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1. Introduction

In the paper [4] Flores et al. define a nice category of lattice valued convergence spaces. Their

category is a supercategory of the category SL-GCS of stratified L-generalized convergence

spaces [9],[10]. In the special case of left continuity Flores et al.’s category and SL-GCS

are isomorphic [4]. Flores and his colleagues further sketch the definitions of stratified L-

pretopological spaces and claim that their definition is ”more natural” than the definition of

principal lattice valued convergence spaces, as defined as a subcategory of SL-GCS [9],[10]. In

this paper, we have a twofold purpose. First we shall demonstrate that the category SL-PCS

of stratified L-principal convergence spaces (which are also called — similar to the classical case

— stratified L-pretopological spaces) is isomorphic to the category SL-INT of spaces with not

necessarily idempotent interior operators. Keeping in mind that we do not have the notion of

closure at our disposal and therefore have to use the dual notion of interior, the latter spaces

seem to be the correct generalization of Čech’s closure spaces [2]. For L = {0, 1} Čech’s closure

spaces are isomorphic to principal convergence spaces. We conclude therefore that the category

SL-PCS is the correct generalization of the category of principal convergence spaces to the

Heyting algebra-valued case. This shows on the one hand that a generalization of principal

convergence spaces in Flores et al.’s sense must require the property of left-continuity. On the

other hand, imposing this condition, the question remains if the axiom stated in [4] is then

equivalent to the axiom (Lp) of principal stratified L-convergence spaces. We show, secondly,
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that this is not always the case. The axiom (Lp) splits into two axioms, one of which is Flores

et al.’s axiom and the other one is a kind of relaxation of the (Lp) condition. We show with

two examples, that the two axioms are in general independent of each other.

A third topic of this paper is a generalization of Kowalski’s diagonal condition [12]. As in

the classical theory of convergence spaces the validity of the diagonal condition ensures that a

principal stratified L-convergence space is topological. The generalization we obtain is on the

one hand, in case of L = {0, 1}, equivalent to Kowalski’s condition. On the other hand it is of

a remarkable simplicity, which also in the classical case allows a neat formulation of Kowalski’s

diagonal condition.

2. Preliminaries

We consider in this paper complete lattices L where finite meets distribute over arbitrary joins,

i.e. α ∧
∨

ι∈I

βι =
∨

ι∈I

(α ∧ βι) holds for all α, βι (ι ∈ I). These lattices are called complete Heyting

algebras. The bottom (resp. top) element of L is denoted by ⊥ (resp. >). We can then define

a residual implication by

α → β =
∨

{λ ∈ L : α ∧ λ ≤ β}.

We will often use, without explicitely mentioning, the following properties of the residual im-

plication.

Lemma 2.1 [7]: Let L be a complete Heyting algebra. The following holds:

(i) α ≤ β → γ ⇐⇒ α ∧ β ≤ γ

(ii) α ∧ (α → β) ≤ β

(iii) (α → β) → β ≥ α

(iv) α ≤ β =⇒ α → γ ≥ β → γ and γ → α ≤ γ → β

(v) α → (β ∧ γ) = (α → β) ∧ (α → γ)

(vi) (α ∨ β) → γ = (α → γ) ∧ (β → γ)

(vii) α → > = > and > → α = α.

The lattice operations are extended pointwise from L to LX = {a : X −→ L}, the set of

all L-sets on X. We denote especially for A ⊂ X the characteristic function by 1A : X −→

L, 1A(x) = > if x ∈ A and = ⊥ otherwise. For notions from category theory we refer to the

textbook [1].

