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Abstract

In recent methodological work the well known ACD approach, originally introduced
by Engle and Russell (1998), has been supplemented by the involvement of an unob-
servable stochastic process which accompanies the underlying process of durations
via a discrete mixture of distributions. The Mixture ACD model, emanating from
the specialized proposal of De Luca and Gallo (2004), has proved to be a moderate
tool for description of financial duration data. The use of one and the same family
of ordinary distributions has been common practice until now. Our contribution
incites to use the rich parameterized comprehensive family of distributions which
allows for interacting different distributional idiosyncrasies.
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1 Introduction

Investigating the microstructure of financial markets has become very pop-

ular over the last twenty years. Theoretical assertions concerning the behavior

of market participants in the presence of asymmetric information are discussed
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in many contributions. In this respect Easley et al. (1996) deliver a prominent

approach. Statistical methodology will be employed in order to check empir-

ically the validity of the implications of market microstructure models. Since

rich transaction data sets are available containing detailed information about

the timing of trades, prices, volume and other relevant characteristics for a

wide range of financial securities, it is possible to get to the bottom of financial

markets. Theory and the application of a tailor - made statistical instrument

are combined in the elaboration of Kokot (2004).

New econometric methods appear rapidly and they experience an extensive

application in the branch of finance. The autoregressive conditional duration

model (ACD) introduced by Engle and Russell (1998) is an auspicious ap-

proach which couples the spirit of time series models with econometric tools

for the analysis of transition data. Ultra high frequency data, stemming from

transaction data sets and having the characteristic of irregular spacing in time,

are ideal actuality for the use of the innovative framework. The ACD model is

perfectly suitable for the analysis of dynamics of arbitrary events associated

with the trading process along time, and the durations between successive

occurrences of interesting market events are object of investigation.

As demonstrated by Bauwens et al. (2004) the periods of time elapsing

between successive trades exhibit an idiosyncrasy which could not even be

captured by extensions of the original model. For the first time the flexible

Markov switching ACD model developed by Hujer et al. (2002) is capable of

higher forecast accuracy of the trading process itself, but it requires much effort

and computing power in estimation. We intend to introduce an alternative

model with a parsimonious parameterization, called the Mixture ACD model

(MACD), which also attains to good performance. Integral part of the MACD

model is a latent discrete valued regime variable whose involvement can be

justified in the light of recent market microstructure models. The unobservable

regime can be associated with the presence (or absence) of private information

about an asset’s value that is initially available exclusively to a subset of

informed traders and only eventually disseminates through the mere process

of trading to the broader public of all market participants.

The manageable MACD model bears a resemblance to the general switch-

ing autoregression model introduced by Hamilton (1989) and nests many of

the existing autoregression duration models as special cases. There are several

models that are closely related to our approach as well. Despite the affinity
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to the duration model given by De Luca and Gallo (2004), the MACD model

differs substantially in the distributional assumption. It has the discrete mix-

ture in common with the threshold ACD model introduced by Zhang et al.

(2001).

This paper is structured as follows: The MACD model will be introduced

in Section 2. Techniques for its estimation will we discussed and a specification

test applicable to MACD models will be presented too. Moreover we establish

a relationship to market microstructure theory. In an empirical application in

Section 3 we present estimation results employing a transaction data set for

the common share of Boeing traded on the New York Stock Exchange. Finally,

in Section 4 we summarize our main results.

2 The Mixture ACD model

2.1 The basic framework

Let xn = tn − tn−1 be the duration between the (n − 1)-th and the n-th

market event with deterministic conditional mean function

ψn = E(xn|Fn−1; θψ), (2.1)

where the information set Fn−1 consists of all preceding durations up to time

tn−1 and θψ is the corresponding set of parameters. The Mixture ACD model,

also referred to as MACD in the following, is defined by some linear or log

linear recursion of this conditional mean. The essential of the MACD model

is that the duration process xn is accompanied by an unobservable stochastic

process sn composed of a sequence of discrete valued random variables with

finite support J = {j | 1 ≤ j ≤ J, J ∈ N}. The latent process sn has the task

to represent the regime in which the duration process xn prevails at time tn.

The innovation process

εn =
xn

ψn
, (2.2)

has a known discrete mixture distribution with an unconditional expectation

equal to one and invariant higher moments across the N observations consid-

ered in the sample. The density of each innovation has the following general

form of appearance
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g(εn; θε, θπ) =
J

∑

j=1

π(j)g(εn | sn = j; θ(j)
ε ), (2.3)

where each nonnegative weight π(j) represents the probability for prevailing

in state j and θ(j)
ε is the corresponding parameter vector characterizing the

conditional density of the innovation process driven in the j-th regime. The

exponential, the Weibull, the Burr (1942), and the generalized gamma distri-

bution, all of them nested in the comprehensive family of distributions, may

be used in order to specify the regime specific distributions of the innovation

process.

