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Lattice-valued continuous convergence is induced by a lattice-

valued uniform convergence structure

1. Introduction

The category SL-GCS of stratified L-generalized convergence spaces [6],[7] is topological over
SET and contains the category SL-TOP of stratified L-topological spaces as reflective sub-
category [6]. The main advantage of SL-GCS over SL-TOP is, from a structural point of
view, the existence of function space structures [6]. This makes SL-GC'S cartesian closed. The
corresponding function space structure on the set C(X,Y") of morphisms is ¢-lim, the structure

of L-continuous convergence.

Another category, SL-UC'S, of stratified L-uniform convergence spaces [8] generalizes in a simi-
lar way the category of stratified L-uniform spaces [3], SL-UNIF. Also SL-UC'S is topological
over SET, cartesian closed and contains SL-UNIF as reflective subcategory. Each object
(X,A) € |SL-UCS]| induces an object (X,lim(A)) € |SL-lim| (see [8]). In this paper we will
show that in the case that (Y, A) € |SL-UCS]| then (C(X,Y), ¢-lim) € |SL-UCS|. To this end,
we generalize a classical result of Cook and Fischer [2] to the lattice-valued case. It follows from

this that the subcategory of all L-limit uniformizable spaces is cartesian closed.

2. Preliminaries

We consider in this paper complete lattices L where finite meets distribute over arbitrary joins.

This means that for all o, 5, (v € I) we have a A \/ 8, = \/(a A B.). Such lattices are called

el el
frames or complete Heyting algebras [9]. The bottom (resp. top) element of L is denoted by L

(resp. T). It is then possible to define an implication aw — _ as the right adjoint to « A _ by
a—>ﬂ:\/{>\€L caAAX< [}

So we have § < a — [ if and only if @« A d < 3. Moreover, this implication, considered as
mapping L x L — L, is order reversing in the first argument and order preserving in the

second argument. For further basic properties of this operator we refer to our earlier papers
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[6],[7],[8] as well as to the references given there. The lattice operations are extended pointwise
from L to LX = {a: X — L}, the set of all L-sets on X. We especially denote the constant
L-set on X with value a € L by ax.

A stratified L-filter F on X [4],[5] is a mapping F : LX — L with the properties

F)  FOx)=T, Flx)=1

F2)  f<g = F(H=<FQ)

(F3)  F(NHNFlg <F(frg)

(Fs)  anF(f) < Flax Af),

forall f,g € LX, x € X, a € L. The set of all stratified L-filters on X is denoted by F§(X). An
example of a stratified L-filter is the point L-filter [x] defined by [z](a) = a(z) (see e.g. [5]). An
order on F3(X) is defined pointwise by F < G if for all a € LX we have F(a) < G(a) (see [5]).
For a mapping f: X — Y and F € F}(X) we define f(F) € FL(Y) by f(F)(b) = F(f~ (D))
(see [5]) where f—(b) = bo f. The meet F A G of two L-filters F,G € F;(X) is defined by
(FAG)(a) = F(a) ANG(a). Obviously F A G € F;(X) and it holds f(F AG) = f(F) A f(G).
Also we have f([z]) = [f(x)].

Of special interest for us are stratified L-filters on products X x Y. The first examples of such
L-filters are products of L-filters F € F;(X), G € FL(Y') defined by

F x G(a) = \/{F(a1) AG(az) | a1 x az < a}

for a € LX*Y (see [6]), where for a; € LX and ap € LY it is defined a1 X aa(x,y) = a1(z)Aaz(y).
If we denote the projections from X x Y onto X, resp. onto Y, by mx, resp. 7wy, then for
H e Fi(X xY) we have nx(H) x my(H) < H and for F € F;(X), G € F;(Y) we have F <
mx(FxG)and G < my (FxG) (see [6]). In other words: the mapping _x_ : Fi(X)xF; (V) —
Fi (X xY) is left adjoint to the mapping 7 = (nx,7y) : Fi(X xY) — Fi(X) x Fi(Y).
Further we have

FX(GAH)=(FxG)NFxH)
(see [8]).
Lemma 2.1: Forx € X and y € Y we have [(z,y)] = [z] x [y].

