

G.Jäger: L-continuous convergence is induced by an L-uniform convergence structure

1

Gunther Jäger; Department of Statistics, Rhodes University, 6140 Grahamstown, South Africa. Email: g.jager@ru.ac.za

Lattice-valued continuous convergence is induced by a latticevalued uniform convergence structure

1. Introduction

The category SL-GCS of stratified L-generalized convergence spaces [6],[7] is topological over SET and contains the category SL-TOP of stratified L-topological spaces as reflective subcategory [6]. The main advantage of SL-GCS over SL-TOP is, from a structural point of view, the existence of function space structures [6]. This makes SL-GCS cartesian closed. The corresponding function space structure on the set C(X,Y) of morphisms is c-lim, the structure of L-continuous convergence.

Another category, SL-UCS, of stratified L-uniform convergence spaces [8] generalizes in a similar way the category of stratified L-uniform spaces [3], SL-UNIF. Also SL-UCS is topological over SET, cartesian closed and contains SL-UNIF as reflective subcategory. Each object $(X, \Lambda) \in |SL\text{-}UCS|$ induces an object $(X, \lim(\Lambda)) \in |SL\text{-}\lim|$ (see [8]). In this paper we will show that in the case that $(Y, \Lambda) \in |SL\text{-}UCS|$ then $(C(X, Y), c\text{-}\lim) \in |SL\text{-}UCS|$. To this end, we generalize a classical result of Cook and Fischer [2] to the lattice-valued case. It follows from this that the subcategory of all $L\text{-}\liminf$ uniformizable spaces is cartesian closed.

2. Preliminaries

We consider in this paper complete lattices L where finite meets distribute over arbitrary joins. This means that for all α , β_{ι} ($\iota \in I$) we have $\alpha \wedge \bigvee_{\iota \in I} \beta_{\iota} = \bigvee_{\iota \in I} (\alpha \wedge \beta_{\iota})$. Such lattices are called frames or complete Heyting algebras [9]. The bottom (resp. top) element of L is denoted by \bot (resp. \top). It is then possible to define an implication $\alpha \to \bot$ as the right adjoint to $\alpha \wedge \bot$ by

$$\alpha \to \beta = \bigvee \{ \lambda \in L : \alpha \land \lambda \le \beta \}.$$

So we have $\delta \leq \alpha \to \beta$ if and only if $\alpha \land \delta \leq \beta$. Moreover, this implication, considered as mapping $L \times L \longrightarrow L$, is order reversing in the first argument and order preserving in the second argument. For further basic properties of this operator we refer to our earlier papers

[6],[7],[8] as well as to the references given there. The lattice operations are extended pointwise from L to $L^X = \{a : X \longrightarrow L\}$, the set of all L-sets on X. We especially denote the constant L-set on X with value $\alpha \in L$ by α_X .

A stratified L-filter \mathcal{F} on X [4],[5] is a mapping $\mathcal{F}: L^X \longrightarrow L$ with the properties

- (F1) $\mathcal{F}(\top_X) = \top, \quad \mathcal{F}(\bot_X) = \bot$
- $(F2) f \le g \Longrightarrow \mathcal{F}(f) \le \mathcal{F}(g)$
- (F3) $\mathcal{F}(f) \wedge \mathcal{F}(g) \leq \mathcal{F}(f \wedge g)$
- (Fs) $\alpha \wedge \mathcal{F}(f) \leq \mathcal{F}(\alpha_X \wedge f),$

for all $f, g \in L^X$, $x \in X$, $\alpha \in L$. The set of all stratified L-filters on X is denoted by $\mathcal{F}_L^s(X)$. An example of a stratified L-filter is the point L-filter [x] defined by [x](a) = a(x) (see e.g. [5]). An order on $\mathcal{F}_L^s(X)$ is defined pointwise by $\mathcal{F} \leq \mathcal{G}$ if for all $a \in L^X$ we have $\mathcal{F}(a) \leq \mathcal{G}(a)$ (see [5]). For a mapping $f: X \longrightarrow Y$ and $\mathcal{F} \in \mathcal{F}_L^s(X)$ we define $f(\mathcal{F}) \in \mathcal{F}_L^s(Y)$ by $f(\mathcal{F})(b) = \mathcal{F}(f^{\leftarrow}(b))$ (see [5]) where $f^{\leftarrow}(b) = b \circ f$. The meet $\mathcal{F} \wedge \mathcal{G}$ of two L-filters $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$ is defined by $(\mathcal{F} \wedge \mathcal{G})(a) = \mathcal{F}(a) \wedge \mathcal{G}(a)$. Obviously $\mathcal{F} \wedge \mathcal{G} \in \mathcal{F}_L^s(X)$ and it holds $f(\mathcal{F} \wedge \mathcal{G}) = f(\mathcal{F}) \wedge f(\mathcal{G})$. Also we have f([x]) = [f(x)].

Of special interest for us are stratified L-filters on products $X \times Y$. The first examples of such L-filters are products of L-filters $\mathcal{F} \in \mathcal{F}_L^s(X)$, $\mathcal{G} \in \mathcal{F}_L^s(Y)$ defined by

$$\mathcal{F} \times \mathcal{G}(a) = \bigvee \{ \mathcal{F}(a_1) \wedge \mathcal{G}(a_2) \mid a_1 \times a_2 \le a \}$$

$$\mathcal{F}\times(\mathcal{G}\wedge\mathcal{H})=(\mathcal{F}\times\mathcal{G})\wedge(\mathcal{F}\times\mathcal{H})$$

(see [8]).

