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Lattice-valued continuous convergence is induced by a lattice-

valued uniform convergence structure

1. Introduction

The category SL-GCS of stratified L-generalized convergence spaces [6],[7] is topological over

SET and contains the category SL-TOP of stratified L-topological spaces as reflective sub-

category [6]. The main advantage of SL-GCS over SL-TOP is, from a structural point of

view, the existence of function space structures [6]. This makes SL-GCS cartesian closed. The

corresponding function space structure on the set C(X, Y ) of morphisms is c-lim, the structure

of L-continuous convergence.

Another category, SL-UCS, of stratified L-uniform convergence spaces [8] generalizes in a simi-

lar way the category of stratified L-uniform spaces [3], SL-UNIF . Also SL-UCS is topological

over SET, cartesian closed and contains SL-UNIF as reflective subcategory. Each object

(X, Λ) ∈ |SL-UCS| induces an object (X, lim(Λ)) ∈ |SL-lim| (see [8]). In this paper we will

show that in the case that (Y, Λ) ∈ |SL-UCS| then (C(X, Y ), c-lim) ∈ |SL-UCS|. To this end,

we generalize a classical result of Cook and Fischer [2] to the lattice-valued case. It follows from

this that the subcategory of all L-limit uniformizable spaces is cartesian closed.

2. Preliminaries

We consider in this paper complete lattices L where finite meets distribute over arbitrary joins.

This means that for all α, βι (ι ∈ I) we have α ∧
∨

ι∈I

βι =
∨

ι∈I

(α ∧ βι). Such lattices are called

frames or complete Heyting algebras [9]. The bottom (resp. top) element of L is denoted by ⊥
(resp. >). It is then possible to define an implication α → as the right adjoint to α ∧ by

α → β =
∨

{λ ∈ L : α ∧ λ ≤ β}.

So we have δ ≤ α → β if and only if α ∧ δ ≤ β. Moreover, this implication, considered as

mapping L × L −→ L, is order reversing in the first argument and order preserving in the

second argument. For further basic properties of this operator we refer to our earlier papers
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[6],[7],[8] as well as to the references given there. The lattice operations are extended pointwise

from L to LX = {a : X −→ L}, the set of all L-sets on X. We especially denote the constant

L-set on X with value α ∈ L by αX .

A stratified L-filter F on X [4],[5] is a mapping F : LX −→ L with the properties

(F1) F(>X ) = >, F(⊥X ) = ⊥
(F2) f ≤ g =⇒ F(f) ≤ F(g)

(F3) F(f) ∧ F(g) ≤ F(f ∧ g)

(Fs) α ∧ F(f) ≤ F(αX ∧ f),

for all f, g ∈ LX , x ∈ X, α ∈ L. The set of all stratified L-filters on X is denoted by Fs
L(X). An

example of a stratified L-filter is the point L-filter [x] defined by [x](a) = a(x) (see e.g. [5]). An

order on Fs
L(X) is defined pointwise by F ≤ G if for all a ∈ LX we have F(a) ≤ G(a) (see [5]).

For a mapping f : X −→ Y and F ∈ Fs
L(X) we define f(F) ∈ Fs

L(Y ) by f(F)(b) = F(f←(b))

(see [5]) where f←(b) = b ◦ f . The meet F ∧ G of two L-filters F ,G ∈ Fs
L(X) is defined by

(F ∧ G)(a) = F(a) ∧ G(a). Obviously F ∧ G ∈ Fs
L(X) and it holds f(F ∧ G) = f(F) ∧ f(G).

Also we have f([x]) = [f(x)].

Of special interest for us are stratified L-filters on products X × Y . The first examples of such

L-filters are products of L-filters F ∈ Fs
L(X), G ∈ Fs

L(Y ) defined by

F × G(a) =
∨

{F(a1) ∧ G(a2) | a1 × a2 ≤ a}

for a ∈ LX×Y (see [6]), where for a1 ∈ LX and a2 ∈ LY it is defined a1×a2(x, y) = a1(x)∧a2(y).