Proof: The inequality [z] x [y] < [(x,y)] follows from 7x([(z,v)]) = [rx(x,y)] = [z] and,
similarly, 7y ([(z,¥y)]) = [y] as _ x _ is left adjoint to # = (7x,7y). On the other hand, for
(r,y) € X xY and a € LX*Y we define the L-sets

Y — L X — L

Ay : and ay
z — a(z,2) z +— a(zy)
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Then by definition [z] x [y](a) > [z](ay) A [y](az) = a(z,y) = [(x,y)](a) and the proof is
completed.

If Y denotes the set of mappings from X to Y, the evaluation mapping is defined as usual by
ev:YX x X —Y, (f,z) — f(x).

We obtain as a Corollary of Lemma 2.1:

Corollary: We have for f: X — Y and « € X that ev([f] x [z]) = [f(z)].

It is further a simple exercise to prove the following lemma.

Lemma 2.2: Let F € F;(Y™), G € Fj(X),z€ X and f: X — Y. Then

ev(F x (G A [a])) x ev([f] x (G A [z]))
= (ev(F x G) xev([f] x G)) A (ev(F x G) x ev([f]) x [2])) A
Aev(F x [x]) x ev([f] x G)) A (ev(F x [2]) x ev([f] x [x])).

The following bijection
(XxX)x(YxY) — (XXxY)x(XxY)
((z1,22), (y1,92))  +—  ((21,51), (22, 92))

plays a prominent role later. The proofs of the next two lemmas are straightforward and are

therefore again left to the reader.

Lemma 2.3: Let a,b € L, ¢c,d€ LY. Then

n((a xb) x (¢ xd)) =(axc)x(bxd).

We deduce from this

Lemma 2.4: Let F,G € F;(X), H,K € F{(Y). Then

n((FXxG)x (HxK))=(F xH)x(GxK).

From stratified L-filters on X x X we construct new ones with the following two constructions

[8]. Let F € F5(X x X). Then F~! € F5(X x X) is defined by

Fa) = Fla™).
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Here, for a € L*X*X it is defined a~!(z,y) = a(y,z). Then (F x G)™! = G x F (see [8]). If
F,G € Fi (X x X) we define further F o G by

FoGla) = \{F(f) A Glg) | fog<a} (a € LX),

Here, for f,g € LX*X it is defined f o g(x,y) = \/{f(z,2) Ag(z,y) | 2 € X}. Then FoG €
Fi(X x X) if and only if f o g = Lxxx implies F(f) A G(g) = L (see [8]).

Lemma 2.5: Let G € F3(X). Then (GxG)o(GXxG) € Fi(XxX) and (GxG)o(GxG) > GXxG.

Proof: That (G x G) o (G x G) € F; (X x X) follows from the the following observation. Let
a,be LX*X Ifaob= Lxyx, then for all 2,y € X we have

1= \/ a(x,z) Nb(z,y) = \/ a Y (z,2) Ab(z,y).
zeX zeX

Taking z = y we conclude

L=\ (@' Ab)(z2)

zeX

Hence for all 2,z € X we have a=! A b(z,x) = L and this means a=! A b= Lxyyx. Hence

(GxG)(a) A (G*xG)b) = (GxG) Ha)A (G xG)(b)
= (GxG) @ )A(GxG)b)
< (GxG) (@ AD) =1,

as G x G is a stratified L-filter. For the inequality we remark that trivially we have for
flanaglaQQ S LX
(fi x f2) o (g1 X g2) < f1 X ga.

Hence

(GxG)o(GxG)(a) = \ G(f1) NG(f2) AG(g1) A G(g2)

(fix f2)o(g1xg2)<a

\ G(f1) A Glg2)

f1,92 8.t fixge=(f1x1x)o(lx xg2)<a

g X g(a) O

Y

A somewhat related result is the following.

