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Abstract

The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and

BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics

and the HBT-parameters on the EoS is studied with different parametrizations of a chiral SU(3)

σ−ω model. The selfconsistent collective expansion includes the effects of effective hadron masses,

generated by the nonstrange and strange scalar condensates. Different chiral EoS show different

types of phase transitions and even a crossover. The influence of the order of the phase transition

and of the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent

heat, i.e. a weak first-order chiral phase transition, or a smooth crossover lead to distinctly different

HBT predictions than a strong first order phase transition. A quantitative description of the data,

both at SPS energies as well as at RHIC energies, appears difficult to achieve within the ideal

hydrodynamic approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral

phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14503228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. INTRODUCTION

General theoretical arguments [1] and lattice QCD simulations [2] predict the occurrence

of a transition of strongly interacting matter to a state where chiral symmetry is (approxi-

mately) restored. Since Bose-Einstein correlations in multiparticle production processes [3]

provide valuable information on the space-time dynamics of fundamental interactions [4],

correlations of identical pions produced in high energy collisions of heavy ions may provide

information on the characteristics of that phase transition (for a review on QGP signatures,

see [5]). For recent reviews on this topic we refer to [6, 7].

In particular, a first order phase transition leads to a prolonged hadronization time as

compared to a cross-over or a hadron gas with no symmetry restoration, and has been

related to unusually large Hanbury-Brown–Twiss (HBT) radii [8, 9, 10]. The coexistence of

hadrons and QGP reduces the “explosivity” of the high-density matter before hadronization,

prolonging the emission duration of pions [8, 9, 10]. This phenomenon should then depend

on the critical temperature Tc and the latent heat of the transition. Typically, calculations

assuming a first-order phase transition are carried out with an equation of state (EoS)

derived from matching the bag model with an ideal hadron gas model, for which the latent

heat of the transition is large [9, 10]. Consequently, the predicted HBT radii were large.

Here, we consider also the case of a more weakly first-order transition with small la-

tent heat and study the influence on the space time characteristics of the expansion and

on the HBT radii. Furthermore, we perform explicit calculations for a smooth transition

(crossover) at high temperatures, and discuss the resulting pion HBT radii. Such a scenario

was considered in [10], however without explicit reference to chiral symmetry restoration

and dynamical hadron masses.

To investigate the space-time dynamics and the influences of different types of phase tran-

sitions, hydrodynamic expansion with an EoS obtained from a chiral SU(3)L×SU(3)R σ−ω
model is considered. The equations of fluid dynamics describe the collective evolution of

the system, while the chiral SU(3) × SU(3) model yields the underlying equation of state.

Thus, as the hot and dense central region expands both in the longitudinal and transverse

directions, the hadrons approach their vacuum masses. The initial excitation energy is con-

verted into both, collective flow and massive hadrons. This purely hadronic model describes

successfully nuclear matter ground state properties, finite nuclei and hadron masses in the
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vacuum [17, 18]. Furthermore, it exhibits different kinds of high temperature transitions,

depending on the set of parameters. Using the various equations of state in a hydrodynamic

simulation should discriminate between the different phase transition scenarios. Since the

model only contains hadronic degrees of freedom, we only test the influence of the chiral

phase transition but not of the deconfinement phase transition. In any case, the main effect

as far as collective expansion is concerned, is due to the difference in the latent heat for the

transition, irrespective of its microscopic origin.

This article is organized as follows. In section 2 we present our model. In particular,

in 2.1 we discuss ideal relativistic hydrodynamics, and in 2.2 we refer to our equations of

state. Section 3 shows our main results for the space-time evolution and the pion HBT radii.

We summarize and conclude in section 4. Throughout the manuscript, we employ natural

units c = ~ = kB = 1.

2. MODEL DESCRIPTION

2.1. Scaling Hydrodynamics

Ideal Hydrodynamics is defined by (local) energy-momentum and net charge conserva-

tion [11],

∂µT
µν = 0 , ∂µN

µ
i = 0 . (1)

T µν denotes the energy-momentum tensor, and Nµ
i the four-current of the ith conserved

charge. We will explicitly consider only one such conserved charge, the net baryon number.

We implicitly assume that the local densities of all other charges which are conserved on

strong-interaction time scales, e.g. strangeness, charm, and electric charge, vanish. The

corresponding four-currents are therefore identically zero, cf. eq. (2), and the conservation

equations are trivial.