The expected value of each innovation is constrained to be equal to one

and at the same time this expected value turns out to be a discrete mixture

of regime specific expectations. This implies the maintenance of the equality

1 =
J

∑

j=1

π(j)E
(

εn|sn = j; θ(j)
ε

)

(2.4)

which does not require that all the regime specific expectations are equal to

one. By the change of variable technique the relevant density for statistical

inference is the duration’s marginal density

f(xn | Fn−1; θ) =
J

∑

j=1

π(j)f
(

xn | sn = j; θ(j)
)

(2.5)

which depends on the parameter vector θ arising from the conjunction of

θ(j) = (θ(j)
ε , θψ)′ for all j ≤ J and θπ = (π(1), . . . , π(J)).

2.2 Estimation of the Mixture ACD model

For discrete mixture models there are two practices by which maximum

likelihood estimates of the parameter vector θ may be obtained. The direct

numerical maximization of the log-likelihood function

L(θ) =
N

∑

n=1

ln [f(xn | Fn−1; θ)] (2.6)

under the linear constraint
∑J
j=1 π

(j) = 1 and additional restrictions for war-

ranty of equation (2.4), nonnegativity, stationarity and eventually for distri-

butional parameters is the standard approach. Unfortunately, log-likelihood

functions of mixture models are characterized by the existence of multiple lo-

cal maxima. In order to catch the global maximum, repetition of estimation
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with different start values is strongly recommended. Since standard maximiza-

tion algorithms often fail or produce nonsensical results, maximum likelihood

estimates for discrete mixture models are often obtained by the use of the

robust Expectation-Maximization (EM) algorithm introduced by Dempster

et al. (1977).

2.3 Statistical inference

Diebold et al. (1998) propose a method to test the forecast performance

of general dynamic models. The idea behind this specification test has been

extensively used by Bauwens et al. (2004) to compare different types of ACD

models. Denote by {f(xn | Fn−1; θ̂)}
N
n=1 the sequence of density forecasts

evaluated using the parameter vector estimate θ̂ from some parametric model

and denote by {f(xn | Fn−1; θ)}Nn=1 the sequence of densities corresponding

to the true but unobservable data generating process of xn. As shown by

Rosenblatt (1952), under the null hypothesis H0 : {f(xn | Fn−1; θ̂)}Nn=1 =

{f(xn | Fn−1; θ)}Nn=1, the sequence of empirical integral transforms

ζ̂n =

xn
∫

−∞

fn(u | Fn−1; θ̂) du (2.7)

will be uniform i.i.d. on the unit interval. Any statistical test for uniformity

in the sequence of integral transforms can be used to assess the forecast per-

formance of the model under consideration. Consider partitioning the support

of ζ into K equally spaced bins and denote the number of observations falling

into the k-th bin by Nk. The confrontation of theoretical frequencies ςk = 1
K

with observed relative frequencies ς̂k = Nk

N
constitutes the fundament of the

statistic

RTζ = −2 ·
K

∑

k=1

Nk · ln
[

ςk

ς̂k

]

(2.8)

which has a χ2 distribution with (K − 1) degrees of freedom under the null

hypothesis. Checks for quantiles being equal to the population counterpart

implied by the standard uniform distribution can be conducted as well. Let

Np be the number of empirical integral transforms being less or equal than p,

then the statistic

Qζp =
Np −N · p

√

N · p · (1 − p)
(2.9)
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follows approximately the standard normal distribution under the null hy-

pothesis H0 : ζp = p. The independence feature may be checked by computing

the Ljung and Box (1978) test for the sequence of empirical integral trans-

forms. The statistical tests for i. i. d. uniformity may be supplemented by

graphical tools. Departures from uniformity can easily be detected using a

histogram plot or quantile-quantile plot based on the sequence of ζ̂n, while

the autocorrelogram for ζ̂n can be used in order to assess the independence

property.

2.4 Link to market microstructure theory

The modern literature on the microstructure of financial markets is un-

folding in the style of Easley et al. (1996). The intercommunity of this broad

literature is the presence of diverse types of market participants. The initial

position is that the market participants are differentiated by the level of in-

formation which they harness privately. Consequently the trading mechanism

will be discussed under the aspect of asymmetric information. The market

development can be explored against the background of the coexistence and

interaction of two categories of traders: informed traders catch a signal in-

dicating that an asset is either overpriced or underpriced while uninformed

traders, also called liquidity traders or followers, do not notice anything. The

informed trader’s strategy consists of making purchases and sales of assets in

the immediate aftermath of the recognition of favorable and unfavorable sig-

nals. The informed traders encroach upon the market development conjunctly

and trigger heaped transactions as soon as they bushwhack relevant news.

Uninformed traders are insensible in regard to the information processing and

retain the habitual trading activity.

