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Recent progress in the understanding of the high density phase of neutron stars advances the view
that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive
interaction between hyperons on the properties of compact stars are investigated. We find that a hadronic
equation of state with hyperons allows for a first order phase transition to hyperonic matter. The
corresponding hyperon stars can have rather small radii of R � 8 km.
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nucleon-� interaction is attractive and that the � feels a
potential of about U� � �28 MeV in bulk matter [10].

successfully applied to describe hypernuclear data [23].
The model is extended in a controlled fashion to include
Neutron stars are an excellent observatory to probe our
understanding of the theory of strongly interacting matter
at extreme densities. The interior of neutron stars is dense
enough to allow for the appearance of new particles with
the quantum number strangeness besides the conventional
nucleons and leptons by virtue of weak equilibrium.
There is growing support that hyperons are the first exotic
particle to appear in neutron star matter at around twice
normal nuclear density [1], as recently confirmed within
various different models such as effective nonrelativistic
potential models [2], the quark-meson coupling model
[3], extended relativistic mean-field approaches [4,5],
relativistic Hartree-Fock [6], Brueckner-Hartree-Fock
[7,8], and chiral effective Lagrangians [9]. The onset
of hyperon formation is controlled by the attractive
hyperon-nucleon interaction as extracted from hyperon-
nucleon scattering data and hypernuclear data. The
hyperon population rapidly increases above the critical
density, eventually even exceeding that of the nucleons.
The question arises to what extent does the interaction
between the hyperons, which is essentially unknown,
influence the overall properties of the compact star.

In this Letter, we will demonstrate that a first order
phase transition to strange hadronic matter due to highly
attractive hyperon-hyperon interactions can occur which
drastically changes the global features of neutron stars
and leads to compact stars with unusually small radii of
R � 8 km. Simultaneous mass and radius measurements
of a neutron star could reveal or rule out the existence of
such a novel form of matter with exotic properties, which
is in accord with our present knowledge of hadronic
physics. It is this enormous number of hyperons in neu-
tron stars which enables the formation of such exotic
compact stars with strangeness.

Nuclear systems with strangeness, hypernuclei, have
been studied in the last decades both experimentally and
theoretically. From these studies we know that the
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On the other hand, extrapolated 	� atomic data indicate
that the isoscalar potential is repulsive in the nuclear core
[11] which is supported by the absence of bound states in
a recent 	-hypernuclear search [12]. An attractive poten-
tial for the double strange hyperon 
 has been extracted
from the few 
 hypernuclear events [13] and indirectly
from final state interactions at KEK [14] and at
Brookhaven’s AGS [15]. Recently, double � hypernuclear
events have been reported by E906 at AGS [16] and E373
at KEK [17] in addition to the older hypernuclear events.
The �� interaction as deduced from these double �
hypernuclear data is highly attractive (see [18] and refer-
ences therein). There is no experimental information
about the other hyperon-hyperon interactions, such as
e.g. �
 and 

 interactions.

A recent version of the Nijmegen soft-core potential
finds extremely attractive hyperon-hyperon interactions
which even allows for the possibility of deeply bound
states of two hyperons [19] and deeply bound hyperonic
matter [20]. Strange hadronic matter in general will con-
sist of nucleons and arbitrary numbers of the hyperons �,
	, 
, and ��. If the hyperon-hyperon interaction is only
slightly attractive, strange hadronic matter in bulk is
bound and purely hyperonic nuclei (MEMO’s) are pre-
dicted to exist [21]. The driving force is the Pauli block-
ing in the hyperon world, which forbids 
’s to decay to
�’s. Strange hadronic matter is metastable, i.e., it decays
on the time scale of the hyperon weak decay of � �
10�10 s by loosing one unit of strangeness. This short-
lived exotic matter can be formed in relativistic heavy ion
collisions [22], as hyperons are copiously produced in a
single central event. Neutron star matter, however, is in �
equilibrium so that hyperon matter in neutron stars is
stable on astrophysical time scales.