For ideal fluids, the energy-momentum tensor and the net baryon current assume the

simple form [11]

T µν = (ǫ+ p) uµuν − pgµν , Nµ
B = ρBu

µ , (2)

where ǫ, p, ρB are energy density, pressure, and net baryon density in the local rest frame

of the fluid, which is defined by Nµ
B = (ρB,~0). gµν = diag(+,−,−,−) is the metric tensor,

and uµ = γ(1, ~v) the four-velocity of the fluid (~v is the three-velocity and γ = (1 − ~v2)−1/2
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the Lorentz factor). The system of partial differential equations (1) is closed by choosing an

equation of state (EoS) in the form p = p(ǫ, ρB), cf. below.

For simplicity, we assume cylindrically symmetric transverse expansion with a longitu-

dinal scaling flow profile, vz = z/t [12]. This should be a reasonable first approximation

for central collisions at high energy (such as at CERN-SPS and BNL-RHIC energies), and

around midrapidity. A quantitative comparison to experimental data, which we postpone to

a future publication, should however analyze the effects due to coupling of longitudinal and

transverse flows around midrapidity. At least up to CERN-SPS energies,
√
s ∼ 20A GeV,

such a coupling was shown to exist [13].

The hydrodynamic equations of motion are solved on a discretized space-time grid (∆rT =

RT/100 = 0.06 fm, ∆τ = 0.99∆rT ) by employing the RHLLE algorithm as described and

tested in [10, 15]. We have checked that the algorithm accurately conserves total energy and

baryon number, and that profiles of rarefaction and shock waves are reproduced accurately

for various initial conditions [14, 15, 16].

As already mentioned above, eqs. (2), we assume a perfect, i.e. non-dissipative, relativistic

fluid. In principle, it is possible to calculate the transport coefficients from the Lagrangean

of our model [17, 18]. (For example, various transport coefficients have been computed

in the symmetry broken phase based on the assumption of an ideal gas of hadrons [19].)

Also, dynamical simulations indicate that dissipation strongly affects the pion correlation

functions at small relative momentum, and thus the deduced HBT radii [20]. Quantitative

comparisons to experimental data should therefore account for dissipative effects. On the

other hand, the purpose of this paper is to explore the effects from varying the latent heat

and the order of the phase transition. In that vein, we can leave aside the great technical and

principal difficulties related to a treatment of dissipation in dynamical simulations [21], and

give an impression of the largest possible effects of varying the phase transition parameters

that can be expected. This will also allow for a comparison to previous results for the pion

HBT correlation functions, which employed ideal fluid dynamics with an EoS derived from

the bag model [9, 10].
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2.2. Equations of state from a chiral SU(3) × SU(3) model

To close the system of coupled equations of hydrodynamics, an equation of state (EoS) has

to be specified. Lattice QCD predicts chiral symmetry restoration at a critical temperature

of Tc = 140 − 170 MeV [2, 22] (for ρB = 0). We obtain the equation of state from a chiral

SU(3)×SU(3)σ−ω model that was discussed in detail in [17, 18]. We will briefly introduce

the model here: consider a relativistic field theoretical model of baryons and mesons based

on a nonlinear realization of chiral symmetry and broken scale invariance. The general form

of the Lagrangean is:

L = Lkin +
∑

M=X,Y,V,A,u

LBM + Lvec + LVP − V0 − VSB. (3)

Lkin is the kinetic energy term, LBM includes the interaction terms of the different baryons

with the various spin-0 and spin-1 mesons. The baryon masses are generated by both, the

nonstrange σ (< qq̄ >) and the strange ζ (< ss̄ >) scalar condensate. X,Y,V,A,u stand for

scalar octet, scalar singlet, vector, axial vector and pseudoscalar mesons respectively. LVP

contains the interaction terms of vector mesons with pseudoscalar mesons. Lvec generates

the masses of the spin-1 mesons through interactions with spin-0 mesons, and V0 gives the

meson-meson interaction terms which induce the spontaneous breaking of chiral symmetry.

It also includes a scale-invariance breaking logarithmic potential. Finally, VSB introduces an

explicit symmetry breaking of the U(1)A, the SU(3)V , and the chiral symmetry. All these

terms have been discussed in detail in [17, 18].

