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ONTOLOGICAL COMMITMENT AND 
MATHEMATICS

By taking ontology and mathematics as the topic for this 
inaugural address, I hope that a wider audience than only 
my mathematical colleagues will find something that may be 
of some interest to them.

Mathematics is generally supposed to be the exact science 
which allows no difference of opinion that cannot be settled 
by logical argument. The truth of the matter is that there is 
more to mathematics than logic, and that there exist differ
ences of opinion on the foundations of mathematics of such 
a fundamental nature that agreement on these issues seems 
to be only a remote possibility. These differences centre 
around the philosophical question as to the mode of existence 
of mathematical entities such as numbers, points and straight 
lines, i.e. as to the ontological status of mathematical entities. 
It may come as a surprise to some of you that a great many 
mathematical theorems can be regarded as valid or invalid 
depending on the ontological position the mathematician 
adopts.

At the end of the previous century and the beginning of 
this century, this led to violent recriminations among mathe
maticians. To illustrate this, I wish to mention Kronecker 
who insisted that numbers like the square root of 2 do not 
‘exist’, while his colleague and adversary, Weierstrass, be
lieved that he had made the square root of 2 as comprehen
sible and as safe to handle as 2 itself by his work on the 
foundations of analysis. In a letter to his pupil, Sonja 
Kowalewski, Weierstrass complained: (1)

“But the worst of it is, that Kronecker uses his authority 
to proclaim that all those who up to now have laboured to 
establish the theory of functions are sinners before the Lord.

(1) [1] p. 528.
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When a whimsical eccentric like Christoffe says that in 
twenty or thirty years the present theory of functions will be 
buried and that the whole of analysis will be referred to the 
theory of forms, we reply with a shrug. But when Kronecker 
delivers himself of the following verdict, which I repeat word 
for word: “If time and strength are granted me, I myself will show 
the mathematical world that not only geometry, but also 
arithmetic can point the way to analysis, and certainly a 
more rigorous way. If I cannot do it myself, those who come 
after me will . . . and they will recognise the incorrectness 
of all those conclusions with which so-called analysis works 
at present”—such a verdict from a man whose eminent talent 
and distinguished performance in mathematical research I 
admire as sincerely and with as much pleasure as all his 
colleagues, is not only humiliating for those whom he adjures 
to acknowledge as an error and to forswear the substance of 
what has constituted the object of their thought and unremit
ting labour, but it is a direct appeal to the younger genera
tion to desert their present leaders, and rally around him 
as the disciple of a new system which must be founded. 
Truly it is sad, and it fills me with a bitter grief, to see a 
man, whose glory is without a flaw, let himself be driven 
by the well justified feeling of his own worth to utterances 
whose injurious effect upon others he seems not to perceive.”

Poincard commented on Kronecker’s views in his own 
peculiar way when he said that Kronecker had been enabled 
to do so much fine mathematics because he frequently forgot 
his own mathematical philosophy.

The causes of these divergent views, hinted at in the above 
quotations, stem from differences in ontological premises 
assumed by different mathematicians. It is impossible to 
cover the vast amount of research done on the foundations 
of mathematics since the last century in order to clarify 
these differences in a short lecture like this one. I shall, 
however, endeavour to explain what turned out to be the 
basic differences in the various ontological premises, and to
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point out a few simple consequences of certain ontological 
positions.

