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1 Introduction

The last twenty years saw an unprecedented upsurge in both theoretical

and empirical work related to the analysis of market microstructure issues

on financial markets. 1 Empirical studies are nowadays often based on high

frequency data sets that contain detailed information about the timing of

trades, prices, volume and other relevant characteristics for a wide range of

financial securities. The availability of huge transaction data sets for academic

research was accompanied by the introduction of new econometric methods

which are tailor-made for the analysis of microstructure issues.

One of the most promising new approaches is the autoregressive conditional

duration model (ACD), introduced by Engle and Russell (1998), which focuses

on the time elapsed between the occurrences of arbitrary trading events. The

ACD model combines elements of time series models and econometric tools

for the analysis of transition data and is therefore perfectly suited for the

analysis of high frequency data sets which naturally arise as irregularly spaced

data sets, i.e. the time between successive observations is not a deterministic

constant but rather a random variable itself. ACD models have been almost

exclusively used to analyze high frequency data stemming from stock and

foreign exchange markets.

Following the seminal contribution of Engle and Russell (1998), a new

branch in the econometric literature emerged quickly, that extended their

original work in several directions. Despite the resulting variety of competing

models, until now no satisfactory ACD variant in terms of forecast accuracy

has been reported that could be used for the prediction of the trading process

itself, see Bauwens et al. (2000). The main problem is the inability to forecast

observations in the tails of their distribution appropriately.

Our intention is to introduce a reasonable statistical framework for time

series of inter trade durations that can be used for forecasting purposes as

well as for tests of the implications of market microstructure models. This will

1 See Madhavan (2000) for a recent summary of this branch of literature.
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be achieved by the introduction of a latent, discrete valued regime variable

whose evolution in time is governed by a Markov chain. The inclusion of la-

tent information structures in an ACD model can be justified in the light of

several recent market microstructure models. The unobservable regime can be

associated with the presence (or absence) of private information about an as-

set’s value that is initially available exclusively to a subset of informed traders

and only eventually disseminates through the mere process of trading to the

broader public of all market participants. The Markov switching ACD model

(MSACD) is closely related to the class of Markov switching autoregressive

models introduced by Lindgren (1978) and Hamilton (1989). It provides a very

flexible framework which nests many of the existing ACD models as special

cases.

There are several extensions of the original ACD model that are related

to our approach as well. The threshold ACD (TACD) model introduced by

Zhang et al. (2001) allows switches between different regimes to be driven

by past realizations of the dependent variable. Both the TACD and MSACD

model belong to the class of discrete mixture models. ACD models based on a

continuous mixture distribution are developed by Bauwens and Veredas (1999)

and Ghysels et al. (2003).

This paper is structured as follows: Section 2 contains a brief review of

the current state of art in ACD modeling. In Section 3 the MSACD model

is introduced and compared to related work on duration models. Also, we

discuss estimation procedures and specification tests for MSACD models. In

an empirical application in Section 4 we present estimation results employing

a transaction data set for the common share of Boeing traded on the New

York Stock Exchange. The usefulness of the MSACD approach for tests of the

implications of market microstructure models is demonstrated in Section 5

and finally, in Section 6 we summarize our main results and give a perspective

on possible issues for future research.
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2 The ACD model

The class of ACD models, introduced by Engle and Russell (1998), is de-

signed to account for autocorrelation patterns observed in time series of arrival

times between successive occurrences of events associated with the trading pro-

cess. The definition of the trading event depends on the specific aim of the

study. Examples include the time between successive trades, the time until a

price change occurs or until a prespecified number of shares or level of turnover

has been traded. 2

Let xn = tn − tn−1 be the time interval between the (n − 1)-th and the

n-th trading event with conditional mean

E(xn|Fn−1)=ψn(Fn−1; θψ) ≡ ψn, (1)

where Fn−1 may contain lagged dependent as well as lagged and contempo-

rary exogenous variables, i.e. Fn−1 = (x1, . . . , xn−1, y1, . . . , yn), and θψ is the

corresponding set of parameters. The ACD model is defined by some param-

eterization of this conditional mean and the decomposition

εn =
xn

ψn
, (2)

where the residual process εn is i.i.d. with density function g (εn; θε) depending

on a set of additional parameters θε, support on the positive real line and an

unconditional expectation equal to unity. The flexibility of the ACD model

can be altered by modifying the distributional assumption of the residuals

εn and/or the specification of the conditional mean function ψn. The distri-

butional assumption of the residuals determines the density of the durations

fn (xn | Fn−1; θ) with θ = (θψ, θε) which will always belong to the same family

of distributions as g(εn; θε). A list of possible choices for g (εn; θε) includes the

exponential, the Weibull, the Burr, and the generalized gamma distribution.