Lemma 2.6: Let F € F;(X) andx € X. Then (F x [z])o ([z] x F) < F x F and consequently
(Fx[z])o([z] x F) e Fi(X x X).
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Proof: By definition for a € LX*X
(Fx @)oo (2] x F)a) = \/ ((Fx[z])(a1) A (([2] x F)(az))-

Now if a1 0 ag < a it follows, similar to the proof of Lemma 2.5, that for all y, z € X
ai (ya x) A agl(za 'r) < CL(y, Z)
i.e. that a;(-, ) x a3 '(-, ) < a. Further we find

(Fx )=\  Fbr)Aer(w).

bl ><61§(Z1

As F is a stratified L-filter this is

<\ Florra@) < Flal,2).

bl ><61§(Z1

Similarly we find ([z] x F)(ag) < F(as (-, )). Hence

(F x [z]) o ([z] x F)(a) < V Flar (-, 2)) A Flag' (- x))

a1 (@) xay " (-,z)<a

\/  Fld)AF(d) = (F x F)(a).

dl ><d2§a

IN

From this inequality it also follows that (F x [z]) o ([z] x F) € Fi(X x X), as F x F is a
stratified L-filter. n

3. Stratified lattice-valued limit spaces and stratified lattice-valued

uniform convergence spaces

A stratified L-limit space (X,1im) [7] is a set X together with a limit map lim : F3 (X) — L¥
satisfying the axioms

(L1) lim[z](x) =T

(L2) F<G =  limF <limg

(L3) limF A limG < lim(F A G)

for all z € X and all F,G € F§(X). A limit preserving mapping f : (X,lim) — (X’,lim")
between two stratified L-limit spaces (X,lim), (X’,1im’) is called continuous [7]. Here, "limit

preserving” means that for all x € X and for all F € F7 (X) we have

imZF (z) < lim' f(F)(f(x)).
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The category SL-LIM has as objects the stratified L-limit spaces and as morphisms the con-
tinuous mappings. It is a reflective subcategory of SL-GC'S, the category of L-generalized
convergence spaces mentioned in the introduction ([6],[7]). Like this category, SL-LIM is well-

fibred and topological over SET. The initial structures are defined as follows. Given a source
(f,: X — (X,,lim,)),,;nr
the unique limit map on X making all the f, continuous is given by
lim F(z) = /\ lim, f,(F)(f.(2)),
el
for F € F;(X) and z € X (see [6],[7]). Especially, SL-LIM has (finite) products (taking as X =
[T X, the cartesian product of the X, and as the f, = m, the projection mappings). Moreover,
SL-LIM is cartesian closed [7]. A category A is called cartesian closed if it has finite products
and if for each pair of objects (A, B) there exists a power object B4 and an evaluation morphism
ev : BAx A — B with the property, that for each morphisms f : C'x A — B there is a unique
exponential morphism f : C — B4 such that evo(f xid4) = f [1]. In our case, being cartesian
closed is equivalent to having function spaces [1]: Given (X, lim), (X’,lim") € |SL-LIM| we can
choose as power object the set C(X, X’) = {f : (X,lim) — (X’,1im’) | f continuous} of all
continuous mappings from X to X’ with the function space structure on C'(X, X’) defined by
climF(f) = N N (limG(x) — lim'ev(F x G)(f(x))) -
GeFs(X) zeX
Here F € F;(C(X,X")), f € C(X,X’) and ev : (f,z) — f(z) is the evaluation mapping
restricted on C(X,Y) x X (see [7]).

