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Lattice-valued convergence spaces and regularity

Abstract: We define a regularity axiom for lattice-valued convergence spaces where the lattice

is a complete Heyting algebra. To this end, we generalize the characterization of regularity

by a ”dual form” of a diagonal condition. We show that our axiom ensures that a regular

T1-space is separated and that regularity is preserved under initial constructions. Further we

present an extension theorem for a continuous mapping from a subspace to a regular space. A

characterization in the restricted case that the lattice is a complete Boolean algebra in terms

of the closure of an L-filter is given.

Keywords: L-fuzzy convergence, L-topology, L-filter, L-diagonal filter, L-convergence space,

pretopological space, diagonal condition, regularity, T1-axiom, T2-axiom, dense subset, contin-

uous extension.

1. Introduction

In [16] and [17] we introduced certain diagonal axioms for lattice-valued convergence spaces

(where the lattice, L, is a complete Heyting algebra). These axioms ensure that the lattice-

valued convergence is — under additional conditions like being a stratified L-pretopology —

stemming from a stratified L-topology. The ”dual form” of one of these conditions characterizes,

in the classical case, L = {0, 1}, regularity. This was the definition of regularity for convergence

spaces given by Cook and Fischer [6]. The equivalence of this ”dual” axiom with the requirement

limF ⊂ limF

for all filters F on X was established by Biesterfeld [2]. Here, the filter F is generated by

the filter base {F : F ∈ F}. Classically, regularity for convergence spaces is mostly defined

by this latter requirement. In the Heyting algebra-valued case – lacking an order reversing

involution which could induce a complement –, however, we do not have a suitable notion of

closure for L-sets at our disposal. So we rather choose to go the way of using the ”dual form”

of a diagonal condition. This is the purpose of this paper. After a preliminary section, where

we collect all basic results about lattices, L-sets and L-filters that we will need in the sequel,
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G.Jäger: Lattice-valued convergence spaces and regularity 2

we define several categories of lattice-valued convergence spaces [15]. Then we introduce the

lower separation axioms T1 and T2. We show that these are the correct definitions in the

sense that they coincide with ”good” definitions in the case that the spaces are stratified L-

topological spaces. The fourth section is devoted to the definition of our new regularity axiom.

We show that under the assumption of regularity, T1 implies T2 and that regularity is preserved

under initial constructions. This gives rise to the reflective subcategory of regular lattice-valued

convergence spaces. In order to show that our theory actually works, we present in Section 5 an

extension theorem for continuous mappings from a dense subspace to a regular space. To this

end we generalize an approach by Cook [5] to the Heyting algebra-valued case. In Section 6,

we characterize our axiom in the restricted lattice context of complete Boolean algebras. This

restriction seems necessary because we consider stratified L-filters only. The characterization

we obtain uses a lattice-valued form of the closure of an L-filter. A similar construction can

be found e.g. in Gähler’s theory of monadic convergence spaces [9]. Finally we draw some

conclusions.

2. Preliminaries

Let L be a complete lattice where finite meets distribute over arbitrary joins: for all α, βι ∈

L (ι ∈ J) we have

α ∧
∨

ι∈J
βι =

∨

ι∈J
(α ∧ βι).

(We will always assume that the largest element, > =
∨
L, of L is different from the smallest

element, ⊥ =
∧
L.) Such lattices are called frames or complete Heyting algebras [10]. They

allow the definition of a residual implication

α→ β =
∨

{λ ∈ L : α ∧ λ ≤ β}

which can be characterized by

δ ≤ α→ β ⇐⇒ α ∧ δ ≤ β.

The residual implication is order preserving in the second place and order reversing in the first

place. For further properties of this operation we refer to [11] and [13].

For notions from category theory we refer to [1].

Given a set X, we can extend the lattice operations pointwise from L to LX = {a : X −→ L},

the set of all L-sets on X. For A ⊂ X we especially denote by >A : X −→ L the characteristic
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function of A, i.e. >A(x) = > if x ∈ A and >A(x) = ⊥ for x /∈ A. The constant L-set with

value α ∈ L is denoted by αX .

A stratified L-filter on X is a mapping F : LX −→ L with the following properties [12],[13]:

(F1) F(>X ) = > and F(⊥X ) = ⊥;

(F2) a ≤ b implies F(a) ≤ F(b);

(F3) F(a) ∧ F(b) ≤ F(a ∧ b);

(Fs) F(αX) ≥ α for all α ∈ L.

Here, a, b ∈ LX are arbitrary L-sets. The set of all stratified L-filters on X is denoted by

Fs
L(X). We further call F ∈ Fs

L(X) tight if F(αX) = α for all α ∈ L. Tight L-filters appear

e.g. in Gähler [8].

An example of a stratified L-filter is the point L-filter, [x], defined by [x](a) = a(x) (a ∈ LX ).

This stratified L-filter is also tight.

On the set Fs
L(X) of all stratified L-filters on X we define an order by F ≤ G if F(a) ≤ G(a)

for all a ∈ LX . The set Fs
L(X) then contains maximal elements which are called stratified

L-ultrafilters [12]. These can be charaterized by [12]

U ∈ Fs
L(X) is ultra ⇐⇒ ∀ a ∈ LX : U(a) = U(a→ ⊥X ) → ⊥.

For a non-empty family (Fλ)λ∈Λ of stratified L-filters the meet,
∧
λ∈Λ Fλ, can be calculated as

(
∧

λ∈Λ

Fλ)(a) =
∧

λ∈Λ

(Fλ(a)) (a ∈ LX).

Clearly,
∧
λ∈Λ Fλ ∈ Fs

L(X). In contrast, for two F ,G ∈ Fs
L(X), their join need not exist (as

a stratified L-filter). Only if a ∧ b = ⊥X implies F(a) ∧ G(b) = ⊥, then this join is in Fs
L(X)

(see [12]). In this case we say that ”F and G have a join, F ∨ G, in Fs
L(X)”. Clearly, if for

F ,G,H ∈ Fs
L(X) we have F ≤ H and G ≤ H, then F and G have a join in Fs

L(X).