The hadronic matter properties at finite density and temperature are studied in the mean-

field approximation, i.e. the meson field operators are replaced by their expectation values

and the fermions are treated as quantum mechanical one-particle operators [23]. After

performing these approximations, the Lagrangean (3) becomes

LBM = −
∑

i

ψi[giωγ0ω
0 + giφγ0φ

0 +m∗
i ]ψi

Lvec =
1

2
m2

ω

χ2

χ2
0

ω2 +
1

2
m2

φ

χ2

χ2
0

φ2 + g4
4(ω

4 + 2φ4)

V0 =
1

2
k0χ

2(σ2 + ζ2) − k1(σ
2 + ζ2)2 − k2(

σ4

2
+ ζ4) − k3χσ

2ζ

+ k4χ
4 +

1

4
χ4 ln

χ4

χ4
0

− δ

3
χ4 ln

σ2ζ

σ2
0ζ0
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VSB =

(

χ

χ0

)2 [

m2
πfπσ + (

√
2m2

KfK − 1√
2
m2

πfπ)ζ

]

,

with mi the effective mass of the baryon i (i = N,Λ,Σ,Ξ,∆,Σ∗,Ξ∗,Ω). σ and ζ correspond

to the scalar condensates, ω and φ represent the iso-singlet non-strange and the strange

vector field, respectively, and χ is the dilaton field, which can be viewed as representing the

effects of the gluon condensate. In this work we will use the frozen glueball approximation,

i.e. adopt the dilaton field as constant. In the current form of the model this makes

sense, since the glueball field does not change strongly with temperature and density. In a

forthcoming work we will investigate the consequences of a stronger coupling of the glueball

field to the scalar fields.

The thermodynamical potential of the grand canonical ensemble Ω per volume V at a

given chemical potential µ and temperature T can be written as:

Ω

V
= −Lvec + V0 + VSB − Vvac

− 1

T

∑

i

γi

(2π)3

∫

d3k
[

ln
(

1 + e−
1

T
[E∗

i (k)−µ∗i ]
)]

+
1

T

∑

j

γj

(2π)3

∫

d3k
[

ln
(

1 − e−
1

T
[E∗

j
(k)−µj ]

)]

The vacuum energy Vvac (the potential at ρ = 0) has been subtracted in order to get

a vanishing total vacuum energy. γi denote the fermionic and γj the bosonic spin-isospin

degeneracy factors. The single particle energies are E∗
i (k) =

√

k2
i +m∗

i
2, withm∗

i = m∗
i (σ, ζ)

(see [17, 18]). The effective baryonic chemical potentials read µ∗
i = µi − giωω − giφφ with

µi = (ni
q − ni

q̄)µq + (ni
s −ni

s̄)µs and the mesonic chemical potentials read µj = (nj
q − nj

q̄)µq +

(nj
s−nj

s̄)µs. n
i
q, n

i
q̄,n

i
s and ni

s̄ denote the number of consituent q, q̄, s and s̄ quarks in particle

species i, respectively.

The mesonic fields are determined by extremizing Ω
V

(µ, T ): The density of particle i can

be calculated by differentiating Ω with respect to the corresponding chemical potential µi.

This yields:

ρi = γi

∫ ∞

0

d3k

(2π)3

[

1

exp [(E∗
i − µ∗

i )/T ] ± 1

]

The net density of particle species i is given by ρi − ρ̄i. The energy density and the pressure

follow from the Gibbs–Duhem relation, ǫ = Ω/V + TS + µiρ
i and p = −Ω/V . The model

shows a phase transition or a crossover around Tc = 150MeV. Since there are only hadronic
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degrees of freedom in the model, this phase transition is of purely hadronic nature, i.e. the

strong increase of the scalar density reduces the masses of the baryons, which in turn again

increases the scalar density (compare e.g. to [24]).

The characteristics (e.g. the order, the latent heat) of the various phase transitions

depend on the chosen parameters and on the considered degrees of freedom. We will use

three different parameter sets, which differ in their treatment of the baryon resonances. This

leads to different predictions concerning the behavior of hot hadronic matter. In parameter

set CI the baryon decuplet is neglected, and the only degrees of freedom in the system

are the members of the (anti)-baryon octet, the pseudoscalar meson nonet and the vector

meson nonet. In parameter set CII and CIII we include the (anti)-baryon decuplet. This

increases the number of degrees of freedom by 80. The parameter sets CII and CIII differ in

the treatment of the strange spin-3
2

resonances. In parameter set CII an additional explicit

symmetry breaking for the baryon resonances along the hypercharge direction, as desribed

in [17] for the baryon octet, is included. This is neglected in parameter set CIII.