The exponential and Weibull ACD models originally introduced by Engle and

Russell (1998) imply that the associated hazard rates are either constant or

2 Naturally, the price, volume and turnover duration processes arise from the trade
durations series by dropping intervening observations from the sample, thus yielding
a ’thinned’ or ’weighted’ duration process.
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monotonically increasing or decreasing. Added flexibility may be gained by

specifying either a generalized gamma distribution (Lunde (1999)) or a Burr

distribution (Grammig and Maurer (2000)).

In a standard ACD(p, q) model the parameterization of ψn is completely

analogous to a GARCH model intoduced by Engle (1982) and Bollerslev (1986)

ψn =ω +
p
∑

k=1

βk · ψn−k +
q
∑

k=1

αk · xn−k, (3)

and can be transformed into an ARMA (max(p, q), p) representation from

which expressions for the unconditional moments may be derived easily. In

order to ensure non-negativity of ψn, the parameters ω, αk, and βk have to be

non-negative as well. Bauwens and Giot (2002) circumvent this restriction by

using the logarithmic LACD(p, q) specification

ln (ψn) =ω +
p
∑

k=1

βk · ln(ψn−k) +
q
∑

k=1

αk · ln(xn−k) (4)

that closely resembles the EGARCH model of Nelson (1991). Analytical ex-

pressions for the unconditional moments of xn in the LACD specification are

given by Bauwens et al. (2003). In both specifications stationarity depends on

the magnitudes of the parameters αk, and βk. Estimation of ACD models by

maximum likelihood techniques is straightforward.

3 The Markov switching ACD model

3.1 The basic framework

The basic assumption of the MSACD model is that the conditional mean

of the duration time series depends on an unobserved stochastic process sn

which represents the regime the process is in at time tn. The interpretation of

the regime variable usually varies with the specific aim of study. For example,

in macroeconomic applications, regimes can be associated with recession and

boom phases in the business cycle. In marketing applications, the inclination

to buy certain goods may be related to unobserved heterogeneity among a

sample of consumers. Analogously, in financial applications the existence of
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different trading regimes may provide evidence on the presence of agents with

private information about an assets’s value. Thus, the dynamics of trading

activity are different, depending on whether informed agents are active and

on the nature of their information. The stochastic process sn is a discrete

valued random variable with support J = {j | 1 ≤ j ≤ J, J ∈ N}.

The conditional mean of the durations xn depends on the unobserved

regime variable sn in the following manner

ψn =
J
∑

j=1

p (sn = j | Fn−1; θ) · ψ
(j)
n , (5)

where p (sn = j | Fn−1; θ) is the probability that sn is in state j given the filtra-

tion Fn−1. The regime specific conditional mean ψ(j)
n = E (xn | sn = j,Fn−1; θ)

will have an autoregressive specification as in an ordinary ACD model. De-

composition (2) holds in the sense that the residuals εn have a known mixture

distribution with E (εn | Fn−1) = 1 and time-varying higher moments. 3

The regime variable sn switches between the states according to a Markov

chain which is characterized by a (J × J) transition matrix P with typical el-

ement pji equal to the transition probability pji = p (sn = j | sn−1 = i). Thus,

the state of the process at time tn depends only on the state of the previous

observation. The conditional density of the durations fn(xn | sn = j,Fn−1; θ)

depends only on the current regime sn, on the filtration Fn−1, and on the

parameter vector θ =
(

θ
(1)
ψ , . . . , θ

(J)
ψ , θ(1)

ε , . . . , θ(J)
ε , p11, . . . , pJJ

)′
. Any of the

densities mentioned in Section 2 may be used. Since we cannot observe the

realization of the current regime, the relevant density for statistical inference

is the marginal density given by

fn(xn | Fn−1; θ) =
J
∑

j=1

p(sn = j | Fn−1; θ) · fn (xn | sn = j,Fn−1; θ) . (6)

Note that the MSACD model is a dynamic generalization of the static mixture

hazard models introduced by Heckman and Singer (1982) with time varying

mixture probabilities

3 See Appendix A.1.
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ξ
(j)
n+1|n≡ p(sn+1 = j | Fn; θ). (7)

ξ
(j)
n+1|n represents the ex-ante probability for being in regime j at time tn+1,

conditional on information available up to time tn and can be evaluated using

the two-step recursion 4

ξ
(j)
n|n =

ξ
(j)
n|n−1 · fn (xn | sn = j,Fn−1; θ)

J
∑

k=1
ξ

(k)
n|n−1 · fn (xn | sn = k,Fn−1; θ)

(8)

ξ
(j)
n+1|n =

J
∑

i=1

pji · ξ
(i)
n|n. (9)

Even though the transition probabilities pji are constant, the regime probabil-

ities ξ
(j)
n|n and ξ

(j)
n+1|n are time-varying. A static mixture model in the spirit of

Heckman and Singer (1982) may be regarded as a special case of the MSACD

model based on a restricted transition matrix, where the elements of the j-th

row are all equal, i.e. π(j) ≡ pj1 = . . . = pjJ . This implies time invariant fore-

casts of regime probabilities ξ
(j)
n+1|n = π(j) for all n but ξ

(j)
n|n is still varying in

time.