Let F ∈ Fs
L(X) and f : X −→ Y be a mapping. The image of F under f , f(F) ∈ Fs

L(Y ), is

defined by f(F)(b) = F(f←(b)) (where b ∈ LY and f←(b) = b ◦ f) (see [12]). If F ∈ Fs
L(Y ),

then its inverse image, f←(F), is defined by [12]

f←(F)(a) =
∨

{F(b) : f←(b) ≤ a} (a ∈ LX ).

This mapping is not always a stratified L-filter on X. Only if f←(b) = ⊥X implies F(b) = ⊥

we have f←(F) ∈ Fs
L(X), see [14].

Example [14]: The stratified L-filter induced on A.

Let A ⊂ X and ιA : A −→ X be the inclusion mapping. If A 6= X then ιA is not surjective
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and for F ∈ Fs
L(X) the inverse image ι←A (F) ∈ Fs

L(A) iff for all b ∈ LX , ι←A (b) = b|A = ⊥A
implies F(b) = ⊥. In this case we call FA defined by FA(a) := ι←A (F)(a) =

∨
{F(b) | b|A ≤ a}

the stratified L-filter on A induced by F . We then also say that F has a trace, FA, on A. If

moreover G ∈ Fs
L(A) then [G] := ιA(G) ∈ Fs

L(X). We have, for a ∈ LX , [G](a) = G(a|A).

Clearly for F ∈ Fs
L(X) we have F ≤ [FA] and if F(>A) = 1 then equality holds. Also it

is easily checked that if A ⊂ B ⊂ X and for F ∈ Fs
L(X) we have FA ∈ Fs

L(A), then also

FB ∈ Fs
L(B) and (FB)A = FA. For later use we state the following lemma.

Lemma 2.1: Let A ⊂ B ⊂ X and let f : A −→ Y be a mapping. If for G ∈ Fs
L(B) we have

that GA ∈ Fs
L(A), then f(GA) = f([G]A).

Proof: Let b ∈ LY . Then for x ∈ A trivially f←(b)|A(x) = b(f(x)) and therefore

f([G]A)(b) = [G]A(f←(b))

=
∨

{[G](c) : c ∈ LX , c|A ≤ f←(b)}

=
∨

{G(c|B) : c ∈ LX , c|A ≤ f←(b)}

=
∨

{G(c) : c ∈ LB , c|A ≤ f←(b)}

= GA(f←(b)) = f(GA)(b).

In [17] we defined a so-called stratified L-diagonal filter. This L-filter will play a crucial role

later.

Lemma and Definition 2.2 [17]: Let J be a set, G ∈ Fs
L(J) and let for all i ∈ J , Fi ∈ Fs

L(X).

We define for a ∈ LX

F(·)(a) :





J −→ L

i 7−→ Fi(a)

i.e. F(·)(a) ∈ LJ . Then the mapping G(F(·)), defined by

G(F(·))(a) = G(F(·)(a)) (a ∈ LX),

is a stratified L-filter on X. It is called the stratified L-diagonal filter of (G, (Fi)i∈J ).

We collect the properties of this stratified L-diagonal filter in the following Lemma.

Lemma 2.3 [17]: Let J be a set, G,H ∈ Fs
L(J) and let for all i ∈ J , Fi,Ki ∈ Fs

L(X).

(1) If for all i ∈ J , Fi ≤ Ki and if G ≤ H then G(F(·)) ≤ H(K(·)).

(2) (G ∧H)(F(·)) = G(F(·)) ∧H(F(·)).

(3) If f : X −→ Y is a mapping then G(f(F(·))) = f(G(F(·))).
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Remark: The case L = {0, 1}.

We denote the set of all ordinary filters on X by F(X). For a family of (ordinary) filters

Fi ∈ F(X) (i ∈ J) and a filter G ∈ F(J), the diagonal filter is defined by

κ(G, (Fi)i∈J ) =
∨

F∈G

∧

i∈F

Fi

(see [18], [19]). If we identify an ordinary filter F ∈ F(Z) with the stratified {0, 1}-filter

1F :





{0, 1}Z −→ {0, 1}

1A 7−→





1 if A ∈ F

0 if A /∈ F

then we have

1 = (1F(·))(1A)(i) = 1Fi(1A) ⇐⇒ A ∈ Fi,

i.e. we can identify the crisp set {i ∈ J | A ∈ Fi} with the {0, 1}-set (1F(·))(1A). Thus the

{0, 1}-diagonal filter satisfies

1G((1F(·)))(1A) = 1 ⇐⇒ {i ∈ J | A ∈ Fi} ∈ G.

In the sense of this identification, we showed in [17] that the stratified {0, 1}-diagonal filter is

nothing else than the classical diagonal filter i.e.

1κ(G,(Fi)i∈J ) = 1G((1F(·))).

3. Lattice-valued convergence spaces

Let X be a set. We consider a mapping

lim : Fs
L(X) −→ LX

which satisfies the following axioms.

(L1) ∀ x ∈ X : lim[x](x) = >;

(L2) F ≤ G ⇒ limF ≤ limG.

The pair (X, lim) is then called a stratified L-generalized convergence space [14],[15]. A mapping

f : X −→ X ′ between two stratified L-generalized convergence spaces (X, lim), (X ′, lim′) is

called continuous [14] if for all F ∈ Fs
L(X) and all x ∈ X we have

limF(x) ≤ lim ′f(F)(f(x)).
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The category SL-GCS has as objects all stratified L-generalized convergence spaces and as

morphisms the continuous mappings. This category is topological over SET [14]. For a given

source (fλ : X −→ (X, limλ))λ∈Λ the initial structure, lim = init(limλ) on X is given by [14]

limF(x) =
∧

λ∈Λ

lim λfλ(F)(fλ(x)) (F ∈ Fs
L(X), x ∈ X).

Example: Subspaces

Let A ⊂ X, (X, lim) ∈ |SL-GCS|, and consider the inclusion mapping

ιA :





A −→ X

x 7−→ x
.