In figure 1 the resulting pressure and energy density are plotted as a function of temper-

ature for vanishing chemical potential. The predicted behavior of the hot hadronic matter

differs significantly for the different parameter sets. Parameter set CI exhibits a smooth

crossover, while a first order phase transition is found for parameter set CII. Two first order

phase transitions are found for parameter set CIII. This behavior is due to separate jumps

in the non-strange and the strange condensate.

The resulting velocities of sound are shown in figure 2. The crossover EoS shows a decrease

of c2s around ǫ = 1GeV/fm3. This is due to the strong reduction of the baryonic masses

around the phase transition region. However, because the latent heat is zero in the crossover

case, c2s remains finite. In contrast c2s vanishes in the phase transition regions for CII and

CIII (however, it is non-zero if µq, µs > 0). The latent heat for CII is ∆EII ≈ 600MeV/fm3,

while it is ∆EIII ≈ 850MeV/fm3 + 920MeV/fm3 = 1770MeV/fm3 for CIII (Both values

are for µq = µs = 0). Between the two distinct first-order transitions in model III, c2s is

non-zero again. However, this happens in a very narrow interval of energy density, and plays

no significant role in our analysis.

As can be seen from Fig 2 r.h.s., the occurence of a first order phase transition depends

on the chemical potential. For small chemical potential, µq < 100MeV, CIII shows two

phase transitions due to the jump in the σ and the ζ field while CII exhibits one PT due
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FIG. 1: ǫ/T 4 and p/T 4 for the three different parameter sets CI, CII, CIII at µq = µs = 0.

Depending on the chosen parameters we observe a different phase transition behavior. For CI

a smooth crossover occurs. In contrast CII leads to a jump in ǫ/T 4 at T ≈ 150MeV and a

discontinuity in the rise of P/T 4 with T . Finally, CIII even shows two discontinuities in ǫ/T 4.

The horizontal lines correspond to the Stefan-Boltzmann limit with and without the (anti)-baryon

decuplet.

to the jump in the σ-field. At higher chemical potentials, (100MeV < µq < 370MeV)

CIII shows a phase transition due to the jump in the ζ field only. Furthermore, since in

the SU(3)-approach two chemical potentials (µq, µs) have to be considered, the condition

fs ≡ ρs/ρB = 0 does not hold for each phase in the mixed-phase region, but only for the

total strangeness fraction. This leads to a slight change of the temperature in the mixed

phase. For chemical potential µq > 370MeV there is no phase transition for fs = 0. The

energy densities and entropy densities in the phase transition regions are specified in table

I.

The effective thermodynamic potential for parameter set CII around the phase transition

temperature Tc is depicted in figure 3. We observe that the effective thermodynamic poten-

tial varies very rapidly around Tc. The spinodal points, i.e. the temperatures at which the

inflection points for the two minima appear, are only 2− 3% off Tc. This potential therefore

varies substantially faster than that from the Gross-Neveu model or from the SU(2) linear

sigma model investigated in [25]. However, the variation of the potential around Tc ob-
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CIII PT
CIII PT
CII

FIG. 2: Left: c2
s ≡ ∂p/∂ǫ for three different equations of state at µq = µs = 0. Right: Phase

diagram for the parameter sets CII and CIII for fs ≡ ρs/ρB = 0. The two chemical potentials

(µq, µs) of the system lead to a slight change of the temperature in the phase transition region.

ǫ−/ǫ0 ǫ+/ǫ0 s−[fm−3] s+[fm−3] Tc[MeV]

CII 2.1 6.3 2.3 6.2 156.3

CIII - 1st PT 1.7 7.6 2.0 7.5 153.4

CIII - 2nd PT 9.4 15.7 9.3 15.2 155.5

TABLE I: Energy density and entropy density in the phase transition regions for CII,CIII,

µq = µs = 0. The (−), (+) signs stand for values below and above the phase transition, respectively.

Tc denotes the phase transition temperature. ǫ0 = 138.45 MeV/fm3 denotes the energy density of

nuclear matter in the ground state.

tained from our model is in the same range as for the model used in [28], where the authors

showed that such a fast variation of the effective potential around Tc might lead to explosive

behavior via rapid spinodal decomposition (as opposed to an adiabatic phase transition).