3.2 Specification of the conditional mean

Whenever the functional form of the conditional mean incorporates latent

variables, such as lagged forecasts ψn−1, . . . , ψn−k a problem of path depen-

dence arises. Path dependence implies that the regime specific forecast de-

pends on the entire sequence of regimes. This is so because the conditional

mean ψn at time tn depends on the conditional mean at time tn−1 which in

turn depends upon the prevailing regime at time tn−1. Therefore the distribu-

tion of xn depends directly on sn and also indirectly on the realizations for

(sn−1, sn−2, . . . , s1). Since we cannot observe this sequence the likelihood func-

tion has to be constructed by integrating over all possible paths. An evaluation

of all of the possible paths even for a moderate sample size is prohibitively

expensive in terms of computational effort. One solution to avoid the problem

of path dependence is to drop the impact of any latent variable such as lagged

4 See Hamilton (1994), pp. 692-694.
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expected durations i.e. to consider only specifications with p = 0, as was done

by Cai (1994) in the context of a model for the conditional variance. Alterna-

tively, the problem can be avoided in a way that retains the important effect

of persistence. There are in principle two ways in which lagged forecasts can

appear in the conditional mean function ψ(j)
n . In the simple model the current

forecast ψ(j)
n is a function of lagged regime specific forecasts

ψ(j)
n =ω(j) +

p
∑

k=1

β
(j)
k ψ

(j)
n−k +

q
∑

k=1

α
(j)
k xn−k. (10)

Another possible specification is to make ψ(j)
n a function of past forecasts ψn−k

that are regime independent as in the complex variant

ψ(j)
n =ω(j) +

p
∑

k=1

β
(j)
k ψn−k +

q
∑

k=1

α
(j)
k xn−k. (11)

It represents a solution based on an aggregation of regime specific conditional

means that has been used in the context of Markov switching GARCH models

by Gray (1996) and Fong and See (2001). The unconditional expected duration

ψn is computed by summing over all regime specific conditional expectations

ψ(j)
n according to

ψn =
J
∑

j=1

ξ
(j)
n|n−1 · ψ

(j)
n . (12)

Both specifications given in (10) and (11) imply that the conditional mean de-

pends only on the current regime, not on the entire past sequence of regimes.

In both cases ψ(j)
n is the conditional mean at time tn given that the process

is in regime j. Note that specification (10) reaps an enormous benefit in com-

parison to the complex specification (11), since we may employ a variant of

the Expectation-Maximization (EM) algorithm for estimation. Furthermore it

implies that regime specific forecasts at tn are being formed based on a com-

parison between past realized durations and regime specific forecasts. Speci-

fication (11) implies that forecasts are being formed based on a comparison

between past realized durations and regime unspecific forecasts and involves

more effort in estimation, since the EM-algorithm may not be employed.
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3.3 Stationarity conditions

The specification of the mean function plays a crucial role for the stationar-

ity conditions. For ARMA models subject to Markov switching it is standard

to impose separate stationarity constraints for each regime, thus ensuring local

stationarity. Because of the fact that both the ACD and the LACD models

can be transformed into an ARMA representation, a set of local stationarity

conditions for first order MSACD models will be 5

|
(

α(j) + β(j)
)

|< 1 for j = 1, . . . , J (13)

Francq and Zaköıan (2001) have shown for Markov switching ARMA mod-

els that condition (13) can be relaxed. Their result can be used directly to

derive stationarity conditions for the complex variant (11), which implies an

autoregressive specification for xn with time-varying coefficients

xn =ωn|n−1 − βn|n−1 · νn−1 + (αn|n−1 + βn|n−1) · xn−1 + νn (14)

where the innovation process νn ≡ xn − ψn is characterized by the feature

E(νn) = 0, ωn|n−1 =
J
∑

j=1
ξ

(j)
n|n−1ω

(j), and αn|n−1 and βn|n−1 are defined analo-

gously to ωn|n−1. By successive recursion an infinite moving-average represen-

tation can be derived, leading to the relaxed condition for global stationarity

|
J
∑

j=1

(α(j) + β(j)) · π(j) |< 1 (15)

with 0 ≤ π(j) ≤ 1 denoting the ergodic probability for regime j. 6 Note that

the existence of a regime specific unit root, i.e. |α(j)+β(j)| ≥ 1 for some j ∈ J ,

does not necessarily violate (15). Local stationarity implies global stationarity

but the opposite does not hold in general.

If the conditional mean function is specified according to the simple variant

(10), the regime specific ARMA representation is given by

5 Generalizations to MSACD(p, q) models are straightforward. In order to simplify
the notation in a first order MSACD model, we have dropped the indices k which
determine the lag structure in the mean function.
6 See Appendix A.2.
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xn =ω(j) − β(j)ν
(j)
n−1 + (α(j) + β(j)) · xn−1 + ν(j)

n (16)

where the regime specific innovation ν(j)
n = xn−ψ(j)

n has the property E(ν(j)
n |

sn = j) = 0. In this case global stationarity results from the local stationarity

conditions (13).