Lemma 2.1: For $x \in X$ and $y \in Y$ we have $[(x, y)] = [x] \times [y]$.

Proof: The inequality $[x] \times [y] \leq [(x,y)]$ follows from $\pi_X([(x,y)]) = [\pi_X(x,y)] = [x]$ and, similarly, $\pi_Y([(x,y)]) = [y]$ as $\underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$ is left adjoint to $\pi = (\pi_X, \pi_Y)$. On the other hand, for $(x,y) \in X \times Y$ and $a \in L^{X \times Y}$ we define the *L*-sets

$$a_x: \left\{ egin{array}{lll} Y & \longrightarrow & L & & \\ z & \longmapsto & a(x,z) & & \end{array}
ight. \quad ext{and} \quad a_y: \left\{ egin{array}{lll} X & \longrightarrow & L \\ z & \longmapsto & a(z,y) \end{array}
ight. \, .$$

Then by definition $[x] \times [y](a) \ge [x](a_y) \wedge [y](a_x) = a(x,y) = [(x,y)](a)$ and the proof is completed. \square

If Y^X denotes the set of mappings from X to Y, the evaluation mapping is defined as usual by

$$ev: Y^X \times X \longrightarrow Y, (f, x) \longmapsto f(x).$$

We obtain as a Corollary of Lemma 2.1:

Corollary: We have for $f: X \longrightarrow Y$ and $x \in X$ that $ev([f] \times [x]) = [f(x)]$.

It is further a simple exercise to prove the following lemma.

Lemma 2.2: Let $\mathcal{F} \in \mathcal{F}_L^s(Y^X)$, $\mathcal{G} \in \mathcal{F}_L^s(X)$, $x \in X$ and $f: X \longrightarrow Y$. Then

$$\begin{split} & ev(\mathcal{F}\times(\mathcal{G}\wedge[x]))\times ev([f]\times(\mathcal{G}\wedge[x]))\\ = & & (ev(\mathcal{F}\times\mathcal{G})\times ev([f]\times\mathcal{G}))\wedge (ev(\mathcal{F}\times\mathcal{G})\times ev([f])\times[x]))\wedge \\ & & \wedge (ev(\mathcal{F}\times[x])\times ev([f]\times\mathcal{G}))\wedge (ev(\mathcal{F}\times[x])\times ev([f]\times[x])). \end{split}$$

The following bijection

$$\eta: \left\{ \begin{array}{ccc} (X\times X)\times (Y\times Y) & \longrightarrow & (X\times Y)\times (X\times Y) \\ ((x_1,x_2),(y_1,y_2)) & \longmapsto & ((x_1,y_1),(x_2,y_2)) \end{array} \right.$$

plays a prominent role later. The proofs of the next two lemmas are straightforward and are therefore again left to the reader.

Lemma 2.3: Let $a, b \in L^X$, $c, d \in L^Y$. Then

$$\eta((a \times b) \times (c \times d)) = (a \times c) \times (b \times d).$$

We deduce from this

Lemma 2.4: Let $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X), \mathcal{H}, \mathcal{K} \in \mathcal{F}_L^s(Y)$. Then

$$\eta((\mathcal{F} \times \mathcal{G}) \times (\mathcal{H} \times \mathcal{K})) = (\mathcal{F} \times \mathcal{H}) \times (\mathcal{G} \times \mathcal{K}).$$

From stratified L-filters on $X \times X$ we construct new ones with the following two constructions [8]. Let $\mathcal{F} \in \mathcal{F}_L^s(X \times X)$. Then $\mathcal{F}^{-1} \in \mathcal{F}_L^s(X \times X)$ is defined by

$$\mathcal{F}^{-1}(a) = \mathcal{F}(a^{-1}).$$

Here, for $a \in L^{X \times X}$, it is defined $a^{-1}(x, y) = a(y, x)$. Then $(\mathcal{F} \times \mathcal{G})^{-1} = \mathcal{G} \times \mathcal{F}$ (see [8]). If $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X \times X)$ we define further $\mathcal{F} \circ \mathcal{G}$ by

$$\mathcal{F} \circ \mathcal{G}(a) = \bigvee \{ \mathcal{F}(f) \wedge \mathcal{G}(g) \mid f \circ g \le a \} \qquad (a \in L^{X \times X}).$$

Here, for $f, g \in L^{X \times X}$, it is defined $f \circ g(x, y) = \bigvee \{ f(x, z) \land g(z, y) \mid z \in X \}$. Then $\mathcal{F} \circ \mathcal{G} \in \mathcal{F}_L^s(X \times X)$ if and only if $f \circ g = \bot_{X \times X}$ implies $\mathcal{F}(f) \land \mathcal{G}(g) = \bot$ (see [8]).

Lemma 2.5: Let $\mathcal{G} \in \mathcal{F}_L^s(X)$. Then $(\mathcal{G} \times \mathcal{G}) \circ (\mathcal{G} \times \mathcal{G}) \in \mathcal{F}_L^s(X \times X)$ and $(\mathcal{G} \times \mathcal{G}) \circ (\mathcal{G} \times \mathcal{G}) \geq \mathcal{G} \times \mathcal{G}$.