If we denote the initial structure on A with respect to ιA by lim |A, then we find for F ∈ Fs
L(A)

and x ∈ A

lim |AF(x) = lim ιA(F)(ιA(x)) = lim[F ](x).

Further examples for initial constructions are product spaces with fµ :
∏
λ∈ΛXλ −→ Xµ the

projection mappings.

Moreover, SL-GCS is cartesian closed. The corresponding function space structure on C(X,X′),

the set of all morphisms from X to X ′ is given by continuous convergence [14]:

c− limF(f) =
∧

G∈Fs
L
(X)

∧

x∈X
(limG(x) → lim ′ev(F × G)(f(x))).

Here, F ∈ Fs
L(C(X,X′)), f ∈ C(X,X′) and ev : (f, x) 7−→ f(x) is the evaluation mapping

restricted on C(X,X′) ×X (see [14] for details).

Moreover, the category SL-TOP of stratified L-topological spaces [13] is isomorphic to a reflec-

tive subcategory, SL-TCS, of SL-GCS, defined below [14],[15]. Here, a stratified L-topological

space is a set X together with a set ∆ ⊂ LX which is closed under finite infima and arbitrary

suprema and contains all constants αX , see e.g. [13]. The embedding of SL-TOP into SL-GCS

is given by defining a stratified L-neighbourhood filter for a stratified L-topological space (X,∆)

by (Höhle and Sostak [13])

Ux(a) = a(x) =
∨

g∈∆,g≤a

g(x)

and defining

lim(∆)F(x) =
∧

a∈LX

(Ux(a) → F(a)).

One can also show that SL-GCS is extensional, following the proof of the corresponding prop-

erty in Flores et al’s category SL-CS [7]. (We do not want to go into detail here about this
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category but only remark that Flores et al’s category is a tower construction (see e.g. [9], Sec-

tion 12) and is slightly more general than our category SL-GCS. However, in order to embed

SL-TOP into this category it seems necessary to impose an axiom (Lpw1) stated below. This

axiom at present has not been expressed in terms of the ”level convergence structures” which

are used to construct the objects of SL-CS, see [16].) This all shows that the category SL-GCS

has very nice categorical properties.

Important reflective subcategories of SL-GCS arise if we add suitable axioms. In this paper

we will consider the following:

(Lp) ∀ F ∈ Fs
L(X), ∀ x ∈ X : limF(x) =

∧

a∈LX

(Ux(a) → F(a));

(Lt) ∀ x ∈ X : Ux ≤ Ux(U (·)).

If (X, lim) satisfies (Lp) then it is called a stratified L-pretopological space. Here, the stratified

L-neighbourhood filter is defined by [14]

Ux(a) =
∧

G∈Fs
L
(X)

(limG(x) → G(a)) (a ∈ LX ).

The category of stratified L-pretopological spaces, SL-PCS, generalizes the category of Čech’s

closure spaces [4] to the Heyting algebra-valued setting [16]. A space satisfying (Lp) and (Lt)

is called a stratified L-topological convergence space. The category of these spaces, SL-TCS,

is isomorphic to SL-TOP [15].

We showed in [16] that the axiom (Lp) splits into the following two axioms which are indepen-

dent of each other.

(Lpw1) ∀ α ∈ L, ∀ x ∈ X : [Ux ∧α] = Uxα;

(Lpw2) ∀ F ∈ Fs
L(X), ∀ x ∈ X : limF(x) =

∨
{α ∈ L : F ≥ Uxα}.

Here the stratified α-level neighbourhood L-filter is defined by [16]

Uxα =
∧

limF(x)≥α

F

and the left-hand side of (Lpw1) has the meaning

[Ux ∧ α] =
∧

F∈Fs
L
(X),F(a)≥Ux(a)∧α ∀a∈LX

F .
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Restating (Lpw1) in the following form

(Lpw1) ∀α ∈ L, ∀x ∈ X :
∧

{F ∈ Fs
L(X) : α ≤

∧

a∈LX

(Ux(a) → F(a))} =
∧

{F ∈ Fs
L(X) : α ≤ limF(x)}

shows how ”close” (Lpw1) and (Lp) are. Interestingly, the axiom (Lpw2) is equivalent to the

following requirement [16].

(Lpw2′) ∀Fι ∈ Fs
L(X) (ι ∈ J) : lim(

∧

ι∈J

Fι) =
∧

ι∈J

(limFι),

which is in the case L = {0, 1} equivalent to (Lp). Another equivalent form of this axiom which

we will use later is [16]

(Lpw2′′) ∀ α ∈ L, ∀ x ∈ X ∀ F ∈ Fs
L(X) : limF(x) ≥ α ⇐⇒ F ≥ Uxα.

In [16] we showed that, for a space satisfying (Lp), the ”topological” axiom (Lt) (which ensures

the idempotency of the interior operator a(x) = Ux(a)) is equivalent to the following diagonal

condition

(LK) ∀G ∈ Fs
L(X), ∀Fy ∈ Fs

L(X) (y ∈ X), ∀x ∈ X :
∧

y∈X
limFy(y) ∧ limG(x) ≤ limG(F(·))(x).

This diagonal condition generalizes a corresponding classical condition due to Kowalski [19].

So a stratified L-pretopological space which satisfies (LK) is L-topological (in the sense that it

is a stratified L-topological convergence space). In the classical theory of convergence spaces,

there is a stronger axiom, (F) (named after H.R. Fischer, first published in [6]), which ensures

that a convergence space satisfying this axiom (F) is topological. The reason for this is that

this axiom implies Kowalski’s diagonal axiom and that the convergence space is pretopological.

We generalized this axiom to the Heyting algebra-valued case in [17].

(LF ) ∀J, ∀ψ : J −→ X, ∀G ∈ Fs
L(J), ∀Fi ∈ Fs

L(X) (i ∈ J), ∀x ∈ X :
∧

i∈J
limFi(ψ(i)) ∧ limψ(G)(x) ≤ limG(F(·))(x).