3.4 Estimation of the MSACD model

In the case of regime switching models there are several ways in which

maximum likelihood estimates of θ may be obtained. The standard approach

maximizes directly the incomplete log-likelihood function LI(θ),

lnLI(θ)=
N
∑

n=1

ln [fn(xn | Fn−1; θ)] (17)

numerically under the linear constraints
∑J
k=1 pkj = 1 for all j ∈ J and

additional restrictions for nonnegativity, stationarity and eventually for dis-

tributional parameters. The likelihood function for switching models may have

more than one local maximum. It is therefore recommended that estimation

should always be repeated several times with different start values in order to

make sure that a global maximum has been found. Since standard maximiza-

tion algorithms, such as the Newton-Raphson, often fail or produce nonsensical

results, maximum likelihood estimates for Markov Switching models are often

obtained by using the Expectation-Maximization (EM) algorithm introduced

by Dempster et al. (1977) which is known for its numerical robustness.

The basis for the EM-algorithm is the hypothetical situation where we

can observe the realization of the sequence of regime variables. Defining the

random variables z(j)
n = 1 if sn = j and zero otherwise, and z(ji)

n = z(j)
n · z

(j)
n−1,

the complete log-likelihood function lnLC(θ) is given by 7

7 The likelihood contribution of the initial state of the regime s1 can be included in
the set of parameters to be estimated. However, it is more convenient to work with
a conditional likelihood function, taking the state of the first observation as given.
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lnLC(θ) =
N
∑

n=1

J
∑

j=1

z(j)
n · ln[fn(xn | sn = j,Fn−1; θ)]

+
N
∑

n=2

J
∑

j=1

J
∑

i=1

z(ji)
n · ln[pji]. (18)

The EM-algorithm proceeds by taking the expectation of (18) conditional

on the observed data XN = (x1, . . . , xN , y1, . . . , yN) and evaluates it using

some arbitrary guess for the parameter vector θ0. The expected complete log-

likelihood function lnLEC(θ, θ0) ≡ E(lnLC(θ) | XN ; θ0) is therefore given by

replacing z(j)
n and z(ji)

n by appropriate probabilistic inferences ξ
(j)
n|N and ξ

(ji)
n|N .

These smoothed inferences may be evaluated employing a backward recursion

starting with the filtered inferences ξ
(j)
N |N obtained from (8) and progressing

according to 8

ξ
(j)
n|N = p (sn = j | xn,FN ; θ0) = ξ

(j)
n|n ·

J
∑

k=1

pkj · ξ
(k)
n+1|N

ξ
(k)
n+1|n

. (19)

and

ξ
(ji)
n|N = p (sn = j, sn−1 = i | xn,FN ; θ0) = ξ

(j)
n−1|n−1 ·

pji · ξ
(j)
n|N

ξ
(j)
n|n−1

. (20)

Evaluation of lnLEC(θ, θ0) constitutes the first part of the EM-algorithm and

is commonly referred to as the E-step. The associated M-step consists of max-

imizing lnLEC(θ, θ0) with respect to the parameter vector θ, and can be con-

ducted separately with respect to the parameters of the ACD model and the

transition probabilities, if ∂ fn(xn|sn=j,Fn−1;θ)
∂ pmk

= 0 for all j,m, k ∈ (1, . . . J).

The first order conditions lead to the following estimator for the transition

probabilities

p̂ji =

N
∑

n=2
ξ

(ji)
n|N

N
∑

n=2
ξ

(i)
n−1|N

. (21)

The remaining parameters may be obtained from the solution to

8 This algorithm has been proposed by Kim (1994). It is valid only when the regime
varaible sn follows a first-order Markov chain and when the conditional density of
xn depends only on the current state sn and on the filtration Fn−1.
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N
∑

n=1

J
∑

j=1

ξ
(j)
n|N ·

(

∂ ln fn(xn | sn = j,Fn−1; θ)

∂ θ

)

!
= 0. (22)

The parameters associated with the j-th regime, i.e. θ(j) =
(

θ
(j)
ψ , θ(j)

ε

)′

, may

be estimated independently, if ∂ fn(xn|sn=j,Fn−1;θ)
∂ θ(k) = 0 for all k 6= j. Thus, by

repeating the two steps of the EM-algorithm until the absolute change of the

parameter vector is smaller than some prespecified convergence criterion esti-

mates of the parameter vector are obtained. Hamilton (1990) shows that the

final estimates θ̂ maximize both the expected complete log likelihood function

as well as the incomplete log likelihood function.