Proof: That $(\mathcal{G} \times \mathcal{G}) \circ (\mathcal{G} \times \mathcal{G}) \in \mathcal{F}_L^s(X \times X)$ follows from the following observation. Let $a, b \in L^{X \times X}$. If $a \circ b = \bot_{X \times X}$, then for all $x, y \in X$ we have

$$\bot = \bigvee_{z \in X} a(x,z) \wedge b(z,y) = \bigvee_{z \in X} a^{-1}(z,x) \wedge b(z,y).$$

Taking x = y we conclude

$$\perp = \bigvee_{z \in X} (a^{-1} \wedge b)(z, x).$$

Hence for all $x, z \in X$ we have $a^{-1} \wedge b(z, x) = \bot$ and this means $a^{-1} \wedge b = \bot_{X \times X}$. Hence

$$\begin{split} (\mathcal{G} \times \mathcal{G})(a) \wedge (\mathcal{G} \times \mathcal{G})(b) &= (\mathcal{G} \times \mathcal{G})^{-1}(a) \wedge (\mathcal{G} \times \mathcal{G})(b) \\ &= (\mathcal{G} \times \mathcal{G})(a^{-1}) \wedge (\mathcal{G} \times \mathcal{G})(b) \\ &\leq (\mathcal{G} \times \mathcal{G})(a^{-1} \wedge b) = \bot, \end{split}$$

as $\mathcal{G} \times \mathcal{G}$ is a stratified L-filter. For the inequality we remark that trivially we have for $f_1, f_2, g_1, g_2 \in L^X$

$$(f_1 \times f_2) \circ (g_1 \times g_2) \le f_1 \times g_2.$$

Hence

$$(\mathcal{G} \times \mathcal{G}) \circ (\mathcal{G} \times \mathcal{G})(a) = \bigvee_{\substack{(f_1 \times f_2) \circ (g_1 \times g_2) \leq a \\ \\ \\ f_1, g_2 \text{ s.t. } f_1 \times g_2 = (f_1 \times 1_X) \circ (1_X \times g_2) \leq a \\ \\ = \mathcal{G} \times \mathcal{G}(a). \qquad \square$$

A somewhat related result is the following.

Lemma 2.6: Let $\mathcal{F} \in \mathcal{F}_L^s(X)$ and $x \in X$. Then $(\mathcal{F} \times [x]) \circ ([x] \times \mathcal{F}) \leq \mathcal{F} \times \mathcal{F}$ and consequently $(\mathcal{F} \times [x]) \circ ([x] \times \mathcal{F}) \in \mathcal{F}_L^s(X \times X)$.

Proof: By definition for $a \in L^{X \times X}$

$$(\mathcal{F} \times [x]) \circ ([x] \times \mathcal{F})(a) = \bigvee_{a_1 \circ a_2 \le a} ((\mathcal{F} \times [x])(a_1) \wedge (([x] \times \mathcal{F})(a_2)).$$

Now if $a_1 \circ a_2 \leq a$ it follows, similar to the proof of Lemma 2.5, that for all $y, z \in X$

$$a_1(y,x) \wedge a_2^{-1}(z,x) \le a(y,z)$$

i.e. that $a_1(\cdot,x) \times a_2^{-1}(\cdot,x) \leq a$. Further we find

$$(\mathcal{F} \times [x])(a_1) = \bigvee_{b_1 \times c_1 \le a_1} \mathcal{F}(b_1) \wedge c_1(x).$$

As \mathcal{F} is a stratified L-filter this is

$$\leq \bigvee_{b_1 \times c_1 \leq a_1} \mathcal{F}(b_1 \wedge c_1(x)) \leq \mathcal{F}(a_1(\cdot, x)).$$

Similarly we find $([x] \times \mathcal{F})(a_2) \leq \mathcal{F}(a_2^{-1}(\cdot, x))$. Hence

$$(\mathcal{F} \times [x]) \circ ([x] \times \mathcal{F})(a) \leq \bigvee_{\substack{a_1(\cdot, x) \times a_2^{-1}(\cdot, x) \leq a}} \mathcal{F}(a_1(\cdot, x)) \wedge \mathcal{F}(a_2^{-1}(\cdot, x))$$

$$\leq \bigvee_{\substack{d_1 \times d_2 \leq a}} \mathcal{F}(d_1) \wedge \mathcal{F}(d_2) = (\mathcal{F} \times \mathcal{F})(a).$$

From this inequality it also follows that $(\mathcal{F} \times [x]) \circ ([x] \times \mathcal{F}) \in \mathcal{F}_L^s(X \times X)$, as $\mathcal{F} \times \mathcal{F}$ is a stratified L-filter.