In a similar way as stratified L-limit spaces generalize stratified L-topological spaces, stratified
L-uniform convergence spaces generalize stratified L-uniform spaces ([3],[8]). They are defined
as follows. A stratified L-uniform convergence space (X,A) [8] is a set X together with a
mapping A : F7 (X x X) — L satisfying the axioms

(UCt) Al x 2 =T

(UC2) F <G = A(F) < A(G)

(UC3)  AF)<AF

(UC4) AF)NAG) < AFAQG)

(UC5) A(F) NA(G) < A(F o G) whenever FoG e Fi (X x X),

for all z € X and for all 7,G € F;(X x X). A mapping f : (X,A) — (X', A’) between two
stratified L-uniform convergence spaces (X, A), (X', A’) is called uniformly continuous [8] if for

all F € F7 (X x X) we have
A(F) < N((f x H(F)).
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The category SL-UC'S has as objects the stratified L-uniform convergence spaces and as mor-
phisms the uniformly continuous mappings [8]. SL-UC'S is topological over SET. Initial struc-

tures are defined as follows [8]. Given a source
(fo: X — (X0, A))er
the unique structure, A, on X making all the f, uniformly continuous is given by
A(F) = N AU x L)(F)).
el
Especially also SL-UC'S has (finite) products. Also this category is cartesian closed [8]. The

function space structure on UC' = UC(X, X') = {f : (X,A) — (X', A’) | f uniformly continuous}
is defined by

Aue(®) = /\ (A(F) — N ((ev x ev)(n(® x F)))).
FeF: (XxX)

Here ® € F;(UC x UC), ev is the evaluation mapping restricted on UC(X,Y) x X and 7 is
the bijection

UCxUC)x (X xX) — (UCxX)x((UCxX)
((f,9): (z,)) — ((f,2), (9,9))

Every stratified L-uniform convergence space (X, A) induces a stratified L-limit space (X, lim(A))
by defining the limit map [8]

lim(A)F(z) = A(F x [z]).
A uniformly continuous map f : (X,A) — (X’,A’) then induces a continuous map f :

(X, lim(A)) — (X', lim(A")) (see [8]). Hence we can define a forgetful functor

SL-UCS — SL-LIM
D0 (XA) — (X,lm(A)
foo—

Lemma 3.1: The forgetful functor ® : SL-UC'S — SL-LIM preserves initial structures.

Proof: Let
(fL X — (XUAL))LGI

be a source. By definition of the initial structure A on X we have for F € F7(X) and z € X

lim(A)F () A(F x [z])

=AM % £)(F x[a]))

el
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el

Hence lim(A) is the initial structure on X with respect to the source

(f, s X — (X, lim(A()))uer- 0

4. A stratified L-uniform convergence structure which induces c-lim

We consider in this section a stratified L-limit space (X,lim) and a stratified L-uniform con-

vergence space (Y, A). The set
C(X,Y)={f:(X,lim) — (Y, 1lim(A)) | f continuous }

can be endowed with the stratified L-limit structure of continuous convergence c-lim. We
will now define a stratified L-uniform convergence structure on C(X,Y) as follows. Let ® €

Fi(C(X,Y) x C(X,Y)) and define

Ac@) = A\ A (UimG(z) — A((ev x ev)(n(® x (G x G))))) -

GeFs(X)weX

Lemma 4.1: (C(X,Y),A,) € |SL-UCS|.

Proof: We check the axioms.
(UC1): Let f € C(X,Y). Then for all G € F;(X) and for all z € X we have

limG(z) < lim(A)f(G)(f(2)) = A(£(G) x [f(2)]).
From [6], Lemma 8.2 we know f(G) < ev([f] x G) and therefore we conclude
limgG(z) < Alev([f] x G) x [f(@)]).
(UC5), Lemma 2.6 and (UC3) then yield
limG(z) < A((ev([f] x G) x [f(2)]) o ([f(2)] x ev([f] x G))

Alev([f] x G) x ev([f] x G))
Afev xev(n(([f] x [f]) x (G x G))))-

IN

Therefore A.([f] x [f])=T.
(UC2) is obvious.
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(UC3): We have