3.5 Statistical inference

When conducting specification tests in Markov switching models, some

care has to be exercised in order to avoid incorrect decisions as a result of

the non-standard distributions of the test statistics involved. An example is

testing whether a given data set may be described by a J-regime model or

whether (J − 1) regimes are sufficient. As shown by Böhning et al. (1994) the

corresponding likelihood ratio statistic will not have the usual χ2- distribution,

but differ from it substantially even in large samples. Another example is the

usual t-statistic forH0 : pji = 0 againstHA : pji > 0. Under the null hypothesis

the transition probability pji lies on the boundary of the admissible parameter

space, thus violating one of the regularity conditions needed in order to derive

the asymptotic normal distribution for the t-statistic.

On the other hand, when the number of regimes J is known, the maximum

likelihood estimate of the parameter vector θ has asymptotically a normal

distribution with covariance matrix derived from the usual estimates of the

information matrix, see Lindgren (1978). Hypothesis tests may be conducted

in the usual fashion, as long as non of the maintained hypothesis violates the

regularity conditions. Therefore, t-statistics for testing whether a particular

regression parameter is significantly different from zero may be compared to

tabulated critical values of the t-distribution. Leroux (1992) shows that if

the number of regimes is unknown a priori it can be determined consistently
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by using information criteria, e.g. the Bayesian information criterion BIC

proposed by Schwarz (1978).

Fernandes and Grammig (2000) have introduced a specification test for or-

dinary ACD models which is based on the discrepancy between the observed

and the theoretical density function of the residuals and is, with minor refine-

ments, applicable to the MSACD model as well. In ordinary ACD models the

test statistic is easily derived by noting that the residuals εn are independently

identically distributed. In contrast to ordinary ACD models the MSACD as-

sumes that residuals follow a known mixture distribution with mean equal to

one and time varying higher moments. Therefore, the null hypothesis is

H0 : ∃ θ ∈ Θ such that g(ε; θ) ≡
1

N
·
N
∑

n=1

gn(ε | Fn−1; θ) = g(ε) (23)

where g(ε) is the true but unknown density of the residuals and g(ε; θ) is the

density implied by the parametric MSACD model. In order to make this test

operational, a kernel density estimate ĝ(ε̂) of the density of the estimated resid-

uals is used and the theoretical density is calculated based on the estimated

parameter vector. Thus, the observed mean squared distance Dg between the

two densities is given by

Dg =
1

N

N
∑

n=1

[

g(ε̂n; θ̂) − ĝ(ε̂n)
]2
. (24)

Under the null hypothesis (23) the statistic FGε has asymptotically a standard

normal distribution. FGε is given by

FGε =
N · h0.5 ·Dg − h−0.5 · ÊDg

√

V̂Dg

, (25)

where h is the bandwidth used for density estimation and is of order o(N−2/5s)

when s is the order of the kernel function employed 9 , ÊDg
and V̂Dg

are con-

sistent estimates of

9 A kernel function K(u) is said to be of order s if its first (s − 1) moments are
zero, while the s-th moment is finite and unequal to zero. The Gaussian kernel
is of order s = 2. In our empirical application we used the bandwidth selector
h = 1.06 · ρ̂ε̂ · (ln(N))−1 ·N−0.2, where N is the sample size and ρ̂ε̂ is an estimate
of the standard deviation of the estimated residuals ε̂.
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EDg
=
∫

u

K2(u)du ·
∫

ε

[g(ε)]2 dε (26)

VDg
=
∫

v





∫

u

K(u) ·K(u+ v)du





2

dv ·
∫

ε

[g(ε)]4 dε, (27)

and K(·) is the chosen Kernel function. The test is conducted as a one sided

test so that large, positive values of FGε lead to rejection of H0.

As a second specification test we apply a method advanced by Diebold

et al. (1998) to test the forecast performance of general dynamic models,

that has been used by Bauwens et al. (2000) to evaluate different types of

ACD models. Denote by {fn(xn | Fn−1; θ̂)}
N
n=1 the sequence of one-step-ahead

density forecasts evaluated using parameter estimates θ̂ from some parametric

model and by {fn(xn | Fn−1; θ)}
N
n=1 the sequence of densities corresponding

to the true, but unobservable data generating process of xn. As shown by

Rosenblatt (1952), under the null hypothesis

H0 : {fn(xn | Fn−1; θ̂)}
N
n=1 = {fn(xn | Fn−1; θ)}

N
n=1 (28)

the sequence of conditional empirical distribution functions (integral trans-

forms) defined by

ζ̂n =

xn
∫

−∞

fn(u | Fn−1; θ̂) du (29)

is uniform i.i.d. on the unit interval. Therefore, any test for uniformity of the

sequence of integral transforms ζ̂n can be used to assess the forecast perfor-

mance of the model under consideration. Consider partitioning the support of

ζn into K equally spaced bins and denote the number of observations falling

into the k-th bin by Nk. The test statistic RTζ

RTζ =−2 ln

[

K
∏

k=1

ςNk

k

ς̂Nk

k

]

(30)

compares the observed relative frequency ς̂k = Nk

N
to the theoretical frequency

ςk = 1
K

and has a χ2 distribution with (K − 1) degrees of freedom under

the null hypothesis. Additionally, the independence feature may be tested

by computing the Ljung and Box (1978) test for the sequence of empirical
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integral transforms ζ̂n. The recommendation of Diebold et al. (1998) is to

supplement statistical tests for i.i.d. uniformity by graphical tools. Departures

from uniformity can easily be detected using a histogram plot based on the

sequence of ζ̂n, while the autocorrelogram for ζ̂n can be used in order to assess

the independence property.

