter with admixture of

antibaryons is studied in Sect. III. The numerical results concerning bound antibaryon–

nuclear systems are presented in Sect. IV. The problem of antibaryon annihilation both in

infinite and finite nuclear systems is discussed in Sect. V. Probabilities of creating nuclei

with bound antiprotons and antilambdas in pA collisions are estimated in Sect. VI. Pos-

sible observable signatures of such systems are considered in Sect. VII. Finally, in Sect.

VIII we summarize our results, formulate several open questions and tasks for future.
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II. THEORETICAL FRAMEWORK

To study antibaryon–nuclear bound states we use different versions of the relativistic

mean–field (RMF) model. This approach has several advantages: a) its effective de-

grees of freedom are adequate for the description of nuclear many–body systems, b) it

describes nuclear ground–state observables with high accuracy, c) antinucleons are nat-

urally included in the theory through the nucleonic Dirac equation, d) its generalization

for antihyperons is straightforward .

There remain, however, uncertainties in its application to antibaryons. We list only

some of them: a) the G-parity symmetry is not necessarily valid in a many–body system

(we shall discuss this issue later), b) the coupling constants of the model as well as its

functional form are determined for nuclear ground states and extrapolation to higher

densities is somewhat uncertain, c) it is believed that the RMF model can be considered

as an effective field theory only at low enough energies, ∆E <∼ 1GeV. On the other hand,

inserting an antibaryon into a nucleus delivers an excitation energy of about 2 GeV, which

might be beyond the applicability domain of such models.

Despite of these uncertainties, the RMF approach allows an exploratory study of new

types of finite nuclear systems. The RMF model (for reviews, see [22, 23]) is formulated

in terms of a covariant Lagrangian density of nucleons and mesons. We modify the

usual approach by introducing real antibaryons in addition to protons and neutrons. The

Lagrangian density L reads (h̄ = c = 1)

L =
∑

j=N,B

ψj(iγ
µ∂µ −mj)ψj

+
1

2
∂ µσ∂µσ − 1

2
m2

σσ
2 − b

3
σ3 − c

4
σ4

− 1

4
ωµνωµν +

1

2
m2

ωω
µωµ +

d

4
(ωµωµ)2

− 1

4
~ρ µν~ρµν +

1

2
m2

ρ~ρ
µ~ρµ

+
∑

j=N,B

ψj

[
gσjσ − gωjω

µγµ − gρj~ρ
µγµ~τj − ejA

µ1 + τ3
2

γµ

]
ψj

− 1

4
FµνF

µν . (4)
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Here the degrees of freedom are nucleons (N), antinucleons (B = N) or antihyper-

ons (B = Λ,Σ, . . .), the isoscalar σ (Jπ = 0+) and ω (Jπ = 1−) mesons, the isovector

~ρ (Jπ = 1−) meson as well as the Coulomb field Aµ. The field tensors Gµν of the vector

fields (G = ω, ~ρ, A) are defined as

Gµν = ∂µGν − ∂νGµ . (5)

Arrows refer to the isospin space. The quantities mj in Eq. (4) denote the vacuum masses

of nucleons and antibaryons, mω and mρ are, respectively, the vacuum masses of ω and ρ

mesons.The σ meson mass mσ and the coupling constants gij are adjustable parameters

which are found by fitting the observed data on medium and heavy nuclei (see below).

Our approach employs two common approximations, the mean–field and the no–sea

approximations. The latter implies that we consider explicitly only the valence Fermi and

Dirac sea states. On the other hand, the filled Dirac sea states are included only implicitly

via nonlinear terms of scalar and vector potentials. According to recent work [25], the

vacuum contribution and the related counter terms have a structure similar to the meson

field terms. Implementing a real antinucleon inside a target nucleus means appearance of

a hole in the nucleonic Dirac sea. The mean-field approximation consists in replacing the

meson field operators and the corresponding source currents by their expectation values.

This leads to classical mean fields, for example:

σ → 〈σ〉, ωµ → 〈ωµ〉 . (6)

Below we treat the RMF model in Hartree approximation i.e. neglect all exchange terms

arising from antisymmetrization of single–particle states.

Equation of motion for all meson and fermion fields are obtained from the Euler-

Lagrange equations

∂

∂xµ

(
∂L

∂(∂qi/∂xµ)

)
− ∂L
∂qi

= 0, qi = N,B, σ, ω, ~ρ, A . (7)

In the equilibrium (static) case this gives the stationary Dirac equations for (anti)baryons

ǫαj ψ
α
j = [−iα∇ + β (mj − Sj) + Vj]ψ

α
j . (8)
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Here j = N,B and α denotes various single–particle valence states with the wave func-

tions ψα
j and energies ǫαj . The scalar and vector potentials acting on (anti)baryons are

defined as

Sj = gσjσ , (9)

Vj = gωjω
0 + gρj ρ

0
3τ3 + ejA

01 + τ3
2

. (10)

Since we consider static systems with even numbers of neutrons and protons, only

time–like components of vector fields give nonzero contributions in the mean–field ap-

proximation. Disregarding the mixing of proton and neutron states we retain only the ρ3

components of the ρ–meson field. We also assume that the time–reversal invariance is

valid even in the presence of an unpaired particle like an antiproton.

Equations of motion for the meson fields read

(−∆ +m2
σ + bσ + cσ2)σ =

∑

j

gσjρSj , (11)

(−∆ +m2
ω + dω2

0)ω0 =
∑

j

gωjρj , (12)

(−∆ +m2
ρ)ρ

0
3 =

∑

j

gρjρIj , (13)

∆A0 =
∑

j

ejρQj (14)

The scalar, vector, isovector and charge densities are defined as

ρSj = 〈ψjψj〉 , (15)

ρj = 〈ψ†
jψj〉 , (16)

ρIj = 〈ψ†
jτ3ψj〉 , (17)

ρQj =
1

2
〈ψ†

j (1 + τ3)ψj〉 , (18)

where angular brackets mean averaging over the ground state wave function.

To investigate sensitivity of the results to the model parameters, we have consid-

ered several versions of the RMF model, namely the NL3 [26], NLZ [27], NLZ2 [28] and

TM1 [29] models. The corresponding parameter sets are listed in Table I. They were
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TABLE I: The parameter sets of the RMF models used in this paper.

NLZ NLZ2 NL3 TM1

mN (MeV) 938.9 938.9 939.0 938.0

mσ (MeV) 488.67 493.150 508.194 511.198

mω (MeV) 780.0 780.0 782.501 783.0

mρ (MeV) 763.0 763.0 763.0 763.0

gσN 10.0553 10.1369 10.217 10.0289

gωN 12.9086 12.9084 12.868 12.6139

gρN 4.84944 4.55627 4.4740 4.6322

b (fm−1) 13.5072 13.7561 10.431 7.2325

c −40.2243 −41.4013 −28.885 0.6183

d 0 0 0 71.305

found by fitting binding energies and radii of spherical nuclei from 16O (not included in

the TM1 fit) to Pb isotopes [67].

Regarding the antibaryon couplings, there is no reliable information suitable for high

density nuclear matter. In this situation, as a starting point, we choose antibaryon–meson

coupling constants motivated by the G–parity transformation. It is analogous to the

ordinary parity transformation in the configurational space, which inverts the directions

of 3–vectors. The G–parity transformation is defined as the combination of the charge

conjugation and the 180◦ rotation around the second axis of the isospin space [30]. As

known, σ and ρ mesons and the Coulomb field have positive G–parity, while ω meson

has negative G–parity. Therefore, applying the G–parity transformation to the baryon

potentials (9)–(10) one obtains the corresponding potentials for antibaryons. The results

of this transformation can be formally expressed by the following relations between the

coupling constants:

gσN = gσN , gωN = −gωN , gρN = gρN . (19)

If these relations are valid, one can make two conclusions. First, equal scalar potentials
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lead to equal effective masses for nucleons and antinucleons. Second, the vector poten-

tials have opposite signs for these particles. This is in agreement with the conclusion

made by considering positive– and negative–energy solutions of the Dirac equation (see

Eqs. (2)–(3)).

The simple consideration based on the G–parity transformation of mean meson fields

is certainly an idealization. There are several effects in many–body systems which can,

in principle, significantly distort this picture. Here we mention only two of them. First,

inclusion of exchange (Fock) terms leads generally to smaller magnitudes of scalar and vec-

tor potentials for antinucleons in dense baryon–rich matter as compared to nucleons [31].

Second, the expressions (9)–(10) correspond to the tadpole (single bubble) diagrams as-

sociated with the σ, ω and ρ meson exchanges. However, for antibaryons one should

consider also the contribution of more complicated multi–meson diagrams originating

from annihilation channels in the intermediate state. By using dispersion relations, the

corresponding contribution to the real part of the antibaryon self energy can be expressed

through the BN annihilation cross section. The calculations of Refs. [20, 21] show that

such a contribution can reach 100 − 150 MeV for slow antinucleons at normal nuclear

density.

Taking into account all these uncertainties, in our calculations we consider not only

the G–parity motivated couplings (19), but also the reduced antibaryon couplings

gσN = ξgσN , gωN = −ξgωN , gρN = ξgρN (20)

with the same reduction parameter ξ for interactions with σ, ω and ρ meson fields.

By choosing ξ in the interval 0 ≤ ξ ≤ 1 we can investigate all possibilities from max-

imally strong antibaryon couplings to noninteracting antibaryons. In calculations of

antihyperon–nuclear system we use the coupling constants motivated by the SU(3) flavor

symmetry, namely assume that gσΛ = 2
3
gσN , gωΛ = 2

3
gωN .

By using Eq. (20) we can rewrite the source terms in Eqs. (11)–(12) in a more trans-
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parent form

∑

j

gσjρSj = gσN (ρSN + ξρSN) , (21)

∑

j

gωjρj = gωN (ρN − ξρN) . (22)

One can infer from these relations that presence of antibaryons in nuclear matter leads to

increase of the scalar (attractive) potential and decrease of the vector (repulsive) poten-

tial acting on surrounding nucleons. Unlike some previous works, we take into account

the rearrangement of nuclear structure due to the presence of a real antibaryon This

leads to enhanced binding and additional compression of nuclei as was first demonstrated

in Ref. [24].

A few remarks about the numerical procedures are in place here. Calculations are per-

formed for nuclear systems obeying the axial and reflection symmetries. We replace the

Dirac equations (8) for single–particle wave functions ψα
j by the effective Schrödinger equa-

tions for their upper components. Introducing explicitly the upper (ψ+) and lower (ψ−)

spinor components of the wave function and omitting indices j and α , we rewrite Eqs. (8)

in the form

ǫ



 ψ+

ψ−



 =



 m− S + V σp

σp −m+ S + V







 ψ+

ψ−



 . (23)

Here σ denote the spin Pauli matrices and p = −i∇ . From the lower part of Eq. (23)

one gets

ψ− = (ǫ+m− S − V )−1(σp)ψ+ . (24)

Substituting this expression into the upper part leads to the following equation for ψ+

ǫψ+ = hψ+ , (25)

where h is the effective, energy–dependent Hamiltonian

h = (σp)(ǫ+m− S − V )−1 (σp) +m− S + V . (26)

Eqs. (25) for nucleon and antibaryon wave functions are solved by iterations, using

the damped gradient method suggested in Ref. [32]. At each iteration step we use the
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potentials S, V determined by solving Eqs. (11)–(14) for mean meson and Coulomb fields

at the preceding step. Numerical calculations are carried out on a spatial grid with

equidistant grid points. The Fourier transformation of fermion and meson fields is used

to evaluate spatial derivatives as matrix multiplication in the momentum space. This

allows us to use a rougher grid with the cell size ∼ 0.7 fm, as compared to much finer

grids required by the finite difference schemes. Most calculations below were carried out

with the cell size of 0.3 fm which guarantees the the numerical accuracy in binding energies

and density profiles better than 0.5%. For nucleons we implement the paring correlations

using the BCS model with a δ pairing force and a smooth cut–off given by the Fermi

distribution in single–particle energies [28]. The center of mass corrections are taken into

account in the same way as for normal nuclei (for details see Ref. [28]).