If we denote the projections from X × Y onto X, resp. onto Y , by πX , resp. πY , then for

H ∈ Fs
L(X × Y ) we have πX(H) × πY (H) ≤ H and for F ∈ Fs

L(X), G ∈ Fs
L(Y ) we have F ≤

πX(F×G) and G ≤ πY (F×G) (see [6]). In other words: the mapping × : Fs
L(X)×Fs

L(Y ) −→
Fs

L(X × Y ) is left adjoint to the mapping π = (πX , πY ) : Fs
L(X × Y ) −→ Fs

L(X) × Fs
L(Y ).

Further we have

F × (G ∧H) = (F × G) ∧ (F × H)

(see [8]).

Lemma 2.1: For x ∈ X and y ∈ Y we have [(x, y)] = [x]× [y].

Proof: The inequality [x] × [y] ≤ [(x, y)] follows from πX([(x, y)]) = [πX(x, y)] = [x] and,

similarly, πY ([(x, y)]) = [y] as × is left adjoint to π = (πX , πY ). On the other hand, for

(x, y) ∈ X × Y and a ∈ LX×Y we define the L-sets

ax :





Y −→ L

z 7−→ a(x, z)
and ay :





X −→ L

z 7−→ a(z, y)
.
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Then by definition [x] × [y](a) ≥ [x](ay) ∧ [y](ax) = a(x, y) = [(x, y)](a) and the proof is

completed.

If Y X denotes the set of mappings from X to Y , the evaluation mapping is defined as usual by

ev : Y X × X −→ Y, (f, x) 7−→ f(x).

We obtain as a Corollary of Lemma 2.1:

Corollary: We have for f : X −→ Y and x ∈ X that ev([f ] × [x]) = [f(x)].

It is further a simple exercise to prove the following lemma.

Lemma 2.2: Let F ∈ Fs
L(Y X ), G ∈ Fs

L(X), x ∈ X and f : X −→ Y . Then

ev(F × (G ∧ [x]))× ev([f ] × (G ∧ [x]))

= (ev(F × G) × ev([f ] × G)) ∧ (ev(F × G) × ev([f ]) × [x]))∧

∧(ev(F × [x]) × ev([f ] × G)) ∧ (ev(F × [x])× ev([f ] × [x])).

The following bijection

η :





(X × X) × (Y × Y ) −→ (X × Y ) × (X × Y )

((x1, x2), (y1, y2)) 7−→ ((x1, y1), (x2, y2))

plays a prominent role later. The proofs of the next two lemmas are straightforward and are

therefore again left to the reader.

Lemma 2.3: Let a, b ∈ LX , c, d ∈ LY . Then

η((a × b) × (c × d)) = (a × c) × (b × d).

We deduce from this

Lemma 2.4: Let F ,G ∈ Fs
L(X), H,K ∈ Fs

L(Y ). Then

η((F × G) × (H× K)) = (F ×H) × (G × K).

From stratified L-filters on X ×X we construct new ones with the following two constructions

[8]. Let F ∈ Fs
L(X × X). Then F−1 ∈ Fs

L(X × X) is defined by

F−1(a) = F(a−1).
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Here, for a ∈ LX×X , it is defined a−1(x, y) = a(y, x). Then (F × G)−1 = G × F (see [8]). If

F ,G ∈ Fs
L(X × X) we define further F ◦ G by

F ◦ G(a) =
∨

{F(f) ∧ G(g) | f ◦ g ≤ a} (a ∈ LX×X ).

Here, for f, g ∈ LX×X , it is defined f ◦ g(x, y) =
∨
{f(x, z) ∧ g(z, y) | z ∈ X}. Then F ◦ G ∈

Fs
L(X × X) if and only if f ◦ g = ⊥X×X implies F(f) ∧ G(g) = ⊥ (see [8]).