Apparently for the case L = {0, 1}, our axiom is the same as the axiom (F). However, it turned

out that this axiom (LF) does not imply (Lp) but it only implies (Lpw2), see [17]. So in order

that a stratified L-generalized convergences space is L-topological, we have to demand both the

axioms (LF) and (Lpw1) (the latter being classically, L = {0, 1}, always true).
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We showed in [17] that the axiom (LF) is preserved under initial constructions, i.e. that the

subcategory of all stratified L-convergence spaces satisfying (LF) is reflective in SL-GCS and

topological over SET . For the axiom (LK) this is not the case. We only have the following

result.

Lemma 3.1: If all (Xλ, limλ) ∈ |SL-GCS| satisfy the axiom (LK) and if all fλ : X −→

(Xλ, limλ) are injective (λ ∈ Λ) and lim = init(lim λ) then (X, lim) satisfies (LK).

Proof: Let G ∈ Fs
L(X) and for each y ∈ X let Fy ∈ Fs

L(X). Then

limG(x) ∧
∧

y∈X

limFy(y) =
∧

λ∈Λ

limλfλ(G)(fλ(x)) ∧
∧

y∈X

∧

λ∈Λ

limλfλ(Fy)(fλ(y))

≤
∧

λ∈Λ


lim λfλ(G)(fλ(x)) ∧

∧

y∈X

lim λfλ(Fy)(fλ(y))


 .

We define now for yλ ∈ fλ(X) the stratified L-filter Hyλ = fλ(Fy) with the unique y = f−1
λ (yλ),

and for yλ /∈ fλ(X) we define Hyλ = [yλ]. Then by (LK) we obtain

limG(x) ∧
∧

y∈X

limFy(y) =
∧

λ∈Λ


lim λfλ(G)(fλ(x)) ∧

∧

yλ∈Xλ

lim λHyλ (yλ)




≤
∧

λ∈Λ

lim λfλ(G)(H(·))(fλ(x)).

Now we observe that for a ∈ LXλ and z ∈ X we have

f←λ (H(·)(a))(z) = H(·)(a)(fλ(z)) = Hfλ(z)(a) = fλ(Fz)(a) =
[
fλ(F(·))(a)

]
(z).

Therefore

fλ(G)(H(·))(a) = fλ(G)(H(·)(a)) = G(f←λ (H(·)(a)))

= G(fλ(F(·))(a)) = G(F(·)(f←λ (a)))

= G(F(·))(f←λ (a)) = fλ(G(F(·)))(a).

Hence we obtain finally

limG(x) ∧
∧

y∈X
limFy(y) ≤

∧

λ∈Λ

lim λfλ(G(F(·)))(fλ(x)) = limG(F(·))(x).

Kent and Richardson showed in [18] that for the case L = {0, 1} we cannot omit the requirement

of injectivity for the mappings fλ. Interesting for us is the following corollary.

Corollary 3.2: Let (X, lim) ∈ |SL-GCS| satisfy (LK) and let A ⊂ X. Then the subspace

(A, lim |A) satisfies (LK).
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4. Lower separation axioms

We call (X, lim) ∈ |SL-GCS| a T1-space if it satisfies the axiom

(T1) ∀x, y ∈ X : lim[y](x) = > ⇒ x = y,

and a T2-space if it satisfies the axiom

(T2) ∀F ∈ Fs
L(X) : limF(x) = limF(y) = > ⇒ x = y.

Lemma 4.1: A T2-space (X, lim) satisfies T1.

Proof: If lim[y](x) = > then, as by (L1) also lim[y](y) = >, (T2) implies x = y.

The separation axioms (T1) and (T2) are productive and inherited by subspaces:

Lemma 4.2: If all (Xλ, limλ) are T1-spaces (resp. T2 spaces) (λ ∈ Λ) and if the family

of mappings (fλ : X −→ Xλ)λ∈Λ separates points (i.e. for x 6= y there is λ ∈ Λ such that

fλ(x) 6= fλ(y)), then (X, init(lim λ)) is a T1-space (resp. a T2-space).

Proof: For (T1), we make use of fλ([y]) = [fλ(y)] (see [14]) and argue as follows. If

> = lim[y](x) =
∧

λ∈Λ

lim λfλ([y])(fλ(x)) =
∧

λ∈Λ

lim λ[fλ(y)](fλ(x))

then for every λ ∈ Λ we have > = lim λ[fλ(y)](fλ(x)). Hence for all λ ∈ Λ we conclude with

(T1) that fλ(y) = fλ(x) from which, by point-separatedness, x = y follows. The proof for (T2)

is very similar and we leave it to the reader.

Corollary 4.3: Subspaces and products of T1-spaces (resp. T2-spaces) satisfy T1 (resp. T2).

We are now going to characterize these separation axioms in some subcategories of SL-GCS.

Lemma 4.4: Let (X, lim) ∈ SL-PCS. Then

(T1) ⇐⇒ ∀x, y ∈ X : Ux ≤ [y] ⇒ x = y;

(T2) ⇐⇒ ∀x, y ∈ X : Ux ∨ Uy ∈ Fs
L(X) ⇒ x = y.

Proof: Let first (X, lim) satisfy (T1). If Ux ≤ [y] then by (Lp)

lim[y](x) =
∧

a∈LX

(Ux(a) → [y](a)) = >
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and hence x = y. On the other hand it follows from > = lim[y](x) and (Lp) that Ux ≤ [y] and

therefore x = y by the condition stated in the lemma.

Let now (X, lim) satisfy the T2-axiom and let Ux ∨ Uy ∈ Fs
L(X). Then by (Lp)

> = limUx(x) ≤ limUx ∨Uy(x)

and

> = limUy(y) ≤ limUx ∨ Uy(y).

Therefore, by (T2), x = y. On the other hand it follows with (Lp) from> = limF(x) = limF(y)

that Ux ≤ F and Uy ≤ F . Therefore Ux ∨ Uy ∈ Fs
L(X) and by the condition of the lemma we

get x = y.