III. INFINITE MATTER WITH ADMIXTURE OF ANTIBARYONS

To study qualitative effects due to the presence of antibaryons, let us consider first ho-

mogeneous isospin–symmetric nucleonic matter with admixture of antibaryons (BN mat-

ter). As compared to the general formalism developed in the preceding section, here

we neglect the isospin–asymmetry and Coulomb effects assuming vanishing ρ–meson and

electromagnetic fields. At zero temperature, disregarding medium polarization (density

rearrangement) effects, we calculate thermodynamic functions of BN matter at fixed,

spatially homogeneous densities of nucleons ρN and antibaryons ρB . In this case one can

omit the spatial derivatives in Eqs. (11)–(14) and solve the Dirac equations (8) in the

plane wave representation. For example, assuming that the G-parity concept is valid on

the mean–field level, one gets the energy spectra of N,N states given by Eqs. (2)–(3)

where S = gσNσ, V = gωNω0.

Within the mean field approximation the occupation numbers of nucleons (j = N) and

antibaryons (j = B) at zero temperature have the form of Fermi distributions Θ(pFj − p)

where Θ(x) ≡ (1 + sqn x)/2 and pFj = (6π2ρj/νj)
1/3 is the Fermi momentum of corre-

sponding particles (here νj denote their spin-isospin degeneracy factors). Applying the

standard formalism [22] one can obtain the energy density e = E/V = T 00 directly from
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the Lagrangian (4) with the result

e =
∑

j=N,B

(ekin
j + gωjρjω0) +

1

2
m2

σσ
2 +

b

3
σ3 +

c

4
σ4 − 1

2
m2

ωω
2
0 −

d

4
ω4

0 . (27)

Here ekin
j is the ”kinetic” part of the energy density

ekin
j =

νj

2π2

pF j∫

0

dp p2
√
m∗2

j + p2 , (28)

where m∗
j is the effective mass of j–th particles, related to the scalar meson field as

m∗
j = mj − gσjσ . (29)

After calculating the integral in Eq. (28) we get the formula

ekin
j =

νjp
4
Fj

8π2
Ψ

(
m∗

j

pFj

)
, (30)

where Ψ(z) is a dimensionless function

Ψ(z) ≡ 4

1∫

0

dtt2
√
t2 + z2 =

√
1 + z2

(
1 +

z2

2

)
− z4

4
ln

√
1 + z2 + 1√
1 + z2 − 1

. (31)

Equations for meson fields can be obtained by minimizing the energy density with

respect to σ and ω0 . From Eqs. (27)–(29) one gets [68]

(m2
σ + bσ + cσ2)σ =

∑

j=N,B

gσjρSj , (32)

(m2
ω + dω2

0)ω0 =
∑

j=N,B

gωjρj , (33)

where ρSj ≡ ∂e/∂mj coincides with the scalar density defined in preceding section. The

explicit expression for ρSj has the form

ρSj =
νj

2π2

pF j∫

0

dp p2
m∗

j√
m∗2

j + p2
=
νj p

2
Fjm

∗
j

4π2
Φ

(
m∗

j

pFj

)
, (34)

where

Φ(z) ≡ Ψ ′(z)

2z
=

√
1 + z2 − z2

2
ln

√
1 + z2 + 1√
1 + z2 − 1

. (35)
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FIG. 1: Energy per particle of homogeneous NN matter, ǫ = E/(NN + NN ) , as a function of

nucleon density (in units of ρ0 = 0.15 fm−3) at fixed χ = ρN/ρN . Upper (lower) panel shows

results of the TM1 (NLZ) calculation. Points A correspond to minima of ǫ at χ = 1/16 .
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Using (33) one can rewrite Eq. (27) in a simpler form

e =
∑

j=N,B

ekin
j +

1

2
m2

σσ
2 +

b

3
σ3 +

c

4
σ4 +

1

2
m2

ωω
2
0 +

3

4
dω4

0 . (36)

Notice that the terms containing the vector field ω0 generate a repulsive contribution.

To find bound states of the BN matter we calculate the energy per particle,

ǫ ≡ E

NN +NB

=
e

ρN + ρB

, (37)

at different ρN and ρB . It is useful to introduce instead of ρB the relative concentration

of antibaryons

χ =
NB

NN
=
ρB

ρN
. (38)

Due to the charge–conjugation invariance of NN matter, its energy density must be

symmetric under the replacement ρN ↔ ρN . Therefore, it is sufficient to consider only

the values χ ≤ 1 . At fixed χ, using Eqs. (27)–(35) one has in the low density limit

ǫ0 ≡ lim
ρN→0

ǫ =
mN +mBχ

1 + χ
. (39)

By definition, the total binding energy of the system is equal to

BE = (ǫ0 − ǫ) · (NN +NB). (40)

In the case of NN matter ǫ0 = mN . To investigate qualitatively properties of bound

B + 16O systems (see Sect. IV), we study separately the case of χ = 1/16 .

Figures 1, 2 show the energies per particle of NN matter calculated within the TM1

and NLZ models. The coupling constants of N interactions are fixed by the G–parity

transformation (see Eq. (19)). Different curves corresponds to different values of anti-

nucleon concentration χ. Dashed lines in Fig. 1 represent the results for the case χ = 1/16 .

It is seen that nucleonic matter becomes more bound after inserting a certain fraction

of antibaryons. The maximal binding takes place at χ = 1 i.e. for the ”baryon–free”

matter with net baryon density equal to zero. As one can see from Eqs. (33), (36), the

repulsive vector contribution to the energy density vanishes in this case (ω0 = 0), therefore,

the behavior of ǫ(ρN ) is determined only by the counterbalance of scalar attraction and
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FIG. 2: Comparison of energies per particle calculated within the TM1 and NLZ models for

χ = 0 and 1/16.

effects of Fermi motion. It is interesting to note that such baryon–free NN matter is

fully symmetric with respect to interchanging nucleons and antinucleons. Thus, there is

absolutely no reason that the N and N coupling constants would violate the G–parity

symmetry.

To illustrate the model dependence of the results, in Fig. 2 we compare predictions

of the TM1 and NLZ models for χ = 0 and χ = 1/16. One can see that the NLZ

parametrization predicts larger binding of the NN matter at densities ρN ∼ 2ρ0 . The

calculated parameters of bound states for χ = 0 (pure nucleonic matter), 1/16 and 1 are

presented in Table II. By using Eq. (40) and the values of minimal energies per particle

given in this table (for χ = 1/16), one can estimate the binding energy of a bound p +16O
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TABLE II: Characteristics of bound states of pure nucleonic matter (χ = 0) as well as the NN

matter predicted by the TM1 and NLZ models.

Model TM1 NLZ

χ 0 1/16 1 0 1/16 1

ρN/ρ0 0.99 1.75 4.99 1.01 1.84 4.04

ǫ (MeV) 922 875 449 923 860 412

m∗
N (MeV) 593 393 90 544 224 42

system. This leads to the result

BE (16
pO) =





1070 MeV (TM1) ,

1330 MeV (NLZ) .
(41)

On the other hand, applying the formalism of Sect. II to a finite system 16
pO [24] gives for

its binding energy 1159 MeV (TM1) and 828 MeV (NLZ2). Comparison of these results

shows influence of the finite size (surface), rearrangement (polarization) and Coulomb

effects which are not taken into account in the infinite matter calculations.

More detailed results for the NN matter are represented in Fig. 3 in the form of contour

plots of ǫ(ρN , ρN) on the plane ρN − ρN calculated within the TM1 model. The states

with fixed χ lie on straight lines going from the origin of the plane. The maximal binding,

about 490 MeV per particle, is predicted for symmetric systems with ρN = ρN ≃ 5ρ0 .

Most likely, the hadronic language is not valid at such high densities and the quark–

antiquark degrees of freedom are more appropriate in this case.

Strong binding effects can also be expected in a deconfined qq matter. In Refs. [33, 34]

we have performed calculations for such matter within the generalized Nambu–Jona-

Lasinio (NJL) model. As an example, Fig. 4 shows energy per particle, ǫ = E/(Nq +Nq̄),

for nonstrange isospin–symmetric qq̄ matter at zero temperature. Here Nq (Nq̄) denotes

the total number of u, d quarks (antiquarks). The figure displays contour plots of ǫ(ρq, ρq̄)

predicted by the SU(2) NJL model (for details, see Ref. [33]). The binding in this case

is generated by an attractive interaction in the scalar–pseudoscalar channel. Again, one
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FIG. 3: Contours of energy per particle (shown in GeV near the corresponding curves) on the

ρN − ρN plane, calculated within the TM1 model. The dashed line corresponds to states with

χ = 1/16 . Solid point shows position of minimal ǫ on this line.

can see that the strongest binding is predicted for the baryon–symmetric case ρq = ρq̄ .

The maximum binding energy per qq̄ pair is

BE ≃ (mvac
q − 270 MeV) × 2 ≃ 60 MeV , (42)

where mvac
q ≃ 300MeV is the constituent mass of light quarks in the vacuum. Approx-

imately three times larger binding energies have been found in Ref. [34] for cold quark–

antiquark matter with admixture of strange s, s̄ quarks. On the basis of this finding, in

Refs. [33, 34] we have predicted possible existence of new metastable systems, mesoballs,

consisting of many quarks and antiquarks in a common ”bag”. Such systems are char-

acterized by a small (or zero) baryon number and their decay should occur mainly via

emitting pions from the surface. It is interesting to note that multi–quark–antiquark
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ing curves) of cold quark–antiquark matter calculated within the SU(2) NJL model [33]. The

horizontal (vertical) axis corresponds to the total density of u + d quarks (antiquarks) in units

of ρ0 = 0.15 fm−3 .

clusters were also predicted [35] on the basis of the MIT bag model. It is instructive to

compare the value (42) with the binding energy of baryon–symmetric NN matter cal-

culated within the RMF model. Using Table II for the case χ = 1 , we get the binding

energy per quark–antiquark pair, 2(mN − ǫ)/3 ≃ 326 (350) MeV, within the TM1 (NLZ)

model. Therefore, the hadronic approach may overestimate real binding energies of cold

and dense baryon–free matter by a factor ∼ 5 .

As noted above, the G–parity symmetry may be violated in a dense baryon–rich mat-

ter. As a consequence, the G–parity motivated choice of antibaryon coupling constants,

Eq. (19), may overestimate binding energies of the BN matter. To elaborate on this

issue, we have performed an analogous calculation, but with reduced couplings gσB , gωB

as defined in Eq. (20). The results of calculations within the TM1 model for different

18
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Different curves correspond to the TM1 calculation at different values of the parameter ξ char-

acterizing deviation of the N coupling constants from the G–parity motivated values.

values of ξ are presented in Fig. 5. It shows the energy per particle of NN matter with

χ = 1/16. The lower curve corresponds to the case of the exact G–parity symmetry. One

can see that a reduction of ξ results in a smaller binding and compression of the NN

matter. However, the admixture of antinucleons becomes relatively unimportant only at

very small antinucleon couplings, corresponding to ξ < 0.25 . It is shown below that the

same conclusion follows from more refined calculations for the finite 16
pO system.

TABLE III: The parameters of the TM1 and NLZ models in the hyperonic sector. The remaining

parameters are given in Table I.

mΛ (MeV) mσ∗ (MeV) mφ (MeV) gσΛ gωΛ gρΛ gσ∗Λ gφΛ

NLZ 1116 975 1020 6.23 −8.61 0 6.77 6.09

TM1 1116 975 1020 6.21 −8.41 0 6.67 5.95
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We end this section by considering cold nucleonic matter with admixture of antihy-

perons Y = Λ, Σ . . . As proposed in Ref. [36], the observed data on ΛΛ interaction can

be reproduced within the RMF model by including additional scalar (σ∗) and vector (φ)

meson fields coupled only to hyperons. By the same reason, to take into account the

interaction between antihyperons in the Y N matter, we generalize the Lagrangian (4) by

introducing the additional terms [69]

δLY Y =
1

2

(
∂µσ∗∂µσ∗ −m2

σσ
2
∗

)
− 1

4
φµνφµν +

1

2
m2

φφ
µφµ +

+ψY

(
gσ∗Y σ∗ − gφY φ

µγµ

)
ψY . (43)

In our calculations of the ΛN matter and bound Λ–nuclear systems we use the values

of parameters suggested in Ref. [36]. The Λ–meson couplings were obtained from the

Λ–meson coupling constants by using the G–parity transformation.