The collectivity of transactions, carried out either by the large attendance

of uninformed traders or by sporadic emersions of informed traders can be

seen as a realization of a point process and the corresponding probability law

that governs the occurrence of trades can be specified by a duration statistic.

The presence of different traders acting on the financial market makes the

embedding of a conglomerate of trader specific characteristics into the ordinary

ACD framework, introduced by Engle and Russell (1998), reasonable. Because

a specific transaction does not reveal by which type of trader it has been

induced, the introduction of an underlying unobservable mixing variable with
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discrete distribution is reasonable.

This simple theoretical background is excellently reflected in the MACD

framework. Thereby the regime variable is in the capacity of the mixing vari-

able and the mixing parameters can be interpreted as fractions of the different

trader types acting on the market. The level of discrepancy between trader

specific peculiarities in trading behavior can be easily regulated by adapting

the parameters inside of equation (2.4). The instantaneous transaction rates

turn out to be different across the trader categories and this is what we want

to achieve primarily.

3 Empirical application

3.1 The data set

The data used in our empirical application consists of transactions of the

common stock of Boeing, recorded on the New York stock exchange from

the trades and quotes database provided by the NYSE Inc. The sampling

period spans 19 trading days from November 1 to November 27, 1996. We

used all trades observed during the regular trading day (9:30 - 16:00). Trades

recorded up to five minutes after the opening have been excluded from our

analysis because they are suspected of being parts of the initial batch auction.

The trading times have been recorded with a precision measured in seconds.

Observations occurring within the same second have been aggregated to one

trade. In the final data set we removed censored observations: durations from

the last trade of the day until the close and durations from the open until the

first trade of the day.

It is well known that the length of the durations varies in a deterministic

manner during the trading day that resembles an inverted U-shaped pattern.

Engle and Russell (1997) propose to decompose the duration series into a

deterministic time of day function Φ(tn−1) and a stochastic component xn,

so that the raw durations are generated from x̃n = xn · Φ(tn−1). In order to

remove the deterministic component we apply the two step method proposed

by Engle and Russell (1997) in which the time of day function is estimated

separately from other model parameters. 1 Dividing each raw duration x̃n in

1 Simultaneous ML-estimation as in Engle and Russell (1998) and Veredas et al.
(2002) is also feasible. Engle and Russell (1998) report that both procedures give
similar results if sufficient data is available.
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Table 1
Descriptive Statistics for trade durations

Statistic Raw durations x̃n Adj. durations xn

Mean 48.4877 1.0012
Standard deviation 62.0190 1.1949
Minimum 1.0000 0.0141
First Quartile 10.0000 0.2317
Median 27.0000 0.5872
Third Quartile 61.0000 1.2984
Maximum 894.0000 16.1672
N 9012 9012
Ljung Box statistic 3763.052 1382.507

a The Ljung Box statistic is based on 50 lags. For a significance
level of 5% the tabulated critical value is 67.1671.

the sample by an estimate of the time of day function Φ(tn−1), a sequence

of deseasonalized durations xn is obtained which is used in all subsequent

analyses. 2

Descriptive information about sample moments and Ljung Box statistics

of the raw and the seasonally adjusted duration data is reported in Table 1.

As expected, the series of adjusted durations has a mean of approximately

one. Both time series exhibit overdispersion relative to the exponential dis-

tribution which has standard error equal to mean. A mixture of distributions

will accommodate well to the stylized fact of overdispersion.

Another eyecatching characteristic of the data is the presence of strong

positive autocorrelation in the trade durations as can be seen in Figure 1.

Even after seasonal adjustment, the Ljung-Box tests reject the hypothesis of no

autocorrelation up to 50 lags at the 5% significance level, although the shape

of the autocorrelation function changes slightly. Therefore, an autoregressive

approach appears to be appropriate as a model for the transaction durations.

2 Estimates of the time of day function were obtained by conducting a semi-
nonparametric regression of the durations on the time of day according to Gallant
(1981) and Eubank and Speckman (1990). Details on the seasonality adjustment
step are available from the authors upon request.
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Fig. 1. Autocorrelation function for durations

Raw durations x̃n Adjusted durations xn

3.2 Model specification

The observed sequence of durations on a trading day will be treated in-

dependently of durations recorded on other trading days. This means that on

every trading day a recursion determining the duration process starts anew.

Consequently, the log likelihood function considering all available durations

can be expressed as the sum of 19 daily log likelihoods. The mean function

is chosen to be logarithmic and both lag orders p and q in the recursion are

equal to one, i. e.

ψd,n = exp(ω) · ψβ1

d,n−1 · x
α1
d,n−1 (3.1)

for n ≤ Nd and initial value ψd,1 = x̄d = 1
Nd

Nd
∑

n=1
xd,n associated with each

trading day d ∈ {1, . . . , 19}.