A stratified L-filter F on X [8] is a mapping F : LX −→ L with the properties
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(F1) F(1X ) = >, F(1∅) = ⊥,

(F2) a ≤ b =⇒ F(a) ≤ F(b),

(F3) F(a) ∧ F(b) ≤ F(a ∧ b) and

(Fs) α ∧ F(a) ≤ F(α1X ∧ a) ∀α ∈ L, f ∈ LX

(where a, b ∈ LX ). The set of all stratified L-filters on X is denoted by Fs
L(X). An example of

a stratified L-filter is the point L-filter [x] defined by [x](a) = a(x) (see e.g. [8]). An order on

Fs
L(X) can be defined by F ≤ G iff for all a ∈ LX , F(a) ≤ G(a). For a mapping f : X −→ Y

and F ∈ Fs
L(X) we define f(F) ∈ Fs

L(Y ) by f(F)(b) = F(f←(b)) where f←(b) = b ◦ f

(see e.g. [8]). The meet
∧

ι∈I Fι of a family L-filters {Fι ∈ Fs
L(X) | ι ∈ I} is defined by

(
∧

ι∈I Fι)(a) =
∧

ι∈I(Fι(a)). Obviously
∧

ι∈I Fι ∈ Fs
L(X). We especially denote the coarsest

stratified L-filter on X by F0 =
∧
F∈Fs

L
(X) F .

3. Stratified lattice-valued principal convergence spaces

A stratified L-generalized convergence space (X, lim) [9],[10] is a set X together with a limit

map lim : Fs
L(X) −→ LX satisfying the axioms

(L1) ∀ x ∈ X, lim[x](x) = >

(L2) F ≤ G =⇒ limF ≤ limG

A mapping f : (X, lim) −→ (X ′, lim′) between two stratified L-generalized convergence spaces

(X, lim), (X ′, lim′) is called continuous if for all x ∈ X and for all F ∈ Fs
L(X) we have

limF(x) ≤ lim ′f(F)(f(x)).

The category SL-GCS has as objects the stratified L-generalized convergence spaces and as

morphisms the continuous mappings. This category is well-fibred, topological over SET and

cartesian closed [9], i.e. it has very nice structural properties.

A slight generalization of SL-GCS was studied by Flores et al. A stratified L-convergence space

[4] is a pair (X, q), where q = (qα)α∈L satisifes the conditions

(a) [x]
qα→ x,F0

q⊥→ x for each x ∈ X

(b) G ≥ F qα→ x implies G qα→ x

(c) F qα→ x implies F qβ→ x whenever β ≤ α.

F qα→ x is given the interpretation that F converges to x with probability at least α. A

mapping f : (X, q) −→ (Y p) is called continuous provided F qα→ x implies f(F)
pα→ f(x)

for all F ∈ Fs
L(X), x ∈ X and α ∈ L. The category SL-CS has as objects all stratified

L-convergence spaces and as morphisms the continuous mappings. The category SL-CS is
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well-fibred, topological over SET, cartesian closed and extensional [4]. The subcategory of left-

continuous stratified L-convergence spaces, SL-LC-CS, is isomorphic to the category SL-GCS

[4]. Here, a stratified L-convergence space is called left-continuous provided that F qα→ x for

each α ∈ A and β =
∨

A implies F qβ→ x [4]. An isomorphism is given by

Φ :





SL-GCS −→ SL-LC-CS

(X, lim) 7−→ (X, q)

f 7−→ f

with F qα→ x iff limF(x) ≥ α (see [4]).

Remark: Similar to the proof in [4] that the category SL-CS is extensional, one can show

that the category SL-GCS also possesses this property.

An important reflective subcategory of SL-GCS arises by adding an additional axiom:

(Lp) limF(x) =
∧

a∈LX

(Ux(a) → F(a)) ∀ F ∈ Fs
L(X), x ∈ X.

Here, the stratified L-neighbourhood filter, Ux, of x ∈ X is defined by

Ux(a) =
∧

G∈Fs
L
(X)

(limG(x) → G(a)).

The definition of limF(x) is an L-valued interpretation of ”a filter converges to x iff it is finer

than the neighbourhood filter of x”. Similarly, the definition of Ux is an L-valued interpretation

of ”U is a neighbourhood of x iff U belongs to every filter converging to x”.

A space satisfying (L1), (L2) and (Lp) is called a stratified L-principal convergence space or a

stratified L-pretopological space [9],[10]. The category with these spaces as objects and continu-

ous mappings as morphisms is denoted by SL-PCS. The next example shows that the category

of non-idemtpotent interior spaces is isomorphic to SL-PCS.

