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The lightest supersymmetric particle, most likely the lightest neutralino, is one
of the most prominent particle candidates for cold dark matter (CDM). We show
that the primordial spectrum of density fluctuations in neutralino CDM has a sharp
cut-off, induced by two different damping mechanisms. During the kinetic decou-

pling of neutralinos, non-equilibrium processes constitute viscosity effects, which
damp or even absorb density perturbations in CDM. After the last scattering of
neutralinos, free streaming induces neutralino flows from overdense to underdense
regions of space. Both damping mechanisms together define a minimal mass scale
for perturbations in neutralino CDM, before the inhomogeneities enter the non-
linear epoch of structure formation. We find that the very first gravitationally
bound neutralino clouds ought to have masses above 10−6M⊙, which is six orders
of magnitude above the mass of possible axion miniclusters.

1. Introduction

Recent measurements support the idea that there is a significant amount of

cold dark matter (CDM) in the Universe. An analysis of the temperature

anisotropies in the cosmic microwave background (CMB) gives for the CDM

mass density Ωcdmh2 = 0.13+0.03
−0.02 (all data with weak h-prior)1, while from

the same analysis the mass density of the baryons is much smaller Ωbh
2 =

0.023+0.003
−0.003. The latter is consistent with the measurement of the primordial

deuterium abundance in high-redshift hydrogen clouds, which gives the

most precise determination of the baryon density2, Ωbh2 = 0.0205±0.0018.

Large galaxy redshift surveys support the CMB measurements: from the

analysis of 160,000 galaxies Percival et al3 find (Ωb + Ωcdm)h = 0.20± 0.03

and Ωb/(Ωb + Ωcdm) = 0.15 ± 0.07. Taking various observations together,

Turner4 estimates that the non-baryonic mass in the Universe, which is just

the mass of CDM, is given by Ωcdm = 0.29 ± 0.04.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14503264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


November 14, 2005 10:2 WSPC/Trim Size: 9in x 6in for Proceedings idm02v2

2

The characteristic feature of CDM is its non-relativistic equation of

state at the time when the Universe contains enough matter within one

Hubble volume to form one galaxy. The two leading particle candidates

for CDM are the axion, a very light particle with a mass in the range

ma ∼ (10−6 − 10−5) eV, which is cold since it has been produced in a

Bose condensate, and the neutralino, a heavy particle with a mass Mχ̃ ∼
(50−500) GeV, which is cold by virtue of its large mass. In the constrained

minimal supersymmetric extension of the standard model (MSSM), the

lightest neutralino is most likely the bino.

For almost 20 years there has been a strong working hypothesis: axion

CDM and neutralino CDM cannot be distinguished by purely cosmological

observations because both particle candidates interact only via gravity, as

far as cosmology goes. This fact has made the study of structure formation

on large scales > 1 Mpc simple—the microphysics of CDM is irrelevant.

However, at the galactic scale and below, various particle candidates might

be distinguishable. To learn more about the nature of CDM, we study the

small-scale structure of neutralino CDM with emphasis on the very first,

purely gravitationally bound, neutralino clouds (for details, see our recent

work5).

2. Chemical and kinetic decoupling

There are two distinct temperature scales for CDM particles that are mas-

sive and weakly interacting and obey a thermal history. For temperatures

T > Tcd, binos are kept in chemical equilibrium with all fermions in the

heat bath via the annihilation processes χ̃ + χ̃ ↔ F + F , at the rate

Γann ≈ 10−3 Mχ̃
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Here, x = Mχ̃/T and MF̃ denotes the universal sfermion mass. The numer-

ical prefactor is the effective neutralino–fermion coupling, the second factor

shows the dependence on the MSSM parameters and the x-dependent fac-

tor gives the temperature dependence in units of the neutralino mass and

is proportional to the bino number density. Chemical decoupling of binos

happens at the temperature Tcd = Mχ̃/xcd, when the neutralino annihila-

tion rate becomes comparable to the Hubble rate:
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Scanning the MSSM parameter space, we typically find xcd ≈ 22, see Fig-

ure 1. The chemical decoupling temperature Tcd increases with increas-

ing bino mass, since the neutralino number density is suppressed with

exp (−Mχ̃/T ). As a consequence, the annihilation rate approaches the Hub-

ble rate faster for larger bino masses. For a fixed bino mass, Tcd increases for

an increasing sfermion mass, since the interaction range decreases. (Note

that this discussion is not correct on a quantitative level, since we neglect

here important effects like co-annihilation, in order to render an analytic

discussion possible.)