We estimate an ordinary ACD model and also a corresponding MACD

model with consideration of two regimes. The ordinary ACD model is nested

as a special case in the MACD framework with J = 1. Since the comprehensive

family of distributions overcoats all customary duration distributions we zoom

in on regime specific durations having density

9



f
(

xd,n | sd,n = j,Fd,n−1; θ
(j)

)

=

[

ν
(j)
1

]

ν
(j)
1
2

[

ν
(j)
2

]

ν
(j)
2
2

B

(

ν
(j)
1

2
,
ν
(j)
2

2

) ·
[

ρ
(j)
d,n

]γ(j)

γ(j)x
γ(j)−1
d,n ·

[

ρ
(j)
d,nxn

]γ(j)

(

ν
(j)
1
2

−1

)

[

ν
(j)
2 + ν

(j)
1

(

ρ
(j)
d,nxd,n

)γ(j)
]

ν
(j)
1

+ν
(j)
2

2

(3.2)

with time-invariant degrees of freedom ν
(j)
1 and ν

(j)
2 entering the Beta func-

tion, regular time-invariant parameter γ(j) and time-variant parameter ρ
(j)
d,n =

ψ−1
d,n · ρ

(j). Both degrees of freedom are of major importance for characterizing

the shape of the density and hazard rate. The Burr class of MACD models,

introduced by Hujer and Vuletić (2004) by combining the distributional pro-

posal of Grammig et al. (1998) and the mixture framework of De Luca and

Gallo (2004), emerges by imposing the restriction ν
(j)
1 = 2 for every regime

j ≤ J . Thereby, the corresponding distributional parameters turn out to be

µ
(j)
d,n = [ρ

(j)
d,n]

1

γ(j) , κ(j) = γ(j) and σ(j) = 2 · [ν(j)
2 ]−1. The distributional parameter

κ(j) is the sole control lever of the hazard function shape for the j-th regime.

For κ(j) ≤ 1 the Burr distribution implies a strong decreasing failure rate, while

the case κ(j) > 1 gives rise to a hunchbacked hazard function. Alternatively,

when the second degree of freedom ν
(j)
2 becomes very large then the density

given in (3.2) describes approximately the generalized gamma distribution

with parameters, λ
(j)
d,n = ρ

(j)
d,n · [0.5 ·ν

(j)
1 ]

1

γ(j) , η(j) = γ(j) and α(j) = 0.5 ·ν(j)
1 . Dif-

ferent constellations for the parameters η(j) and α(j) divide the shape property

of the generalized gamma hazard function into the three general cases (con-

stant, monotonic and nonmonotonic). The generalized gamma hazard rate is

able to reproduce a decreasing (increasing) evolution in time as soon as the

inequalities η(j) · α(j) < 1 and η(j) ≤ 1 (η(j) · α(j) > 1 and η(j) ≥ 1) hold true.

Hunchbacked and bathtub graphs of the generalized gamma hazard function

are also possible to obtain for η(j) ·α(j) > 1, η(j) < 1 and η(j) ·α(j) < 1, η(j) > 1

respectively. A constant hazard rate is obtained when the parameters satisfy

the equalities η(j) ·α(j) = 1 and η(j) = 1 implying the exponential distribution

as a special case. The use of the generalized gamma distribution for ACD

modelling was initially advocated by Lunde (1999).

The regime specific distributions of a selective residual εd,n = ψ−1
d,n · xd,n

are allowed to be nearly different. To be more concrete, all higher moments
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µ(j)
m = E

(

εmd,n|sd,n = j; θ(j)
ε

)

for arbitrary integer values m > 1 are generally

regime specific but the fact µ
(j)
1 = 1 has to be in mind for every regime of

interest. The following equalization

ρ(j) =
Γ

(

ν
(j)
1

2
+ 1

γ(j)

)

Γ
(

ν
(j)
2

2
− 1

γ(j)

)

Γ
(

ν
(j)
1

2

)

Γ
(

ν
(j)
2

2

) ·





ν
(j)
2

ν
(j)
1





1

γ(j)

(3.3)

reflects the requirement of unit mean for every regime specific processes of

innovations and ensures perennially the maintenance of condition (2.4) in the

course of model estimation.

3.3 Estimation results

Parameter estimates and standard errors 3 for all of the model specifica-

tions we estimated are presented in the upper panel of Table 2. With the aid

of estimation results we carry out directly a couple of specification tests and

we also calculate some informational measures. The values of test statistics

and the corresponding p-values are given in the middle part of Table 2. The

bottom of Table 2 comprehends values of the log-likelihood function and the

Bayesian information criterion (BIC), which is computed as −2 ·L+ln(N) ·k

where k denotes the number of estimated parameters. We utilize some iden-

tifying notation in order to distinguish between different specifications which

are appropriate candidates for framing a two-regime MACD model: the vari-

able D(j) alludes to the distribution assumed for the j-th regime. The real-

ization D(j) = C indicates the use of the comprehensive distribution for the

j-th regime, while the characters G and B stand for the generalized gamma

distribution and the Burr distribution respectively.