A@ )= N\ (imG(e) - Alew x co(n(@ " x (G x G))))-

GeF: (X),xeX

From [8], Lemma 3.8 we conclude that
N(@ X (GxG) = (@ x(GxG) ) =me®x(Gxg)) "

Moreover it is generally true that (f x f)(®71) = ((f x f)(®))7!, as the reader may readily

verify. Thus we conclude

MA@l = A (imG(x) — A((ev x ev)(n(® x (G x G))))

GeFs (X),zeX
> A UmG(z) — A((ev x ev)(n(® x (G x G)))))
GeF:(X),weX

(UC4) follows with a — (B A7) = (v — 8) A (v — ) directly from (UC4) for (Y, A).
For (UC5) we use [8], Lemma D. Let ®o ¥ € 73 (C(X,Y) x C(X,Y)). Then

A(DPoT) = /\ (limG(x) — A((ev x ev)(n((P o V) x (G x G)))))

GeF:(X),zeX

A (limG(z) — A(((ev x ev)(n(® x (G x G)))) o

GeF:(X),zeX

Y

o((ev x ev)(n(¥ x (G x G)™ o (G x G)))))))-
Lemma 2.5 shows that the last expression is

> /\ (limG(x) — A((ev x ev)(n(® x (G x G))) o (ev X ev)(n(¥ x (G x G))))).

GeF: (X), zeX

From (UC5) for (Y, A) then finally Ao(® o W) > A (®) A A(F) follows.
Next we present a useful description of the induced stratified L-convergence of A..

Lemma 4.2: Let (X,lim) € |[SL-LIM| and (Y,A) € |SL-UCS|. Then

Im@A)F(H = N\ UimG(z) — Alev(F x (G A [a])) x ev([f] x (G A [2])))).

GeFs(X)weX

Proof: From Lemma 2.4 we know that

n((F < [f]) x (G xG)) = (F xG) x([f] xG).
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Therfore we conclude

lim(A)F(f) = /\ (limG(z) — A(ev(F x G) x ev([f] X G)))

GeF: (X), zeX

A WmG A 2] (@) = Aeo(F x (G A [2])) x ev([f] x (G A [2])))).

GeF: (X), zeX

IN

From (L1), (L2) and (L3) it follows limG(x) = lim(G A [z])(z) and hence

lim(A)F(f) < AN (imG(z) — Aeo(F x (G A[a])) x ev([f] x (G A [2])))).

GeF:(X),weX

As G A [z] < G we conclude with (UC2) for (Y, A) finally

lim(A)F(f) < A (UmG(x) — Aleo(F x (G A lz])) x ev([f] x (G A[a])))

GeF;(X),zeX
< A (limG(z) — Aev(F x G) x ev([f] x G)))
GeF;(X),zeX
lim(A)F(f). O

Lemma 4.2 yields, together with Lemma 2.2, (UC2) and (UC4), the following equality (x)

lim(A)F(f) = /\ (limG(xz) — A(ev(F x G) x ev([f] X G)))

GeF:(X),zeX

A /\ (limG(x) — A(ev(F x G) x ev([f] x [2])))
GeF:(X),xeX
A /\ (limG(x) — A(ev(F x [z]) x ev([f] x G)))

GeF:(X),xeX
A /\ (limG(x) — A(ev(F x [z]) x ev([f] x [z]))).
GeF:(X),xeX
We will use this equality to compare lim(A.) and c¢-lim. For the stratified L-limit spaces
(X,lim) and (Y,lim(A)) the structure of continuous convergence is defined as follows. For

FeFi(C(X,Y)) and f € C(X,Y) we have

limF(f) = /\ (limG(z) — lim(A)(ev(F x G))(f(x)))

GeF:(X),zeX
= A (UimG(z) = A(eo(F x G) x [f(2)))).
GeF:(X),z€X
As, by the Corollary to Lemma 2.1, ev([f] x [z]) = [f(z)] we immediately see that lim(A.)F(f) <
c-lim F(f). We will now argue that even equality holds, showing that the three remaining

expressions in (x) are all greater of equal to c-limF(f).
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Firstly, taking G = [z] we find
clmF(f) < N (T = Alev(F x [a]) x ev((f] % [a]))).
zeX

As the residual implication operator is order reversing in the first argument we conclude there-

fore

climF(f) < /\ (imG(z) — A(ev(F x [z]) x ev([f] x [z]))).