Lemma 2.5: Let G ∈ Fs
L(X). Then (G×G)◦(G×G) ∈ Fs

L(X×X) and (G×G)◦(G×G) ≥ G×G.

Proof: That (G × G) ◦ (G × G) ∈ Fs
L(X × X) follows from the the following observation. Let

a, b ∈ LX×X . If a ◦ b = ⊥X×X , then for all x, y ∈ X we have

⊥ =
∨

z∈X

a(x, z) ∧ b(z, y) =
∨

z∈X

a−1(z, x) ∧ b(z, y).

Taking x = y we conclude

⊥ =
∨

z∈X

(a−1 ∧ b)(z, x).

Hence for all x, z ∈ X we have a−1 ∧ b(z, x) = ⊥ and this means a−1 ∧ b = ⊥X×X . Hence

(G × G)(a) ∧ (G × G)(b) = (G × G)−1(a) ∧ (G × G)(b)

= (G × G)(a−1) ∧ (G × G)(b)

≤ (G × G)(a−1 ∧ b) = ⊥,

as G × G is a stratified L-filter. For the inequality we remark that trivially we have for

f1, f2, g1, g2 ∈ LX

(f1 × f2) ◦ (g1 × g2) ≤ f1 × g2.

Hence

(G × G) ◦ (G × G)(a) =
∨

(f1×f2)◦(g1×g2)≤a

G(f1) ∧ G(f2) ∧ G(g1) ∧ G(g2)

≥
∨

f1,g2 s.t. f1×g2=(f1×1X)◦(1X×g2)≤a

G(f1) ∧ G(g2)

= G × G(a).

A somewhat related result is the following.

Lemma 2.6: Let F ∈ Fs
L(X) and x ∈ X. Then (F × [x])◦ ([x]×F) ≤ F×F and consequently

(F × [x]) ◦ ([x]× F) ∈ Fs
L(X × X).
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Proof: By definition for a ∈ LX×X

(F × [x]) ◦ ([x]×F)(a) =
∨

a1◦a2≤a

((F × [x])(a1) ∧ (([x] ×F)(a2)).

Now if a1 ◦ a2 ≤ a it follows, similar to the proof of Lemma 2.5, that for all y, z ∈ X

a1(y, x) ∧ a−1
2 (z, x) ≤ a(y, z)

i.e. that a1(·, x) × a−1
2 (·, x) ≤ a. Further we find

(F × [x])(a1) =
∨

b1×c1≤a1

F(b1) ∧ c1(x).

As F is a stratified L-filter this is

≤
∨

b1×c1≤a1

F(b1 ∧ c1(x)) ≤ F(a1(·, x)).

Similarly we find ([x]×F)(a2) ≤ F(a−1
2 (·, x)). Hence

(F × [x]) ◦ ([x]× F)(a) ≤
∨

a1(·,x)×a−1
2 (·,x)≤a

F(a1(·, x))∧ F(a−1
2 (·, x))

≤
∨

d1×d2≤a

F(d1) ∧ F(d2) = (F ×F)(a).

From this inequality it also follows that (F × [x]) ◦ ([x] × F) ∈ Fs
L(X × X), as F × F is a

stratified L-filter.

3. Stratified lattice-valued limit spaces and stratified lattice-valued

uniform convergence spaces

A stratified L-limit space (X, lim) [7] is a set X together with a limit map lim : Fs
L(X) −→ LX

satisfying the axioms

(L1) lim[x](x) = >
(L2) F ≤ G =⇒ limF ≤ limG
(L3) limF ∧ limG ≤ lim(F ∧ G)

for all x ∈ X and all F ,G ∈ Fs
L(X). A limit preserving mapping f : (X, lim) −→ (X ′, lim′)

between two stratified L-limit spaces (X, lim), (X ′, lim′) is called continuous [7]. Here, ”limit

preserving” means that for all x ∈ X and for all F ∈ Fs
L(X) we have

limF(x) ≤ lim′f(F)(f(x)).
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The category SL-LIM has as objects the stratified L-limit spaces and as morphisms the con-

tinuous mappings. It is a reflective subcategory of SL-GCS, the category of L-generalized

convergence spaces mentioned in the introduction ([6],[7]). Like this category, SL-LIM is well-

fibred and topological over SET. The initial structures are defined as follows. Given a source