Figure 1. Chemical and kinetic decoupling as a function of the universal sfermion (slep-
ton) mass for bino masses Mχ̃ ∈ {50, 100, 200} GeV (from bottom to top).

For temperatures Tkd < T < Tcd neutralinos are in local thermal equi-

librium (lte) with all fermions of the heat bath. Equilibrium is maintained

due to elastic scattering processes χ̃ + {F , F} ↔ χ̃ + {F, F} at the rate

Γel ≈ 10−2 Mχ̃

M 4
χ̃(

M 2
F̃

− M2
χ̃

)2 x−5 . (3)

Kinetic decoupling of binos takes place when the relaxation time τrelax in

the bino system exceeds the Hubble time. The relaxation time τrelax =

Nτcoll differs from the collision time τcoll = 1/Γel by the number N(T ) of

elastic scatterings needed to keep or establish lte in the bino system. This

number is given by the relative momentum transfer per elastic scattering,

N(T ) = (∆Pχ̃/Pχ̃)−1 ≈ Mχ̃/T , with ∆Pχ̃ =
√

< t > ≈ 3T/
√

2 denoting
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the rms of the Mandelstam variable t. Kinetic decoupling happens at

Tkd ≈


102

M α
χ̃

(
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χ̃

)2

MPl


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1
3+α

, (4)

with α = 0 if mistakenly τcoll ≡ τrelax is assumed and α = 1 when

the number of scatterings N is taken into account. We typically find

Tkd = (10−100) MeV, see Figure 1. The kinetic decoupling temperature is

increasing with increasing bino mass because the momentum transfer to the

heat bath is decreasing. As a consequence the number of elastic scattering

processes needed to keep or establish lte is increasing.

We find Tcd ≫ Tkd, because Γann/Γel ≈ 10−1x5/2 exp (−x) ≪ 1 for

T < Tcd < Mχ̃; the number density of neutralinos is Boltzmann suppressed

with respect to the number densities of the relativistic fermions. This is the

reason for the temperature hierarchy Tcd ≫ Tkd > Tls, with Tls denoting

the temperature at which binos scatter for the last time.

3. Local transport coefficients

During the process of kinetic decoupling, non-equilibrium processes consti-

tute themselves as viscosity phenomena in the bino system. We therefore

use hydrodynamics for the description. For T ≫ Tcd, CDM and the heat

bath can be described by a single ideal fluid. For Tcd > T > Tkd the CDM

fluid is strongly coupled to the radiation fluid (rad), which keeps CDM in

lte. Around Tkd, the CDM fluid decouples from the radiation fluid, in which

lte persists, since Ωcdm = (a/aeq)Ωrad ≪ Ωrad for T ≫ Teq.

The resulting non-equilibrium processes in the CDM fluid can be taken

into account by additional Lorentz tensors J(1) and T(1) in the current

density Jcdm and the energy momentum tensor Tcdm of the CDM fluid.

We fix the ambiguities in the relativistic description of imperfect fluids by

demanding J(1) ≡ 0 and T(1) = ζ h∇ · U + η W(T) + χ Sym
(
U ⊗ Q(T)

)
.

U denotes the adiabatic velocity field and h projects on the hypersurface

perpendicular to it. The first term is the bulk viscosity, describing the

flow of U in the hypersurface defined by h. The second term is the shear

viscosity and describes the bending of U in the direction perpendicular to

the adiabatic current. The last term is the heat conduction.

The strength of the dissipative processes is given by the local transport

coefficients ζ, η and χ. An efficient method for calculating these coefficients

was proposed by Silk6. It has been applied in great detail to the case of a
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relativistic fluid by Weinberg7. A generalisation to an arbitrary equation

of state can be found in our recent work5.