Mathematics, as a science, grew from two roots, viz. 
geometry and arithmetic. Geometry starts with the basic con
cepts points, straight lines, planes and space, while arithmetic 
is based on the concept natural number, i.e. the numbers
we use to count objects: 1, 2, 3, 4, 5 , .................Now,
as we know, points are idealizations of dots, and straight 
lines are idealizations of strokes drawn with pencil and 
ruler. Undoubtedly most of us have been taught at our 
first encounter with geometry that a point has no dimensions 
and only indicates position, while a straight line indicates 
direction, has no width, and any finite part of it only has 
length. The deficiencies of such descriptions of points and 
straight lines can be made a matter of discussion. It is 
doubtful, however, whether they can be improved to any 
great extent, since the concepts straight line and point are the 
indefinable basic concepts of geometry with supposedly self- 
evident logical relations between them. It is impossible to 
give rigorous definitions of the concepts point and straight 
line, except for the axioms defining the logical relations 
between these entities, and the teacher has to rely on vague 
abstractions and the intuition of the pupil to make these con
cepts and their logical relations clear. Intuition is used here 
in the sense of an immediate awareness of self-evident truth. 
Asked what a straight line is, a mathematician, in his more 
sophisticated moments, will refuse to admit that it is any
thing more than what the axioms of Euclidean geometry tell 
us when these are regarded as an extended definition of the 
relevant geometric entities. He will tell you that it is unneces
sary to form an image of a straight line, since a proof in 
geometry is a logical deduction from the axioms, and these 
deductions can be made without the aid of any image of the 
entities defined by the axioms. In his less sophisticated 
moments he will probably admit that the axioms of Eculidean 
geometry were obtained from the relations between idealiza
tions of dots and strokes with pencil and ruler, in which 
such a stroke is deprived of width and is thought of as
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existing of points which have no dimensions. Furthermore, 
a straight line is thought of as extending both ways to 
infinity. It is this image I refer to when speaking of straight 
lines. The statement that between any two different points 
A and B on a straight line there exists another point C of 
the straight line, and that between A and C, and C and B, 
other points of the straight line can be found, and so on 
ad infinitum, is taken to be self-evident, to be clearly com
prehensible by intuition, and to be without need of any 
further explanation.

Similarly, most mathematicians accept the natural numbers 
as intuitively given in the course of their ordinary activities. 
Brouwer made the intuitive evidence of the natural numbers 
the most fundamental assumption for the whole of mathe
matics. Brouwer acknowledges only the intuition of time, 
from which he derives the intuition of number. According 
to Brouwer, number is derived from “the splitting-up of 
moments of life into qualitatively different parts which, 
separated only by time, can be reunited.” (2) This is explained 
to mean that the foremost and primitive act of intellectual 
construction consists of the following three stages:

1. being conscious of a specific moment of life, which 
is the totality of impressions that occupy our atten
tion at a given moment;

2. observing that this moment of life is replaced and 
followed by another one while the memory of the 
previous moment of life is retained;

3. acknowledging that stages 1 and 2 can be repeated 
indefinitely.

If the specific moments of life that are observed are now 
stripped of their properties that distinguish one from the 
other, then there remains only the fundamental mathematical 
intuition which consists of the consciousness of a unity that 
is carried over into a bi-unity and the unending repetition 
of this process.

(2) [2] p. 208.
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Now, according to this point of view, an infinite sequence 
is an unending or unlimited process of intellectual construc
tion on the lines just described. Hence the sequence of 
natural numbers is forever in a process of being created by 
intellectual construction, which presumably means, in words 
comprehensible to ordinary mortals like myself, that, however

 far you count, it is always possible to add another 
natural number to the numbers you have already used in 
counting.

The point I wish to emphasis is that Brouwer’s intuition- 
ism entails a peculiar idea of the infinite in mathematics. 
Firstly, only a process can be predicated by the word 
infinite, and secondly, an infinite process can never be taken 
to be completed, since it is forever in a state of creating new 
entities. Weyl wrote: “Brouwer made it clear, as I think 
beyond any doubt, that there is no evidence supporting the 
belief in the existential character of the totality of all natural 
numbers . . . The sequence of numbers which grows beyond 
any stage already reached by passing to the next number, is 
a manifold of possibilities open towards infinity; it remains 
forever in the status of creation, but it is not a closed realm 
of things existing in themselves. That we blindly converted 
one into the other is the true source of our difficulties,
including the antinomies—a source of more fundamental
nature than Russell’s vicious circle principle indicated. Brouwer 
opened our eyes and made us see how far classical mathe
matics, nourished by a belief in the ‘absolute’ that transcends 
all human possibilities of realization, goes beyond such state
ments as can claim real meaning and truth founded on
evidence.”(3)

In passing I may mention that the antinomies referred to by 
Weyl include such as the Russell-paradox in which the notion 
of the set of all sets occur. If the set of all sets is dichotomised 
into two subsets, namely into the set A of all those sets not 
containing themselves as members and into the set B of all those 
containing themselves as members, then it can be proved, with

(3) [3] p. 48.
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out any flaw in the logic used ,that A is a member of itself and 
also that A is not a member of itself. Contradictions, however, 
are the death of mathematics. This and other paradoxes there
fore helped to spark off the controversy about the concept 
infinity as it is used by mathematicians.