This questions the applicability of our approach of equilibrium hydrodynamics. However,

as a first approximation, we study the effects dynamically, assuming that local equilibrium

does hold, i.e. that the mean fields in fact assume the value of the global minimum of the

potential, and that at the critical temperature two phases (corresponding to the two minima

9



T=158.5 MeV
T=157.5 MeV
T=156.5 MeV
T=155.5 MeV
T=154.5 MeV

FIG. 3: Effective Potential Ω/V ≡ −p as a function of the scalar condensate σ around Tc. For

parameter set CII and µq = µs = 0 (ζ has been chosen such as to maximize the pressure for given

σ).

of the effective potential) coexist.

2.3. Initial Conditions

The initial conditions in scaling hydrodynamics are specified on a proper-time hyperbola

τ = τi. On that space-like hypersurface one has to specify the entropy per net baryon

and the net baryon rapidity density at midrapidity, dNB/dy. A model with an MIT bag

model equation of state [29] for the high temperature phase and an ideal hadron gas in

the low-temperature region can reproduce both [14], the measured transverse energy at

midrapidity, and the pT -spectra of a variety of hadrons at
√
s = 17.4A GeV (CERN-SPS

energy), assuming the standard thermalization (proper) time τi = 1 fm/c, and a specific

entropy of s/ρB = 45 and a net baryon rapidity density dNB/dy = 80. This value for s/ρB

is also in good agreement with the measured relative abundances of hadrons [30]. The initial

net baryon density follows as ρB = 4.5ρ0. The corresponding values of ǫi, T, µq and µs (q-

and s-quark chemical potential respectively) for the various chiral EoS are listed in table II.
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ǫ/ǫ0 p/ǫ0 T [MeV] µq[MeV] µs[MeV]

SPS CI 49.2 10.5 256.0 236.2 133.0

CII 40.2 6.6 197.0 241.3 58.6

CIII 37.3 5.9 180.6 246.6 36.4

RHIC CI 127.9 29.3 313.3 138.4 95.8

CII 100.4 21.4 242.0 151.6 60.9

CIII 93.7 22.0 230.0 154.6 53.0

TABLE II: Initial conditions for the three chiral EoS, corresponding to s/ρB = 45 and

dNB/dy = 80 for CERN-SPS energy and s/ρB = 200 and dNB/dy = 25 for BNL-RHIC en-

ergy. ǫ0 = 138.45 MeV/fm3 is the energy density of nuclear matter in the ground state. Here,

ǫ and s/ρB denote the average values at midrapidity at the initial time τi, i.e. the mean of the

respective transverse distribution. The other quantities have been computed from those average

values for ǫ and s/ρB , using the corresponding EoS.

The initial net baryon density is independent of the underlying EoS because the continuity

equation for the net baryon current in (1) does not involve the pressure p explicitly.

Due to the higher density at midrapidity, thermalization may be faster at BNL-RHIC

energies – following [10] we assume τi = 0.6 fm/c. Various microscopic models, e.g. PCM

[31], RQMD [32], FRITIOF 7.02 [33], and HIJING/B [34], predict a net baryon rapidity

density of dNB/dy ≈ 20− 35 and specific entropy of s/ρB ≈ 150− 250 in central Au+Au at
√
s = 130AGeV at midrapidity. We will employ s/ρB = 200 and dNB/dy=25. The resulting

baryon density at midrapidity is ρi = 2.3ρ0. Hadron multiplicity ratios at midrapidity

can be described with these initial conditions [44]. The energy density and baryon density

are initially distributed in the transverse plane according to a so-called “wounded nucleon”

distribution with transverse radius RT = 6 fm. For further details, we refer to refs. [14, 20].

As seen from table II, the initial energy density more than doubles when going from CERN-

SPS energy to BNL-RHIC energy. The initial temperature increases by about 50 MeV, while

the initial chemical potential for u, d quarks decreases by about 100 MeV, in all cases. Note

that for a bag model EoS the chemical potential for s-quarks vanishes because of strangeness

neutrality in the QGP phase, see e.g. [14]. Strangeness neutrality is a global constraint, only
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[26]. Within a mixed phase, however, the individual phases may adopt non-zero values for fs.

In a hadronic model, the hyperons contain non-strange quarks and adopt a finite chemical

potential if µq 6= 0. Therefore, the hyperon vector density is positive at finite temperature.