4. Example: The category SL-INT

We introduce a category of stratified L-interior spaces. These spaces are similar to spaces with

stratified L-interior operator as defined in [8], only the idempotency is dropped. In the case

L = {0, 1} it is well-known that these spaces are isomorphic to Čech’s closure spaces [2].
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Definition 4.1: A pair (X, int) of a set X and a mapping int : LX −→ LX is called a stratified

L-interior space iff

(I1) int(1X ) = 1X

(I2) int(a) ≤ int(b) whenever a ≤ b

(I3) int(a) ∧ int(b) ≤ int(a ∧ b)

(I4) int(a) ≤ a

(Is) α1X ≤ int(α1X) ∀α ∈ L

A mapping f : (X, int) −→ (X ′, int′) is called continuous if int′(b)(f(x)) ≤ int(f←(b))(x) for

all b ∈ LX′
and all x ∈ X. The category SL-INT has as objects the stratified L-interior spaces

and as morphisms the continuous mappings.

We define two functors. The functor Φ : SL-INT −→ SL-PCS is defined by

Φ :





(X, int) 7−→ (X, lim(int))

f 7−→ f
.

Here, the limit function, lim(int), is defined by

lim(int)F(x) =
∧

b∈LX

(int(b)(x) → F(b)).

From (I4) we immediately obtain

lim(int)[x](x) =
∧

b∈LX

(int(b)(x) → [x](b)) = >.

Furthermore, it is obvious that for F ≤ G then lim(int)F ≤ lim(int)G. For the axiom (Lp) we

show that Ux
lim(int)(a) = int(a)(x). We have on the one hand

Ux
lim(int)(a) =

∧

F∈Fs
L
(X)

(lim(int)F(x) → F(a))

≥
∧

F∈Fs
L
(X)

((int(a)(x) → F(a)) → F(a))

≥ int(a)(x).

On the other hand, it is clear that

Ux
lim(int)(a) ≤ lim(int)Ux(x) → Ux(a),

with the stratified L-filter Ux defined by Ux(a) = int(a)(x). As apparently lim(int)Ux(x) = >

we conclude therefore that also Ux
lim(int)(a) ≤ int(a)(x). Hence

lim(int)F(x) =
∧

b∈LX

(
Ux

lim(int)(b) → F(b)
)
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and the axiom (Lp) holds. If f : (X, intX ) −→ (Y, intY ) is continuous, then for F ∈ Fs
L(X) we

have

lim(intX )F(x) =
∧

a∈LX

(intX (a)(x) → F(a))

≤
∧

b∈LY

(intX(f←(b))(x) → F(f←(b)))

≤
∧

b∈LY

(intY (b)(f(x)) → f(F)(b))

= lim(intY )f(F)(f(x)).

So f : (X, lim(intX )) −→ (Y, lim(intY )) is also continuous. Hence Φ is a functor.

The functor Ψ : SL-PCS −→ SL-INT is defined by

Ψ :





(X, lim) 7−→ (X, int(lim))

f 7−→ f

Here, int(lim)(a)(x) = Ux(a), with the neighborhood L-filter Ux of (X, lim). We leave the

straightforward check that (X, int(lim)) ∈ |SL-INT | to the reader. The properties of the

residual implication of Lemma 2.1 are used. If f : (X, limX ) → (Y, limY ) is a continuous

mapping, then

int(lim Y )(b)(f(x)) =
∧

F∈Fs
L
(Y )

(limY F(f(x)) → F(b))

≤
∧

G∈Fs
L
(X)

(lim Y f(G)(f(x)) → f(G)(b))

≤
∧

G∈Fs
L
(X)

(lim XG(x) → G(f←(b)))

= int(lim X )(f→(b))(x).

Hence f : (X, int(lim X)) −→ (Y, int(lim Y )) is also continous and Ψ is a functor.

We next show that Φ ◦ Ψ = idSL-PCS . To this end, let (X, lim) ∈ |SL-PCS|. Then for

F ∈ Fs
L(X) we have

lim(int(lim))F(x) =
∧

b∈LX

(int(lim)(b)(x) → F(b))

=
∧

b∈LX

(Ux(b) → F(b))

= limF(x).
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Finally we show that Ψ ◦ Φ = idSL-INT . Let (X, int) ∈ |SL-INT |. Then for a ∈ LX we have

int(lim(int))(a) =
∧

F∈Fs
L
(X)

(lim(int)F(x) → F(a))

≥
∧

F∈Fs
L(X)

((int(a)(x) → F(a)) → F(a))

≥ int(a)(x).