TABLE IV: Characteristics of bound states of pure nucleonic matter (χ = 0) as well as the

ΛN–matter predicted by the TM1 models.

χ 0 1/16 1/4 1

ρN/ρ0 0.99 1.47 2.49 4.08

ǫ0 − ǫ (MeV) 16 44 135 252

m∗
N (MeV) 593 456 257 44

m∗
Λ

(MeV) 905 812 662 420

It is easy to see that the hyperon-hyperon interactions lead to the following effects.

First, the gap equation for the antihyperon effective mass is modified (as compared

to Eq. (29)) due to the additional σ∗ field:

m∗
Y

= mΛ − gσY σ − gσ∗Y σ∗ . (44)

Second, the energy density of the Y N matter contains now the additional contribution of

σ∗ and φ mesons,

δeY Y =
1

2

(
m2

σ∗
σ2
∗ +m2

φφ
2
0

)
. (45)
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ρN→0

ǫ . Point A marks

the position of energy minimum for χ = 1/16 .

Figure 6 shows the energy per particle of the ΛN matter, calculated within the TM1

model, generalized in accordance with Eqs. (44)–(45), with parameters listed in Ta-

bles I, III. To compare results for different χ , the energy per particle is shifted by a

corresponding vacuum value ǫ0 defined in Eq. (39). The calculated parameters of bound

states are given in Table IV. Comparison with results obtained earlier for the NN matter

shows that binding energies and equilibrium densities are noticeably smaller in the ΛN

case. For example, the binding energy predicted for the 16
Λ
O ”nucleus” equals approx-

imately 44 × 17 ≃ 748 MeV which is about 30% smaller than for 16
p
O bound state.

This difference is explained by a smaller scalar coupling of Λ particles as compared to

antinucleons (gσΛ/gσN ≃ 2/3) .
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IV. FINITE ANTIBARYON–NUCLEAR SYSTEMS

A. Light nuclear systems with antiprotons

The nucleus 16O is the lightest nuclear system for which the RMF approach is con-

sidered to be reliable. This nucleus is included into the fit of the effective forces NL3

and NLZ2. Therefore, we choose this nucleus as a basic system to study the antibaryon–

nuclear bound states. First, let us consider an antiproton bound in a 16O nucleus. For

clarity we use the notation 16
pO for such a combined system. A priori it is unclear which

quantum numbers has the lowest bound state. We first assume that this is the 1
2

+
state

and later on we shall check this assumption. Results of our self-consistent calculations

for both 16O and 16
pO are presented in Fig. 7. It shows 3D plots of the nucleon densities
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FIG. 7: 3D plots of nucleon density in the 16O nucleus (left) and in the bound p +16O system

(right) calculated within the NL3 model.

for the G–parity motivated antiproton couplings (ξ=1). One can see that inserting an

antiproton into the nucleus gives rise to a dramatic rearrangement of nuclear structure.

This effect has a simple origin. As explained above, the antiproton contributes with the

same sign as nucleons to the scalar density (see Eq. (21)), but with the negative sign to the
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vector density. This leads to an overall increase of attraction and decrease of repulsion for

surrounding nucleons. To maximize attraction, protons and neutrons move to the center

of the nucleus, where the antiproton has its largest occupation probability. This leads to

a strong compression of the nucleus.
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FIG. 8: The left panel represents the sum of proton and neutron densities as function of nuclear

radius for 16O without (top) and with an antiproton. The left and right parts of the upper

middle panel show separately the proton and neutron densities, the lower part of this panel

displays the antiproton density (with minus sign). The right panel shows the scalar (negative)

and vector (positive) parts of the nucleon potential. Small contributions shown in the lower row

correspond to the isovector (ρ–meson) part.

Figure 8 shows the densities and potentials for 16O with and without the antiproton.

For normal 16O all RMF parametrizations considered produce very similar results. The

presence of the antiproton changes drastically the structure of the nucleus. Depending on

the parametrization, the sum of proton and neutron densities reaches a maximum value

of (2−4) ρ0 , where ρ0 ≃ 0.15 fm−3 is the normal nuclear density. The largest compression

is predicted by the TM1 model. This follows from the fact that this parametrization gives

the softest equation of state as compared to other forces considered here. According to

our calculations, the difference between proton and neutron densities is quite large, which
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leads to an increase in symmetry energy. The reason is that protons, though they feel

additional Coulomb attraction to the antiproton, repel each other. As a consequence,

neutrons are concentrated closer to the center than protons and the symmetry energy

increases.
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FIG. 9: Left panels: radial profiles of the vector (ρj) and scalar (ρSj) densities of antipro-

ton (j = p) and nucleons (j = N) in the ground state of 16
p O as predicted by the NLZ2 and NL3

calculations. Right panels show the corresponding profiles of the effective nucleon mass.

Figure 9 shows radial profiles of scalar and vector densities of nucleons and the an-

tiproton in 16
pO. As compared to the normal 16O nucleus, absolute values of vector and
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scalar densities increase in the central region of the nucleus. This leads to a strong drop

of the effective nucleon mass near the nuclear center [70], which in turn suppresses the

local annihilation rate of the antiproton (see Sect. V).
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FIG. 10: Proton (left), neutron (middle) and antiproton (right) energy levels for the nucleus

16O with one antiproton and without it (rightmost columns in the left and middle panels).

Since nucleons feel a deeper potential due to the presence of the antiproton, their

binding energy increases too. This can be seen in Fig. 10. The nucleon binding is largest

within the NL3 parametrization. In the TM1 case, the s1/2+ state is also deep, but

higher levels are less bound as compared to the NL3 and NLZ2 calculations. This is a

consequence of the smaller spatial extension of the potential in this case. The highest

s1/2− level in the TM1 calculation (see Fig. 10) is even less bound than for the system

without an antiproton.

For the antiproton levels, the TM1 parametrization predicts the deepest bound state

with binding energy of about 1130 MeV. The NL3 calculation gives nearly the same

binding, while in the NLZ2 case, antiproton levels are more shallow and have smaller

spacing. It should be noted that the antiprotons are more strongly bound than was

obtained in Ref. [15]. This follows from the fact that here we consider both nucleons

and the antinucleon self–consistently allowing the target nucleus to change its shape and

structure due to the presence of the antiproton. The total binding energy of the 16
pO
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system is predicted to be 828 MeV for NLZ2, 1051 MeV for NL3, and 1159 MeV for

TM1. For comparison, the binding energy of the normal 16O nucleus is 127.8, 128.7 and

130.3 MeV in NLZ2, NL3, and TM1, respectively.
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FIG. 11: 3D plots of nucleon densities for the nucleus 8Be without (left) and with (right)

antiproton calculated within the NL3 model.

As a second example, we investigate the effect of a single antiproton inserted into

the 8Be nucleus. In this case only the NL3 parametrization was used (the effect is similar

for all three RMF models). The normal 8Be nucleus is not spherical, exhibiting a clearly

visible α−α structure with the deformation β2 ≃ 1.20 in the ground state. As one can see

from Fig. 11, inserting an antiproton gives rise to the compression and change of nuclear

shape, which results in a much less elongated nucleus with β2 ≃ 0.23. Its maximum

density increases by a factor of three from 1.3ρ0 to 4.1ρ0 . The cluster structure of the

ground state completely vanishes. A similar effect has been predicted in Ref. [37] for

the K− bound state in the 8Be nucleus. In our case the binding energy increases from

52.9 MeV (the experimental value is 56.5 MeV) to about 700 MeV.
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FIG. 12: The profiles of net baryon density, ρN − ρp , in the p +4He (left) and p +16O (right)

systems, calculated within the NLZ2 model.

Figure 12 represents profiles of the net baryon density i.e. the sum of the proton and

neutron densities minus the antiproton density. For both considered systems, there is a

dip in the center surrounded by the region with baryon density increased as compared to

normal nuclei.

TABLE V: Total binding energies of p+16O system with antiproton occupying different states.

Jπ
z 1/2+ 3/2− 1/2− 1/2−

NL3 -1051 -1008 -920 -780

NLZ2 -828 -938 -804 -876

Now we address the question of wether the antiproton 1/2+ state is energetically the

most favorable configuration of the 16
p
O system or not. To answer this questions, we put

the antiproton into various states and calculate the total binding energy. The results

are shown in Table V. In the case of NL3, the lowest 1/2+ state indeed corresponds to

the configuration with lowest energy. However, within the NLZ2 calculation a state with

the antiproton in the 3/2− state corresponds to the ground state of the system. The

3/2− state has a different spatial distribution and thus, leads to a different shape of the

27



r (
fm

)

0
2

4
6

8
10

12

z (fm) 024681012
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρ(fm−3)

FIG. 13: 3D plot of nucleon density in the in the bound Λ +16O system calculated with the NLZ

model.

potential felt by nucleons. So, even though the antiproton in the 3/2− state is less bound

than in the 1/2+ state, nucleons become more bound in this case and the binding energy

of the whole system increases.

B. Light systems with antilambdas

Bound states of nuclei with antihyperons are especially interesting because we expect

longer life times in this case (see Sect. V). We performed calculations of the 4
Λ
He and 16

Λ
O

systems within the NLZ model. The assumed Λ couplings with the meson fields are given

in Table III.

Figure 13 shows the 3D plot of the sum of proton and neutron densities in the 16
Λ
O

nucleus. Comparison with the results for the 16
pO systems (see Fig. 7) shows noticeably
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lower nucleon densities in this case. However, we still predict significant compression of

nuclei containing antihyperons. Figure 14 gives profiles of the net baryon density in the

4
Λ
He and 16

Λ
O nuclei. It is interesting that the central density dip is even more pronounced

here as compared to nuclei with antiprotons (see Fig. 12). This effect can be explained

by a stronger localization of the antilambda due to its larger effective mass.

C. Calculations with reduced antibaryon couplings

As was pointed out earlier, the G–parity transformation may not work on the mean–

field level. Therefore, we have performed calculations of bound p+A systems with reduced

antiproton couplings to mean meson fields. Figure 15 shows the results for the 16
pO nucleus

obtained for several values of the parameter ξ introduced in Eq. (20).

One can see that at ξ >∼ 0.25, the compressed shape of the nucleus is not very much

affected. The largest compression, of course, occurs for ξ = 1, i.e. in the case of the

exact G–parity. At ξ smaller than 0.05 (NL3) or 0.01 (NLZ2), the nucleon density profiles

practically coincide with the density distribution of the normal 16O nucleus. On the

other hand, the antiproton density profile becomes rather flat in this case. Somewhere in
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FIG. 15: The profiles of densities and mean–field potentials in the bound p+16O system calcu-

lated with reduced antiproton coupling constants. The upper (lower) panel corresponds to the

NL3 (NLZ2) model. Different curves correspond to different values of the parameter ξ defined

in Eq. (20). Shown are the nucleon densities (left), antiproton densities (middle) and scalar and

vector potentials for nucleons (right). Note, that at ξ < 1 the antiproton potentials are smaller

due to reduced p couplings.

between, there exists a critical ξ value separating these two regimes. Detailed calculations

with different ξ show that there is no smooth transition but rather an abrupt jump. This

is an indication that, to a large extent, the shell effects control the structure of these

systems.

The results of these calculations show that the conclusions made in Ref. [24] and

in the present work do not strongly depend on the actual values of gσN and gωN . As

a consistency check, we verified that at ξ → 0 the binding energy of 16
pO goes to the value

of normal 16O [71]. This is demonstrated in Fig. 16 where one can see strong increase of

the binding energy for ξ >∼ 0.1 .

Similar results take place for the p+4He system. They are presented in Fig. 17. Of

course, this is system is rather small and the mean-field approximation may be not ac-
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FIG. 17: Same as in Fig. 15 but for 4He with an antiproton.
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curate in this case. Nevertheless, we expect to get a qualitative picture even for such a

light system. At ξ = 1 the nucleon density in the 4
p
He nucleus reaches a maximum value

of about 6ρ0 which is noticeably larger than in 16
pO. As in the case of 16

pO, depending on

the ξ value, there are two different configurations of the bound system, namely a highly

compressed one and the other resembling normal helium plus a quasi free antiproton. For

both RMF models, the reduction of antiproton coupling constants up to ξ ≃ 0.25 does

not produce a strong effect in the density distribution.