This surplus of strange quarks contained in the hyperons is balanced by the anti-strange

quarks in strange mesons. This leads to a finite strangeness chemical potential µs, which is

adjusted to yield ns = ns̄. Here ns, ns̄ denote the total number of strange and anti-strange

quarks in the system, respectively. As already discussed in [26], in the mixed phase only

the total strangeness fraction fs vanishes, while each of the two coexisting phases does,

in general, carry net strangeness. Furthermore for the case of a strong first order phase

transition the evaporation of pions and kaons and strangeness distillation [26] should be

studied, since these influence the unlike particle correlations (e.g. K+/K−, see [27]).

3. RESULTS

3.1. Hypersurfaces

Before presenting results on pion correlations, in this section we shall discuss the ef-

fects from varying the latent heat in the EoS on the space-time evolution of the hadronic

fluid. Qualitatively, the same effects are observed for both sets of initial conditions, and we

therefore show only the results corresponding to the BNL-RHIC case. Figure 4 shows the

calculated hypersurfaces at fixed temperature, T = Tf , in the transverse plane at η = 0 for

the three chiral EoS.

Comparing the freeze-out curves for the different equations of state one finds that the

different phase-transition behavior of the three parameter sets is reflected in the space-time

evolution of the system. In case I (crossover) the time until freeze-out is shorter than in

case III (two first order phase transitions). This is not surprising, since the occurence of a

mixed phase prolongs the expansion time. This is due to the above-mentioned drop of the

speed of sound, cs. The fastest expansion is obtained for a crossover with no latent heat

and, accordingly, no discontinuity in the entropy density.

The different space-time evolutions for the three EoS is most obvious for Tf = 80MeV

and Tf = 100MeV but can also be seen for Tf = 130MeV. For CERN-SPS energies we

obtained similar results, with only slightly smaller liefetimes and radial extensions.
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3.2. Two particle correlations

To calculate the two particle correlation function we use the method developed in [4, 8].

We measure the coincidence probability P (p1,p2) of two identical particles with momenta

p1,p2 relative to the probability of detecting uncorrelated particles. The inverse width of the

correlation function in out-direction (Rout) is proportional to the duration of the particle

emission, i.e. to the lifetime of the source [8, 38]. Analogously, the inverse width of the

correlation function in side-direction (Rside) is a measure for the (transverse) size of the

source. Using a Gaussian fit one can relate the inverse widths of the correlation functions to

radius parameters. It was pointed out in [10] that both for model calculation as well as for

experimental data it is tedious, if not impossible, to relate Rside and Rout to the real source

size and lifetime. However, the ratio Rout/Rside can be used as a measure for the lifetime of

the system.

The HBT radii shown below are obtained as follows. We assume that the pion correlation

function is determined on a hypersurface of given temperature Tf , where the pion mean free

path supposedly becomes too large to maintain local equilibrium. As already mentioned

above, at present we refrain from a detailed study of transport coefficients of our model.

Rather, our approach shall be more pragmatic, and we shall consider Tf as a free parameter.

CI (Crossover)
CII (1 PT)
CIII (2 PT)

FIG. 4: Hypersurfaces T = Tf for the three chiral EoS. This figure corresponds to initial conditions

as appropriate for central Au+Au collisions at BNL-RHIC energy (
√

s = 130AGeV).
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On the T = Tf hypersurface, the two-particle correlation function is given by [9, 10]

C2(p1,p2) = 1 +
1

N

∣

∣

∣

∣

∫

dσ ·Keiσ·qf (u ·K/T )

∣

∣

∣

∣

2

(4)

The normalization factor N is given by the product of the invariant single-particle inclusive

distributions of the pions evaluated at momenta p1 and p2, respectively. uµ denotes the

four-velocity of the fluid on the T = Tf surface, σµ; Kµ = (pµ
1 + pµ

2 )/2, qµ = pµ
1 − pµ

2 are

the average four-momentum and the relative four-momentum of the pion pair, respectively.

For midrapidity pions, K‖ = q‖ = 0. Thus, for the cylindrical geometry, the correlation

function depends on three variables only; that is, the out and side components of q, and the

transverse momentum of the pion pair, KT . In (4), f denotes the local distribution function

of pions in momentum space, at a temperature Tf . For simplicity, we shall assume a thermal

distribution function and neglect the interaction energy of the pions, which amounts to only

a ∼ 5% correction relative to the vacuum mass of the pion. From C2(qout, qside, KT ) we

determine the HBT radii as Rout =
√

ln 2/q∗out and Rside =
√

ln 2/q∗side, where q∗out, q
∗
side are

defined by C2(q
∗
out, qside = 0) = C2(q

∗
side, qout = 0) = 3/2.