3 Standard errors have been computed based on numerical derivatives of the in-
complete log likelihood function using the quasi - maximum likelihood estimates of
the information matrix as suggested by White (1982).
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Table 2. Estimation results and specification tests for a one-regime and various two-regime MACD models

D(1) = C D(1) = C, D(2) = C D(1) = G, D(2) = C D(1) = C, D(2) = B D(1) = G, D(2) = B
Parameter Estimate Stderr Estimate Stderr Estimate Stderr Estimate Stderr Estimate Stderr

ω 0.022 0.003 0.031 0.004 0.031 0.004 0.031 0.004 0.031 0.004
α1 0.038 0.004 0.041 0.005 0.041 0.005 0.041 0.005 0.041 0.005
β1 0.949 0.008 0.940 0.010 0.940 0.010 0.939 0.010 0.939 0.010
η(1) 0.435 0.035 0.412 0.035
γ(1) 0.369 0.016 0.477 0.026 0.464 0.022

κ(2) 3.339 0.263 3.393 0.278
γ(2) 2.024 0.446 1.997 0.413
α(1) 5.337 0.774 5.906 0.890

ν
(1)
1 12.593 1.042 9.338 0.877 9.822 0.799

σ(2) 3.100 0.258 3.154 0.273

ν
(2)
1 5.657 3.187 5.989 3.315

ν
(1)
2 218.660 1.140 240.550 2.384 241.456 14.071

ν
(2)
2 1.077 0.244 1.091 0.232

π(1) 0.827 0.020 0.830 0.020 0.842 0.019 0.846 0.020

Statistic Test p-value Test p-value Test p-value Test p-value Test p-value

RTζ 94.606 0.000 17.281 0.571 17.061 0.586 21.538 0.308 21.061 0.333
LBζ 45.643 0.649 46.155 0.628 46.149 0.629 46.291 0.623 46.284 0.623
Qζ0.25 3.990 0.000 0.730 0.466 0.779 0.436 0.730 0.466 0.803 0.422
Qζ0.50 -1.875 0.061 -0.126 0.899 -0.169 0.866 -0.063 0.950 -0.169 0.866
Qζ0.75 -4.647 0.000 -1.873 0.061 -1.898 0.058 -1.946 0.052 -2.117 0.034

L(θ̂{D(1),D(2)}) -8529.90 -8462.34 -8461.42 -8464.20 -8463.12
BIC{D(1),D(2)} 17114.44 17015.74 17004.79 17010.37 16999.10
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We have two kind of investigations in mind. First of all, we are interested

to examine the relation between the two-regime model specification that has

conditional comprehensive distribution for durations in both regimes (labelled

by D(1) = C, D(2) = C in Table 2 and denoted by {C, C} in the following

discussion) and the corresponding one regime counterpart (labelled by D(1) =

C). The incipient two-regime model specification {C, C} will be reference when

discussing other two-regime model specifications which are characterized by

the feature of different distributional assumptions across the regimes.

Clearly, the BIC does not support the ordinary ACD model which is

nested as a special case in the MACD framework. The test on the median

argues for the null hypothesis H0 : ζ0.5 = 0.5, but the result is not in line

with some strong conviction. The negligible p-values obtained from the other

two quantile tests are sign of bad adaption in the tail of the distribution.

Moreover, the alternative histogram specification test does not support the

one regime model. This can be seen from the low p-value of the ratio test

which is equal to zero. Hence, the apparent defect of the ordinary ACD model

stems from the improper choice of distribution. However, the ordinary ACD

model is able to capture the autocorrelation pattern of the intertrade durations

adequately as indicated by the high p-value of the Ljung Box statistic for

the series of empirical integral transforms. A significant improvement on the

performance of the ordinary ACD model is obtained by allowing for interaction

between a couple of regimes. Especially, the specification {C, C} for the two-

regime MACD model is able to eliminate the distributional problem of the

ordinary ACD model and the autocorrelation pattern in the duration data

will be still considered adequately. The p-value of the RTζ test and also the

p-values of the first two quantile tests increase by leaps and bounds while

H0 : ζ0.75 = 0.75 becomes statistical significant at the conventional significance

level of 95 percent.

For purposes of comparison Figure 2 contains histogram plots, QQ-plots

and graphs of the autocorrelation function for the series of integral transforms

for the one regime model {C} and the two-regime model specification {C, C}.