On the other hand, with the stratified L filter Ux defined by Ux(a) = int(a)(x), we see:

int(lim(int))(a) ≤

( ∧

b∈LX

(int(b)(x) → Ux(b))

)
→ Ux(a) = > → Ux(a) = Ux(a) = int(a)(x).

We collect our findings in the following Lemma.

Lemma 4.2: The category SL-INT is isomorphic to the category SL-PCS.

5. A characterization of the (Lp) axiom

We adapt a definition of Flores et al. [4] to our setting. For α ∈ L we denote

Ux
α =

∧

F : limF(x)≥α

F ,

the stratified α-level L-neighbourhood filter of x. We can characterize the stratified L-neighbourhood

filter of x, Ux, by the levels.

Lemma 5.1: For (X, lim) ∈ |SL-GCS| we have

∧

α∈L

(α → Ux
α(a)) ≤ Ux(a) ∀a ∈ LX .

If (X, lim) satisfies the axiom (Lp), then equality holds.

Proof: We have by definition

Ux(a) =
∧

F∈Fs
L
(X)

(limF(x) → F(a)) .

With αF = limF(x) we have Ux
αF

≤ F . Hence

Ux(a) ≥
∧

F∈Fs
L
(X)

(
αF → Ux

αF (a)
)
≥
∧

α∈L

(α → Ux
α(a)) .
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If (X, lim) is a stratified L-principal convergence space, then we have by definition of Ux
α:

limUx
α(x) =

∧

a∈LX


Ux(a) →

∧

F :limF(x)≥α

F(a)




=
∧

a∈LX

∧

F :limF(x)≥α

(Ux(a) → F(a))

=
∧

F :limF(x)≥α

∧

a∈LX

(Ux(a) → F(a))

=
∧

F :limF(x)≥α

limF(x) ≥ α.

With this we obtain

Ux(a) ≤
∧

α∈L

(limUx
α(x) → Ux

α(a)) ≤
∧

α∈L

(α → Ux
α(a)) .

Next we look at the limit function.

Lemma 5.2: For (X, lim) ∈ |SL-GCS| we have

limF(x) ≤
∨

{α ∈ L : F ≥ Ux
α}.

If (X, lim) satisfies the axiom (Lp), then equality holds.

Proof: By definition, limF(x) ≥ α implies Ux
α ≤ F . Hence α ∈ {β ∈ L : F ≥ Ux

β}. Taking

α = limF(x) we obtain the first claim. Now let (X, lim) staisfy the axiom (Lp). If Ux
α ≤ F we

conclude

Ux(a) ≤ α → Ux
α(a) ≤ α → F(a).

Therefore

Ux(a) → F(a) ≥ (α → F(a)) → F(a) ≥ α.

This holds for any a ∈ LX and from (Lp) we conclude limF(x) ≥ α. From this the second

claim follows.

We will next address the question of wether the axiom (Lp) is equivalent to the requirement

limF(x) =
∨

{α ∈ L : F ≥ Ux
α}.

To this end, we note the following trivial result.

Lemma 5.3: The axiom (Lp) is equivalent to

∀α ∈ L : {F ∈ Fs
L(X) : α ≤

∧

a∈LX

(Ux(a) → F(a))} = {F ∈ Fs
L(X) : α ≤ limF(x)}.
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Weakening this condition we arrive at the following axiom

(Lpw1) ∀α ∈ L :
∧

{F ∈ Fs
L(X) : α ≤

∧

a∈LX

(Ux(a) → F(a))} =
∧

{F ∈ Fs
L(X) : α ≤ limF(x)}.