We identify in the sequel a stratified L-topological convergence space with a stratified L-

topological space by defining the stratified L-topology by ∆ = {a ∈ LX : a ≤ a}, where

a(x) = Ux(a) for x ∈ X.

Lemma 4.5: Let (X, lim) ∈ SL-TCS. Then

(T1) ⇐⇒ (∀x, y ∈ X : g(x) ≤ g(y) for all g ∈ ∆ ⇒ x = y);

(T2) ⇐⇒ (∀x, y ∈ X : x 6= y ⇒ ∃ g, h ∈ ∆ such that g(x) ∧ h(y) 6= ⊥ and g ∧ h = ⊥X ).

Proof: Let first (X, lim) satisfy (T1). If g(x) ≤ g(y) for all g ∈ ∆, then, as a ∈ ∆ for all

a ∈ LX , we find

Ux(a) = a(x) ≤ a(y) ≤ a(y) = [y](a).

Hence Ux ≤ [y] and therefore x = y by Lemma 4.4. If on the other hand Ux ≤ [y] then for all

g ∈ ∆

g(x) = Ux(g) ≤ [y](g) = g(y)

and therefore x = y.

Let now (X, lim) satisfy (T2). Then for x 6= y, Ux ∨ Uy /∈ Fs
L(X). Therefore there are

g, h ∈ LX such that g ∧ h = ⊥X and Ux(g) ∧ Uy(h) 6= ⊥. It follows that g, h ∈ ∆ and

g ∧ h = ⊥X and g(x) ∧ h(y) 6= ⊥. On the other hand let the condition of the lemma be true.

Then Ux ∨Uy /∈ Fs
L(X) for x 6= y, which means that whenever Ux ∨Uy ∈ Fs

L(X) we must have

that x = y, i.e. the axiom (T2) holds by Lemma 4.4.
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This shows that our T1- and T2-axioms are generalizations of known definitions in SL-TOP

(e.g. Höhle and Šostak [13]).

5. The regularity axiom

We call a stratified L-generalized convergence space (X, lim) regular if it satisfies the following

axiom (LR):

(LR) ∀J, ∀ψ : J −→ X, ∀G ∈ Fs
L(J), ∀Fi ∈ Fs

L(X) (i ∈ J), ∀x ∈ X :
∧

i∈J
limFi(ψ(i)) ∧ limG(F(·))(x) ≤ limψ(G)(x).

Using the pointwise evaluation of the residual implication, we can state this axiom also in the

following form:

(LR′) ∀J, ∀ψ : J −→ X, ∀G ∈ Fs
L(J), ∀Fi ∈ Fs

L(X) (i ∈ J) :
∧

i∈J

limFi(ψ(i)) ≤ limG(F(·)) → limψ(G).

Similarly we can restate the axiom (LF):

(LF ′) ∀J, ∀ψ : J −→ X, ∀G ∈ Fs
L(J), ∀Fi ∈ Fs

L(X) (i ∈ J) :
∧

i∈J
limFi(ψ(i)) ≤ limψ(G) → limG(F(·)).

This form shows in which sense (LR) and the diagonal axiom (LF) are ”dual” to each other:

The arguments in the residual implication appear reversed.

Lemma 5.1: Let (X, lim) ∈ |SL-GCS| be regular and satisfy (T1). Then it also satisfies (T2).

Proof: Let F ∈ Fs
L(X) and limF(x) = limF(y) = >. We define J = {G ∈ Fs

L(X) : limG(y) =

>} and for each G ∈ J we define FG = G. Further we consider the constant mapping

ψ :





J −→ X

G 7−→ y
.

From limF(y) = > we see that F ∈ J and hence [F ] ∈ Fs
L(J) (with [F ](a) = a(F) for any

a ∈ LJ ). Further we have for a ∈ LX :

ψ([F ])(a) = [F ](ψ←(a)) = ψ←(a)(F) = a(ψ(F)) = a(y) = [y](a),

and therefore ψ([F ]) = [y]. Moreover we find for a ∈ LX

[F ](F(·))(a) = [F ](F(·)(a)) = FF (a) = F(a),
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i.e. [F ](F(·)) = F . From regularity we thus obtain

> =
∧

G∈J
limG(y) ∧ limF(x) =

∧

G∈J
limFG(ψ(G)) ∧ lim[F ](F(·))(x) ≤ limψ([F ])(x) = lim[y](x).

By (T1) this yields x = y and therefore (T2) holds.

The next lemma shows that regularity is preserved under the formation of subspaces and product

spaces.

Lemma 5.2: Let all (Xλ, limλ) ∈ |SL-GCS| be regular (λ ∈ Λ) and let (fλ : X −→ Xλ)λ∈Λ

be a source. Then also (X, init(lim λ)) is regular.

Proof: Let J be a set, ψ : J −→ X be a mapping, G ∈ Fs
L(J) and for every i ∈ J let Fi ∈ Fs

L(X).

Then for x ∈ X we have
∧

i∈J
limFi(ψ(i)) ∧ limG(F(·))(x) =

∧

i∈J

∧

λ∈Λ

limλfλ(Fi)(fλ(ψ(i)) ∧
∧

λ∈Λ

limλfλ(G(F(·)))(fλ(x))

≤
∧

λ∈Λ

(∧

i∈J

limλfλ(Fi)(fλ(ψ(i)) ∧ limλfλ(G(F(·)))(fλ(x))

)
.

With ψλ = fλ ◦ ψ and Fλ
i = fλ(Fi) ∈ Fs

L(Xλ) for all i ∈ J and (LR) for each (Xλ, limλ) we

obtain
∧

i∈J
limFi(ψ(i)) ∧ G(F(·))(x)

≤
∧

λ∈Λ

(∧

i∈J

limλFλ
i (ψλ(i)) ∧ lim λG(Fλ

(·))(fλ(x))

)

≤
∧

λ∈Λ

limλψλ(G)(fλ(x))

=
∧

λ∈Λ

limλfλ(ψ(G))(fλ(x))

= limψ(G)(x).