In the following, we choose the standard nuclear field
theory of baryons interacting with mesons, which is
solved in the mean-field approximation [1] and has been
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the baryon octet coupled to the full nonets of scalar and
vector mesons [5,20,21] and is then extrapolated to large
densities. The baryon-baryon interactions are mediated
by scalar meson, �, and vector meson, !, and isovector
meson, �, exchange. In addition, hyperon-hyperon inter-
actions are modeled via hidden strange meson exchange
of a scalar, ��, and a vector, 	, meson. The �� and 	
mesons couple to hyperons only. We take the nucleon
parametrization from Glendenning and Moszkowski
[24]. The coupling constants of the hyperons to the !,
�, 	 vector mesons are fixed by using SU(6) symmetry.
The coupling constants to the � meson are constrained by
the hypernuclear potential in nuclear matter of U� �
�28 MeV, U	 � �30 MeV, U
 � �18 MeV to be com-
patible with hypernuclear data [20]. The remaining cou-
pling constants of the hyperons to the �� meson are
varied to investigate the effects of an enhanced
hyperon-hyperon interaction as suggested by the sparse
�� data. We allow these coupling constants to scale with
the number of strange quarks of the hyperon. The cou-
pling constant of the � hyperon to the �� meson is taken
close to the corresponding nucleon � meson coupling
constant g�N .

First, we discuss the stability of strange hadronic mat-
ter in bulk relevant for heavy ion physics. Figure 1 shows
the total energy per baryon as a function of the strange-
ness fraction fS, i.e., the number of strange quarks per
baryon. The dashed line denotes the border between
bound and unbound strange hadronic matter. Even in the
absence of the hidden strange meson exchange, strange
hadronic matter is bound up to fS � 1:5. If the hyperon-
hyperon interaction is taken into account, the matter gets
more deeply bound at large fS. Note that the curves for
fS & 0:4 hardly change and are compatible with hyper-
nuclear data which probe at most fS � 1=3, i.e., for the
lightest hypernucleus 3

�H. For g��=g�N > 0:9, a local
second minimum appears at large fS > 1. This second
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FIG. 1. Equation of state of strange hadronic matter for
different strengths of the hyperon-hyperon interactions. A
second stable minimum appears at large strangeness fraction
fs which can be deeper than ordinary matter.
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minimum has been also seen in an effective parametriza-
tion of the recent Nijmegen model [20]. Matter in this
minimum is long-lived as it can decay into nucleons only
through a multiple weak decay. The minimum is shifted
below the nucleon mass for even larger values of
g��=g�N � 1:2, thus creating absolutely stable strange
hadronic matter [25]. The collapse of nuclei into this
absolutely stable form is prohibited, as it would violate
strangeness conservation.

Let us discuss now the possible implications of deeply
bound hyperonic matter for compact astrophysical ob-
jects. The equation of state (EOS) for charge neutral
�-equilibrated neutron star matter is plotted in Fig. 2. A
first order phase transition to hypermatter appears which
is seen as a pronounced softening of the EOS. The two
kinks in the EOS mark the beginning and the end of the
mixed phase where normal and hyperonic matter are
coexisting. The critical energy density for the onset of
the mixed phase region is lowered for stronger hyperon-
hyperon interactions. If a second minimum is present for
strange hadronic matter (g��=g�N � 1:0, see Fig. 1), the
EOS exhibits a finite value of the energy density even for
vanishing pressure, indicating that hypermatter becomes
self-bound. The corresponding compact star is then bound
by the interaction not by gravity. We stress that strange
hadronic matter in the model does not need to be abso-
lutely stable to produce self-bound compact stars. The
presence of a second minimum, be it metastable or abso-
lutely stable, seems to be sufficient to generate self-bound
hyperon stars.