I hope that I have made it clear that starting with the 
sequence of natural numbers as being intuitively given, whether 
derived from the intuition of time as Brouwer does or other
wise, the natural tendency is then to regard an infinite sequence 
as exactly what these words say, viz. that it is a never-ending 
row of entities in the sense that, however far you proceed with 
constructing consecutive entities, it is always possible to add 
another entity to the already existing row of entities, and that 
the natural numbers are never present in our consciousness as 
a complete totality. Starting with the natural numbers as 
intuitively given, this idea of infinity shows itself to be in accord
ance with our intuition of natural numbers. Weyl was quoted 
as saying that the natural numbers do not form “a closed realm 
of things existing in themselves”, and “that there is no evidence 
supporting the belief in the existential character of the totality 
of all natural numbers.” After hearing the intuitionistic approach 
described above, this may seem quite plausible to you, and it may 
appear somewhat incomprehensible that the opposite view might 
conceivably exist.

In order to show that other opinions about the concept infinity 
exist, we return to geometry. I have mentioned that Brouwer 
acknowledges only the intuition of time. We need not be afraid to 
differ from him on this point, since we shall find ourselves in 
excellent company. Kant, for instance, held that there exists a 
pure intuition with respect to time and space. I have been told 
that his use of the word intuition does not concur with mine. 
However, I shall not use Kant in any way to substantiate my 
ideas.

Let us consider the existence of a straight line as intuitively 
evident. We have been taught at school to identify the points 
of a straight line with numbers. When we were taught graphs, 
we were shown an x-axis and a y-axis. The point where the
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two axes intersect was identified with the number 0. After choos
ing a suitable length as a unit for measurement, other points 
were identified with the natural numbers. Let us consider now 
the line segment on the x-axis with end points corresponding to 
the numbers 0 and 1. The point halfway between the end
points is identified with the number ½. The midpoints of the 
two resulting line segments are identified with the numbers i  
and i .  This process can be continued ad infinitum. It is easy 
to give a method by which, to every rational number between 
0 and 1 we wish to name, a point of the line segment can be 
allotted. We have now reached the stage where we have an 
infinity of points, every one identified with a rational number, 
in front of us. This infinity of points lies before us, open for 
inspection. They exist in their totality, and any one we may 
choose to pick is there for the picking. By identifying the 
rational numbers between 0 and 1 with points on a line seg
ment, it has become plausible to think of these numbers as a 
given totality existing independently of the human mind. It is 
now possible to think of the existence of these numbers as not 
dependent on the reflecting subject. Since this tendency asserted 
itself especially in the philosophy of Plato, it is called “platon
ism”.

To show that the natural numbers can be viewed from a 
platonist position, consider the points on the line segment 
between 0 and 1 associated with the rational numbers 1, i, 1/3,
. . . etc. They are merely the inverses of the natural numbers 
1, 2, 3, . . . etc. Now, instead of labelling the points under con
sideration with 1, i ,  1/3, . . . etc., associate the numbers 1, 2, 3,
. . . etc., with these points in the same order. In this way we 
have found a set of points on the line segment between 0 and 1 
representing the natural numbers. Again, these points might be 
thought of as existing in their totality independently of the mind 
of the reflecting mathematician. And since we have associated 
with each of these points a natural number, it is possible to do 
what Weyl would not like us to do, namely, to think of the 
natural numbers as “a closed realm of things existing in them
selves”.
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Hence we have the two opposing views about the concept 
infinity. The first, which we shall call the intuitionistic view, is 
that the concept is related to a never-ending process in which 
an act can be repeated without any limit. According to this 
view, the natural numbers do not form a complete, finished 
totality of entities, but are forever in the process of being con
structed by intellectual acts based on our intuition of time. 
Hence we can never speak of the set of all natural numbers in 
the context of the intuitionistic mathematics of Brouwer. The 
idea of an infinite set as a complete totality is not allowed.