(fι : X −→ (Xι, limι))ιinI

the unique limit map on X making all the fι continuous is given by

limF(x) =
∧

ι∈I

limιfι(F)(fι(x)),

for F ∈ Fs
L(X) and x ∈ X (see [6],[7]). Especially, SL-LIM has (finite) products (taking as X =

∏
Xι the cartesian product of the Xι and as the fι = πι the projection mappings). Moreover,

SL-LIM is cartesian closed [7]. A category A is called cartesian closed if it has finite products

and if for each pair of objects (A, B) there exists a power object BA and an evaluation morphism

ev : BA×A −→ B with the property, that for each morphisms f : C×A −→ B there is a unique

exponential morphism f̂ : C −→ BA such that ev◦(f̂×idA) = f [1]. In our case, being cartesian

closed is equivalent to having function spaces [1]: Given (X, lim), (X ′, lim′) ∈ |SL-LIM | we can

choose as power object the set C(X, X′) = {f : (X, lim) −→ (X ′, lim′) | f continuous} of all

continuous mappings from X to X ′ with the function space structure on C(X, X′) defined by

c-limF(f) =
∧

G∈Fs
L(X)

∧

x∈X

(
limG(x) → lim′ev(F × G)(f(x))

)
.

Here F ∈ Fs
L(C(X, X′)), f ∈ C(X, X′) and ev : (f, x) 7−→ f(x) is the evaluation mapping

restricted on C(X, Y ) × X (see [7]).

In a similar way as stratified L-limit spaces generalize stratified L-topological spaces, stratified

L-uniform convergence spaces generalize stratified L-uniform spaces ([3],[8]). They are defined

as follows. A stratified L-uniform convergence space (X, Λ) [8] is a set X together with a

mapping Λ : Fs
L(X × X) −→ L satisfying the axioms

(UC1) Λ([x]× [x]) = >
(UC2) F ≤ G =⇒ Λ(F) ≤ Λ(G)

(UC3) Λ(F) ≤ Λ(F−1)

(UC4) Λ(F) ∧Λ(G) ≤ Λ(F ∧ G)

(UC5) Λ(F) ∧Λ(G) ≤ Λ(F ◦ G) whenever F ◦ G ∈ Fs
L(X × X),

for all x ∈ X and for all F ,G ∈ Fs
L(X × X). A mapping f : (X, Λ) −→ (X ′, Λ′) between two

stratified L-uniform convergence spaces (X, Λ), (X ′, Λ′) is called uniformly continuous [8] if for

all F ∈ Fs
L(X × X) we have

Λ(F) ≤ Λ′((f × f)(F)).
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The category SL-UCS has as objects the stratified L-uniform convergence spaces and as mor-

phisms the uniformly continuous mappings [8]. SL-UCS is topological over SET. Initial struc-

tures are defined as follows [8]. Given a source

(fι : X −→ (Xι, Λι))ι∈I

the unique structure, Λ, on X making all the fι uniformly continuous is given by

Λ(F) =
∧

ι∈I

Λι((fι × fι)(F)).

Especially also SL-UCS has (finite) products. Also this category is cartesian closed [8]. The

function space structure on UC = UC(X, X′) = {f : (X, Λ) −→ (X ′, Λ′) | f uniformly continuous}
is defined by

Λuc(Φ) =
∧

F∈Fs
L(X×X)

(Λ(F) → Λ′((ev × ev)(η(Φ × F)))) .