GeF3(X),zeX
Secondly, it follows from the continuity of f € C(X,Y") that

limG () <lim(A)f(9)(f(x)) = A(F(G) x [f(2)]).

Using again f(G) < ev([f] x G) ([6], Lemma 8.2), we obtain from this
limG(z) < Alev([f] x G) x [f(@)])-

Therefore
A (imG(@) — Alew([f] x G) x [f@)]) = T.
GEF: (X),z€X

Using (UC5), (UC3) and Lemma 2.6 we conclude

cimF(f) < A\ (imG(e) — Alev(F x [a]) x ev(([f] x [a]))

GeF:(X),weX

AN imG(r) — A([f(@)] x ev([f] X G)))

GeF:(X),zeX

/\ (imG(z) — A(ev(F x [z]) x ev([f] x G))).

GeF: (X), zeX

IN

Similarly, as (ev(F x G) x [f(x)]) o ([f(x)] x ev([f] X G)) < ev(F x G) x ev([f] X G) we conclude
thirdly
c-limF(f) < /\ (imG(z) — A(ev(F x G) x ev([f] x G))).

GEF:(X),2€X
Putting everything together, we can state the main theorem of this paper.

Theorem 4.3: Let (X,lim) € |SL-LIM|, (Y,A) € |SL-UCS|. Then the stratified L-limit
structure of continuous convergence on C(X,Y), ¢-lim, is induced by the stratified L-uniform

convergence structure A, defined by

Ac@) = A\ (timG(x) — A((ev x ev)(n(® x (G x G))))).

GeFs(X)weX
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We call (X, lim) € |SL-LIM| L-limit-uniformizableif there is a stratified L-uniform convergence
structure A such that (X, A) € |SL-UCS| and lim = lim(A). The full subcategory of SL-LIM
with objects all L-limit-uniformizable spaces and the usual continuous mappings as morphisms
is denoted by SL-LIM,.s. This category is topological over SET as can be seen with Lemma
3.1. By Theorem 4.3 we moreover see that the category SL-LIM,.s has function spaces in the
definition of [1], i.e. that this category is cartesian closed. We collect all this in the following

corollary.
Corollary 4.4: The category SL-LIM,.s is topological over SET and cartesian closed.

Remark: For stratified L-uniform convergence spaces (X,A), (X', A’) we may restrict L-
continuous convegence on the set UC(X,Y) of uniformly continuous mappings. That is, we

consider ¢-lim only for 7 € F; (UC(X,Y)) and f € UC(X,Y). Then clearly

lim(Aue) F(f) = N (AH) = N((ev x ev)n((F x [f]) x H))))
HEFS (XxX)
< N (MG x [z]) = N((ev x ev)(n((F x [f]) x (G x [])))))

GeF:(X),zeX

= A Am(A)G(x) — Lim(A)(ev(F x G))(f(x)))

GeF: (X),z€X
= climF(f)

Note, however, that in general ¢-lim = lim(A.) (resp. A.) and lim(Ay) (resp. Ayc) are defined

on different sets of morphisms.

5. Conclusions

We showed in this paper, by explicitely constructing a function space structure on the set
C(X,Y), that the category SL-LIM,.s of L-limit uniformizable stratified L-limit spaces is
cartesian closed. This poses a natural problem: Give necessary and sufficient conditions when

a stratified L-limit space is induced by a stratified L-uniform convergence space.

In the classical case of {0, 1}-limit spaces Keller [10] states such conditions. An extension of this
result to the general Heyting-algebra-valued case seems difficult at the moment, as a suitable

definition of L-Cauchy filter has not been obtained so far.
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