D. Rearrangement of nuclear structure and Dirac sea
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FIG. 18: Proton and antiproton potentials as well as corresponding single–particle levels for

the systems 4He, p +4He (left side) and 16O, p +16O (right side) calculated within the NLZ2

model. The full and open dots in the Dirac sea show the most bound occupied and vacant states,

respectively.

The presence of an antiproton within a light nucleus leads to a drastic rearrangement

of its structure and to the polarization of the Dirac sea. We illustrate this effect in
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Fig. 18, where the effective potentials and single–particle levels are shown for helium

and oxygen, in each case with and without an antiproton. A hole at the deepest bound

level in the lower well corresponds to a positive energy antiproton. After inserting an

antiproton the nuclear structure is strongly rearranged. Both the nucleonic as well as the

antiparticle states become deeper which gives rise to increase of the binding energy by

several hundred MeV. The lower well in the case of the p+4He system is very narrow

and its bottom overlaps with the positive energy well. The uncertainty relation prevents,

however, the strongest bound antiparticle and particle states to be very close in energy.

The lower well in the case of oxygen also becomes narrower as compared with normal 16O

nucleus.

The rearrangement of the Dirac sea due to the presence of an antiproton leads to

increasing number of negative energy states. The spin–orbit potential for antiparticles is

very small, because, in contrast to nucleons, scalar and vector potentials for antiprotons

nearly cancel each other [72]. Still, there are gaps between the antiparticle levels of the

order of a hundred MeV (see Fig. 10). This is a consequence of a smaller width of the

lower well as compared to the negative energy well in the normal nucleus.

E. Heavy nuclei containing antibaryons

In this section we investigate the effect of antiprotons and antilambdas inserted into

heavy nuclei. Because of larger radii of these objects (R >∼ 7 fm), one may expect appear-

ance of a local compression zone in the central region instead of a more homogeneously

compression in lighter systems. This is exactly what follows from our calculation. Fi-

gure 19 shows the sum of proton and neutron densities, for the case of doubly–magic

lead nucleus with one deeply–bound antiproton. Due to the presence of an antiproton,

a small core of highly compressed nuclear matter appears at in the center of the 208
p

Pb

nucleus. In addition, the lead nucleus becomes deformed and acquires a prolate shape.

As shown in Fig. 20 a similar structural change occurs when implementing the Λ particle

into the 208Pb target. Figure 21 shows single–particle spectra of protons, neutrons and

antiprotons in the normal lead as well as in the bound 208
p Pb and 208

Λ
Pb nuclei. One can
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FIG. 19: 3D plots of nucleon density in the 208Pb nucleus (left) and in the bound p+208Pb

system calculated within the NL3 model.

see that implementing antiparticles results in a strong change of shell structure. Due to

the axial deformation, the system looses its degeneracy and the shell structure becomes

partly washed out. Only the 1/2+ and 3/2− levels exhibit large binding. The deepest

antibaryon states have binding energies of more than 900 (600) MeV in the case of the

208
p Pb (208

Λ
Pb) system. On the other hand, some of the single–particle states become even

less bound in the lead nucleus with antibaryons.

These results can be qualitatively understood from the fact that the nucleon potential

in the center of the bound system is very deep but narrow. Two effects prevent deeper

binding of single–particle levels. First, a narrow potential gives rise to large uncertainties

in particle momenta. This in turn increases the kinetic energies of particles and therefore,

reduces their binding. Second, the single–particle states with larger angular momenta are

mainly localized at larger radii and thus do not have much overlap with the deep central

region of the potential. The total binding energy of the 208
p

Pb nucleus predicted by the

NL3 calculation equals 2412 MeV or 11.5 MeV per particle. This is significantly smaller

than 61.8 MeV per particle in the 16
pO system. Furthermore, the total energy gain in the

binding energy after inserting an antibaryon into the 208Pb nucleus (780 MeV) is smaller
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FIG. 20: 3D plots of nucleon density in the bound Λ+208Pb system calculated within the NLZ

model.
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than in the 16O case (920 MeV).
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FIG. 22: The profiles of nucleon density in the 208
p Pb system at different values of the para-

mater ξ . The left and right panels correspond, respectively, to the equatorial and coaxial planes.

Figure 22 shows the nucleon density profiles in the 208
p

Pb system calculated with

ξ = 1, 0.5 and 0 (the normal Pb nucleus). Because of the axial deformation we show

separately the profiles for radial (equatorial) and coaxial planes. This figure demonstrates

a very interesting behavior. Contrary to a naive expectation, reducing ξ from 1 to 0.5

leads to increasing density of the central core [73]. We believe that this can be explained

by the competition of two opposite trends taking place at decreasing ξ . The first one is the

reduction of the binding potential while the second one is the increase of the antiproton

effective mass. The second effect leads to a stronger localization of the antiproton wave

function near the minimum of the effective potential. As a consequence, the potential

acting on surrounding nucleons increases in the central regions.
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F. Systems containing several antibaryons

It is amazing to consider nuclear systems with more than one trapped antibaryon. For

instance let us consider doubly–magic oxygen containing different numbers of antiprotons,

namely Np = 2, 4, 6, 8 and 10. The corresponding baryon densities are shown in Fig. 23.
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FIG. 23: Net baryon density, ρN − ρp, for the 16O nucleus with 2, 4, 6, 8 and 10 antiprotons,

calculated within the NL3 model.

The total binding energies for the systems containing 2, 4, 6, 8 and 10 antiprotons are

1541, 2792, 3847, 5006, and 6300 MeV, respectively. As we can expect, with increasing

number of antiprotons, the region of reduced net baryon density becomes broader. In the

case Np = 10 one can see a qualitative change of nuclear structure, with appearance of

a baryon density peak in the center region and a zone of reduced density at the nuclear

periphery.

One can also think of most extreme case of finite systems with equal numbers of baryons

and antibaryons, i.e. about systems with total baryon number B = 0 . These systems can

be called self–conjugate nuclei, since their charge conjugation leads to the same object.

Let us first consider the bound α − α system. As seen in Fig. 24, the (anti)particle
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FIG. 24: The system α−α calculated within the NLZ2 (solid line) and NL3 (dotted line) models.

Shown are baryon and antibaryon densities (left) as well as the scalar potential and energies

of the lowest single–particle states (right). The dashed line shows the nucleon density of the

normal α particle calculated within the NLZ2 model.

densities in this system reach about 10ρ0 . Of course, one should expect a breakdown of

the RMF model with nucleonic degrees of freedom at such high densities. Most probably

the (anti)baryons will dissolve into a deconfined state of cold and dense qq matter (see

Sect. III).

Due to the full symmetry between baryons and antibaryons (or quark and antiquarks)

such systems have both vanishing baryon and electric charges. Accordingly, the vector

fields, namely the ω meson and Coulomb fields, vanish too. Only the scalar density and

with it the scalar potential are nonzero in a symmetrical system. Since nucleons and antin-

ucleons have the same scalar potential, they can occupy the same single–particle states.

In this case the spatial parts of the wave functions of protons, neutrons, antiprotons and

antineutrons are identical. Hence, the spatial overlap between particles and antiparticles
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FIG. 25: The system 16O–16O calculated within the NL3 model. The dotted lines show the

baryon and antibaryon densities (left) as well as the scalar potential and the lowest single–particle

states (right). The dashed line represents the nucleon density of the normal 16O nucleus.

is maximal. On the other hand, due to the very high density of baryons and antibaryons,

the effective masses are very small in the core region. The calculated binding energy of

the α − α system is very large, it is 2649 MeV for NL3 and 2235 MeV for NLZ2. This

is about 100 times the value for a single α particle and 40 times the binding energy of

normal 8Be nucleus.

As a second example we consider the 16O–16O system. The calculated profiles of

(anti)nucleon density and scalar potential are shown in Fig. 25 [74]. In this case we predict

formation of a highly compressed system with maximal nucleon and antinucleon densities

of about 5ρ0 . One can see in Figs. 24–25 that radial profiles of the scalar potential in

symmetric A+A systems are noticeably broader as compared to the (anti)nucleon density

distributions. Such a behavior follows from the finite range of σ meson field (see Eq. (11)).
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V. ANNIHILATION OF DEEPLY BOUND ANTIBARYONS

A. NN annihilation in vacuum

At low energies the total cross section of pp annihilation in vacuum can be well ap-

proximated as [39]

σ ann
pp = C +

D

vrel
, (46)

where vrel is the relative velocity of p with respect to the proton, C = 38mb, D = 35 mb·c .

In the following we neglect the isotopic and Coulomb effects assuming that pp and pn

annihilation cross sections are approximately equal. Using this approximation we discuss

below the isotopically averaged NN interactions.

When the NN c.m. energy
√
s is close to the vacuum threshold value, i.e. at

√
s→ 2mN ≃ 1.88GeV, the relative velocity becomes small and the NN annihilation

cross section is approximately proportional to 1/vrel [75]. This limiting case of annihila-

tion ”at rest” (vrel → 0) has been extensively studied in Refs. [41–47]. Experimental data

on many exclusive annihilation channels pp→ c→ nππ are also available. Here interme-

diate states c include direct pions as well as heavy mesons η (547), ρ(770), ω (782) . . .

Various channels of the pp annihilation at rest are listed in Table VI. They are sorted

into groups with different final pion multiplicities nπ . The most important exclusive

channels c are given in the second column. In the third column we give the corresponding

threshold energies in the c.m. frame (i.e. the total mass of particles in the intermediate

state). The fourth column shows the observed branching ratio of a given channel c:

Bc = σpp→c/σ
ann
pp . (47)

In the last column we give references to publications where experimental information on

branching ratios has been found. The subscripts ”dir” in the second column mean that

only nonresonant contributions are given in the corresponding line. For example, the

branching ratio of the (π+π−π0)dir channel has been calculated using the formula

Bpp→(π+π−π0)dir
= Bpp→π+π−π0 − Bpp→π0ρ0 −Bpp→π±ρ∓ , (48)
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TABLE VI: Exclusive channels of pp annihilation at rest in vacuum

nπ c
√

sthr(GeV) Bc(%) Refs.

2 2π0 0.27 0.07 [47]

π+π− 0.28 0.31 [46]

3 (3π0)dir 0.41 0.7 [47]

(π+π−π0)dir 0.42 1.8a [46]

π0ρ0 0.91 1.7 [46]

π±ρ∓ 0.91 3.4 [46]

4 (4π0)dir 0.54 0.5b [47]

(π+π−2π0)dir 0.55 7.8c [41, 42, 46]

(2π+2π−)dir 0.56 4.2d [42, 43]

π0ω 0.92 0.6 [46]

π+π−ρ0 1.05 3.6e [42]

ρ+ρ− 1.54 0.9 [42]

5 (5π0)dir 0.68 0.5 f [44, 45]

(π+π−3π0)dir 0.69 20.1g [41, 44, 47]

(2π+2π−π0)dir 0.70 10.4h [42, 44, 46]

2π0η 0.82 0.7 [44]

π+π−η 0.83 1.3 [44]

2π0ω 1.05 2.6 [47]

π+π−ω 1.06 6.6 [46]

ρ0ω 1.55 2.3 [46]

6 (π+π−4π0)dir 0.82 1.9 i [41, 42]

(2π+2π−2π0)dir 0.83 13.3 j [41, 47]

(3π+3π−)dir 0.84 2.0 [42]

ωη 1.32 1.5 [47]

2ω 1.54 3.0 [47]

7 (2π+2π−3π0)dir 0.97 4.0k [41, 47]

(3π+3π−π0)dir 0.98 1.9 [42]

π0ωη 1.47 1.0 [47]

a see Eq. (48)
b average between two values given in Ref. [47]
c calculated as Bpp→π+π−2π0 − Bpp→π0ω − Bpp→ρ+ρ−

d calculated as Bpp→2π+2π− − Bpp→π+π−ρ0

e average between two values referred in Ref. [42]
f calculated as Bpp→5π0 − Bpp→2π0ηBη→3π0

g calculated as Bpp→π+π−3π0 − Bpp→2π0ηBη→π+π−π0 − Bpp→π+π−ηBη→3π0 − Bpp→2π0ω

h calculated as Bpp→2π+2π−π0 − Bpp→π+π−ηBη→π+π−π0 − Bpp→π+π−ω − Bpp→ρ0ω

i calculated as Bpp→π+π−nπ0 (n≥2) − Bpp→π+π−2π0 − Bpp→π+π−3π0 using data from Ref. [42]
j calculated as Bpp→2π+2π−2π0 − Bpp→ωηBη→π+π−π0 − Bpp→2ω

k calculated as B − B 0 B
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where the first term in the r.h.s. is the total branching ratio of the reaction pp→ π+π−π0

and the two other terms give the contributions of the πρ intermediate states. Here we

take into account that ρ → 2π is the dominant channel of the ρ meson decay [48]. The

channels c = 3π0, 4π0, π+π−4π0, 3π+3π− and 3π+3π−π0 are classified as direct, because

no resonance contributions have been found there. In Table VI we include only main

annihilation channels with Bc > 0.5% (for nπ > 2). We do not separate resonances in

channels with total number of intermediate mesons exceeding three.