4 Empirical application

4.1 The data set

The data used in our empirical application consists of transactions of the

common stock of Boeing, recorded on the New York stock exchange (NYSE)

from the trades and quotes database (TAQ) provided by the NYSE Inc. The

sampling period spans 19 trading days from November 1 to November 27, 1996.

We used all trades observed during the regular trading day (9:30 - 16:00). The

trading times have been recorded with a precision measured in seconds. Obser-

vations occurring within the same second have been aggregated to one trade,

by summing the corresponding volumes and computing a volume weighted

average of their prices. In the final data set we removed two kinds of censored

durations: Durations from the last trade of the day until the close and from

the open until the first trade of the day.

It is well known that the length of the durations varies in a deterministic

manner during the trading day that resembles an inverted U-shaped pattern,

i.e. intensity is very high after the open and before the close while it tends

to be low during the middle of the day. Engle and Russell (1997) propose

to decompose the duration series into a deterministic function of the time of

day Φ(tn−1) and a stochastic component xn, so that the raw durations are

equal to x̃n = xn ·Φ(tn−1). In order to remove the deterministic component we

apply the two step method proposed by Engle and Russell (1997) in which the

time of day function is estimated separately from other model parameters. 10

10 Simultaneous ML-estimation as in Engle and Russell (1998) and Veredas et al.
(2002) is also feasible. Engle and Russell (1998) report that both procedures give
similar results if sufficient data is available.
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Dividing each raw duration x̃n in the sample by an estimate of the time of day

function Φ(tn−1), a sequence of deseasonalized durations xn is obtained that

is used in all subsequent analysis. 11

Descriptive information about sample moments and Ljung Box statistics

of the raw and the seasonally adjusted duration data is reported in Table 1.

< insert Table 1 about here >

As expected, the adjusted duration series has a mean of approximately one.

Both time series exhibit overdispersion relative to the exponential distribution

which has standard error equal to mean. Another characteristic of the data is

the presence of strong, positive autocorrelation in the trade durations as can

be seen in Figure 1.

< insert Figure 1 about here >

Even after seasonal adjustment, the Ljung-Box tests for no autocorrelation

up to 50 lags are rejected at the 5% significance level, although the shape

of the ACF changes slightly. Therefore, an autoregressive approach appears

to be appropriate as a model for the durations. In order to assess the out-

of-sample forecast quality of the MSACD model, we divide our initial data

set consisting of 9092 observations into two subperiods. The column titled

”In-sample” contains the descriptive statistics for the first 6060 observations

(corresponding to two thirds of the total sample) which are employed to es-

timate parameters used for forecast evaluation. The rest of the data set is

used to compute out-of-sample forecasts based on the estimated parameters.

Descriptive statistics for the second subsample are contained in the column

named ”Out-sample”. Durations in both subsamples appear to have similar

11 Estimates of the time of day function were obtained by conducting a semi-
nonparametric regression of the durations on the time of day according to Gallant
(1981) and Eubank and Speckman (1990). Details on the seasonality adjustment
step are available from the authors upon request.
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characteristics, except for the occurrence of very large durations, which tend

to appear more concentrated in the first subsample.

4.2 Specification of the MSACD Model

We estimate an ordinary ACD model and several MSACD model specifi-

cations with two, three and four regimes. We focus on the class of logarithmic

MSACD models and distinguish between the two different specifications of the

mean function introduced in Section 3.2. The simple variant (10), denoted by

S in the following, may be estimated employing the EM-algorithm, while the

complex variant (11), denoted by S̄ in the following, has to be estimated by

maximization of the incomplete log-likelihood function. In both cases the lag

orders p and q in the recursive mean functions are equal to one. Each regime

specific distribution is chosen to be from the Burr family of distributions with

time-invariant distributional parameters κ(j), σ(j), and a time-variant param-

eter ξ(j)
n = ψ(j)

n · ℵ(j), with

ℵ(j) =
σ(j)

(

1+ 1

κ(j)

)

· Γ
(

1
σ(j) + 1

)

Γ
(

1 + 1
κ(j)

)

· Γ
(

1
σ(j) −

1
κ(j)

) (31)

so the regime specific density of xn is given by

fn (xn | sn = j,Fn−1; θ) =
ξ(j)
n

−κ(j)

· κ(j) · xκ
(j)−1
n

(

1 + σ(j) · ξ
(j)
n

−κ(j)

· xκ(j)

n

)

1

σ(j)
+1
. (32)

The regime specific expectation is equal to E[xn | sn = j,Fn−1] = ψ(j)
n .