Clearly (Lp) impies (Lpw1). Note that on the right side of (Lpw1) we see the stratified α-level

neighbourhood L-filter, Ux
α. For the left side we find

∧
{F ∈ Fs

L(X) : α ≤
∧

a∈LX

(Ux(a) → F(a))} =
∧

{F ∈ Fs
L(X) : α ≤ Ux(a) → F(a) ∀a ∈ LX}

=
∧

{F ∈ Fs
L(X) : α ∧ Ux(a) ≤ F(a) ∀a ∈ LX}.

If we denote the last expression by

[α ∧ Ux] =
∧

{F ∈ Fs
L(X) : α ∧ Ux(a) ≤ F(a) ∀a ∈ LX}

then we can write the axiom (Lpw1) in the succinct form

(Lpw1) ∀α ∈ L : [α ∧Ux] = Ux
α

In this way, we can characterize the stratified α-level neighbourhood filters by the L-neighborhood

filter. Note that especially for α = >

Ux = [> ∧ Ux] = Ux
>

for an (Lpw1)-space.

We further define the following axiom.

(Lpw2) limF(x) =
∨

{α ∈ L : F ≥ Ux
α}

By Lemma 5.2 we know that (Lp) implies (Lpw2). We can characterize the axiom (Lpw2).

Lemma 5.4: For (X, lim) ∈ |SL-GCS| the following are equivalent.

(1) (Lpw2)

(2) ∀α ∈ L : (limF(x) ≥ α ⇐⇒ Ux
α ≤ F)

(3) ∀α ∈ L : limUx
α(x) ≥ α

(4) ∀Fi ∈ Fs
L(X) (i ∈ I) : lim

(∧
i∈I Fi

)
(x) =

∧
i∈I limFi(x)

Proof:

(1)⇒(2): If limF(x) ≥ α, then always Ux
α ≤ F . On the other hand let Ux

α ≤ F . Then
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α ∈ {β ∈ L : F ≥ Ux
β} and hence by (Lpw2) limF(x) ≥ α.

(2)⇒(3): Obvious.

(3)⇒(4): By (L2) lim
∧

Fi(x) ≤
∧

limFi(x) always holds. On the other hand, let α =
∧

i∈I limFi(x) ≤ limFi(x) for all i ∈ I. Hence Ux
α ≤ Fi for all i ∈ I and therefore also

Ux
α ≤

∧
i∈I Fi(x). From (L2) and (3) we thus conclude α ≤ lim

∧
i∈I Fi(x).

(4)⇒(1): Let F ≥ Ux
β . Then limF(x) ≥ lim

∧
limG(x)≥β G =

∧
lim G(x)≥β limG(x) ≥ β. Hence

limF(x) ≥
∨
{α|G ≥ Ux

α}. Since the other inequality is always true (Lemma 5.2), this completes

the proof.

We will next clarify the relation between the axioms (Lp), (Lpw1) and (Lpw2).

Lemma 5.5: For (X, lim) ∈ |SL-GCS| the following are equivalent.

(1) (Lp)

(2) (Lpw1) and (Lpw2).

Proof: (1)⇒(2) was mentioned before.

(2)⇒(1): It is always true that limF(x) ≤
∧

a∈LX (Ux(a) → F(a)). On the other hand, if we let

α =
∧

a∈LX (Ux(a) → F(a)), then α ≤ Ux(a) → F(a) for all a ∈ LX and hence α∧Ux(a) ≤ F(a)

for all a ∈ LX . By (Lpw1) then Ux
α ≤ F and (Lpw2) thus implies limF(x) ≥ α.

Note that for L = {0, 1} the axiom (Lpw1) simply states that

[0] =
∧

F∈Fs
L
(X)

F = [{X}],

Ux = [Ux] =
∧

x∈limF

F .

Therefore in this case we have the equivalence (Lp) ⇐⇒ (Lpw2).

We give two examples which show that this equivalence is not always true for a Heyting algebra

L 6= {0, 1}.

Example 5.6: We give an example of a (Lpw1)-space which does not satisfy (Lpw2) (and

consequently also not (Lp)). Recall that F0 =
∧
F∈Fs

L
(X) F is the coarsest stratified L-filter on

X. Then for any b ∈ LX we have F0(b) =
∧

x∈X b(x) [8]. Moreover we find

F0(b) ≤
∧

F6=F0

F ≤
∧

x∈X

[x](b) =
∧

x∈X

b(x) = F0(b).