3. Stratified lattice-valued limit spaces and stratified lattice-valued uniform convergence spaces

A stratified L-limit space (X, \lim) [7] is a set X together with a limit map $\lim : \mathcal{F}_L^s(X) \longrightarrow L^X$ satisfying the axioms

- (L1) $\limx = \top$
- (L2) $\mathcal{F} \leq \mathcal{G} \implies \lim \mathcal{F} \leq \lim \mathcal{G}$
- (L3) $\lim \mathcal{F} \wedge \lim \mathcal{G} \leq \lim (\mathcal{F} \wedge \mathcal{G})$

for all $x \in X$ and all $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$. A limit preserving mapping $f:(X, \lim) \longrightarrow (X', \lim')$ between two stratified L-limit spaces $(X, \lim), (X', \lim')$ is called *continuous* [7]. Here, "limit preserving" means that for all $x \in X$ and for all $\mathcal{F} \in \mathcal{F}_L^s(X)$ we have

$$\lim \mathcal{F}(x) \le \lim' f(\mathcal{F})(f(x)).$$

The category SL-LIM has as objects the stratified L-limit spaces and as morphisms the continuous mappings. It is a reflective subcategory of SL-GCS, the category of L-generalized convergence spaces mentioned in the introduction ([6],[7]). Like this category, SL-LIM is well-fibred and topological over SET. The initial structures are defined as follows. Given a source

$$(f_{\iota}: X \longrightarrow (X_{\iota}, \lim_{\iota}))_{\iota_{i} n I}$$

the unique limit map on X making all the f_{ι} continuous is given by

$$\lim \mathcal{F}(x) = \bigwedge_{\iota \in I} \lim_{\iota} f_{\iota}(\mathcal{F})(f_{\iota}(x)),$$

for $\mathcal{F} \in \mathcal{F}_L^s(X)$ and $x \in X$ (see [6],[7]). Especially, SL-LIM has (finite) products (taking as $X = \prod X_t$ the cartesian product of the X_t and as the $f_t = \pi_t$ the projection mappings). Moreover, SL-LIM is cartesian closed [7]. A category \mathbf{A} is called cartesian closed if it has finite products and if for each pair of objects (A, B) there exists a power object B^A and an evaluation morphism $ev: B^A \times A \longrightarrow B$ with the property, that for each morphisms $f: C \times A \longrightarrow B$ there is a unique exponential morphism $\hat{f}: C \longrightarrow B^A$ such that $ev \circ (\hat{f} \times id_A) = f$ [1]. In our case, being cartesian closed is equivalent to having function spaces [1]: Given $(X, \lim), (X', \lim') \in |SL\text{-}LIM|$ we can choose as power object the set $C(X, X') = \{f: (X, \lim) \longrightarrow (X', \lim') \mid f \text{ continuous}\}$ of all continuous mappings from X to X' with the function space structure on C(X, X') defined by

$$c\text{-lim}\mathcal{F}(f) = \bigwedge_{\mathcal{G} \in \mathcal{F}_I^s(X)} \bigwedge_{x \in X} \left(\text{lim}\mathcal{G}(x) \to \text{lim}' ev(\mathcal{F} \times \mathcal{G})(f(x)) \right).$$

Here $\mathcal{F} \in \mathcal{F}_L^s(C(X,X'))$, $f \in C(X,X')$ and $ev:(f,x) \longmapsto f(x)$ is the evaluation mapping restricted on $C(X,Y) \times X$ (see [7]).

In a similar way as stratified L-limit spaces generalize stratified L-topological spaces, stratified L-uniform convergence spaces generalize stratified L-uniform spaces ([3],[8]). They are defined as follows. A stratified L-uniform convergence space (X, Λ) [8] is a set X together with a mapping $\Lambda : \mathcal{F}_L^s(X \times X) \longrightarrow L$ satisfying the axioms

- (UC1) $\Lambda([x] \times [x]) = \top$
- $(UC2) \mathcal{F} \leq \mathcal{G} \Longrightarrow \Lambda(\mathcal{F}) \leq \Lambda(\mathcal{G})$
- (UC3) $\Lambda(\mathcal{F}) \leq \Lambda(\mathcal{F}^{-1})$
- (UC4) $\Lambda(\mathcal{F}) \wedge \Lambda(\mathcal{G}) \leq \Lambda(\mathcal{F} \wedge \mathcal{G})$
- (UC5) $\Lambda(\mathcal{F}) \wedge \Lambda(\mathcal{G}) \leq \Lambda(\mathcal{F} \circ \mathcal{G})$ whenever $\mathcal{F} \circ \mathcal{G} \in \mathcal{F}_I^s(X \times X)$,

for all $x \in X$ and for all $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X \times X)$. A mapping $f: (X, \Lambda) \longrightarrow (X', \Lambda')$ between two stratified L-uniform convergence spaces $(X, \Lambda), (X', \Lambda')$ is called *uniformly continuous* [8] if for all $\mathcal{F} \in \mathcal{F}_L^s(X \times X)$ we have

$$\Lambda(\mathcal{F}) \le \Lambda'((f \times f)(\mathcal{F})).$$

The category SL-UCS has as objects the stratified L-uniform convergence spaces and as morphisms the uniformly continuous mappings [8]. SL-UCS is topological over SET. Initial structures are defined as follows [8]. Given a source

$$(f_{\iota}:X\longrightarrow (X_{\iota},\Lambda_{\iota}))_{\iota\in I}$$

the unique structure, Λ , on X making all the f_{ι} uniformly continuous is given by

$$\Lambda(\mathcal{F}) = \bigwedge_{\iota \in I} \Lambda_{\iota}((f_{\iota} \times f_{\iota})(\mathcal{F})).$$