Kronecker’s denial of the ‘existence’ of the number ‘square 
root of 2’ is an extreme consequence of this point of view. Since 
\/2  is ordinarily defined as an infinite decimal fraction, one 
can reason that the digits following the decimal point are never 
given in their totality but are always in the process of being 
calculated by given rules. This process never stops, since, if it 
stops, i.e. if every digit following after a certain one is zero, it 
will mean that √ 2 is a rational number, which is not the case, 
as can be proved easily. Consequently the calculation of the 
digits following the decimal point is an infinite process. At any 
stage of the calculation we have only a finite number of 
decimal figures, representing a number whose square is not 
quite equal to two. Since to speak of ‘the infinite set of all 
digits following the decimal point’ has no meaning, the assertion 
of the existence of \ /2  is nonsensical.

On similar grounds Kronecker denied the existence of all 
irrational numbers. Discussing Lindemann’s proof that π is 
transcendental, Kronecker asked, ‘Of what use is your beauti
ful investigation regarding π? Why study such problems, since 
irrational numbers do not exist?’(4)

Brouwer and his disciples do not subscribe to this extreme 
finitistic view. They have introduced notions by which it is 
possible to avoid such extreme conclusions. However, we shall 
not pursue this matter any further.

Taking platonism as our point of departure, we may regard 
the phrase ‘the set of all natural numbers’ as meaningful, since

(4> [1] p. 627.
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an infinite set as a given complete toatlity is allowed as a 
meaningful concept.

The natural numbers are there already, existing independently 
of the reflecting subject. They are existing, say, in some heaven 
for numbers, all of them sitting in a row, and the mathematician 
can go exploring among them: the totality of natural numbers 
forming a complete and finished set.

The decimal expansion of \ /2  is regarded from this point of 
view as complete, every digit already existing and waiting to be 
discovered by the mathematician—hence Weierstrass’s confident 
assertion that \ /2  ‘exists’.

It is my opinion that these two contrasting ontologies of the 
infinite, viz. platonism and Brouwer’s intuitionism, are rooted 
in the different intuitive evidence forming the bases of the con
cepts space and number, the latter essentially reflecting our 
intuition of discreteness, the former reflecting, among other 
things, our intuition of continuity.

The weakest platonic assumption is the existence of the 
totality of integers. However, platonic conceptions in mathe
matics extend far beyond the assumption of the existence of the 
totality of members of a sequence of integers. The totality of 
real numbers is taken to exist in the platonic sense, and in 
Cantor’s theories of sets the platonic point of view assumes 
truly majestic proportions.

Cantor not only assumed the existence of infinite sets in a 
platonic way, but went further and assigned magnitude to 
these sets. To understand how this is done, we shall first con
sider two finite sets, each with an equal number of elements. 
To take concrete examples, let the set A consist of ten men 
and let the set B consist of ten chairs. Since each set has the 
same number of elements, it is possible to assign to each man 
a chair, and to each chair a man. We say that the set A has 
been brought into one-one correspondence with the set B. Evid
ently the elements of any two finite sets with an equal number 
of elements can always be brought into one-one correspondence. 
Conversely, if they can be brought into one-one correspondence, 
the two sets obviously have an equal number of elements.
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The notion of one-one correspondence is used to define 
equality of the ‘number of elements’ for infinite sets. Thus, if 
the elements of two infinite sets can be brought into one-one 
correspondence, the sets are said to be of equal power, which, 
in the case of finite sets, means they have the same number of 
elements. This seems a natural enough extension of the idea of 
equal numbers of elements of finite sets to infinite sets. There is 
one unexpected consequence, namely that an infinite set can 
have the same power as one of its proper subsets. Consider, 
for example, the set A of all natural numbers and the Set E of 
all even natural numbers, viz. 2, 4, 6, . . .  A can be brought 
into one-one correspondence with E by assigning to 1 the even 
number 2, to 2 the even number 4, to 3 the number 6, to 4 
the number 8, etc. Clearly, to every natural number is assigned 
one even number; conversely, to every even number is assigned 
one natural number. Hence A and E have the same power or, 
stated more colloquially: A has the same number of elements 
as E, although E is a proper subset of A.