We can consider the subcategory SL-RGCS of SL-GCS with objects the regular stratified

L-generalized convergence spaces and morphisms the continuous mappings. Lemma 5.2 then

shows that this subcategory is topological over SET and concretely reflective in SL-GCS (see

[1]).

We finally present a trivial characterization which shows how to define regularity in Flores et

al’s category SL-CS [7]. See in this respect also the definition of regularity for probabilistic

convergence spaces [3],[20].
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Lemma 5.3: For (X, lim) ∈ |SL-GCS| it is equivalent

(1) (LR)

(2) ∀α, β ∈ L, ∀J, ∀ψ : J −→ X, ∀G ∈ Fs
L(J), ∀Fi ∈ Fs

L(X) (i ∈ J), ∀x ∈ X :

α ≤ limFi(ψ(i)) ∀ i ∈ J, β ≤ limG(F(·))(x) ⇒ α ∧ β ≤ limψ(G)(x).

6. A theorem on continuous extensions

We consider in this section the following situation. For stratified L-generalized convergence

spaces (X, lim) and (Y, lim′) and A ⊂ X and a mapping f : A −→ Y , we ask if it is possible to

extend f to the whole of X. Naturally, we will demand that f and its extension are continuous.

For α ∈ L we define

Hα(x) = Hα
A(x) = {F ∈ Fs

L(X) : FA ∈ Fs
L(A) and limF(x) ≥ α}

Fα(x) = FαA(x) = {y ∈ Y : lim ′f(FA)(y) ≥ α for all F ∈ Hα
A(x)}

We note that for α ≤ β we have Hβ(x) ⊂ Hα(x) and that therefore the requirement H>(x) 6= ∅

assures the non-emptiness of all Hα(x). We further define

X0 = {x ∈ X : H>(x) 6= ∅ and
⋂

α∈L
Fα(x) 6= ∅}.

Note that if f : (A, lim |A) −→ (Y, lim′) is continuous, then A ⊂ X0: If x ∈ A, then [x]A ∈ Fs
L(A)

and by (L1) lim[x](x) = >. Hence H>(x) 6= ∅. Further, if F ∈ Hα(x), then lim |AFA(x) =

lim[FA](x) ≥ limF(x) ≥ α and therefore, by continuity, lim′ f(FA)(f(x)) ≥ α. Hence f(x) ∈

Fα(x). This is true for any α ∈ L, so that f(x) ∈
⋂
α∈L F

α(x).

We can thus choose for x /∈ A, x ∈ X0, a fixed value yx ∈
⋂
α∈L F

α(x) and define a function

f : X0 −→ Y by putting

f (x) =





f(x) if x ∈ A

yx if x ∈ X0 − A
.

Clearly, f |A = f . The next Lemma gives conditions which guarantee that f is continuous.

Lemma 6.1: Let (X, lim) ∈ |SL-GCS| satisfy the axiom (LK) and let (Y, lim′) ∈ |SL-GCS|

be regular and A ⊂ X. If f : (A, lim |A) −→ (Y, lim′) is continuous then f : (X0, lim |X0) −→

(Y, lim′) is continuous.

Proof: We remark first that the subspace (X0, lim |X0) satisfies the diagonal axiom (LK). Let

now G ∈ Fs
L(X0) and let x0 ∈ X0 and

α = lim |X0G(x0) = lim[G](x0).
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For each x ∈ X0 we choose Fx ∈ H>(x). As (Fx)A ∈ Fs
L(A) andA ⊂ X0, also (Fx)X0 ∈ Fs

L(X0)

and

lim |X0(Fx)X0(x) = lim[(Fx)X0 ](x) ≥ limFx(x) = >.

So if we define Hx = (Fx)X0 ∈ Fs
L(X0) we have lim |X0Hx(x) = > for all x ∈ X0. From the

axiom (LK) it therefore follows that

α = α ∧> = lim |X0G(x0) ∧
∧

x∈X0

lim |X0Hx(x) ≤ lim |X0G(H(·))(x0).

We note that G(H(·)) has a trace on A: Let b|A = ⊥A for b ∈ LX0 . Then for x ∈ X0 we have

Hx(b) = (Fx)X0 (b) =
∨

{Fx(c) : c|X0 ≤ b}.

If c|X0 ≤ b then c|A ≤ b|A = ⊥A. As Fx has a trace on A we therefore conclude Fx(c) = ⊥.

Therefore Hx(b) = ⊥. From this we conclude that H(·)(b) = ⊥X0 and therefore

G(H(·))(b) = G(⊥X0 ) = ⊥.

As a consequence we have that [G(H(·))] ∈ Hα(x0) and therefore

lim ′f([G(H(·))]A)(f (x0)) = lim ′f(G(H(·))A)(f (x0)) ≥ α.

Clearly, (Hx)A = ((Fx)X0 )A = (Fx)A ∈ Fs
L(A) and we can define for x ∈ X0

Kx = f((Hx)A) ∈ Fs
L(Y ).

For b ∈ LY we find

G(K(·))(b) = G(K(·)(b)) = G(f((H(·))A(b)))

= G((H(·))A(f←(b))) = G((H(·))A)(f←(b)) = f(G((H(·))A))(b).

By this we see that f(G((H(·))A) = G(K(·)) and therefore

lim ′G(K(·))(f (x0)) ≥ α.

Further we find [Hx]A = [(Fx)X0 ]A = (Fx)A ∈ Fs
L(A) and lim[Hx](x) ≥ limFx(x) = >.

Hence for every x ∈ X0 we have [Hx] ∈ H>(x) and therefore > = lim ′f([Hx]A)(f (x)) =

lim ′f((Hx)A)(f (x)). We conclude therefore

> = lim ′f((Hx)A)(f (x)) = lim ′Kx(f (x)).