Especially also SL-UCS has (finite) products. Also this category is cartesian closed [8]. The function space structure on $UC = UC(X, X') = \{f : (X, \Lambda) \longrightarrow (X', \Lambda') \mid f \text{ uniformly continuous} \}$ is defined by

$$\Lambda_{uc}(\Phi) = \bigwedge_{\mathcal{F} \in \mathcal{F}_L^s(X \times X)} (\Lambda(\mathcal{F}) \to \Lambda'((ev \times ev)(\eta(\Phi \times \mathcal{F})))).$$

Here $\Phi \in \mathcal{F}_L^s(UC \times UC)$, ev is the evaluation mapping restricted on $UC(X,Y) \times X$ and η is the bijection

$$\eta: \left\{ \begin{array}{ccc} (UC\times UC)\times (X\times X) & \longrightarrow & (UC\times X)\times (UC\times X) \\ ((f,g),(x,y)) & \longmapsto & ((f,x),(g,y)) \end{array} \right..$$

Every stratified L-uniform convergence space (X, Λ) induces a stratified L-limit space $(X, \lim(\Lambda))$ by defining the limit map [8]

$$\lim(\Lambda)\mathcal{F}(x) = \Lambda(\mathcal{F} \times [x]).$$

A uniformly continuous map $f:(X,\Lambda)\longrightarrow (X',\Lambda')$ then induces a continuous map $f:(X,\lim(\Lambda))\longrightarrow (X',\lim(\Lambda'))$ (see [8]). Hence we can define a forgetful functor

$$\Phi: \left\{ \begin{array}{ccc} SL\text{-}UCS & \longrightarrow & SL\text{-}LIM \\ (X,\Lambda) & \longmapsto & (X,\lim(\Lambda)) \\ f & \longmapsto & f \end{array} \right.$$

Lemma 3.1: The forgetful functor $\Phi: SL\text{-}UCS \longrightarrow SL\text{-}LIM$ preserves initial structures.

Proof: Let

$$(f_t: X \longrightarrow (X_t, \Lambda_t))_{t \in I}$$

be a source. By definition of the initial structure Λ on X we have for $\mathcal{F} \in \mathcal{F}_L^s(X)$ and $x \in X$

$$\lim(\Lambda)\mathcal{F}(x) = \Lambda(\mathcal{F} \times [x])$$
$$= \bigwedge_{\iota \in I} \Lambda_{\iota}((f_{\iota} \times f_{\iota})(\mathcal{F} \times [x]))$$

$$= \bigwedge_{\iota \in I} \Lambda_{\iota}(f_{\iota}(\mathcal{F}) \times [f_{\iota}(x)])$$
$$= \bigwedge_{\iota \in I} \lim(\Lambda_{\iota}) f_{\iota}(\mathcal{F})(f_{\iota}(x)).$$

Hence $\lim(\Lambda)$ is the initial structure on X with respect to the source

$$(f_{\iota}: X \longrightarrow (X_{\iota}, \lim(\Lambda(\iota)))_{\iota \in I}.$$

4. A stratified L-uniform convergence structure which induces c-lim

We consider in this section a stratified L-limit space (X, \lim) and a stratified L-uniform convergence space (Y, Λ) . The set

$$C(X,Y) = \{ f : (X, \lim) \longrightarrow (Y, \lim(\Lambda)) \mid f \text{ continuous } \}$$

can be endowed with the stratified L-limit structure of continuous convergence c-lim. We will now define a stratified L-uniform convergence structure on C(X,Y) as follows. Let $\Phi \in \mathcal{F}^s_L(C(X,Y) \times C(X,Y))$ and define

$$\Lambda_c(\Phi) = \bigwedge_{\mathcal{G} \in \mathcal{F}_i^s(X)} \bigwedge_{x \in X} \left(\lim \mathcal{G}(x) \to \Lambda((ev \times ev)(\eta(\Phi \times (\mathcal{G} \times \mathcal{G})))) \right).$$

Lemma 4.1: $(C(X,Y), \Lambda_c) \in |SL\text{-}UCS|$.

Proof: We check the axioms.

(UC1): Let $f \in C(X,Y)$. Then for all $\mathcal{G} \in \mathcal{F}_L^s(X)$ and for all $x \in X$ we have

$$\lim \mathcal{G}(x) < \lim(\Lambda) f(\mathcal{G})(f(x)) = \Lambda(f(\mathcal{G}) \times [f(x)]).$$

From [6], Lemma 8.2 we know $f(\mathcal{G}) \leq ev([f] \times \mathcal{G})$ and therefore we conclude

$$\lim \mathcal{G}(x) \leq \Lambda(ev([f] \times \mathcal{G}) \times [f(x)]).$$

(UC5), Lemma 2.6 and (UC3) then yield

$$\begin{split} \lim & \mathcal{G}(x) & \leq & \Lambda((ev([f] \times \mathcal{G}) \times [f(x)]) \circ ([f(x)] \times ev([f] \times \mathcal{G})) \\ & \leq & \Lambda(ev([f] \times \mathcal{G}) \times ev([f] \times \mathcal{G})) \\ & = & \Lambda(ev \times ev(\eta(([f] \times [f]) \times (\mathcal{G} \times \mathcal{G})))). \end{split}$$

Therefore $\Lambda_c([f] \times [f]) = \top$. (UC2) is obvious.