If the elements of some set A cannot be brought into one-one 
correspondence with the elements of another Set B, but A can 
be brought into one-one correspondence with a proper subset 
of B, then B is said to be of a higher power than A. Stated 
less rigorously, we may say B is of a greater infinity than A.

Let A now be the set of all natural numbers. Consider all 
possible subsets of A, and make these the elements of a new 
set B, i.e. B is the set of all subsets of A. It can be shown 
that B is of a higher power than A. Similarly, all the subsets 
of B can be taken to be the elements of a third set C which, 
again is of a higher power than B, and so on ad infinitum. In 
this way a hierarchy of infinite sets is created, each set of 
greater infinity than the previous one. Without going into further 
detail, it is worth mentioning that Cantor also introduced 
ordinal numbers for infinite sets. It is possible to prove that 
there is no greatest ordinal. Unfortunately, Burali-Forti also 
proved that a greatest ordinal does exist. Now this is serious 
in any mathematical theory, especially since there is nothing 
wrong with the logic of both proofs. This made mathematicians 
somewhat uneasy about the platonic ontology, and even more
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so since in the Russell-paradox the platonic ontology is also an 
implicit assumption. Mathematicians, like Brouwer, found this 
so disturbing that they devoted their lives to putting the whole 
of mathematics on foundations that would make contradictions 
such as the Russell- and Burali-Forti-paradoxes impossible.

Nevertheless, the application of platonism in mathematics is 
so widespread that it is not an exaggeration to say that 
platonism reigns today in mathematics. A great many definitions 
and proofs of theorms in mathematics depend for their validity 
on platonism. A case in point is Poincare’s impredicative defini
tions. An impredicative definition of a specific real number 
appeals to the hypothesis that all real numbers have a certain 
property P, or the hypothesis that there exists a real number 
with the property T. In both cases we have the underlying 
assumption of the existence of an infinite set in the platonic 
sense. It is used in particular to prove the fundamental theorem 
that a bounded set of real numbers always has a least upper 
bound.

The consistent development of Brouwer’s intuitionism leads to 
a very restricted mathematics. For example, in the context of 
Brouwer’s intuitionistic mathematics, one may not generally 
make use of disjunctions such as: a series of positive terms is 
either convergent or divergent. Also, a number of usual 
theorems must be abandoned; for example, the fundamental 
theorem that every continuous function has a maximum in a 
closed interval. Very few results in set theory remain valid in 
intuitionistic mathematics. Furthermore, intuitionistic mathe
matics gives rise to theorems that are blatant untruths when the 
concepts occurring in the theorem are viewed from a platonic 
standpoint. Such a theorem is: “A real function that is every
where defined on a closed interval of the real numbers is 
uniformly continuous on that interval.”

I have tried to give an indication of the far-reaching 
consequences certain ontological presuppositions have for mathe
matics. To this end I have chosen the platonic view of the exist
ence of infinite sets as opposed to Brouwer’s intuitionistic 
conception of the infinite. These are not the only ontological 
standpoints with important bearings on mathematics. Other
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problems such as the relation between logic and mathematics, 
and to what extent mathematics is characterized as a formal 
game with symbols, manipulated according to certain rules, are 
dependent on definite ontological and epistemological commit
ments for answers. The answers differ according to the onto
logical position the mathematician assumes.