B. Kinetic approach to annihilation in medium

Let us first consider annihilation of slow antibaryons, B , in homogeneous nucleonic

matter with a small admixture of antibaryons. Using again the mean–field approach we

treat the B + N matter as a mixture of ideal Fermi gases of nucleons and antibaryons

interacting with mean meson fields. Assuming that annihilation on multinucleon clusters

is relatively small (see below), we consider here only the binary BN annihilation. Then

the local rate of B annihilation per unit volume can be written as a sum over all BN

annihilation channels with production of n ≥ 2 mesons in the final state:

dNann

dtdV
=

∑

n

dNBN→M1 ...Mn

dtdV
. (49)

Here Ml (l = 1, . . . , n) denote secondary mesons. In the following we disregard in–medium

modifications of these mesons, assuming that their 4–momenta kl satisfy the mass–shell

constraints, k2
l = m2

l , with vacuum masses ml [76].

In the quasiclassical approximation one can describe the phase–space density of an-

tibaryons (i = B) and nucleons (i = N) by distribution functions fi(x,p) , where x = (t, r)

is the space–time coordinate and p is the 3–momentum of the i–th particle. Within the

mean–field model, the kinematic part of the single–particle energy is written as

Ei =
√
m∗2

i + p2 , (50)

where m∗
i is the effective mass of the i–th particles (i = B,N). Their vector and scalar
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densities are determined by integrals over 3–momenta:

ρi(x) =

∫
d3pfi(x,p) , (51)

ρSi(x) =

∫
d3p

m∗
i

Ei

fi(x,p) . (52)

At zero temperature we use Fermi distributions fi = νi

(2π)3 Θ(pF i − |p|) , where νi is the

spin–isospin degeneracy factor of the i–th particles, pF i = (6π2ρi/νi)
1/3 is their Fermi

momentum and Θ(x) ≡ (1 + sgnx)/2 [77].

Within the kinetic approach (see e.g. Ref. [52]), the rate of the reaction

BN → c (c = M1 . . .Mn) can be written as

dNBN→c

dtdV
=

∫
d3pB

EB

fB (x,pB)

∫
d3pN

EN
fN (x,pN) ×

∫ n∏

l=1

d3kl

El

Wc (P = pB + pN |k1, . . . , kn)δ
(4)(P − k1 − . . .− kn) . (53)

Here Wc is the BN → c transition probability, pi = (Ei,pi) and kl = (El,kl) are the

4–momenta of the initial particles and the final mesons.

Following the standard arguments of a statistical approach we assume that the transi-

tion probabilities do not depend sensitively on the particles’ momenta so that Wc can be

replaced by constants,

Wc (P |k1, . . . , kn) ≃Wc = const . (54)

Then the contributions of different reaction channels are determined mainly by their

invariant phase space volumes

Rc(s) =

∫ n∏

l=1

d3kl

El

δ(4)(P −
n∑

l=1

kl) , (55)

where s = P 2 = (pB + pN)2 is the c.m. energy squared available for the reaction.

Now Eq. (53) can be written as

dNBN→c

dtdV
= ρB ρNWc

〈
Rc(s)

EBEN

〉
≡ ρB Γc , (56)

where Γc is the partial annihilation width for channel c . The angular brackets denote

averaging over the momentum distribution of incoming particles,

〈O〉 ≡
∫ ∏

i=B,N

(
d3pi

fi(x,pi)

ρi(x)

)
O . (57)
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where O is an arbitrary function of 3–momenta pB,pN .

Let us consider first the limit of dilute matter, i.e. ρB, ρN → 0. In this case, pF i → 0,

m∗
i → mi (i = B,N) and the distribution functions fi(x,p) can be formally replaced

by ρiδ
(3)(p) . As a consequence, at ρB, ρN → 0 we get the following relation:

dNBN→c

dtdV
≃ ρB ρNWc

Rc(s0)

mBmN
. (58)

Here s0 = (mB +mN )2 corresponds to the energy available for BN annihilation at rest in

vacuum. On the other hand, in this limit the reaction rate can be expressed [52] through

the vacuum cross section of the BN annihilation at vrel → 0:

dNBN→c

dtdV
≃ ρB ρN (σBN→cvrel)0 , (59)

where the subscript ”0” indicates that the quantity in brackets is taken at pB,N → 0 .

By comparing Eqs. (58) and (59) one can express the transition probabilities Wc by

experimental cross sections of the BN annihilation:

Wc =
mBmN

Rc(s0)
(σBN→cvrel)0 . (60)

In a general case of finite densities, the partial annihilation width, defined in Eq. (56),

can be expressed as

Γc = Γ0c

〈
λc(s)

mBmN

EBEN

〉
, (61)

where

Γ0c = ρN (σBN→cvrel)0 , (62)

is the axillary width, corresponding to the vacuum cross section, and

λc(s) =
Rc(s)

Rc(s0)
(63)

is the phase–space suppression factor, which plays a central role in our estimates.

In nuclear medium the single–particle energies of antibaryons and nucleons are modified

by the scalar and vector potentials. The minimum energy of a BN pair available for

annihilation, i.e. the reaction Q value, is

Q =
√
s∗ = m∗

B
+ VB +m∗

N + VN , (64)
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where m∗
i and Vi are effective masses and vector potentials of particles (i = B,N). In the

case of antinucleons with the G–parity transformed potentials m∗

N
= m∗

N and VN = −VN

hence Q = 2m∗
N .

This value can be significantly reduced as compared to the minimal energy in vacuum,
√
s0 , which leads to strong suppression of the available phase space for annihilation prod-

ucts. Actual c.m. energies of BN pairs have a certain spread due to the Fermi motion of

nucleons. It easy to show that even at ρN ∼ 2ρ0 the variation of the Q values does not

exceed 10%. Taking into account that uncertainties in scalar and vector potentials are of

the same order, we simplify the general expression (61) by replacing λc(s) with λc(s∗) .

Then the partial annihilation width in the medium can be represented in a simple form

Γc ≃ Γ0cλc(s∗)JBN . (65)

Here

JBN = φB(x)φN(x) , φi(x) =

〈
mi

Ei

〉
=
mi

m∗
i

ρSi

ρi

(i = B,N) . (66)

Returning to the initial expression (56) we see that the reaction rate is proportional to

the product of the scalar densities of annihilating particles. In fact, this is required by

the Lorentz invariance of Eq. (56), because factors Wc and λc are Lorentz invariants.

The direct calculation of the scalar densities ρSi using Fermi distributions in Eq. (52)

yields

φi =
3

2

mi

pF i

Φ(
m∗

i

pF i

) , (67)

where Φ(z) is the dimensionless function defined in Eq. (35). For systems with small

admixture of antibaryons, i.e. when pFB ≪ pFN , m
∗
B

, one can use the approximate

formulae

Φ(
m∗

B

pFB

) ≃ 2

3

pFB

m∗
B

, φB ≃ mB

m∗
B

. (68)

Here m∗

B
is determined for pure nucleonic matter with ρB = 0 .

C. Phase space suppression factors

Let us now consider in more detail the phase space suppression factors λc introduced

by Eq. (63). In the particular case of the two–body annihilation channels λc can be
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FIG. 26: Phase space suppression factors for NN annihilation into two mesons as functions of

c.m. energy in the subthreshold region. The vertical dashed lines indicate
√

s∗ values adopted

in the calculations for infinite nuclear matter (see subsection D).

calculated analytically. Direct calculation using Eq. (55) gives

RBN→M1M2
(s) = 2π

√[
1 − (m1 +m2)2

s

] [
1 − (m1 −m2)2

s

]
Θ(

√
s−m1 −m2) , (69)

where m1 and m2 are meson masses. Figure 26 presents the results for the two–body

channels involving pions and the heavy mesons η, ρ, ω . One can see a strong decrease of

λc(s) in the subthreshold region, s < s0, which is getting more prominent for heavier final

states.

For channels with more than two secondary mesons, the multidimensional integrals in

Eq. (55) are evaluated numerically using the Monte Carlo method. Figure 27 shows the

energy dependence of factors λc for nonresonant channels NN → (nπ)dir with different

pion multiplicities n . One can see that at given s the reduction of phase space becomes

more and more important with increasing n . In the case of the lightest annihilation
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FIG. 27: Same as Fig. 26, but for NN annihilation into n direct pions. Note the change to a

log scale on the vertical axis.

channel, c = 2π , the phase space is only slightly reduced in the subthreshold energy

region. The noticeable deviation of λ2π from unity takes place only in the vicinity of

the 2π threshold, i.e. at
√
s → 2mπ . On the other hand, for n > 2 factors λnπ(s)

decrease very rapidly with decreasing s . For example, at
√
s = 1GeV, the phase space

factors λnπ ≃ 0.97, 0.19, 0.014 for n = 2, 3, 4 , respectively.

It is interesting to note that the trend in behavior of the phase space factors above the

threshold,
√
s > 2mN , changes to opposite, i.e. the multi–pion channels become more and

more important with increasing
√
s . This observation was used earlier [53] to explain fast

chemical equilibration in nuclear collisions. Thus, these two trends are complementary,

but not inconsistent with each other.
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D. Annihilation widths in nuclear medium

To calculate the factors Γ0c which enter into the in–medium annihilation widths (65)

we use vacuum branching ratios, Bc = σBN→c/σ
ann
BN

. In the case of antinucleons (B = N)

one has

Γ0c = BcρN (σ ann
NN

vrel)0 = Γ0Bc
ρN

ρ0
MeV . (70)

The numerical value Γ0 = 104MeV is obtained when the parametrization (46) is used for

the totalNN annihilation cross section. In the calculations below we use the experimental

Bc values from Table VI.

As an illustration, let us consider the NN → c partial widths for the following two

annihilation channels: c = 2π and c = πρ . The in–medium widths are calculated from

0 2 4 6 8 10
0

5
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N / 0

c
(M
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)

c= (NLZ)
c= (TM1)
c=2 (NLZ)
c=2 (TM1)

FIG. 28: The NN → c (c = 2π, πρ) partial widths in nucleonic matter with density ρN .

Eqs. (65)–(70), in the limit ρN → 0 . The corresponding branching rations are obtained

from the obvious relations B2π = B2π0 +Bπ+π− and Bπρ = Bπ0ρ0 +Bπ±ρ∓ , using data from
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Table VI. To study the model dependence, the predictions of two RMF models, NLZ [27]

and TM1 [29], have been compared. In both cases, the antibaryon couplings are chosen

according to G–parity transformation, which leads to equal effective masses of nucleons

and antinucleons.

The widths Γ2π and Γπρ as functions of nuclear density are shown in Fig. 28. At low nu-

cleon densities, these widths deviate only slightly from the linear dependence Γ0c ∝ ρN .