(UC3): We have

$$\Lambda_c(\Phi^{-1}) = \bigwedge_{\mathcal{G} \in \mathcal{F}_L^s(X), x \in X} (\lim \mathcal{G}(x) \to \Lambda(ev \times ev(\eta(\Phi^{-1} \times (\mathcal{G} \times \mathcal{G}))))).$$

From [8], Lemma 3.8 we conclude that

$$\eta(\Phi^{-1}\times(\mathcal{G}\times\mathcal{G}))=(\eta(\Phi\times(\mathcal{G}\times\mathcal{G})^{-1}))^{-1}=(\eta(\Phi\times(\mathcal{G}\times\mathcal{G})))^{-1}\,.$$

Moreover it is generally true that $(f \times f)(\Phi^{-1}) = ((f \times f)(\Phi))^{-1}$, as the reader may readily verify. Thus we conclude

$$\begin{split} \Lambda_c(\Phi^{-1}) &= \bigwedge_{\mathcal{G} \in \mathcal{F}^s_L(X), x \in X} (\text{lim}\mathcal{G}(x) \to \Lambda((ev \times ev)(\eta(\Phi \times (\mathcal{G} \times \mathcal{G})))^{-1})) \\ &\geq \bigwedge_{\mathcal{G} \in \mathcal{F}^s_L(X), x \in X} (\text{lim}\mathcal{G}(x) \to \Lambda((ev \times ev)(\eta(\Phi \times (\mathcal{G} \times \mathcal{G}))))) \\ &= \Lambda_c(\Phi). \end{split}$$

(UC4) follows with $\alpha \to (\beta \wedge \gamma) = (\alpha \to \beta) \wedge (\alpha \to \gamma)$ directly from (UC4) for (Y, Λ) . For (UC5) we use [8], Lemma D. Let $\Phi \circ \Psi \in \mathcal{F}_L^s(C(X,Y) \times C(X,Y))$. Then

$$\Lambda_{c}(\Phi \circ \Psi) = \bigwedge_{\mathcal{G} \in \mathcal{F}_{L}^{s}(X), x \in X} (\lim \mathcal{G}(x) \to \Lambda((ev \times ev)(\eta((\Phi \circ \Psi) \times (\mathcal{G} \times \mathcal{G}))))))$$

$$\geq \bigwedge_{\mathcal{G} \in \mathcal{F}_{L}^{s}(X), x \in X} (\lim \mathcal{G}(x) \to \Lambda(((ev \times ev)(\eta(\Phi \times (\mathcal{G} \times \mathcal{G}))))) \circ$$

$$\circ ((ev \times ev)(\eta(\Psi \times ((\mathcal{G} \times \mathcal{G})^{-1} \circ (\mathcal{G} \times \mathcal{G}))))))).$$

Lemma 2.5 shows that the last expression is

$$\geq \bigwedge_{\mathcal{G} \in \mathcal{F}_{t}^{s}(X), \ x \in X} (\text{lim}\mathcal{G}(x) \to \Lambda((ev \times ev)(\eta(\Phi \times (\mathcal{G} \times \mathcal{G}))) \circ (ev \times ev)(\eta(\Psi \times (\mathcal{G} \times \mathcal{G}))))).$$

From (UC5) for (Y, Λ) then finally $\Lambda_c(\Phi \circ \Psi) \geq \Lambda_c(\Phi) \wedge \Lambda_c(\Psi)$ follows. \square

Next we present a useful description of the induced stratified L-convergence of Λ_c .

Lemma 4.2: Let $(X, \lim) \in |SL\text{-}LIM|$ and $(Y, \Lambda) \in |SL\text{-}UCS|$. Then

$$\lim(\Lambda_c)\mathcal{F}(f) = \bigwedge_{\mathcal{G} \in \mathcal{F}_L^s(X)} \bigwedge_{x \in X} (\lim \mathcal{G}(x) \to \Lambda(ev(\mathcal{F} \times (\mathcal{G} \wedge [x])) \times ev([f] \times (\mathcal{G} \wedge [x]))).$$

Proof: From Lemma 2.4 we know that

$$\eta((\mathcal{F} \times [f]) \times (\mathcal{G} \times \mathcal{G})) = (\mathcal{F} \times \mathcal{G}) \times ([f] \times \mathcal{G}).$$

Therfore we conclude

$$\lim(\Lambda_{c})\mathcal{F}(f) = \bigwedge_{\mathcal{G}\in\mathcal{F}_{L}^{s}(X), \ x\in X} (\lim\mathcal{G}(x) \to \Lambda(ev(\mathcal{F}\times\mathcal{G})\times ev([f]\times\mathcal{G})))$$

$$\leq \bigwedge_{\mathcal{G}\in\mathcal{F}_{L}^{s}(X), \ x\in X} (\lim(\mathcal{G}\wedge[x])(x) \to \Lambda(ev(\mathcal{F}\times(\mathcal{G}\wedge[x]))\times ev([f]\times(\mathcal{G}\wedge[x])))).$$

From (L1), (L2) and (L3) it follows $\lim \mathcal{G}(x) = \lim (\mathcal{G} \wedge [x])(x)$ and hence

$$\lim(\Lambda_c)\mathcal{F}(f) \leq \bigwedge_{\mathcal{G} \in \mathcal{F}_L^s(X), \ x \in X} (\lim \mathcal{G}(x) \to \Lambda(ev(\mathcal{F} \times (\mathcal{G} \wedge [x])) \times ev([f] \times (\mathcal{G} \wedge [x]))).$$