Here Φ ∈ Fs
L(UC × UC), ev is the evaluation mapping restricted on UC(X, Y ) × X and η is

the bijection

η :





(UC × UC) × (X × X) −→ (UC × X) × (UC × X)

((f, g), (x, y)) 7−→ ((f, x), (g, y))
.

Every stratified L-uniform convergence space (X, Λ) induces a stratified L-limit space (X, lim(Λ))

by defining the limit map [8]

lim(Λ)F(x) = Λ(F × [x]).

A uniformly continuous map f : (X, Λ) −→ (X ′, Λ′) then induces a continuous map f :

(X, lim(Λ)) −→ (X ′, lim(Λ′)) (see [8]). Hence we can define a forgetful functor

Φ :





SL-UCS −→ SL-LIM

(X, Λ) 7−→ (X, lim(Λ))

f 7−→ f

.

Lemma 3.1: The forgetful functor Φ : SL-UCS −→ SL-LIM preserves initial structures.

Proof: Let

(fι : X −→ (Xι, Λι))ι∈I

be a source. By definition of the initial structure Λ on X we have for F ∈ Fs
L(X) and x ∈ X

lim(Λ)F(x) = Λ(F × [x])

=
∧

ι∈I

Λι((fι × fι)(F × [x]))
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=
∧

ι∈I

Λι(fι(F) × [fι(x)])

=
∧

ι∈I

lim(Λι)fι(F)(fι(x)).

Hence lim(Λ) is the initial structure on X with respect to the source

(fι : X −→ (Xι, lim(Λ(ι)))ι∈I .

4. A stratified L-uniform convergence structure which induces c-lim

We consider in this section a stratified L-limit space (X, lim) and a stratified L-uniform con-

vergence space (Y, Λ). The set

C(X, Y ) = {f : (X, lim) −→ (Y, lim(Λ)) | f continuous }

can be endowed with the stratified L-limit structure of continuous convergence c-lim. We

will now define a stratified L-uniform convergence structure on C(X, Y ) as follows. Let Φ ∈
Fs

L(C(X, Y ) × C(X, Y )) and define

Λc(Φ) =
∧

G∈Fs
L
(X)

∧

x∈X

(limG(x) → Λ((ev × ev)(η(Φ × (G × G))))) .

Lemma 4.1: (C(X, Y ), Λc) ∈ |SL-UCS|.

Proof: We check the axioms.

(UC1): Let f ∈ C(X, Y ). Then for all G ∈ Fs
L(X) and for all x ∈ X we have

limG(x) ≤ lim(Λ)f(G)(f(x)) = Λ(f(G) × [f(x)]).

From [6], Lemma 8.2 we know f(G) ≤ ev([f ] × G) and therefore we conclude

limG(x) ≤ Λ(ev([f ] × G) × [f(x)]).

(UC5), Lemma 2.6 and (UC3) then yield

limG(x) ≤ Λ((ev([f ] × G) × [f(x)]) ◦ ([f(x)] × ev([f ] × G))

≤ Λ(ev([f ] × G) × ev([f ] × G))

= Λ(ev × ev(η(([f ] × [f ]) × (G × G)))).

Therefore Λc([f ] × [f ]) = >.

(UC2) is obvious.
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(UC3): We have

Λc(Φ−1) =
∧

G∈Fs
L
(X),x∈X

(limG(x) → Λ(ev × ev(η(Φ−1 × (G × G))))).

From [8], Lemma 3.8 we conclude that

η(Φ−1 × (G × G)) = (η(Φ × (G × G)−1))−1 = (η(Φ × (G × G)))−1
.

Moreover it is generally true that (f × f)(Φ−1) = ((f × f)(Φ))−1, as the reader may readily

verify. Thus we conclude

Λc(Φ−1) =
∧

G∈Fs
L(X),x∈X

(limG(x) → Λ((ev × ev)(η(Φ × (G × G)))−1))

≥
∧

G∈Fs
L
(X),x∈X

(limG(x) → Λ((ev × ev)(η(Φ × (G × G)))))

= Λc(Φ).