Using the regularity of (Y, lim ′) and J = X0, ψ = f we thus obtain

α ≤
∧

x∈X0

lim ′Kx(f (x)) ∧ lim ′G(K(·))(f (x0)) ≤ lim ′f (G)(f (x0))
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and f is continuous.

We note that if (Y, lim ′) is a T2-space, then the extension f will be unique: if y1, y2 ∈
⋂
α∈LF

α(x), then especially y1, y2 ∈ F>(x) and for any F ∈ H>(x) then lim ′f(FA)(y1) = >

and lim ′f(FA)(y2) = > and hence by (T2), y1 = y2.

Let us further call a subset A ⊂ X dense in (X, lim) (or simply dense if the space (X, lim) is

clear) if from x ∈ X it follows that H>A (x) 6= ∅. We can characterize this concept in stratified

L-pretopological spaces as follows.

Lemma 6.2: Let (X, lim) ∈ |SL-PCS| and A ⊂ X. Then A is dense if and only if for every

x ∈ X, Ux has a trace on A.

Proof: Let first A be dense and x ∈ X. Then there is F ∈ H>A (x), i.e. FA ∈ Fs
L(A) and

limF(x) = >. From this we see that F ≥ Ux and therefore UxA ∈ Fs
L(A). The converse follows

from [UxA] ≥ Ux and [UxA]A = UxA.

For stratified L-topological spaces, this concept coincides with the definition of denseness in

Höhle and Šostak [13].

Lemma 6.3: Let (X, lim) ∈ |SL-TCS| and A ⊂ X. Then A is dense if and only if for every

a ∈ ∆, a|A = ⊥A implies a = ⊥X .

Proof: Let first A be dense and let a ∈ ∆ and a|A = ⊥A. For any x ∈ X we know that UxA
exists. Therefore Ux(a) = a(x) = ⊥. Conversely, we see from the condition of the Lemma that

Ux has a trace on A for every x ∈ X: Let a|A = ⊥A. Then also a|A = ⊥A and a ∈ ∆. Therefore

for every x ∈ X we find ⊥ = a(x) = Ux(a).

We can now state our main theorem.

Theorem 6.4: Let (X, lim) ∈ |SL-GCS| satisfy the axiom (LK) and let (Y, lim ′) ∈ |SL-GCS|

be regular and T2 and let A ⊂ X be dense in (X, lim). Then a continuous mapping f :

(A, lim |A) −→ (Y, lim ′) has a unique continuous extension f : (X, lim) −→ (Y, lim ′) if and only

if for every x ∈ X,
⋂
α∈L F

α(x) 6= ∅.

Proof: If f has a continuous extension, f , then for every G ∈ Fs
L(X) we have

lim ′f (G)(f (x)) ≥ limG(x).
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If F ∈ Hα(x), then FA ∈ Fs
L(A) and limF(x) ≥ α. Hence

lim ′f ([FA])(f (x)) ≥ lim ′f (F)(f (x)) ≥ limF(x) ≥ α.

We will now show that f ([FA]) = f(FA): Let b ∈ LY . Then

f ([FA])(b) = [FA](f
←

(b)) = F(f
←

(b)|A).

For x ∈ A we have

f
←

(b)|A(x) = b(f (x)) = b(f(x)) = f←(b)(x).

Therefore

FA(f
←

(b)|A) = FA(f←(b)) = f(FA)(b).

So, f ([FA]) = f(FA) and therefore f (x) ∈ Fα(x) and the condition is satisfied. For the converse

we note that under the condition and the assumptions of the Lemma, X0 = X and therefore

the existence of the continuous extension follows from Lemma 6.1. The uniqueness follows from

the assumption of (T2) for (Y, lim ′) as shown above.

7. Characterization of regularity in the Boolean case

In this section we characterize regularity using a mapping Fβ
: LX −→ L for a given stratified

L-filter F ∈ Fs
L(X). A close inspection of the proofs shows that we need to demand that all

L-filters are tight to ensure that Fβ
is stratified (the other L-filter axioms are always satisfied).

One way to go is to drop the requirement of stratification for all L-filters in our theory (see in

this respect a similar construction in Gähler [9]). The other way to go is to restrict the lattice

context. For a stratified L-filter F ∈ Fs
L(X) it holds for any a ∈ LX

∧

x∈X

a(x) ≤ F(a) ≤ ((
∨

x∈X

a(x)) → ⊥) → ⊥

(see [12]). From this we see that if in L the law of double negation,

(α→ ⊥) → ⊥ = α ∀ α ∈ L,

holds, then all stratified L-filters will be tight. On the other hand, we cannot find a weaker

condition: if all stratified L-filters are tight, then for a stratified L-ultrafilter U it follows

α = U(αX) = U(αX → ⊥) → ⊥ = (α→ ⊥) → ⊥.

So in order that the theory of this section works we have to impose the law of double negation,

which is equivalent to L being a complete Boolean algebra (cf. e.g. [10]).
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In the sequel let (X, lim) be a stratified L-generalized convergence space. For F ∈ Fs
L(X),

β ∈ L and a ∈ LX we define

Fβ
(a) =

∨
{F(f) : f ∈ LX such that for all G ∈ Fs

L(X) with limG(x) ≥ β we have G(f) ≤ a(x)}.

Lemma 7.1: If L is a complete Boolean algebra then Fβ ∈ Fs
L(X).

Proof: Denote J = {(G, y) : limG(y) ≥ β}. We can then write

Fβ
(a) =

∨

f : G(f)≤a(y) ∀(G,y)∈J

F(f).

We check the axioms.

(F1) Fβ
(>X ) ≥ F(>X ) = >. Further, if G(f) = ⊥ for all (G, y) ∈ J , then especially for all

y ∈ X we have f(y) = [y](f) = ⊥, i.e. f = ⊥X . Hence Fβ
(⊥X ) = F(⊥X ) = ⊥.

(F2) Let a ≤ b. If G(f) ≤ a(y), then also G(f) ≤ b(y) and hence Fβ
(a) ≤ Fβ

(b).