As $\mathcal{G} \wedge [x] \leq \mathcal{G}$ we conclude with (UC2) for (Y, Λ) finally

$$\lim(\Lambda_{c})\mathcal{F}(f) \leq \bigwedge_{\mathcal{G}\in\mathcal{F}_{L}^{s}(X), x\in X} (\lim\mathcal{G}(x) \to \Lambda(ev(\mathcal{F}\times(\mathcal{G}\wedge[x]))\times ev([f]\times(\mathcal{G}\wedge[x]))))$$

$$\leq \bigwedge_{\mathcal{G}\in\mathcal{F}_{L}^{s}(X), x\in X} (\lim\mathcal{G}(x) \to \Lambda(ev(\mathcal{F}\times\mathcal{G})\times ev([f]\times\mathcal{G})))$$

$$= \lim(\Lambda_{c})\mathcal{F}(f). \qquad \square$$

Lemma 4.2 yields, together with Lemma 2.2, (UC2) and (UC4), the following equality (*)

$$\begin{split} \lim(\Lambda_c)\mathcal{F}(f) &= \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\mathcal{G}(x)\to\Lambda(ev(\mathcal{F}\times\mathcal{G})\times ev([f]\times\mathcal{G}))) \\ &\wedge \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\mathcal{G}(x)\to\Lambda(ev(\mathcal{F}\times\mathcal{G})\times ev([f]\times[x]))) \\ &\wedge \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\mathcal{G}(x)\to\Lambda(ev(\mathcal{F}\times[x])\times ev([f]\times\mathcal{G}))) \\ &\wedge \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\mathcal{G}(x)\to\Lambda(ev(\mathcal{F}\times[x])\times ev([f]\times[x]))). \end{split}$$

We will use this equality to compare $\lim(\Lambda_c)$ and c-lim. For the stratified L-limit spaces (X, \lim) and $(Y, \lim(\Lambda))$ the structure of continuous convergence is defined as follows. For $\mathcal{F} \in \mathcal{F}_L^s(C(X,Y))$ and $f \in C(X,Y)$ we have

$$\begin{array}{lcl} c\text{-}\!\lim\!\mathcal{F}(f) & = & \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\!\mathcal{G}(x)\to \lim(\Lambda)(ev(\mathcal{F}\times\mathcal{G}))(f(x))) \\ \\ & = & \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\!\mathcal{G}(x)\to \Lambda(ev(\mathcal{F}\times\mathcal{G})\times[f(x)])). \end{array}$$

As, by the Corollary to Lemma 2.1, $ev([f] \times [x]) = [f(x)]$ we immediately see that $\lim(\Lambda_c)\mathcal{F}(f) \leq c$ - $\lim \mathcal{F}(f)$. We will now argue that even equality holds, showing that the three remaining expressions in (*) are all greater of equal to c- $\lim \mathcal{F}(f)$.

Firstly, taking $\mathcal{G} = [x]$ we find

$$c\text{-lim}\mathcal{F}(f) \leq \bigwedge_{x \in X} (\top \to \Lambda(ev(\mathcal{F} \times [x]) \times ev([f] \times [x]))).$$

As the residual implication operator is order reversing in the first argument we conclude therefore

$$c\text{-}\!\lim\!\mathcal{F}(f) \leq \bigwedge_{\mathcal{G}\in\mathcal{F}_{t}^{s}(X),\,x\in X} (\lim\!\mathcal{G}(x) \to \Lambda(ev(\mathcal{F}\times[x])\times ev([f]\times[x]))).$$

Secondly, it follows from the continuity of $f \in C(X, Y)$ that

$$\lim \mathcal{G}(x) \le \lim(\Lambda) f(\mathcal{G})(f(x)) = \Lambda(f(\mathcal{G}) \times [f(x)]).$$

Using again $f(\mathcal{G}) \leq ev([f] \times \mathcal{G})$ ([6], Lemma 8.2), we obtain from this

$$\lim \mathcal{G}(x) \leq \Lambda(ev([f] \times \mathcal{G}) \times [f(x)]).$$

Therefore

$$\bigwedge_{\mathcal{G} \in \mathcal{F}_L^s(X), \ x \in X} (\text{lim} \mathcal{G}(x) \to \Lambda(ev([f] \times \mathcal{G}) \times [f(x)])) = \top.$$

Using (UC5), (UC3) and Lemma 2.6 we conclude

$$c\text{-}\!\lim\!\mathcal{F}(f) & \leq \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\!\mathcal{G}(x)\to\Lambda(ev(\mathcal{F}\times[x])\times ev([f]\times[x]))) \\ & \wedge \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\!\mathcal{G}(x)\to\Lambda([f(x)]\times ev([f]\times\mathcal{G}))) \\ & \leq \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X),\,x\in X} (\lim\!\mathcal{G}(x)\to\Lambda(ev(\mathcal{F}\times[x])\times ev([f]\times\mathcal{G}))).$$

Similarly, as $(ev(\mathcal{F} \times \mathcal{G}) \times [f(x)]) \circ ([f(x)] \times ev([f] \times \mathcal{G})) \le ev(\mathcal{F} \times \mathcal{G}) \times ev([f] \times \mathcal{G})$ we conclude thirdly

$$c\text{-}\!\lim\!\mathcal{F}(f) \leq \bigwedge_{\mathcal{G}\in\mathcal{F}_{r}^{s}(X),\,x\in X} (\lim\!\mathcal{G}(x) \to \Lambda(ev(\mathcal{F}\times\mathcal{G})\times ev([f]\times\mathcal{G}))).$$

Putting everything together, we can state the main theorem of this paper.