The plots clearly show that the estimated two-regime MACD model specifica-

tion produces empirical integral transforms that match the implied theoretical

density very well and tends to give accurate forecasts over the whole range

of observed values of x. In contrast, the plots for the one regime model show

that the empirical integral transforms disagree sharply with the theoretical
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Fig. 2. Histograms and QQ-plots for integral transforms

One-regime model Two-regime model

density, and that it tends to produce systematically biased forecasts for small

and large durations. The histogram for a couple of quantiles is outside of the

95 percent confidence interval and a multitude of points are far from the diag-

onal in the QQ-plot. For both models, autocorrelations up to 1000 lags remain

predominantly within the 95 percent confidence interval.

The primal two-regime model with comprehensive distribution of dura-

tions in both regimes is the easiest idea of multiple regime models which

are in principle able to pass all the specification tests that we performed.

The extraordinary improvement of the goodness of fit has been achieved by

introducing four additional parameters compared to the one regime model.

Therefrom, three parameters are required for the distributional matter while
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the remaining parameter gets in touch with the regime probability. But pos-

sibly, the additional consideration of less than three distributional parameters

makes the same fundamental result. In fact, improvement with no heavy losses

is possible to reach by using a two-regime model specification that has two ex-

tra distributional parameters or even one (compare the results of specification

tests given in the last three column blocks of Table 2). The usable reduction

of distributional parameters reflects the use of the Burr or generalized gamma

distribution instead of the comprehensive distribution, either for one of the two

regimes or for both. The class of two-regime model specifications incorporat-

ing two extra distributional parameters (compared to the one regime model)

is characterized by the feature that either the Burr or the generalized gamma

distribution will be assumed for one regime while the assumption of compre-

hensive distributed durations retains for the other regime. Two-regime model

specifications having only one extra distributional parameter result from using

the Burr or generalized gamma distribution for both regimes.

As can be seen from the parameter estimates and standard errors, im-

plied by the initial two-regime model specification {C, C}, the null hypoth-

esis H0 : ν
(2)
1 = 2 cannot be rejected even at the ten percent significance

level. This makes an educated guess that the first degree of freedom in the

second regime is equal to two. Consequently, the Burr density might be ab-

solutely appropriate to describe the conditional distribution of durations in

the second regime. The advantage of using the Burr distribution instead of

the comprehensive distribution can be seen in the reduction of the number of

distributional parameters. The estimation results of a MACD model having

the comprehensive distribution in the first regime and the Burr distribution

in the second regime, denoted by {C,B} in the following, are gathered in

the forth block column of Table 2. The loss on likelihood when replacing the

comprehensive distribution with the Burr distribution in the second regime

is extremely small, i. e. the log-likelihood value L(θ̂{C,C}) = −8462.32 falls on

the level L(θ̂{C,B}) = −8461.42 representing a relative change of 0.02 percent

only. According to the BIC, the parsimonious model will be clearly preferred,

because 17015.74 = BIC{C,C} > BIC{C,B} = 17010.37.

Another eyecatching fact of the initial two-regime model specification {C, C}

is that the parameter estimate for the second degree of freedom in the first

regime ν
(1)
2 is extremely large. The estimation result ν̂

(1)
2 = 240.550 and also

the acceptance of the null hypothesis H0 : ν
(1)
2 ≥ 200 even at the ten per-
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cent significance level justify the use of the generalized gamma distribution

for the first regime. The third block column represents the estimation results

we obtained for a MACD model with generalized gamma distribution for the

first regime and comprehensive distribution for the second regime, denoted by

{G, C} in the following. This model specification is able to reduce the BIC as

well, but the reduction is more heavy than in our first proposal of replacing

the comprehensive distribution by the Burr distribution for the second regime.

This spanking decrease comes into accordance with the increase of the value of

the log-likelihood function with respect to the reference model. The increase

of L(θ̂{C,C}) = −8462.32 by roughly 0.01 percent is plausible because the gen-

eralized gamma distribution results as a limiting case of the comprehensive

distribution as soon as the second degree of freedom tends to infinity.

We feel impelled to combine the two partial proposals. So, we check out a

two-regime model specification which is based on the assumption of generalized

gamma distributed durations in the first regime and Burr distributed durations

in the second regime, denoted by {G,B} in the following. This specification is

the most parsimonious one of all two-regime models we discussed until now and

its estimation results are given in the last column block of Table 2. The BIC

marks it as the best model. It seems as if the gain from extra complexity im-

plied by the reference specification {C, C} is small and the specification {G,B}

serves the purpose of better forecast performance effectively. Concerning the

log-likelihood we find that the relation L(θ̂{C,B}) < L(θ̂{G,B}) < L(θ̂{G,C}) holds

true, so that the two-regime model specification {G,B} turns out to be a rea-

sonable compromise between two-regime model specifications that assume the

maintenance of the comprehensive distribution for one regime only.