(F3) If G(f) ≤ a(y) for all (G, y) ∈ J and G(g) ≤ b(y) for all (G, y) ∈ J , then also G(a ∧ b) ≤

a ∧ b(y) for all (G, y) ∈ J . Therefore

Fβ
(a ∧ b) =

∨

G(f)≤a∧b(y) ∀(G,y)∈J

F(f) ≥
∨

G(f∧g)≤a∧b(y) ∀(G,y)∈J

F(f ∧ g)

≥
∨

f : G(f) ≤ a ∧ b(y) ∀(G, y) ∈ J

g : G(g) ≤ a ∧ b(y) ∀(G, y) ∈ J

F(f) ∧ F(g)

=
∨

G(f)≤a(y) ∀(G,y)∈J

F(f) ∧
∨

G(g)≤b(y) ∀(G,y)∈J

F(g) = Fβ
(a) ∧ Fβ

(b).

(Fs) This is the place where we make use of the tigthness of the L-filters, i.e. we use G(αX) ≤ α

for all α ∈ L and all G ∈ Fs
L(X). We have

Fβ
(αX) =

∨

G(f)≤α ∀(G,y)∈J

F(f) ≥ F(αX) ≥ α.

We call Fβ
the β-closure of F . It is not difficult to see that in the case L = {0, 1} the 1-closure

F1
can be identified with the closure F = [{F : F ∈ F}], where F is the closure operator in

(X, lim) (see e.g. [6] for the definition of the closure operator).

Lemma 7.2: Let L be a complete Boolean algebra and let (X, lim) ∈ |SL-GCS|. Then (X, lim)

is regular if and only if for all α, β ∈ L, limF(x) ≥ α implies limFβ
(x) ≥ α ∧ β.
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Proof: Let first (X, lim) be regular, α, β ∈ L and limF(x) ≥ α. Again we define

J = {(G, y) : G ∈ Fs
L(X), limG(y) ≥ β}.

For i = (G, y) ∈ J we define G(G,y) = G (the first projection) and the mapping ψ : J −→ X is

defined by ψ(G, y) = y (the second projection). Then

limG(G,y)(ψ(G, y)) = limG(y) ≥ β.

We define a stratified L-filter S ∈ Fs
L(J) by

S(a) =
∨

G(f)≤a(G,y) ∀(G,y)∈J

F(f) (a ∈ LJ ).

(That S is in fact a stratified L-filter on J can be shown in the same way as for Fβ
.) Then

F ≤ S(G(·)). To see this, let a ∈ LX . Then

S(G(·))(a) = S(G(·)(a)) =
∨

G(f)≤G(·)(a)(G,y) ∀(G,y)∈J

F(f) =
∨

G(f)≤G(a) ∀(G,y)∈J

F(f) ≥ F(a).

Therefore limS(G(·))(x) ≥ α and by regularity then limψ(S)(x) ≥ α ∧ β. All what remains to

show is that ψ(S) = Fβ
. To this end, let a ∈ LX . Then we note that ψ←(a)(G, y) = a(y) and

hence

ψ(S)(a) = S(ψ←(a)) =
∨

G(f)≤ψ←(a)(G,y) ∀(G,y)∈J

F(f) =
∨

G(f)≤a(y) ∀(G,y)∈J

F(f) = Fβ
(a).

Hence α ∧ β ≤ Fβ
(x) and the condition of the Lemma is true.

Conversely, let

α ≤ limGi(ψ(i)) ∀i ∈ J

β ≤ limF(G(·))(x).

(with J, ψ, Gi and F as in the axiom (LR)). By assumption then

limF(G(·))
α
(x) ≥ α∧ β.

If now f ∈ LX is given with G(f) ≤ a(y) for all G ∈ Fs
L(X) and y ∈ X with limG(y) ≥ α, then

also for all Gi we have Gi(f) ≤ a(ψ(i)) = ψ←(a)(i). Therefore

F(G(·))(f) = F(G(·)(f)) ≤ F(ψ←(a)) = ψ(F)(a).

From this we conclude

F(G(·))
α
(a) ≤ ψ(F)(a)
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and hence

limψ(F)(x) ≥ α ∧ β

and (X, lim) is regular.

If (X, lim) satisfies the axiom (Lpw2), then a nice characterization is possible.

Lemma 7.3: Let L be a complete Boolean algebra and let (X, lim) ∈ |SL-GCS| satisfy the

axiom (Lpw2). Then (X, lim) is regular if and only if for all α, β ∈ L and all x ∈ X we have

Uxα
β ≥ Uxα∧β.

Proof: Let (X, lim) be regular. We know by (Lpw2) that limUxα(x) ≥ α. Therefore limUxα
β
(x) ≥

α ∧ β which is the same as Uxα
β ≥ Uxα∧β . Conversely let the condition of the Lemma be true

and let limF(x) ≥ α. Then F ≥ Uxα and therefore (the β-closure being order preserving)

Fβ ≥ Uxα
β ≥ Uxα∧β . By (Lpw2) therefore limFβ

(x) ≥ α ∧ β.

8. Conclusions

In this paper we defined a regularity axiom for lattice-valued convergence spaces using a diagonal

condition. Our definition generalizes on the one hand a classical definition of regularity for

{0, 1}-convergence spaces and on the other hand has nice properties: it is preserved under initial

constructions (so that subspaces and products of regular stratified L-convergence spaces are

again regular) and ensures that a regular T1-space satisfies (T2). We further gave a theorem on

continuous extension which demonstrates that the definition really works and characterized it,

in the restricted lattice context of complete Boolean algebras, by a requirement on convergence

of closures of convergent L-filters.

Interesting, and to date not known, would be a characterization of our regularity in terms of

open sets of a stratified L-topology. Is our regularity related to e.g. the regularity (or star-

regularity) of Höhle and Šostak [13]? They also prove an extension theorem, however under

the stronger assumption of a strongly dense subset A, whereas we only need a dense subset A.

This points to the definitions being different.
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[11] U. Höhle, Commutative, residuated L-monoids, in: Non-classical Logics and Their Appli-
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