Theorem 4.3: Let $(X, \lim) \in |SL\text{-}LIM|$, $(Y, \Lambda) \in |SL\text{-}UCS|$. Then the stratified L-limit structure of continuous convergence on C(X, Y), c-lim, is induced by the stratified L-uniform convergence structure Λ_c defined by

$$\Lambda_c(\Phi) = \bigwedge_{\mathcal{G} \in \mathcal{F}_L^s(X)} \bigwedge_{x \in X} (\lim \mathcal{G}(x) \to \Lambda((ev \times ev)(\eta(\Phi \times (\mathcal{G} \times \mathcal{G}))))).$$

We call $(X, \lim) \in |SL\text{-}LIM|$ $L\text{-}limit\text{-}uniformizable}$ if there is a stratified $L\text{-}uniform}$ convergence structure Λ such that $(X, \Lambda) \in |SL\text{-}UCS|$ and $\lim = \lim(\Lambda)$. The full subcategory of SL-LIM with objects all $L\text{-}limit\text{-}uniformizable}$ spaces and the usual continuous mappings as morphisms is denoted by $SL\text{-}LIM_{ucs}$. This category is topological over SET as can be seen with Lemma 3.1. By Theorem 4.3 we moreover see that the category $SL\text{-}LIM_{ucs}$ has function spaces in the definition of [1], i.e. that this category is cartesian closed. We collect all this in the following corollary.

Corollary 4.4: The category $SL\text{-}LIM_{ucs}$ is topological over SET and cartesian closed.

Remark: For stratified L-uniform convergence spaces $(X, \Lambda), (X', \Lambda')$ we may restrict L-continuous convergence on the set UC(X, Y) of uniformly continuous mappings. That is, we consider c-lim only for $\mathcal{F} \in \mathcal{F}^s_L(UC(X, Y))$ and $f \in UC(X, Y)$. Then clearly

$$\lim(\Lambda_{uc})\mathcal{F}(f) = \bigwedge_{\mathcal{H}\in\mathcal{F}_L^s(X\times X)} (\Lambda(\mathcal{H}) \to \Lambda'((ev \times ev)(\eta((\mathcal{F} \times [f]) \times \mathcal{H}))))
\leq \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X), x \in X} (\Lambda(\mathcal{G} \times [x]) \to \Lambda'((ev \times ev)(\eta((\mathcal{F} \times [f]) \times (\mathcal{G} \times [x])))))
= \bigwedge_{\mathcal{G}\in\mathcal{F}_L^s(X), x \in X} (\lim(\Lambda)\mathcal{G}(x) \to \lim(\Lambda')(ev(\mathcal{F} \times \mathcal{G}))(f(x)))
= c-\lim \mathcal{F}(f)$$

Note, however, that in general c-lim = $\lim(\Lambda_c)$ (resp. Λ_c) and $\lim(\Lambda_{uc})$ (resp. Λ_{uc}) are defined on different sets of morphisms.

5. Conclusions

We showed in this paper, by explicitly constructing a function space structure on the set C(X,Y), that the category $SL\text{-}LIM_{ucs}$ of L-limit uniformizable stratified L-limit spaces is cartesian closed. This poses a natural problem: Give necessary and sufficient conditions when a stratified L-limit space is induced by a stratified L-uniform convergence space.

In the classical case of $\{0, 1\}$ -limit spaces Keller [10] states such conditions. An extension of this result to the general Heyting-algebra-valued case seems difficult at the moment, as a suitable definition of L-Cauchy filter has not been obtained so far.

REFERENCES 13

References

[1] J. Adamek., H. Herrlich, and G.E. Strecker, Abstract and concrete categories, Wiley, New York 1989

- [2] C.H. Cook and H.R. Fischer, On equicontinuity and continuous convergence, Math. Ann. 159 (1965), 94-104
- [3] J. Gutierrez Garcia, M.A. de Prada Vicente and A.P. Sostak, A unified approach to the concept of fuzzy L-uniform space, in: S.E. Rodabaugh, E.P. Klement (Eds.): Topological and algebraic structures in fuzzy sets, Trends in Logic 20, Kluwer, Dordrecht, Boston, London 2003, 81-114
- [4] U. Höhle, Many valued topology and its applications, Kluwer, Boston, Dordrecht, London 2001
- [5] U. Höhle and A.P. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, in: Mathematics of fuzzy sets: logic, topology and measure theory (U.Höhle, S.E. Rodabaugh eds.), Kluwer, Dordrecht 1999
- [6] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24(2001), 501-517
- [7] G. Jäger, Subcategories of lattice-valued convergence spaces, Fuzzy Sets & Systems 156 (2005), 1-24
- [8] G. Jäger and M.H. Burton, Stratified L-uniform convergence spaces, Quaest. Math. 28 (2005), 11-36
- [9] P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge1982
- [10] H.H. Keller, Die Limes-Uniformisierbarkeit der Limesräume, Math. Ann. 176 (1968), 334-341