The main idea is to compare the Lorentz tensors in the hydrodynami-

cal description with the Lorentz tensors in the kinetic description. In the

kinetic description we make the ansatz F (1)(ω, n, x) = A(ω, x) + B(ω, x) ·
n + C(ω, x) · (n ⊗ n + 1/3h) for the CDM phase-space distribution de-

scribing the non-equilibrium state of the bino system. Here, ω denotes the

projection of the momentum on the velocity field and n denotes a vector

perpendicular to the adiabatic current. We calculate5 the coefficients in

the expansion of F (1) into irreducible polynoms in n and h. For the tensor

structure we find A ∝ ∇ ·V, B ∝ Q(T) and C ∝ W(T). The scalar A gen-

erates dissipative processes, which are not perpendicular to the adiabatic

current. This contribution deserves special care.

Calculating the energy momentum tensor in the kinetic description

and comparing it with T(1), we find the local transport coefficients ζ =

5ρcdm/3Γel, η = ρcdm/Γel and χ ≡ 0 in first order in 1/Γel and 1/x. All

coefficients are decreasing with an increasing elastic scattering rate, since

elastic scattering allows the transfer of derivations from lte to the heat bath.

Heat conduction is a subdominant process for non-relativistic particles and

vanishes in leading order.

4. Acoustic absorption

The dissipative processes presented in the last section transfer energy and

momentum in the direction perpendicular to the adiabatic flow. This pro-

vides a damping mechanism for acoustic perturbations in CDM7. The

damping of density inhomogeneities is given by Im(ω) as calculated in lin-

ear perturbation theory for relativistic hydrodynamics. For an acoustic

wave with wave number k we find

δρχ̃

ρχ̃
∝ exp


−

3

2

t(Tkd)∫

0

dt
k2

Γel


 = exp

[(
−Md

M

)2/3
]

, (5)

where Md ≈ 3 · 10−8(GeV2/Mχ̃Tkd)
3/2(Ωχ̃h2)M⊙ is the characteristic

damping scale. We find Md ≈ 10−9M⊙, see Figure 2. Thus, only acoustic

perturbations with masses M > Md, contained in the overdense volume,

are not absorbed and enter the free streaming regime.



November 14, 2005 10:2 WSPC/Trim Size: 9in x 6in for Proceedings idm02v2

6

Figure 2. Acoustic damping scale as a function of the bino mass for sfermion masses
M

F̃
∈ {150, 200, 300, 400} GeV (from bottom to top).

5. Free streaming

For temperatures T < Tls, CDM does freely streaming on geodesics. As

a consequence, CDM propagates from overdense to underdense regions,

thus smearing out local inhomogeneities. We find for the induced damping

scale Mfs(a) = Mdln
3(a/als). Free streaming becomes the leading damping

mechanism once the universe has doubled its size after last scattering. It

is interesting to calculate the free streaming scale at the time of matter-

radiation equality, when CDM density perturbations start to grow linearly

with the expansion factor. We typically find Mfs(aeq) ≈ 10−6M⊙.

6. Conclusions

We have shown that collisional damping and free streaming smear out all

power of primordial density inhomogeneities in bino CDM below 10−6M⊙

by the time of matter-radiation equality. This is in striking contrast to

claims in the literature8 that the minimal mass for the first purely gravi-

tationally bound neutralino cloud is 10−13 (150 GeV/Mχ̃)3 M⊙. The huge

difference to our result stems from the assumption that chemical and ki-

netic decoupling happened simultaneously, which we proved to be wrong.

We find instead that the very first bino objects have to have masses above

10−6M⊙. This result is very robust with respect to the MSSM parameters.

These bino clouds are very different from possible axion mini-clusters with

typical masses9 around 10−12M⊙.

According to hierarchical structure formation these very first CDM

clouds are supposed to merge and form larger objects. Large scale struc-

ture simulations show structure formation on all accessible scales down to
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the resolution of the simulation10. However, the dynamic range of todays

simulations is not sufficient to deal with the very first CDM objects, so

the fate of these objects is an open issue. A cloudy distribution of CDM in

galactic halos would have important implications for direct11 and indirect12

searches for dark matter.
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