(UC4) follows with α → (β ∧ γ) = (α → β) ∧ (α → γ) directly from (UC4) for (Y, Λ).

For (UC5) we use [8], Lemma D. Let Φ ◦ Ψ ∈ Fs
L(C(X, Y ) × C(X, Y )). Then

Λc(Φ ◦ Ψ) =
∧

G∈Fs
L
(X),x∈X

(limG(x) → Λ((ev × ev)(η((Φ ◦ Ψ) × (G × G)))))

≥
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(((ev × ev)(η(Φ × (G × G)))) ◦

◦((ev × ev)(η(Ψ × ((G × G)−1 ◦ (G × G))))))).

Lemma 2.5 shows that the last expression is

≥
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ((ev × ev)(η(Φ × (G × G))) ◦ (ev × ev)(η(Ψ × (G × G))))).

From (UC5) for (Y, Λ) then finally Λc(Φ ◦ Ψ) ≥ Λc(Φ) ∧ Λc(Ψ) follows.

Next we present a useful description of the induced stratified L-convergence of Λc.

Lemma 4.2: Let (X, lim) ∈ |SL-LIM | and (Y, Λ) ∈ |SL-UCS|. Then

lim(Λc)F(f) =
∧

G∈Fs
L
(X)

∧

x∈X

(limG(x) → Λ(ev(F × (G ∧ [x]))× ev([f ] × (G ∧ [x])))).

Proof: From Lemma 2.4 we know that

η((F × [f ]) × (G × G)) = (F × G) × ([f ] × G).
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Therfore we conclude

lim(Λc)F(f) =
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × G) × ev([f ] × G)))

≤
∧

G∈Fs
L
(X), x∈X

(lim(G ∧ [x])(x) → Λ(ev(F × (G ∧ [x]))× ev([f ] × (G ∧ [x])))).

From (L1), (L2) and (L3) it follows limG(x) = lim(G ∧ [x])(x) and hence

lim(Λc)F(f) ≤
∧

G∈Fs
L(X), x∈X

(limG(x) → Λ(ev(F × (G ∧ [x]))× ev([f ] × (G ∧ [x])))).

As G ∧ [x] ≤ G we conclude with (UC2) for (Y, Λ) finally

lim(Λc)F(f) ≤
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × (G ∧ [x]))× ev([f ] × (G ∧ [x]))))

≤
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × G) × ev([f ] × G)))

= lim(Λc)F(f).

Lemma 4.2 yields, together with Lemma 2.2, (UC2) and (UC4), the following equality (∗)

lim(Λc)F(f) =
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × G) × ev([f ] × G)))

∧
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × G) × ev([f ] × [x])))

∧
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × [x])× ev([f ] × G)))

∧
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × [x])× ev([f ] × [x]))).

We will use this equality to compare lim(Λc) and c-lim. For the stratified L-limit spaces

(X, lim) and (Y, lim(Λ)) the structure of continuous convergence is defined as follows. For

F ∈ Fs
L(C(X, Y )) and f ∈ C(X, Y ) we have

c-limF(f) =
∧

G∈Fs
L
(X), x∈X

(limG(x) → lim(Λ)(ev(F × G))(f(x)))

=
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × G) × [f(x)])).

As, by the Corollary to Lemma 2.1, ev([f ]×[x]) = [f(x)] we immediately see that lim(Λc)F(f) ≤
c- limF(f). We will now argue that even equality holds, showing that the three remaining

expressions in (∗) are all greater of equal to c-limF(f).
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Firstly, taking G = [x] we find

c-limF(f) ≤
∧

x∈X

(> → Λ(ev(F × [x]) × ev([f ] × [x]))).

As the residual implication operator is order reversing in the first argument we conclude there-

fore

c-limF(f) ≤
∧

G∈Fs
L(X), x∈X

(limG(x) → Λ(ev(F × [x])× ev([f ] × [x]))).