The confrontation of each parsimonious specification with the reference

specification {C, C} will be carried out in order to obtain concrete information

concerning the apportionment of gained (lost) likelihood by preferring the par-

simonious specification. Let f̂
(j)

{D(1),D(2)}
(xd,n) = f(xd,n|sd,n = j,Fd,n−1; θ̂

(j)

{D(1),D(2)}
)

be the density characterizing the conditional distribution in the j-th regime

of the two-regime model specification {D(1), D(2)} for D(1) = C or D(1) = G on

the one hand and D(2) = C or D(2) = B on the other hand, and let π̂
(j)

{D(1),D(2)}

be the corresponding regime probability. Then we define for each regime the

following set of functions
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d̂
(j)
1 (xd,n) = π̂

(j)
{C,B} · f̂

(j)
{C,B} (xd,n) − π̂

(j)
{C,C} · f̂

(j)
{C,C} (xd,n) (3.4)

d̂
(j)
2 (xd,n) = π̂

(j)
{G,C} · f̂

(j)
{G,C} (xd,n) − π̂

(j)
{C,C} · f̂

(j)
{C,C} (xd,n) (3.5)

d̂
(j)
3 (xd,n) = π̂

(j)
{G,B} · f̂

(j)
{G,B} (xd,n) − π̂

(j)
{C,C} · f̂

(j)
{C,C} (xd,n) (3.6)

expressing the discrepancies between weighted regime specific likelihoods of

competing two-regime model specifications discussed above. A visual impres-

sion on all these functions is given in Figure 3 which makes the graph of

d̂(j)
r (xd,n) available in its r-th row and j-th column. Note, that large durations

are relative insensitive to an arbitrary change of the distributional assump-

tion, while small durations tend to react heavily. Another distinctive feature

seems to be that the amplitude of absolute likelihood changes for the first

regime is lower than the corresponding amplitude for the second regime, but

d̂(1)
r (xd,n) needs more time to draw near zero. Because of the salient fact of sta-

ble probability estimates across all model specifications involving two regimes

we can conclude that any parsimonious specification gives tendentially more

likelihood to the first regime compared to the corresponding likelihood of the

rich parameterized reference specification {C, C}. At the same time the sec-

ond regime takes a loss concerning the likelihood. Consequently, we have two

contrary effects acting on the change of the log likelihood value when passing

from the reference specification {C, C} into a parsimonious specification.

The dominance of one or the other effect depends on the choice for parsi-

monious specification and an elaborate discussion can be conducted by using

the measures

`(j)r =
19
∑

d=1

Nd
∑

n=1

d̂(j)
r (xd,n) (3.7)

h(j)
r (w)=

19
∑

d=1

Nd
∑

n=1
1
{|d̂

(j)
r (xd,n)|>w}

19
∑

d=1
Nd

· 100 (3.8)

for r ≤ 3 and j ≤ 2 and appropriate non-negative values for w. A compar-

ison between `(1)r and `(2)r with respect to the magnitude and sign and the

discrepancy between h(1)
r (w) and h(2)

r (w) are conductive to find the scene from

which some log-likelihood change runs out mainly. Table 3 collects all rele-

vant measures, we decide to use w = 0.05 in order to catch upper outliers

of d̂(j)
r (xd,n), while the alternative w = 0.01 cares for non-extremal values.

For the first specification adjustment we find that the inequality `
(1)
1 < −`(2)1
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Fig. 3. Likelihood differences between different two-regime model specifications

Regime j = 1 Regime j = 2

holds true which means that the replacement of the comprehensive distribu-

tion with the Burr distribution for the second regime is responsible for the

log-likelihood loss registered previously. The value h
(2)
1 (0.05) = 2.142 gives in-

formation that this log-likelihood loss is predominantly caused by a small num-

ber of durations coming along with wide differences between regime specific

likelihood contributions. These durations are typically extremely small. The

situation for the second specification transfer is different from the first. The

fact `
(1)
2 > −`(2)2 implies that the gained log-likelihood is caused by replacing

the comprehensive distribution with the generalized gamma distribution for

the first regime. The log-likelihood gain results from the majority of observa-

tions (100− h
(1)
2 (0.01) = 95.628 percent) having marginal differences between

regime specific likelihood contributions. For the omnibus specification transfer
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Table 3
Informative meaures

Measure Regime j = 1 Regime j = 2

`
(j)
1 96.619 -98.120

`
(j)
2 26.145 -25.163

`
(j)
3 137.807 -136.525

h
(j)
1 (0.01) 48.746 41.345

h
(j)
2 (0.01) 4.372 8.855

h
(j)
3 (0.01) 52.985 44.097

h
(j)
1 (0.02) 18.065 24.223

h
(j)
2 (0.02) 0.000 0.000

h
(j)
3 (0.02) 37.261 30.681

h
(j)
1 (0.05) 0.000 2.142

h
(j)
2 (0.05) 0.000 0.000

h
(j)
3 (0.05) 1.198 5.870

we find `
(1)
3 > −`(2)3 even though we observed a loss of the log-likelihood value.