The global feature of the neutron star changes drasti-
cally when the hyperon-hyperon interaction is switched
on, even for small hyperon coupling constants (see Fig. 3).
Without hidden strange meson exchange we find a maxi-
mum mass of Mmax � 1:8M� with a minimum radius of
Rmin � 12:9 km. The maximum density in the center of
FIG. 2. Equation of state in � equilibrium (neutron star
matter) for different strengths of the hyperon-hyperon
interactions.
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FIG. 3. Mass-radius relation for neutron stars with a highly
attractive hyperon-hyperon interaction.
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the star reaches �c � 0:78 fm�3 which corresponds to
about 5 times normal nuclear density. Increasing the
hyperon-hyperon interactions results in a lower maxi-
mum neutron star mass. A second stable solution appears
for a range of parameters (0:78 > g��=g�N > 0:71) con-
stituting a third family of compact stars [26]. It is located
beyond white dwarfs and ordinary neutron stars, with
similar masses as predicted for neutron stars but with
considerably smaller radii. The new solution originates
from the phase transition to hypermatter. Compact stars
belonging to this third family contain a pure core of
deeply bound hypermatter consisting of about equal
amounts of nucleons, �, and 
. The central baryonic
densities of these cores are quite high, between
1:1 fm�3 < �c < 2:0 fm�3. The characteristic radius
ranges from 8:6 km<R< 11:6 km (see Fig. 3), which
is considerably smaller than for ordinary neutron stars.
Therefore, the measurement of two neutron stars with
similar masses but distinctly different radii will serve
as a unique signal for the existence of neutron star twins.
The possibility of neutron star twins and a third family of
compact stars has been raised earlier in connection with
pion condensation and quark stars [27], and more recently
for the phase transition to strange quark matter within the
MIT bag model [28] and perturbative QCD [29], and for
kaon condensation [30]. If the hyperon-hyperon interac-
tion is increased to g��=g�N � 0:8 , the two separate
solutions disappear. The neutron star mass rises continu-
ously with energy density. For self-bound hyperon stars
(g��=g�N � 1:0), we calculate radii of 4:2 km<R<
7:3 km. Hyperon stars can have radii as small as 4.2 km
for compact object with masses as low as M � 0:05M�.
The core is solely composed of hypermatter which is
surrounded by a halo of nuclei and electrons. If one
neglects the outer crust of these self-bound hyperon stars
the corresponding curve starts from the origin and an
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upper boundary for the radii exists of R< 7:2 km (see
Fig. 3, curve labeled ‘‘no crust’’). At first glance, the mass-
radius relations as discussed here are looking strikingly
similar to the ones proposed for strange (quark) stars
[31,32]. Strange stars are built of absolutely stable strange
quark matter and can have smaller radii than normal
neutron stars. Nevertheless, the maximum mass and ra-
dius for strange stars is close to the one for an ordinary
neutron star, Mmax � 	1:5� 2
M� with R � 10 km when
using the MIT bag model [31]. Within the Nambu–Jona-
Lasinio model, these values are a little bit smaller,
Mmax � 1:23M� with R � 8 km [32]. Hyperon stars, the
hadronic counterparts of strange stars (as derived in the
model used here) have extreme nuclear properties. They
reach central baryonic densities of up to �c � 2:1 fm�3

for the most massive objects, where effects from the
hadronic substructure will get important. The region,
where hadronic equation of states are applicable, might
in fact be rather small due to large Nc arguments [29].
Hyperon matter can be transformed to strange quark
matter by strong interactions, as they have similar
strangeness fraction. Then, hyperon stars can form a
doorway state for the formation of strange stars as no
strange quark matter seed is needed [31].

The detection of compact stars with small radii com-
bined with small masses (M � M� or below) would
signal the existence of a novel form of matter, be it
strange matter or hypermatter, which does not need to
be absolutely stable. Recently, the radius of the isolated
neutron star RX J185635-3754 has been extracted by
various groups [33]. Using the new Chandra spectra, the
radius for a black-body emitter turns out to be only R1 �
6 km. If such a small radius is confirmed, it would signal
the existence of hypercompact stars. Nevertheless, effects
of an atmosphere can increase that value up to R1 � 15�
3 km [33].

The conversion of a neutron star to a hyperon star
should be a dynamical process, namely, a nonspherical
collapse which approximately conserves the number of
baryons. Figure 4 depicts the baryon number as a func-
tion of the gravitational mass of the compact stars. Note,
that for a fixed baryon number, the twin star is energeti-
cally favored compared to ordinary neutron stars. The
mass difference from an ordinary neutron star to its twin
is about 0:03M� which corresponds to a conversion en-
ergy of about 0:5
 1053 erg. Therefore, the collapse to a
twin star might have similar properties as a super- or
hypernova collapse [34]. The additional release of energy
due to the formation of a hyperon star in a supernova
event will generate a second energetic shock front in
addition to the standard prompt shock (similar to strange
star formation as discussed in [35]). The conversion to
hyperon matter in compact stars will contain an interplay
of astrophysical observables, such as the spinup effect
[36], the emission of gravitational waves [37], and the
emission of a �-ray burst [38], as proposed for the
171101-3



unstable

FIG. 4. The total baryon number NB versus the gravitational
mass M=M�.
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conversion to deconfined matter. The emitted gravita-
tional waves might be a relevant source for LIGO,
VIRGO, and GEO600 [39].
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