Secondly, it follows from the continuity of f ∈ C(X, Y ) that

limG(x) ≤ lim(Λ)f(G)(f(x)) = Λ(f(G) × [f(x)]).

Using again f(G) ≤ ev([f ] × G) ([6], Lemma 8.2), we obtain from this

limG(x) ≤ Λ(ev([f ] × G) × [f(x)]).

Therefore ∧

G∈Fs
L(X), x∈X

(limG(x) → Λ(ev([f ] × G) × [f(x)])) = >.

Using (UC5), (UC3) and Lemma 2.6 we conclude

c-limF(f) ≤
∧

G∈Fs
L(X), x∈X

(limG(x) → Λ(ev(F × [x])× ev([f ] × [x])))

∧
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ([f(x)] × ev([f ] × G)))

≤
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × [x])× ev([f ] × G))).

Similarly, as (ev(F ×G)× [f(x)]) ◦ ([f(x)]× ev([f ]×G)) ≤ ev(F ×G)× ev([f ]×G) we conclude

thirdly

c-limF(f) ≤
∧

G∈Fs
L
(X), x∈X

(limG(x) → Λ(ev(F × G) × ev([f ] × G))).

Putting everything together, we can state the main theorem of this paper.

Theorem 4.3: Let (X, lim) ∈ |SL-LIM |, (Y, Λ) ∈ |SL-UCS|. Then the stratified L-limit

structure of continuous convergence on C(X, Y ), c-lim, is induced by the stratified L-uniform

convergence structure Λc defined by

Λc(Φ) =
∧

G∈Fs
L
(X)

∧

x∈X

(limG(x) → Λ((ev × ev)(η(Φ × (G × G))))).
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We call (X, lim) ∈ |SL-LIM | L-limit-uniformizable if there is a stratified L-uniform convergence

structure Λ such that (X, Λ) ∈ |SL-UCS| and lim = lim(Λ). The full subcategory of SL-LIM

with objects all L-limit-uniformizable spaces and the usual continuous mappings as morphisms

is denoted by SL-LIMucs. This category is topological over SET as can be seen with Lemma

3.1. By Theorem 4.3 we moreover see that the category SL-LIMucs has function spaces in the

definition of [1], i.e. that this category is cartesian closed. We collect all this in the following

corollary.

Corollary 4.4: The category SL-LIMucs is topological over SET and cartesian closed.

Remark: For stratified L-uniform convergence spaces (X, Λ), (X ′, Λ′) we may restrict L-

continuous convegence on the set UC(X, Y ) of uniformly continuous mappings. That is, we

consider c-lim only for F ∈ Fs
L(UC(X, Y )) and f ∈ UC(X, Y ). Then clearly

lim(Λuc)F(f) =
∧

H∈Fs
L
(X×X)

(Λ(H) → Λ′((ev × ev)(η((F × [f ]) ×H))))

≤
∧

G∈Fs
L
(X), x∈X

(Λ(G × [x]) → Λ′((ev × ev)(η((F × [f ]) × (G × [x])))))

=
∧

G∈Fs
L(X), x∈X

(lim(Λ)G(x) → lim(Λ′)(ev(F × G))(f(x)))

= c- limF(f)

Note, however, that in general c-lim = lim(Λc) (resp. Λc) and lim(Λuc) (resp. Λuc) are defined

on different sets of morphisms.

5. Conclusions

We showed in this paper, by explicitely constructing a function space structure on the set

C(X, Y ), that the category SL-LIMucs of L-limit uniformizable stratified L-limit spaces is

cartesian closed. This poses a natural problem: Give necessary and sufficient conditions when

a stratified L-limit space is induced by a stratified L-uniform convergence space.

In the classical case of {0, 1}-limit spaces Keller [10] states such conditions. An extension of this

result to the general Heyting-algebra-valued case seems difficult at the moment, as a suitable

definition of L-Cauchy filter has not been obtained so far.
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1999
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