Sometimes certain positions are weakened by unacceptable 
consequences of such positions. For example, the platonic posi
tion is under suspicion because of paradoxes such as the Russell- 
paradox. It is, however, seldom necessary to discard a position 
entirely, since the situation is usually saved by introducing suit
able limitations. As to the question of which position is the 
‘correct’ one, it seems to be an impossibility to decide, since 
the various positions can be developed consistently, and, as is 
agreed by almost all mathematicians, the only grounds on which 
such a question can be settled is whether a certain position 
entails contradictions or not. It is unlikely that any new mathe
matical or metamathematical results will ever definitely refute 
any ontological standpoint, though they might conceivably have 
some influence on the readiness to adopt such a standpoint, for 
reasons which are purely subjective.

The time when mathematicians seriously quarrelled over 
which standpoint was the ‘true’ one has passed long ago. Most 
contemporary mathematicians satisfy themselves with a platonic 
standpoint of sorts, when they are engaged in research which is 
not specifically directed towards the foundations of mathe
matics. Many mathematicians will cheerfully adopt some stand
point just to see how far they get with the implications of this 
particular standpoint. Though the foundations of set theory are 
still somewhat shaky, most mathematicians continue to apply its 
concepts successfully in most branches of mathematics, adopting 
an attitude of confidence that future research will smooth out 
most difficulties in a way that will leave their work essentially 
unaffected.

How do these different ontological standpoints affect the 
applicability of mathematics to physics, engineering and other 
applied sciences?
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The applicability of mathematics to the physical world is a 
problem that has received much attention from mathematicians 
and philosophers alike, and, in keeping with the tradition of 
philosophy, they differ widely in their answers to this problem. 
Again the difference arise from various ontological and epistem
ological commitments.

Without trying to analyse my own position in this respect, I 
shall try to give in as few words as possible an indication of a 
trend of thought that may provide an answer.

Propositions of pure mathematics are not dependent on per
ception for their confirmation. Empirical propositions are, unlike 
mathematical propositions, capable of being confirmed or 
refuted by experiment and observation.

Application of mathematics to physical phenomena consists, 
in my opinion, of replacing empirical concepts and propositions 
by mathematical concepts and propositions, then deducing con
sequences from the mathematical premises so obtained, and 
finaly replacing some of the deduced mathematical propositions 
by corresponding empirical propositions which can be verified 
experimentally.

Mathematical theories may differ because of different 
ontologies or postulates. All of them, however, may be applic
able to physical phenomena, provided that the mathematical 
concepts and propositions concerned are suitable to replace 
empirical concepts and propositions.

Running the risk of over-simplifying the issue, the following 
analogy may be helpful in understanding the application of 
mathematics.

Essentially, the application of mathematics to empirical data 
is like fitting a conceptual map to these data. Just as a geo
grapher reflects in his map certain relations between cities, 
rivers, mountains, etc., by corresponding relations between dots, 
curves and shaded areas, mathematics can be construed to 
reflect similarly, but certainly in a much more complex way, 
certain relations between empirical data by means of corres
ponding relations between sets of numbers. Just as it is 
immaterial whether the geographer draws his map on a square
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sheet of paper or on a sphere, provided the relations he wants 
be portray are faithfully represented on his map by correspond
ing relations, so it is immaterial what conceptual map the 
mathematician constructs, provided the relevant relations are 
faithfully portrayed.

In this analogy I have not tried to be exact, and I leave it 
to the philosophically inclined to give content to such phrases 
as ‘conceptual maps’.

Mr. Vice-Chancellor and members of the Council 
and Senate of Rhodes University,

I came to occupy a chair in mathematics at Rhodes 
University through somewhat unusual circumstances. I 
sincerely hope that the trust you have so readily shown 
me will be jusitfied. I shall serve Rhodes University to 
the best of my ability, and I hope to contribute in this 
way to the welfare of our country.

Professor van der Walt,
I wish to thank you for your comradeship and the way you 
have accepted me as a colleague. It is with deep regret 
that I see you leaving Rhodes University.

Colleagues in the Department of Mathematics,
Each of us has a part in building a mathematics depart
ment worthy of Rhodes University. My wish is that we 
shall work together to achieve this, as we have done in 
the past.

Students,
I am happy to be at your service. I shall assist you by 
word and deed to the best of my ability.

Ladies and Gentlemen,
I thank you for your presence and patient attention. 
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