We define a stratified L-generalized convergence on X as follows.

limF(x) =





⊥ F = F0

> F 6= F0
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Then (X, lim) does not satisfy (Lpw2):
∧

F6=F0

limF(x) = > 6= ⊥ = lim(
∧

F6=F0

F)(x) = limF0(x).

Morover we find for b ∈ LX

Ux(b) =
∧

F∈Fs
L
(X)

(limF(x) → F(b)) =
∧

F6=F0

(> → F(b)︸ ︷︷ ︸
=F(b)

) ∧ (⊥ → F0(b)︸ ︷︷ ︸
=>

) =
∧

F6=F0

F(b) = F0(b)

i.e. Ux = F0. For the α-level L-neighbourhood filters we find

Ux
α =





∧
F∈Fs

L
(X) F = F0 for α = ⊥

∧
F6=F0

F = F0 for α 6= ⊥
.

Therefore for all α ∈ L

∧
{F ∈ Fs

L(X) | F(a) ≥ α ∧ F0(a) ∀a ∈ LX} = F0

i.e.

[α∧ Ux] = Ux
α

and (Lpw1) holds.

Example 5.7: This example shows a (Lpw2) space which does not satisfy (Lp) (and conse-

quently also not (Lpw1)). It is interesting in its own right, as it shows a remarkable deviation

from the classical case. Let X = {x, y} and L be the chain L = {⊥, α,>} such that ⊥ < α < >.

We define the discrete stratified L-generalized convergence on X by [10]

limF(x) =





> if F ≥ [x]

⊥ otherwise

The space (X, lim) satisfies (Lpw2): If
∧

ι∈I limFι(x) = >, then for all ι ∈ I we have limFι(x) =

>. Hence for all ι ∈ I it follows Fι ≥ [x]. Therefore finally
∧

ι∈I Fι ≥ [x] and lim
∧

ι∈I Fι(x) =

>.

We obtain the stratified L-neighborhood filter for this convergence as

Ux(a) =
∧

F∈Fs
L(X)

(limF(x) → F(a))

=
∧

F≥[x]

(limF(x) → F(a)) ∧
∧

F6≥[x]

(limF(x) → F(a))

=
∧

F≥[x]

(> → F(a)) ∧
∧

F6≥[x]

(⊥ → F(a))

=
∧

F≥[x]

F(a) ∧> = [x](a).
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Hence, Ux = [x]. We define for a ∈ LX

F∗(a) =





> if a = 1X

α if a(x) = >, a(y) 6= >

α if a(x) = α

⊥ if a(x) = ⊥.

It is easily verified that F∗ ∈ Fs
L(X). Then for a ∈ LX defined by a(x) = >, a(y) 6= > we have

[x](a) = > > α = F(a). Hence [x] 6≤ F∗ and therefore limF∗(x) = ⊥. On the other hand we

get

∧

a∈LX

(Ux(a) → F∗(a)) =
∧

a∈LX

(a(x) → F∗(a)) = (> → >)∧(> → α)∧(⊥ → ⊥)∧(α → α) = α,

which can be checked by considering the nine different L-sets a ∈ LX . So (X, lim) satisfies

(Lpw2) but not (Lp) (and consequently also not (Lpw1).

6. Kowalski’s diagonal condition

A stratified L-principal convergence space is a stratified L-topological convergence space [9] ,[10]

if the additional axiom

(Lt) ∀x ∈ X, a ∈ LX : Ux(a) ≤
∨

{Ux(b) | b(y) ≤ Uy(a) ∀y ∈ X}

holds. This axiom is equivalent to the topological axiom for Gähler’s Φ-topological spaces [5],[6]

(in the L-filter case), however our axiom (Lp) seems to be different from the corresponding

axiom in this theory. The papers [5],[6] study an interesting theory of convergence spaces from

the general viewpoint of monadic topology.

The categories SL-TCS of stratified L-topological convergence spaces and SL-TOP of strat-

ified topological spaces [8] are isomorphic (see [9] and [10]). In order to view the axiom (Lt)

differently, we introduce a new notation.