The in-sample results of the specification tests, values of the log-likelihood

function and information criteria for all of the model specifications we esti-

mated are presented in Table 2.

< insert Table 2 about here >

The BIC does not support the ordinary ACD model which is nested as a spe-

cial case in the MSACD framework when J = 1. Also, none of the specification
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tests that we performed supports the one regime model. However, the ordi-

nary ACD model is able to capture the autocorrelation pattern of the trade

durations adequately as indicated by the p-value of the Ljung Box statistic

for ζn as well as for εn.

In order to examine the accuracy of forecasts, the in-sample estimates of θ

have been used to compute one step forecasts for the out-sample data. Table

3 contains the p-values of several test statistics as well as the values of the

mean squared error MSE and mean absolute error MAE.

< insert Table 3 about here >

All findings from the in-sample discussion also hold for the out-sample fore-

casting performance of the one regime model. Additionally, the one regime

model performs bad in terms of values of the MSE and MAE. There are

always multiple regime specifications with smaller forecast errors than the one

regime ACD model.

The results for regime switching models indicate a significant improvement

on the performance of the ordinary ACD model. An extensive assessment of

the forecast performance of MSACD models is provided by Hujer et al. (2003),

who show that the degree of improvement depends crucially on the type of

restrictions imposed on the parameter vector. They conclude that even static

mixture ACD models with regime independent dynamics in the mean function

and regime specific distributional parameters perform reasonably well in terms

of forecast accuracy.

For J greater than one, first order MSACD are able to eliminate the dis-

tributional problem of ordinary ACD models and the autocorrelation pattern

in the duration data will be considered adequately. The p-values of the RTζ

and FGε test will rise to over 10%. The hypothesis of no autocorrelation in

the residuals and i.i.d. integral transforms will be statistical significant at con-

ventional significance levels. For a given number of regimes, it is always the

simple variant S that performs better in terms of the BIC and achieves lower
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forecast errors. With regard to in-sample results, the simple specification S

performs generally better than the corresponding S̄ version in terms of results

of the specification tests that we conducted.

The choice of our preferred model was based on the principle of parsimony

and also on our ultimate goal to find a model specification that yields a good

in-sample fit as well as reasonable out of sample forecast performance for

trade durations. The BIC prefers the 2-regime specification, but the results

of the FGε tests do not support the 2-regime specification at all. Therefore,

we focused on the 3-regime simple specification S, since this was the one that

passed through all in-sample specification tests we conducted, while at the

same time it is more parsimonious than the 4-regime model which is also

reflected in lower values of the BIC. Furthermore, this model also showed the

best out of sample forecast performance among all models that we considered

as indicated by the low values of forecast errors. Even though the result of the

FGε test for the out-sample does not support the 3-regime model with simple

mean specification S, we find that it offers a reasonable compromise between

in-sample and out-sample performance.

For purposes of comparison Figure 2 contains plots of the density estimates

for ln[ε̂], as well as the histograms for the series of integral transforms ζ for

the 1-regime and the preferred 3-regime specification.

< insert Figure 2 about here >

The plots for the in-sample clearly show that the MSACD model produces

forecast residuals that match the implied theoretical density very well and

tends to give accurate forecasts over the whole range of observed values of

x. In contrast, the plots for the one regime model show that estimates of

the residual density disagree sharply with the theoretical density, and that it

tends to produce systematically biased forecasts of small x, the histogram for

the first four quantiles is outside of the 95% confidence interval. Out-sample

plots for the one regime model confirm this picture, while the density plots for
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three regime MSACD model reveal that the theoretical and estimated density

of the residuals still seem to match quite well, but the variance of the kernel

density estimates has increased substantially. Furthermore, the out of sample

histogram estimates appear to be more erratic and occasionally lie clearly

outside of the confidence interval. Even so, there is no sign of a systematical

pattern of over- or underestimation as in the case of the one regime model.

Table 4 contains the corresponding parameter estimates and standard er-

rors for the preferred three regime specification.

< insert Table 4 about here >

The parameter estimates for β(j) and α(j) differ only marginally across the

three regimes. But the sign of the constant term ω(j) varies across the regimes,

with a positive value in regime 2 and negative values in regimes 1 and 3.

Furthermore, the second regime provides us with the smallest estimates for

distributional parameters in comparison to other regimes. This has a strong

impact on the shapes of regime specific hazard functions, as shown in Figure 3.

< insert Figure 3 about here >

While in all three regimes the hazard rate tends to rise rather quickly after a

transaction has been observed, the hazard function under the second regime

clearly gives substantively more weight to spells with a length of more than

two units of time.

This corresponds nicely to the fact that regime two has the longest ex-

pected stay D(j) = (1 − pjj)
−1, as well as the highest ergodic probability π(j)

among all three regimes. 12 Roughly 53.1% of all transactions were generated

in this regime, and it takes approximately 2.5 transactions on average to leave

regime 2. The average length of stay and ergodic probabilities for regime 1 with

12 π(j) is a function of the elements of the transition matrix P and can be interpreted

as a long run forecast of the regime probability ξ
(j)
N+r|N for r → ∞, see Kim and

Nelson (1999).