However, at ρN
>∼ ρ0, when the effective mass m∗

N drops significantly, the density de-

pendence of the in–medium annihilation widths becomes strongly nonlinear. Since the

phase–space factors λc(s∗) vanish at
√
s∗ = 2m∗

N < m1 +m2 , both channels become for-

bidden at large enough densities. Figure 29 shows the density dependence of the nucleon
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FIG. 29: Effective nucleon mass m∗
N as a function of density predicted by the NLZ and TM1

models. Thin horizontal lines show threshold values of m∗
N for NN annihilation into 2π and πρ

mesons.

effective mass m∗
N(ρN ) for the same RMF models as in Fig. 28. One can see that the
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strong model dependence of Γ2π is explained by a slower decrease of m∗
N within the TM1

model. It is interesting to note that all strong annihilation channels would be closed

when m∗
N(ρN ) < mπ. In this case only electromagnetic (c = 2γ) or multi-nucleon (see

subsection F) annihilation channels would limit the life time of an antinucleon in nuclear

medium.

It is instructive to calculate the annihilation widths for the following three physically

interesting cases:

S0 : ρN = ρ0 , m∗
N = mN , (71)

SI : ρN = ρ0 , m∗
N = 0.65 GeV , (72)

SII : ρN = 2ρ0 , m∗
N = 0.30 GeV . (73)

In the first parameter set, all in–medium effects are disregarded, i.e. s∗ = s0, λc = 1,

JNN ≃ 1 and, therefore, Γc ≃ Γ0c . In the SI case we choose the density and effective

mass which are commonly accepted for equilibrium nuclear matter (without antinucleons).

Similar values are predicted by most RMF models. This case is interesting for estimating

the annihilation width in a situation when the rearrangement effects due to the presence

of antibaryons are disregarded [78].

For the case SII we take typical values for ρN and m∗
N as predicted by our calculations

for the bound 16
pO nucleus. Of course, the main contribution to annihilation comes from

the central part of the nucleus where the antiproton is localized. As can be seen in Fig. 9,

the antiproton wave function in the lowest bound state of 16
pO practically vanishes at

r ≃ Rp = 1.5 fm. The values of density and effective mass in the SII case correspond

approximately to the values obtained by averaging the ρN and m∗
N radial profiles in the

interval r ≤ Rp .

Table VII presents numerical values of the NN → c widths Γc calculated for the above

parameter sets using Eqs. (65), (70). In these calculations we use the values JNN ≃ 2.0 (SI)

and 7.6 (SII), which follow from Eqs. (66)–(68). In Table VII, annihilation channels are

grouped according to the multiplicity of pions in the final state n . As compared to the

vacuum extrapolated values (S0), the in–medium annihilation widths are significantly

reduced for the channels with n exceeding 3 ( SI) and 2 (SII). Many annihilation channels
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TABLE VII: Characteristics of N annihilation in cold nuclear matter.

Parameter set S0 SI SII

c Bc(%) Γc (MeV) λc Γc (MeV) λc Γc (MeV)

2π 0.38 0.39 0.99 0.78 0.89 5.3

(3π)dir 2.5 2.6 0.40 2.1 0.023 0.91

πρ 5.1 5.3 0.76 8.0 0 0

(4π)dir 12.5 13.0 0.13 3.4 5.6·10−6 1.1·10−3

πω 0.6 0.62 0.75 0.93 0 0

2πρ 3.6 3.7 0.074 0.55 0 0

2ρ 0.9 0.93 0 0 0 0

(5π)dir 31.0 31.1 0.032 2.1 0 0

2πη 2.0 2.1 0.16 0.66 0 0

2πω 9.2 9.5 0.070 1.33 0 0

ρω 2.3 2.4 0 0 0 0

(6π)dir 17.2 17.8 4.2·10−3 0.15 0 0

ωη 1.5 1.6 0 0 0 0

2ω 3.0 3.1 0 0 0 0

(7π)dir 5.9 6.1 1.9·10−3 0.023 0 0

πωη 1.0 1.0 0 0 0 0

are strongly suppressed or even completely closed due to reduced Q values. For instance,

the (5π)dir channel, most important in the vacuum, is suppressed by a factor ∼ 15 in the

case SI. All channels with heavy mesons η, ρ, ω are closed in the case SII.

Table VIII presents the NN → nπ widths for different total number of pions in the

final state n . These widths are calculated by summing partial widths of channels with

the same pion multiplicities in Table VII. The total annihilation width is obtained by
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TABLE VIII: The widths of NN → nπ channels as well as the total width of N annihilation

(all in MeV) for different parameter sets introduced in Eqs. (71)–(73).

n S0 SI SII

2 0.4 0.8 5.3

3 7.9 10.1 0.9

4 18.2 4.8 10−3

5 46.1 4.0 0

6 22.5 0.2 0

≥ 7 8.9a 0.02b 0

total 104 19.9 6.2

a Obtained as difference between
∑
c

Γ0c ≃ 104MeV (see Eq. (70)) and the total width of NN → nπ

channels with n ≤ 6 .
b Only n = 7 contribution included.

summing all partial contributions,

Γ =
∑

c

Γc . (74)

Based on results presented in Table VIII, we conclude that the N annihilation width in

the medium can be suppressed by large factors ∼ 5 (SI) or even 15 (SII) as compared to

the naive estimate of the case S0. Corresponding life times are

τ ≡ h̄

Γ
≃ 1.9 (S0), 9.9 (SI) , 32 (SII) fm/c , (75)

Life times in the range 10–30 fm/c open the possibility for experimental studies of bound

antinucleon–nucleus systems.

Even larger suppression of annihilation may be expected for nuclei containing anti-

hyperons. Unfortunately, due to absence of detailed data on BN annihilation, it is not

possible to perform analogous studies for B = Λ, Σ , . . . Available data [54, 55] on Λp

annihilation show that σ ann
Λp

<∼ σ ann
pp at p lab ∼ 10 GeV/c . On the other hand, due to the
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FIG. 30: Probabilities of the NN → nπ annihilation as a function of the pion multiplicity n.

Dotted lines corresponds to the Gaussian fit [39] of experimental pp data.

appearance of a heavy kaon already in the lowest–mass annihilation channel, ΛN → πK,

one may expect significant in–medium suppression of this channel, contrary to the reaction

NN → 2π , which is enhanced as compared to the vacuum (see Table VIII).

It is worth to mention another qualitative effect, which accompanies annihilation of

antibaryons in nuclei: the strong modification of the distribution Pn in the number of

secondary pions, n , as compared to the BN annihilation in vacuum. These distributions

are calculated as Pn = ΓBN→nπ/Γ and presented in Fig. 30 for B = N . The dashed curve

corresponds to the S0 data from Table VIII [79]. In this case the maximum is at n = 5

and the shape is not far from Gaussian (dotted line). It is clearly seen that the maximum

of Pn shifts to smaller values, n = 3 and 2, in matter with densities ρ0 (SI) and 2ρ0 (SII).

This effect may be used to select events with formation of superbound nuclei containing

antinucleons, e.g. by rejecting events with more than two soft pions in the final state.
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E. Annihilation of antibaryons in finite nuclei

In the end of this section we estimate the life times of bound antibaryon–nucleus

systems with respect to annihilation. Since the antibaryon is localized in a central core

of the nucleus, our former assumption of a homogeneous antibaryon density is not valid.

The minimal energy available for annihilation is now given by

√
s∗ = Q = min(EB + EN ) = mB +mN −BB − BN , (76)

where BB and BN are the binding energies of the annihilating partners. The annihilation

rates can be calculated by averaging the local expression (56) over the volume where

the antibaryon wave function ψB (x) is essentially nonzero. Taking into account that the

antibaryon density distribution ρB is normalized to unity, after a simple calculation we

get

Γ =
∑

c

Γc, Γc = Γ0Bcλc(s∗)J̃BN . (77)

Here we have introduced the overlap integral appropriate for localized density distribu-

tions,

J̃BN =
mBmN

ρ0

∫
dV

ρSB

m∗
B

ρSN

m∗
N

. (78)

We have performed numerical calculations for the 16
p
O system using the NLZ2 and

NL3 parameter sets with two choices of antiproton coupling constants corresponding to

ξ = 1 and ξ = 0.5 . The results are summarized in Table IX. One can notice strong

model dependence of J̃pN which is mainly caused by its high sensitivity to the in–medium

effective masses [80]. As one can see from Fig. 9, the (anti)nucleon effective mass in the 16
pO

system becomes rather small in the central region, especially for the NL3 parameter set.

This explains large value of J̃pN in this case.

The appearance of effective masses in the overlap integral (78) is an artifact of quasi-

classical approximation used in our study of the in–medium annihilation. For its validity

the effective potential should vary slowly over a Compton wave length of corresponding

particles, λ = 1/m∗
j (j = B,N) . The approximation breaks down when m∗

j become small.

Therefore, one can use Eq. (78) only as a rough estimate [81].
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TABLE IX: Characteristics of antiproton annihilation in the 16
p O system calculated within the

NLZ2 and NL3 models.The third and fifth columns shows the results of calculation with reduced

antiproton couplings (ξ = 0.5).

NLZ2 NL3

ξ 1 0.5 1 0.5

BN (MeV) a 88 83 113 102

Bp (MeV) 897 500 1079 583

Q (MeV) 892 1294 685 1192

λ2π 0.96 0.99 0.92 0.98

λ3π 0.13 0.40 0.046 0.32

λ4π 8.4 · 10−3 0.13 2.9 · 10−4 0.078
∑
c

Bcλc (%) 0.81 9.4 0.47 6.9

J̃pN 10.1 8.5 46.3 33.1

Γ (MeV) 8.5 83 23 236

τ (fm/c) 23 2.4 8.7 0.84

a Calculated as average between single–particle binding energies Bp and Bn (see Fig. 10).

The estimated total annihilation widths for the 16
p
O system are also presented in Ta-

ble IX. In the case of pure G–parity (ξ = 1) they are in the range 9–23 MeV, depending

on the RMF parametrization. The corresponding life times are 9 – 23 fm/c, in agreement

with the values presented in Eq. (75). One can indeed talk about the delayed annihila-

tion due to in–medium effects. These results are very promising from the viewpoint of

experimental observation of deeply bound antibaryon–nuclear systems.

However, much larger annihilation widths are predicted by calculations with reduced

BN couplings (ξ = 0.5). This is a consequence of increased Q values and larger number

of open annihilation channels as compared to the case ξ = 1 . The corresponding life

times of about 1–2 fm/c are perhaps too short for pronounced observable effects. We

present here these results to demonstrate uncertainties in our present knowledge of the
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in–medium annihilation.

F. Multi–nucleon annihilation

In addition to the in–medium effects considered above, there are several other processes

which can influence the antibaryon annihilation inside the nucleus. Basically, one should

consider two types of processes. Processes of the first type are of the long–range nature.

They include rescattering and absorption of primary mesons on the intranuclear nucleons.

Since primary pions produced in the annihilation have energies in the ∆–resonance region,

they can effectively be absorbed in the chain of reactions: π+N → ∆, ∆+N → N +N .

As a result of meson–nucleon and nucleon–nucleon rescatterings, multiple particle-hole

excitations will be produced. The nucleus will eventually heat up and emit a few nucleons.

These processes can be well described by the intranuclear cascade model (see Ref. [56]).

We expect that they cannot change noticeably the life time of the trapped antibaryon.

Processes of the second type may, in principle, significantly affect the annihilation

probability. They include new annihilation channels which are not possible in vacuum,

for instance, the emission and absorption of a virtual meson. Since a virtual particle can

propagate only within a Compton wave length (1/mπ ≃ 1.4 fm for pions), this process

should be of the short-range nature. In other words, the recoiling nucleon should be

very close to the annihilation zone which is characterized by the radius of about 1 fm [3].

Thus, in addition to the annihilation on a single nucleon, considered so far, there exist new

annihilation channels involving two and more nucleons. It is customary to classify these

annihilation channels by the net baryon number of a combined system, i.e. B = 0, 1, 2,...