Lemma and Definition 6.1: Let G ∈ Fs
L(X) and for every y ∈ X let Fy ∈ Fs

L(X). Then

G(F(·)) defined by

G(F(·))(a) = G(F(·)(a)) (a ∈ LX )

is a stratified L-filter. Here we denote by F(·)(a) the L-set y 7−→ Fy(a).

Proof: As clearly F(·)(1X ) = 1X and F(·)(1∅) = 1∅, (F1) follows. For a ≤ b we have, the Fy

being stratified L-filters, Fy(a) ≤ Fy(b) for every y ∈ X and hence F(·)(a) ≤ F(·)(b). From
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this we conclude G(F(·))(a) ≤ G(F(·))(b) and (F2) holds. For (F3) we note that for all y ∈ X

Fy(a) ∧ Fy(b) ≤ Fy(a ∧ b). Therefore also F(·)(a) ∧ F(·)(b) ≤ F(·)(a ∧ b). Hence

G(F(·))(a) ∧ G(F(·))(b) = G(F(·))(a)) ∧ G(F(·))(b)) ≤ G(F(·))(a) ∧ (F(·))(b))

≤ G(F(·)(a ∧ b)) = G(F(·))(a ∧ b).

Finally, the stratification condition (Fs) can be verified as follows.

α ∧ G(F(·))(a) ≤ G(α ∧ F(·)(a)) ≤ G(F(·)(α ∧ a)) = G(F(·))(α ∧ a).

With this notation and using (F2), we can state the axiom (Lt) in concise form.

(Lt) ∀x ∈ X : Ux ≤ Ux(U (·)).

We are now going to characterize this axiom by a diagonal condition. We need two Lemmas

and leave their straightforward proofs for the reader.

Lemma 6.2: If Fy ≤ Hy for all y ∈ X, then G(F(·)) ≤ G(H(·)).

Lemma 6.3: If G ≤ H then G(F(·)) ≤ H(F(·)).

We introduce a new axiom.

(LK) ∀G ∈ Fs
L(X), ∀Fy ∈ Fs

L(X) (y ∈ X) : limG(x) ∧
∧

y∈X

limFy(y) ≤ limG(F(·))(x).

Lemma 6.4 (Diagonal condition): For an (Lp) space (X, lim) the following are equivalent.

(1) (Lt)

(2) (LK)

Proof:

(1)⇒(2): Let β =
∧

y∈X limFy(y). Then for every y ∈ Y we have

β ≤ limFy(y) =
∧

a∈LX

(Uy(a) → Fy(a))

We now fix an L-set a ∈ LX . Then β ∧ Uy(a) ≤ Fy(a) and therefore β ∧ U (·)(a) ≤ F(·)(a).

Since G is a stratified L-filter, this leads to

G(F(·)) ≥ G(β ∧ U (·)(a)) ≥ β ∧ G(U (·)(a)).
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Hence we conclude with (Lt) that

limG(F(·))(x) =
∧

a∈LX

(
Ux(a) → G(F(·))a))

)

(Lt)

≥
∧

a∈LX

(
Ux(U (·)(a)) → (β ∧ G(U (·)(a))

)

=
∧

a∈LX


(Ux(U (·)(a)) → β︸ ︷︷ ︸

≥β

) ∧ (Ux(U (·)(a)) → G(U (·)(a))




≥ β ∧
∧

a∈LX

(
Ux(U (·)(a)) → G(U (·)(a))

)

≥ β ∧
∧

b∈LX

(Ux(b) → G(b))

= β ∧ limG(x)

=
∧

y∈X

limFy(y) ∧ limG(x).

(2)⇒(1): Put G = Ux and Fy = Uy for all y ∈ X. Then limUx(x) = > = limUy(y) for all

y ∈ X and hence by (LK)

> = limUx(U (·))(x) =
∧

a∈LX

(
Ux(a) → Ux(U (·))(a)

)
.

Therefore for every a ∈ LX we have Ux(a) ≤ Ux(U (·))(a). This means Ux ≤ Ux(U (·)), i.e. (Lt)

holds.