But this contradiction can be explained by the concave increase of the loga-

rithm function. The function d̂
(1)
3 (xd,n) has slower convergence to zero than

d̂
(2)
3 (xd,n). The fraction of values |d̂(1)

3 (xd,n) | being greater than 0.01 is equal

to 52.985 percent, while the corresponding fraction amounts to 44.097 percent

for the second regime.

The parameter estimates for ω, α1 and β1, which determine the evolution of

the duration’s conditional mean in time, differ only marginally across the four

two-regime model specifications we estimated. The same fact may be noticed

for the distributional parameters. The estimation results obtained from the

reference model specification {C, C} show that the three regular distributional

parameters γ(j), ν
(j)
1 and ν

(j)
2 vary keenly across the regimes. Both estimated

degrees of freedom have larger values in the first regime than in the second and

we find that γ̂(1) < γ̂(2) holds true. This has a strong impact on the shape of

the hazard function considered for each regime separately. The regime specific

hazard function
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λ̂
(j)

{D(1),D(2)}
(xd,n) =

f̂
(j)

{D(1),D(2)}
(xd,n)

1 −
xd,n
∫

0
f̂

(j)

{D(1),D(2)}
(u) du

(3.9)

for each regime j ≤ 2 and also the regime unspecific hazard rate

λ̂{D(1),D(2)} (xd,n) =

J
∑

j=1
π̂(j) · f̂ (j)

{D(1),D(2)}
(xd,n)

J
∑

j=1
π̂(j) ·

[

1 −
xd,n
∫

0
f̂

(j)

{D(1),D(2)}
(u) du

] (3.10)

evaluated for ψd,n = 1 are displayed on the right hand side of Figure 4 rep-

resenting the case of two-regime model specification {D(1), D(2)} = {C,B}

({D(1), D(2)} = {G, C}) [{D(1), D(2)} = {G,B}] in its first (second) [third] row,

and the corresponding densities are given on the left hand side. Note in the

first instance, that the choice for the one or the other specification does not

change the qualitative nature of the density. We observe the maintenance of

η̂(1) · α̂(1) > 1 and η̂(1) < 1 so that the hazard rate of the first regime turns

out to be hunchbacked for generalized gamma distributed durations. In anal-

ogy, the hazard function characterizing the second regime is hunchbacked as

well because of κ̂(2) > 1 for the Burr distribution. For each parsimonious two-

regime model specification the hazard rate assigned to the second regime tends

to rise rather quickly after a transaction has been observed. In contrast the

hazard function under the first regime increases moderately and gives clearly

more weight to larger spells for the specifications {G, C} and {G,B}. This

corresponds nicely to the fact that the first regime has higher probability π̂(1)

than the second regime. Roughly 80 percent of all transactions were generated

in the first regime. The application of the MACD model affirms the existence

of two constitutively different streams governing the process of intertrade du-

rations and visualizes the different velocities from which trading evolves. The

inertial trading activity, adumbrated by the hazard rate of the first regime,

predominates the whole trading process and can be associated with the the-

oretical vision of trading behavior ascribed to the uninformed traders. The

second regime awards the image of succinct trading which can be traced back

to informed traders participating on the financial market.

Summarizing, our application illustrates that the conditional distribution

of durations in the first regime is generalized gamma while durations in the

second regime follow rather the Burr distribution. This empirical experience

20



Fig. 4. Density and hazard function

Density function Hazard rate

makes the usual strategy of using one common distribution family for all

regimes problematic. Limitations concerning the intensity rate would be an

unavoidable consequence. An attractive possibility to avoid problems coming

from a distributional misspecification will be the use of the comprehensive

family of distributions which allows for extraordinary flexibility.

4 Conclusions

Mixture models are frequently used in econometrics. So, researcher feel

defiant to combine the methodological background of mixture models with

the art of ACD modelling, originally introduced by Engle and Russell (1998).
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Both, our discrete mixture ACD model which traces back to the basic con-

cept of De Luca and Gallo (2004) and the Markov Switching ACD model of

Hujer et al. (2002) act as a promising new approaches for modelling auto-

correlated durations obtained from high frequency data sets from stock and

foreign exchange markets. They are able to remove the distributional prob-

lem from which ordinary ACD models occasionally suffer. A further asset of

these models is that they can be interpreted in the context of recent market

microstructure models.

But until now one and the same family of distributions has been assumed

for specifying all regime specific densities of durations within the framework of

regime switching ACD models. Typically, either the class of Burr distributions

or the class of generalized gamma distributions has come into consideration so

far, as done by Hujer and Vuletić (2004) and Liu et al. (2004). The idea of using

an all-embracing distribution, which nests common waiting time distributions

as special cases, is the innovation we would like to provide. A distribution

belonging to the comprehensive family is rich in parameters but allows for

best customization. Moreover it makes possible to detect secret distributional

nature for each regime of interest.
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