Obviously, the channels with B 6= 0 must contain not only mesons but also baryons in the

final state. Probably, the most famous process of this kind was proposed by Pontecorvo

many years ago [57]:

p+ d→ p+ π− . (79)

It has only one pion and one nucleon in the final state (B = 1). Despite of a seemingly

simple final state (two charged particles), up to now this process has not been convincingly
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identified experimentally. One may expect that an analogous process with B = 1,

B + (NN) → M +N , (80)

can also occur on a correlated 2-nucleon pair in heavier nuclei. The next most interesting

reaction of this kind would be the annihilation on a 3-nucleon fluctuation:

B + (NNN) → N +N . (81)

The relative probability of multi-nucleon annihilation can be estimated on the basis of

a simple geometrical consideration. Let us assume that the annihilation proceeds through

an intermediate stage when an ”annihilation fireball” [58] is formed. It is widely accepted

(see e.g. Ref. [3]) that within this fireball baryons and antibaryons are dissolved into

their quark–antiquark–gluon constituents. The radius of this fireball, Rann, can be found

from the cross section of the inverse reaction p+ p→ p+ p+N +N . This cross section

is certainly only a fraction of the inelastic pp cross section, σpp
in , which is about 30 mb

in the vicinity of the pp production threshold. Assuming that σpp
in ≃ 2πR2

ann we get

Rann ≃ 0.8 fm, which is in agreement with other estimates [3, 59].

Now we can estimate the average number of nucleons, which are present in the anni-

hilation zone around an antibaryon

n = ρN(r) · 4π

3
R3

ann . (82)

Taking ρN (r) ≃ 2ρ0= 0.3 fm−3, one obtains n ≃ 0.6. Finally, we assume that the actual

number of nucleons present in the annihilation fireball is distributed according to the

Poisson law, Pn = n n exp (−n)/n!. This gives the probabilities of different channels,

P0 = 0.55, P1 = 0.33, P2 = 0.10, P3 = 0.02, P4 = 0.004, ... (83)

The relative probability of multi–nucleon annihilation channels is now given by
∑
n≥2

Pn

P1
=

0.10 + 0.02 + ...

0.33
< 0.4 . (84)

Therefore, we expect that the channels with B > 0 may lead to 40% reduction of the

antibaryon life times in nuclei, as compared to estimates including only the B = 0 channel.
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Experimental information on multi–nucleon annihilation channels is very scarce. We

mention here a recent paper by the OBELIX collaboration [60], where the p annihilation at

rest in 4He was studied. They have analyzed the annihilation channels with 2π+ and 2π−,

with and without a fast proton (plab >300 MeV) in the final state. The events where such

a fast proton was present were associated with the annihilation on a 2–nucleon fluctuation

i.e. with the B = 1 channel. The corresponding branching ratios are

B(p+4 He → 2π+2π−) = (1.42 ± 0.19)% , (85)

B(p+4 He → 2π+2π− p fast) = (0.098 ± 0.02)% . (86)

Thus, these data indicate that the relative contribution of the B = 1 channel is less

than 10%. Certainly, more exclusive data are needed to assess the importance of multi–

nucleon annihilation channels. These processes, in particular the Pontecorvo–like reac-

tions, are interesting by themselves, irrespective of their contribution to the total anni-

hilation rate. They may bring valuable information about the physics of annihilation in

nuclei.

VI. FORMATION IN pA REACTIONS

In this section we present estimates of formation probability of deeply bound

antibaryon-nuclear systems in pA reactions. It is well known from pp experiments that

the annihilation cross section σann(
√
s) is very large at low energies [48] (see its low-energy

parametrization given by Eq. (46)). By this reason slow antiprotons in pA interactions are

absorbed at far periphery of nuclear density distribution. This situation can be avoided

by using high-energy antiprotons, whose annihilation cross section is strongly reduced so

that they can penetrate deeply into the nucleus.

As most promising from the experimental point of view we consider the following
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reactions

p+N → N slow +N + π , Eth = 0.3 GeV , (87)

p+N → Λslow + Λ + π , Eth = 1.13 GeV , (88)

p+N → Λslow +N +K , Eth = 1.58 GeV , (89)

p+N → N slow +N +N slow +N , Eth = 5.63 GeV , (90)

p+N → N slow +N + Λslow + Λ , Eth = 7.11 GeV , (91)

where N stands for nucleons (p, n), Eth is the threshold energy for a corresponding chan-

nel. Here slow antibaryons have a chance to be trapped by a target nucleus leading to

the formation of a deeply bound antibaryon-nuclear system. The fast reaction products

(N, π, Λ, K) can be used as triggers.

One may wonder, why do we need antiproton beams? Wouldn’t it be easier to use for

the same purpose much cheaper and widely available proton beams? The reason is that

the threshold energy for the baryon-antibaryon pair production in pp collisions is very

high, at least 5.6 GeV for producing a pp pair. This means that the reaction products are

fast in the lab frame where the target nucleus is at rest. In this situation the capture of

an antibaryon by the target nucleus is strongly suppressed. In the case of the antiproton

beam the corresponding threshold energies are quite low, as in reaction listed above, so

that the antibaryon capture becomes in principle possible. It is interesting to note that

antiproton beams open unique possibility to produce simultaneously two antibaryons (the

last two reactions above) which can then form a bound state like an antideuteron.

In general the formation probability of a deeply–bound antibaryon–nuclear state can

be expressed as

Pform = wcent · wsurv · wstop · wcapt , (92)

where wcent is a fraction of central events selected in a given experiment (typically

wcent ≃ 10%), wsurv is the antiproton survival probability. The last two factors in Eq. (92)

give, respectively, the stopping and capture probabilities. For estimates we assume that

an antiproton penetrates to the center of a nucleus, i.e. traverses without annihilation a
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distance of about R (the nuclear radius) in target matter of normal density,

wsurv = exp (−ρ0σannR) . (93)

To be captured into a deep bound state an incident antiproton must change its energy

and momentum in, at least, one inelastic collision inside the nucleus. This can be achieved,

for instance, by producing a fast pion or kaon carrying away excessive energy and mo-

mentum. The probability of such an event is denoted by wstop in Eq. (92). Obviously,

the energy loss should be equal to the energy difference of the initial and final nuclei. The

final B momentum should be comparable with the momentum spread of its bound-state

wave function. One can estimate this momentum spread as ∆p ≃ π/Rp, where Rp is the

rms radius of the antibaryon density distribution. From numerical calculations presented

in Sect. IV we find Rp ≃1.5 fm so that ∆p ≃ 0.4 GeV.

The probability of a single inelastic pN collision can be estimated by assuming Pois-

sonian distribution in the number of such collisions, wn = nn exp (−n)/n!, so that

w1 = n exp (−n). The mean number of inelastic collisions on a distance r = R is

n =
R

λin
= ρ0σinR , (94)

where λin is the mean free path between inelastic collisions and σin is the total pN inelastic

cross section.

In fact only a small fraction of inelastic collision leads to a desired energy-momentum

loss. This fraction can be calculated from the differential inelastic cross section, dσin

d3p
, for

the reaction pN → BX. Explicitly we define wstop = w1 · wloss with

wloss ≡ w(p lab
B

< ∆p) =
1

σin

∫

p lab

B
<∆p

dσpN→BX . (95)

Experimental data on the reaction pN → BX in a GeV energy region are quite scarce. We

have found only one paper [61] where detailed results from the bubble chamber experiment

at CERN were reported. The differential cross sections for the reaction pp → ΛX were

measured for several p momenta from 3.6 to 10 GeV/c. Using these data we estimate

w(p lab
Λ

< ∆p) in the range 10−4 ÷ 10−5 for p incident momenta 3.6÷12 GeV/c. The
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integrated cross section for the reaction pp→ ΛX at 3.6 GeV/c is approximately 0.5 mb

as compared to about 50 mb for the total inelastic pp cross section. The ratio of these

two values, ∼ 10−2, gives the probability of the p → Λ conversion, which is small in

accordance with the Zweig rule. In considered region of bombarding energies we can

obtain w(p lab
p < ∆p) simply rescaling w(p lab

Λ
< ∆p) by a factor ∼ 102.

TABLE X: Formation probabilities and reaction rates for producing antibaryon–nuclear systems

in several typical reactions. The values of P form are obtained by multiplying probabilities from

the first three columns with wcentwcapt , where wcent = wcapt = 0.1 . The reaction rates are

obtained as Y = Pform ·L · σgeom with L = 2 · 1032 cm−2 s−1, σgeom = 0.27 and 1.1 b for 17O and

209Bi, respectively.

p lab (GeV/c) reaction wsurv w1 w loss P form Y (s−1)

0.8 p +17O →16
pO +p+π− 0.03 0.10a 0.1 3 · 10−6 160

3.6 p +17O →16
pO+p+π− 0.26 0.36 10−2 9 · 10−6 510

3.6 p +17O →16
Λ
O+p+K− 0.26 0.36 10−4 9 · 10−8 5

3.6 p +209Bi →208
p Pb+n+π+ 0.07 0.29 10−2 2 · 10−6 440

3.6 p +209Bi →208
Λ
Pb+p+K

0
0.07 0.29 10−4 2 · 10−8 4

10 p +17O →16
p
O+p+π− 0.53 0.37 10−3 2 · 10−6 110

10 p +17O →16
Λ
O+p+K− 0.53 0.37 10−5 2 · 10−8 1

10 p +209Bi →208
p Pb+n+π+ 0.22 0.21 10−3 5 · 10−7 110

10 p +209Bi →208
Λ
Pb+p+K

0
0.22 0.21 10−5 5 · 10−9 1

a In this estimate we use the value σin ≃ 3mb motivated by measurements for the reactions p +14 N → π

at Ekin
p

= 300 MeV reported in Ref. [62].

The last factor in Eq. (92), wcapt, is the most uncertain quantity. It is determined by

the matrix element between the initial, plane wave state and the final, localized B state.

Moreover, because of the nuclear polarization effects, in particular, the reduced effective

mass and finite width, the bound antibaryon is off the vacuum mass shell. The realistic

calculation of wcapt will require a special effort which is out of the scope of the present
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paper. For our estimates below we take a fixed value wcapt = 0.1.

In Table X we present resulting formation probabilities for several typical reactions.

One can see that Pform is on the level of 10−7÷10−5 for bound p+A systems. In this Table

we also give reaction rates calculated for the parameters of antiproton beams planned at

the future GSI facility [63] (the beam luminosity is L = 2 · 1032 cm−2·s−1, antiproton

energies from 30 MeV to 15 GeV). We see that expected reaction rates are in the range

from tens to hundreds desired events per second. Such rates seem to be well within the

present detection possibilities.

Let us consider now two examples which clarify the reaction kinematics. For simplicity

we use plane-wave functions labeled by the particle momentum p. We are interested

in a reaction which leads to the final B trapped in a deeply bound state with energy

Ej =
√

(mj − Sj)2 + p2
j +Vj, where j = N,Λ, . . . For instance, consider the reaction (87)

where an antiproton with initial energy Ebeam is captured in a target nucleus (A,Z) after

colliding with a bound nucleon N with energy EN . If the recoiling nucleon, say a neutron,

leaves the nucleus the energy of the final nucleus p (A− 1, Z) is changed by

∆E = E ′
p − En ≃

(√
(mp − Sp)2 + p ′2

p + Vp

)
−

(√
(mn − Sn)2 + p2

n + Vn

)
, (96)

where pn is the initial neutron momentum and p ′
p is the final antiproton momentum, both

defined inside the nucleus. Assuming that p ′
p ≃ pn and Sp ≃ Sn, Vp = −Vp (G-parity) we

find that the binding energy of the final nucleus is changed by ∆B = −∆E ≃ (Vp + Vn).

Neglecting small recoil effects, we now estimate the energy of the emitted pion as

Eπ ≃ Ebeam + ∆B. So, the observation of a pion with energy exceeding the incident

antiproton energy would provide a strong evidence in favor of the p–nuclear bound state

formation. Such pions can be well separated from the annihilation pions which are pro-

duced at a later stage of the reaction. Due to the expected large energy gain such non-

annihilation pions can be produced even at subthreshold antiproton energies.

Analogous consideration can be done for the reaction (89) leading to the formation of

an Λ-nuclear bound system, Λ (A − 1, Z). The energy difference between the initial and

final nuclei is in this case

∆E ≃ (mΛ −mN ) − (SΛ − SN) − (VΛ + VN) . (97)
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With SΛ ∼ SN and VΛ ∼ VN this energy difference is negative. The energy balance

requires that the energy Ebeam − ∆E is carried away by an emitted antikaon which,

therefore, should be fast in the lab frame. We propose to use fast pions and antikaons as

triggers for selecting desired events.