Remark: The case L = {0, 1}

We identify an {0, 1}-set ϕ ∈ {0, 1}Z with the set {y ∈ Z | ϕ(y) = 1}. Hence a stratified

{0, 1}-filter F is identified with the filter (again denoted by F) defined by

F ∈ F ⇐⇒ F(F ) = 1.

We then have in the sense of this identification F(·)(A) = {z ∈ X | A ∈ Fz} and the filter

G(F(·)) is defined by the relation

A ∈ G(F(·)) ⇐⇒ {z ∈ X | A ∈ Fz} ∈ G.

Kowalski [12] defined a ”compression operator” for a family of filters (Fy)y∈X and a filter G on

X by

κ(G, (Fy)y∈X ) =
∨

F∈G

∧

z∈F

Fz.
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(Kowalski’s notation is different) and stated his diagonal condition

(K) G −→ x, Fy −→ y ∀y ∈ X ⇒ κ(G, (Fy)y∈X ) −→ x

(where we have written G −→ x for x ∈ limG).

Lemma 6.5: Let G,Fy ∈ F(X) (y ∈ X). Then κ(G, (Fy)y∈X ) = G(F(·)).

Proof: For F ⊂ X we denote HF =
∧

z∈F Fz. First let A ∈ G(F(·)). Then F = {z ∈ X | A ∈

Fz} ∈ G. So, for every z ∈ F we have A ∈ Fz and hence

A ∈
∧

z∈F

Fz ≤
∨

F∈G

∧

z∈F

Fz = κ(G, (Fz)z∈X ).

Conversely, let A ∈ κ(G, (Fy)y∈X ). Then A ⊃ H1 ∩ H2 ∩ ... ∩ Hn with Hk ∈ HFk where

Fk ∈ G for all k. Then H1 ∈ Fz for all z ∈ F1 and H2 ∈ Fz for all z ∈ F2 and... and

Hn ∈ Fz for all z ∈ Fn. Hence {z|H1 ∈ Fz} ⊃ F1 and {z|H2 ∈ Fz} ⊃ F2 and ... and

{z|Hn ∈ Fz} ⊃ Fn. Therefore H1 ∈ G(F(·)), H2 ∈ G(F(·)), ..., Hn ∈ G(F(·)) and, G(F(·)) being

a filter, finally H1 ∩ H2 ∩ ...∩ Hn ∈ G(F(·)). So also the superset A ∈ G(F(·)).

The Lemma shows, that for L = {0, 1} the axiom (LK) is the same as Kowalski’s diagonal

condition (K).

7. Conclusions

Flores et al. [4] define the category SL-P -CS of stratified L-pretopological spaces as the reflec-

tive subcategroy of SL-CS with objects all spaces which satisfy the additional axiom:

H qα→ x ⇐⇒ H ≥
∧

{F ∈ Fs
X | F qα→ x}

Restricting to left-continuous spaces, in view of the isomorphism Φ : SL-GCS −→ SL-L-CS

with F qα→ x ⇐⇒ limF(x) ≥ α, this axiom translates to

limH(x) ≥ α ⇐⇒ H ≥ Ux
α.

This is our axiom (Lpw2). We showed in this paper that this category is different from the

category SL-PCS of stratified L-principal convergence spaces (as defined earlier [9],[10]). We

also showed that the latter category, however, is isomorphic to the category of stratified L-

interior spaces. Only by requiring the additional axiom (Lpw1), which is a slight weakening

of the axiom (Lp), Flores et al.’s spaces will be the same as stratified L-principal convergence
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spaces. This poses a natural question: Are Flores et al.’s spaces related to some kind of lattice-

valued interior spaces?

We generalized further Kowalski’s diagonal condition for principal convergence spaces to the lat-

tice valued case. The resulting axiom is, also in terms of the classical situation with L = {0, 1},

a nice formulation of the diagonal condition. In the classical case of convergence spaces, there is

a generalization of Kowalski’s condition, usually called the condition (F), as it is attributed to

H.R. Fischer (first published in [3]). This axiom (F) is equivalent to the fact that a convergence

space is topological [11]. We will address the generalization of this axiom to the lattice-valued

case in our future work.
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