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Density Perturbations in Heavy-Ion Collisions below the Critical Point
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Universality arguments suggest that the chiral phase
transition for two massless quark flavors is second-order
at baryon-chemical potential µB = 0 [1], which then be-
comes a crossover for small quark masses. On the other
hand, a first-order phase transition is predicted by a vari-
ety of low-energy effective theories for small temperature
T and large µB [2]. Hence, the first-order phase transi-
tion line in the (µB , T ) plane must end in a second-order
critical point [3]. For 2 + 1 quark flavors the critical point
has been located at T = 160 MeV and µB = 725 MeV [4].
However, a reliable extrapolation to the continuum limit
and to physical pion mass has not been attempted so far.

There is an ongoing experimental effort to detect that
critical point in heavy-ion collisions at high energies. It is
hoped that by varying the beam energy, for example, one
can “switch” between the regimes of first-order transition
and cross over, respectively (higher energies correspond to
larger entropy per baryon or T/µB).

To investigate collective dynamics in the vicinity of the
critical endpoint we introduce a model for the real-time
evolution of a relativistic fluid of quarks coupled to non-
equilibrium dynamics of the long wavelength (classical)
modes of the chiral condensate [5]:

∂µ∂µφ + ∂Veff/∂φ = 0 , ∂µ

(

T µν
fl

+ T µν
φ

)

= 0. (1)

Here, T µν
fl

is the energy-momentum tensor of the fluid,
T µν

φ that of the classical modes of the chiral condensate,
and Veff is the effective potential obtained by integrating
out the thermalized degrees of freedom. We focus first on
energy-density inhomogeneities for vanishing baryon den-
sity (the nature of the transition is then determined by
the effective quark-field coupling rather than the baryon-
chemical potential [5, 6]). We allow for “primordial” Gaus-
sian fluctuations of the condensate φ on length scales
∼ 1 fm on top of a smoothly varying mean field. If prop-
agated through a first-order chiral phase transition these
fluctuations give rise to a rather inhomogeneous (energy-)
density distribution as seen in Fig. 1. Such effects were
previously studied in the context of the QCD transition
in the early universe, where inhomogeneities of the en-
tropy (or baryon to photon ratio) might affect BBN [7].
However, in the cross-over regime we find much smaller
amplitudes of density perturbations [5].

In heavy-ion collisions the scale of the density pertur-
bations is too small for them to be resolved in rapidity
space. This would require a resolution ∆y < 1, which
is about the thermal width of the local particle momen-
tum distributions. However, observable consequences of
large density inhomogeneities created in a first-order tran-
sition at beam energies below the critical endpoint may
still exist. (Inhomogeneities from fluctuations of particle
production in the primary nucleon-nucleon collisions [8]
should be largely washed out until decoupling.) For exam-
ple, fluctuations of the energy-momentum tensor of mat-
ter in coordinate space are uncorrelated to the reaction
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Figure 1: Fluid energy density distribution in space-time
for a first-order chiral phase transition [5].

plane and should therefore reduce out-of-plane collective
flow (v2/〈pt〉) as compared to equilibrium hydrodynam-
ics [5]. Moreover, by analogy to BBN, perturbations of
the entropy per baryon s/ρB should affect abundances of
rare hadrons: B̄/B, Λ̄/p̄ [9] and K+/π+ [10] are larger
than for a homogeneous system with the same total vol-
ume, baryon number and entropy.
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