It is necessary to emphasize that the antibaryon capture reactions discussed above are

relatively fast as compared to the characteristic time of target nucleus rearrangement, τnuc.

Therefore, initially antibaryons will occupy ”non–modified” levels which are predicted for

ordinary nuclei. Rearrangement of nuclear structure, in particular, the creation of a local

compression, as discussed in Sect. IV, will take a longer time. One can estimate this

time as

τnuc = Rcore/cs , (98)

where Rcore is the radius of a compressed core and cs is the sound velocity. Taking

Rcore ≃ 1.5 fm and cs = 0.2 c we get τnuc ≃ 7.5 fm/c. In the light of estimates presented in

Sect. V, this time is of the same order as the predicted life time of antibaryon-doped nuclei.

Better understanding of the rearrangement process can be achieved only by carrying out

dynamical simulations on the basis of the TDHF or molecular dynamics approaches.

Finally we estimate the temperature of an antibaryon-nuclear system which might be

expected after the rearrangement of its structure. As one can conclude from Fig. 18 after

the rearrangement the antiproton binding energy increases by about 220 MeV in 16
pO

and 400 MeV in 4
pHe. Assuming that this binding energy gain ∆E is transferred into

heat, we can estimate the temperature of the final system using the Fermi gas formula

∆E = aT 2 , where a ≃ A/10MeV is the nuclear level density parameter. For 16
p
Othis gives

T ≃ 12MeV which is much lower than the temperatures ∼ 100MeV associated with high–

energy nuclear collisions. Therefore, we can indeed speculate about cold compression of

nuclei induced by antibaryons as an alternative to the shock–wave compression in heavy–

ion collisions [64]. In the latter case, as follows from the Hugoniot adiabate, compression

of nuclear matter is always accompanied by its strong heating.

63



VII. OBSERVABLE SIGNATURES OF BOUND ANTIBARYON–NUCLEAR

SYSTEMS

If bound antibaryon–nuclear systems exist and live long enough they can manifest

themselves in several ways. In this section we discuss their possible signatures.

A. Transitions from atomic to nuclear states

If a slow antiproton is first captured on a Coulomb orbit forming an antiproton atom,

it can later on make transition on a deep nuclear bound state. This process was first

proposed in Ref. [5] where antiproton–nuclear bound states were studied within the non-

relativistic optical model. Such a transition will be accompanied by the emission of a

monoenergetic photon, pion or kaon, depending on the antibaryon type. According to

our calculations, many discrete states may exist in the relativistic antiproton potential.

Their binding energies and thus, the transition energies may vary from a few tens to

several hundred MeV. The probability of such transitions is determined by the matrix

element of the corresponding transition operator between the Coulomb and nuclear an-

tiproton wave functions. As shown in Ref. [5], the partial width associated with such

transitions could be as small as 10−4 − 10−5 of the total width of the atomic level. The

total width is obviously determined by the annihilation on the nuclear surface. There-

fore, a special effort should be made to find this signal in the huge background of direct

annihilation events.

B. Super–transitions from upper to lower well

As pointed out earlier, high–energy antiprotons have a better chance to penetrate deep

into the nucleus. Under certain conditions discussed earlier they can be trapped into a

deep bound state. We have demonstrated in Sect. V that the annihilation can be delayed

in this case due to the reduction of energy released in this process. An antibaryon sitting

in the nucleus can be viewed as a hole in otherwise filled Dirac sea. This state represents

a strong excitation of the nucleus which soon or later will decay. Among other decay
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FIG. 31: Annihilation of antibaryon–nuclear system as a ”super–transition” between the Fermi

and Dirac seas.

modes the most interesting is a super-transition when a nucleon from a discrete level of

the Fermi sea jumps into the hole state in the Dirac sea. This can be achieved by emitting

a single photon, pion or kaon with energy of about Q = EN + EB and isotropic angular

distribution in the nucleus rest frame. Such process is forbidden in vacuum by the energy–

momentum conservation laws. But in the considered case the recoil momentum can be

carried away by the residual nucleus. This is analogous to the Pontecorvo–like reactions

discussed in Sect. V. This process is illustrated in Fig. 31. The appearance of relatively

narrow lines with energies of about 0.5 − 1 GeV and width ∆E ≃ 20 ÷ 50 MeV in the

spectrum of secondary photons or mesons would be a direct signature of the deeply–bound

antibaryon–nuclear states.

C. Explosive multifragmentation

Another signal may come from the explosive disintegration of a compressed nucleus

after the antibaryon annihilation. When the driving force for the compression disappears,

the nucleus will expand as a compressed spring. As a result of the collective expansion the

nucleus will be torn apart into fragments, as illustrated in Fig. 32. This process can be ob-
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FIG. 32: Multifragmentation (right) of a nuclear remnant formed after the antibaryon annihi-

lation in a bound B–nuclear system (left).

served by measuring collective velocities of these fragments. Multifragmentation of nuclei

induced by high–energy antiprotons has been studied earlier [65], but with limited statis-

tics. So far only minimum bias events have been analyzed. In this case the distribution

of fragments follows closely predictions of the statistical multifragmentation model [56]

where no collective effects are included. We emphasize again that a dedicated study with

proper triggering is needed to find explosive events. Modern experimental technics allow

to unambiguously distinguish between purely thermal and flow–driven multifragmenta-

tion.

D. Multi–quark–antiquark clusters

It is interesting to look at the antibaryon–nuclear systems from a somewhat different

point of view. An antibaryon implanted into a nucleus acts as a strong attracting center

for nearby nucleons. Due to uncompensated attractive force these nucleons acquire accel-

eration towards the center. As the result of this inward collective motion the nucleons will

pile up and produce a compression zone around the antibaryon. If such a process were

completely elastic, it would look like a monopole–type oscillations around the equilibrium

configuration found by solving static equations (see Sect. IV). In this dynamical process

even stronger compression can be reached as compared with the one predicted by this

static configuration. The maximum compression is achieved when the initial potential

66



FIG. 33: Schematic picture of deconfined quark–antiquark droplet formed in interaction of an

antiproton with the 4He nucleus.

energy generated by the antibaryon is transformed into the compressional energy. Simple

estimates show that local baryon densities up to 5ρ0 may be obtained in this way. It is

most likely that the deconfinement transition will occur at this stage and a high–density

cloud containing an antibaryon and a few nucleons will appear in the form of a multi–

quark–antiquark cluster. One may speculate that the whole 4He or even 16O nucleus

can be transformed into the quark phase by this mechanism. This process is illustrated

in Fig. 33.

As shown in Refs. [33, 34] and shortly discussed in Sect. III (see Fig. 4), an admixture

of antiquarks to cold quark matter is energetically favorable. The problem of annihilation

is now transferred to the quark level. But the argument concerning the reduction of

available phase space due to the entrance–channel nuclear effects should work in this case

too. Thus one may hope to produce relatively cold droplets of the quark phase by the

inertial compression of nuclear matter initiated by an antibaryon. A similar mechanism

for producing large quark bags was proposed in Ref. [58]. There the idea was that the

annihilation fireball moving through the nucleus can grow by absorbing nucleons on its

way.

Thus, the annihilation process in nuclear environment may serve as a breeder for cre-

ating new multi–quark–antiquark structures. We believe that among the decay modes

of multi–quark–antiquark systems, like the one depicted in Fig. 33, not only usual

hadrons, but also exotic states such as pentaquarks (uuddd, uudds, . . .) or heptaquarks

(uuuuddd, uuuddd, . . .) can be present. Moreover, more exotic states like baryonium
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(3q3q), deutronium (6q3q), tritonium (9q3q) and even helionium (12q3q , see Fig. 33)

can also be searched for. Discovery of such states would significantly extend our knowl-

edge about the quark–gluon structure of matter. Such a study will be complimentary

to the active search for exotic multi–quark systems stimulated by the discovery of the

pentaquark [66].

VIII. SUMMARY AND DISCUSSION

In this paper we have demonstrated that antibaryons are of significant interest for

nuclear physics. They can provide new and important information about the nature of

strong interactions and structure of the vacuum. As well known, the relativistic nuclear

models predict deep antibaryon potentials in nuclei generated by coherent action of mean

scalar and vector fields. To verify this picture we study a real antibaryon bound in the

nucleus instead of considering filled states of the Dirac sea. On the basis of the RMF

model we performed detailed calculations of such bound antibaryon–nuclear systems tak-

ing into account the rearrangement of nuclear structure due to the presence of antibaryons.

The self–consistent calculations lead to stronger bindings as compared to previous stud-

ies where the rearrangement effects were ignored. What is even more important, our

calculations predict strong local compression of nuclei induced by the antibaryon. This

opens a principal possibility of producing relatively cold and compressed nuclear matter

in the laboratory. In contrast, in high-energy nuclear collisions the compression is always

accompanied by a strong heating of nuclear matter.

Our second goal in this paper was to deceive a common delusion that the antibaryon an-

nihilation in nuclei is so strong that it will shadow all other processes. We have performed

detailed calculations assuming that annihilation rates into different exclusive channels are

proportional to the available phase space. Due to reduced effective masses and (partial)

cancelation of vector potentials, the energy available for annihilation of slow antibaryons

(the reaction Q–value) is significantly reduced as compared to the minimum vacuum value,

mN +mB. Then many channels of in–medium annihilations are simply closed. This may

lead to a dramatic reduction, by factors 5÷20, of the total annihilation rate. We estimate
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life times of deeply-bound antibaryon-nuclear systems on the level of 2÷20 fm/c that

makes their observation feasible. This large margin in the life times is mainly caused by

uncertainties in antibaryon coupling constants as well as the overlap integrals between

the antibaryon and nucleon scalar densities. We have also analyzed multi–nucleon anni-

hilation channels (Pontecorvo-like reactions) and found their contribution to be less than

40% of the single–nucleon annihilation.

We believe that bound antibaryon-nuclear systems can be produced by using antiproton

beams of multi–GeV energy, e.g. at the future GSI facility. Since the annihilation cross

section drops significantly with energy, a high–energy antiproton can penetrate deeper

into the nuclear interior. Then it can be stopped there in an inelastic collision with a

nucleon, e.g. via the reaction A(p,Nπ)pA
′, leading to the formation of a p–doped nucleus.

Reactions like A(p,NK)ΛA
′ and A(p,Λπ)ΛA

′ can be used to produce a Λ–doped nucleus.

Fast mesons, nucleons or lambdas can be used for triggering such events. Our estimates

of the formation probability in a central pA collision give the values 10−5 − 10−6. With

the antiproton beam luminosity of 1032 cm−2 s−1 planned at GSI this will correspond to

the reaction rate from tens to hundreds of desired events per second.

We have proposed several observable signatures which can be used for detection of

antibaryon–nuclear bound states. They include exotic annihilation channels with emission

of a single photon, pion or kaon; explosive multifragmentation of nuclei, and formation

of multi–quark–antiquark clusters. The possibility of using antibaryon annihilation in

nuclei to produce droplets of relatively cold quark matter is interesting by its own. This

mechanism will work irrespective to the existence of antibaryon–nuclear bound states.

There remain many problems to be studied. The list of most urgent questions includes:

• how G–parity works in a many–body system and what are the antibaryon couplings

to the meson fields?

• what is the role of exchange terms and dispersive corrections?

• how large is the unphysical self–interaction of antibaryons within the RMF approach?

• how to extend the RMF approach to include self–consistently imaginary contribution

to the antibaryon self energy?

• how accurate are quasiclassical estimates of life times of bound antibaryon–nuclear
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systems?

• how these life times are affected by in–medium modifications of secondary mesons?

In addition, the nuclear rearrangement dynamics after the antibaryon capture should be

studied on the basis of a dynamical approach like the TDHF model. Transport calculations

of pA reactions are needed to check our simple estimates of the formation probabilities

and annihilation rates. We are planning to address these questions in the future work.

Our most general conclusion is that the antibaryon–nuclear physics is a broad field of

research which is not yet explored sufficiently well. It may bring about new interesting

phenomena ranging from unusual annihilation channels to exotic antibaryon–nuclear or

multi-quark-antiquark bound states. This is a nonperturbative domain of strong interac-

tions and therefore the progress in this field can be achieved only by close cooperation of

theory and experiment.
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