In Fig. 5 we show the resulting HBT-radii Rside and Rout for central Pb+Pb collisions at

SPS energy (
√
s/A = 17.4 GeV), and compare to recent preliminary data obtained by the

NA49 collaboration [35]. Of course, in view of the approximations mentioned above such a

comparison should be interpreted with care. At Tf = 130 MeV, Rout is reproduced reason-

ably well. In particular, it appears that the EoS with the largest latent heat overestimates

Rout. This is rather similar to the bag model EoS [10, 20]. Note that Rout describes the

size of the source folded with the mean emission duration [7, 8, 9, 10, 20, 38]. The average

radius of the pion source decreases with increasing latent heat, but the emission duration

increases. Integrating over the emission surface, Fig. 5 shows that for KT ≥ 50 MeV the

latter dominates in case of longitudinal scaling expansion, and Rout increases with the latent

heat of the chiral transition. The EoS with vanishing or small latent heat is closest to the

data.

At Tf = 80 MeV and Tf = 100 MeV, the pion source has expanded further and hence Rout

is larger. At large KT , the EoS with first-order phase transition predicts too large values for

Rout for both values of Tf . At small transverse momenta, on the other hand, all three EoS

describe the data better than for the high freeze out temperature. This observation is in

agreement with the results of ref. [20], which shows that due to dissipative effects particles
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which suffer soft hadronic rescatterings freeze out at much later times than particles subject

to harder interactions. We can not account for that effect within our ideal-fluid model, but

it can be mimicked by choosing a lower Tf at smaller KT . In any case, our main focus

is on effects from the chiral phase transition. Our results suggest that a weakly first-order

transition, or a smooth crossover, can give a better description ofRout than a phase transition

with large latent heat (as in the bag model).

Rside measures the geometric size of the pion source in the transverse plane [46], and does

not depend on the emission duration [7, 8, 9, 10, 20, 38]. First, we note that the effective

source radius depends only very weakly on the latent heat for the transition, in particular

for large Tf . This is in accord with the space-time evolution as described in 3.1. At small

KT , Rside decreases slightly with the latent heat. However, for all three EoS, Rside comes

out too small. Only for Tf = 80 MeV an reasonable description is obtained. This could be

partly due to the neglect of resonance decays, which form a “halo” surrounding the direct

pion source [7, 9, 37, 39], and increase its effective size. On the other hand, the resonance

decays would also tend to increase Rout. As discussed in [10], a reasonable measure for the

data (NA49)
CI (Crossover)
CII (one 1st order PT)
CIII (two 1st order PT)

FIG. 5: Rside and Rout as a function of KT at SPS. Tf = 80, 100, 130MeV.
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emission duration of pions therefore is the ratio Rout/Rside, which is also less affected by

resonance decays. In Fig. 6 we show the results for initial conditions appropriate for BNL-

+
data (NA49)

-
data (NA49)

CI (Crossover)
CII (one 1st order PT)
CIII (two 1st order PT)

FIG. 6: Rside and Rout as a function of KT at RHIC. Tf = 80, 100, 130MeV.

RHIC energies. Both radii increase as compared to the lower SPS energy. That is because

the initial entropy density is significantly larger. Thus the system takes longer to cool down

to Tf , and the system has more time to expand in the transverse direction. For example, at

KT = 500 MeV, Rout increases by about 1 fm for the EoS with a strongly first-order phase

transition. Rside increases even less. This is in contrast to an EoS with only pions in the

hadronic phase [8, 10, 38], where the ratio of entropies of the two thermodynamic phases is

very large at Tc. The very moderate increase of the radii from SPS to RHIC energy is in

agreement with the results from STAR for Au+Au collisions at RHIC [40]. On the other

hand, as already discussed above, the “geometric size” of the source, Rside, is too small. As

at SPS energy, this could be due to decays of resonances. We shall therefore discuss next

the behavior of the ratio Rout/Rside with KT , which is less affected by decays [10], and which

is a good measure for the lifetime of the pion source.

Figures 7 and 8 show the experimentally measured ratio Rout/Rside as a function of KT
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for the three different equations of state for SPS and RHIC energies. One observes that at

data (NA49)
CI (Crossover)
CII (1 PT)
CIII (2 PT)

FIG. 7: Rout/Rside as a function of KT at SPS.

both energies the shortest lifetime of the system emerges from the EoS featuring a crossover

(CI), while the slowest expansion results from the EoS with largest latent heat (CIII). At

SPS energy, the data [35] yield a slowly rising Rout/Rside ratio. This is obtained for all three

EoS, if the freeze-out temperature is low, Tf = 80, 100 MeV. Of course, the absolute value

of Rout is too large, while Rside is too small, and so the ratio comes out way too large. As

is obvious from the figures, we are not able to reproduce the data for Rout/Rside, though a

small or even vanishing latent heat and a smaller freeze-out temperature improve the picture.

Turning to RHIC, we see that the predicted general behavior of Rout/Rside is similar as at

the SPS, except for a slight overall increase of that ratio. That is because the larger initial

entropy per baryon, which is deduced from the larger π/p and p̄/p ratios, increases the

lifetime of the system slightly. On the other hand, the STAR data [40] show Rout/Rside ≃ 1,

and a decrease with KT . This behavior can evidently not be reproduced for low Tf . Larger

freeze-out temperatures, Tf = 130 MeV, lead to flat, or even slightly decreasing Rout/Rside.

Nevertheless, Rout/Rside is about a factor of 2 higher for KT ≥ 100 MeV than seen in the

STAR data.
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+
data (STAR)

-
data (STAR)

CI (Crossover)
CII (1 PT)
CIII (2 PT)

FIG. 8: Rout/Rside as a function of KT at RHIC.

4. CONCLUSION

The space-time evolution of ultra-realtivistic heavy ion collisions at SPS and RHIC en-

ergies has been studied within hydrodynamic simulations using various EoS obtained from

a chiral SU(3)×SU(3) model. HBT radii have been calculated and compared to data from

the NA49 collaboration and the STAR collaboration. The influence of different orders of

the chiral phase transition and the underlying EoS have been discussed.

A small latent heat, i.e. a weak first-order chiral phase transition or even a smooth

crossover, leads to larger emission regions and smaller emission duration, as well as to larger

Rside and smaller Rout HBT radii than a strong first order transition as for example assumed

in the bag model.

In almost all cases, we observe that the results obtained with a crossover EoS are closest

to the experimental data. However, a quantitative description of the data, both at SPS

energy as well as at RHIC energy, is not possible within our present ideal-fluid approach

with longitudinal scaling flow, employing the various SU(3) chiral EoS.

Apparently, conclusions can only be drawn after considerable improvements on various

aspects of the description of high-energy heavy-ion collisions.

In particular, the effective chiral-SU(3) potential is rather rapidly varying around Tc.

Therefore, a non-equilibrium description, accounting for supercooling effects and/or rapid

spinodal decomposition, might be in order [25, 28]. In fact, it has been argued that the

decay of a droplet of chirally symmetric matter from a region of negative pressure may
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yield smaller values for the HBT radii, as well as a smaller ratio Rout/Rside [41][47]. Such

considerations are out of the scope of the present manuscript but will be studied in detail in

the future. More realistic freeze-out descriptions [20, 45] may improve the results. However,

as dissipative effects are expected to prolong the lifetime of the pion source even more,

it appears very likely that a quasi-adiabatic first-order phase transition with large latent

heat, for which a hydrodynamic description should be adequate, can not describe the pion

HBT data from CERN-SPS and from BNL-RHIC. This observation may be viewed as an

experimental confirmation of the predictions from lattice QCD [2, 22], which do not show a

large latent heat.

The nature of the chiral symmetry restoration will be better understood by analyzing

forthcoming experimental data from RHIC. For example, correlations among kaons, protons,

and non-identical particles can be analysed [42]. Excitation functions between CERN-SPS

energy (
√
s = 17.4A GeV) and the present BNL-RHIC energy (

√
s = 130 − 200 AGeV)

would be extremely useful to provide a more detailed view of the behavior of the corre-

lation functions. The excitation functions of source sizes and lifetimes and also so-called

“azimuthally sensitive” HBT-analysis [43] could be useful to obtain a complete picture of

the phase transition via the structure of the pion source in space-time. With these data

emerging, we hope that it will be possible to obtain a deeper understanding of the QCD

phase transition in high-energy heavy-ion collisions.
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Nucl. Phys. A 663, 737 (2000).

21

http://arxiv.org/abs/nucl-th/0104064


[31] K. Geiger and J.I. Kapusta, Phys. Rev. D 47, 4905 (1993)
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