19



D(1) = 1.7 and π(1) = 0.32 as well as regime 3 with D(3) = 1.2 and π(3) = 0.15

are substantively lower. The parameter estimates for the entire sample of 9092

observations reproduced in Table 5 differ from the ”In-sample” estimates only

marginally, thus reinforcing the impression, that the chosen MSACD specifi-

cation provides a robust model for the data generating process of the trade

durations during the sample period under consideration.

< insert Table 5 about here >

It will be used to conduct tests of the implications of a market microstructure

model.

5 Testing implications of sequential trade models

In the framework of Easley et al. (1996), henceforth denoted as EKOP, the

price setting behavior of market makers is explained by differences of traders

information sets with respect to future price movements. Their setup is a

sequential model of the trading process which is driven by the interaction of

two types of traders, informed who observe a signal indicating either that the

asset is either overpriced (bad news) or underpriced (good news) or that there

is no information on the assets true value (no news) and uninformed traders

who do not observe any signal.

The trading behavior of informed traders will depend on the type of the

information signal. When a low signal indicates bad news, the profit maximiz-

ing investment strategy will be to sell the asset, so the aggregate sell arrival

rate will be higher than on a no news day, while on a good news day there will

be a higher occurrence rate of buys. On a trading day without a news event

all transactions result from the arrival of buy and sell orders from uninformed

traders. The arrival rate of both, buy and sell orders by uninformed traders,

is equal and assumed to be determined by an i.i.d. Poisson process. The buy

and sell order arrival rates for informed traders are identical and governed by

an i.i.d. Poisson process, which is independent of the behavior of uninformed
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traders.

Note that the EKOP model implies, that trading evolves in different veloc-

ities, depending on the type of the signal that has been observed by informed

traders. It also implies that the data generating process of trade durations will

be a mixture of two i.i.d. exponential distributions, with mixture probabilities

determined by the probabilities of the information regimes. The information

regime itself is a latent random variable. Thus, the MSACD model may be

regarded as a generalization of the EKOP model, in which it is assumed that

the information regime is not independent in time, but evolves according to

a Markov chain during the trading day, the conditional densities of the trade

durations given the regime are not independent exponentials but rather follow

a (logarithmic) ACD model, with marginal Burr density. Furthermore if the

arrival rates of either uninformed traders or informed traders (or both) are not

restricted to be the same for buy and sell orders, the data generating process

of the trade durations will be a three regime mixture model.

Another implication of the EKOP model, that we would expect to be con-

sistent with our generalization, is that the occurrence of buyer and seller ini-

tiated transactions depends on the information regime. We therefore propose

to test this implication of the EKOP-model by running an auxiliary regression

of the type

b̃n = γ + φ · cos(h(tn)) + δ · sin(h(tn)) +
J−1
∑

j=1

βj · r
(i,j)
n +

P
∑

p=1

ϕp · bn−p, (33)

where b̃n = p(bn = 1) is the probability, that the n-th observed trade is buyer

initiated, r(i,j)
n = ln(ξ

(i)
n|N) − ln(ξ

(j)
n|N), ξ

(j)
n|N is the smoothed inference on the

state of the regime variable sn implied by the estimated MSACD model, bn

is an indicator variable, which is equal to one, if the n-th transaction was

buyer initiated, and equal to zero, if it was seller initiated 13 and the sine and

13 We employ the ’quote test’ proposed by Lee and Ready (1991) to determine the
trade direction. This algorithm compares trade prices to the prevailing bid and ask
prices. If trades occur before quotes are posted, the quote test compares the actual
trade price to lagged trade prices, but if the trading day starts with a sequence of
trades at the same price, it is not possible to classify them unambiguously. In our
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cosine terms are included in order to control for deterministic time of day

effects in the occurrence rates of buys and sells, with normalizing function

h (tn) = 2π · (tn− tmin) · (tmax − tmin)
−1. tmin (tmax) is the time of day at which

trading begins (ends) at the NYSE.

The inclusion of lagged bn helps to account for possible strategic behavior

of the informed traders, who may be reluctant to trade large quantities of the

stock in a single trade, but rather prefer to split trades during the trading day.

It is well known, that trades with large quantities have higher price effects than

small trades, and thus, strategic order placement by informed traders might

help them to hide their information as long as possible. 14

Our specification stresses the magnitudes of the probability of being in

regime i relative to the probability of being in regime j as the main deter-

minant of the inclination to buy. Note that by comparing the magnitude and

the sign of the two β-coefficients we are able to identify the nature of the

information regime unambiguously. A positive coefficient of r(1,2)
n implies that

the inclination to buy will increase, whenever ξ
(1)
n|N > ξ

(2)
n|N . If additionally the

coefficient of the log ratio of regime 1 and 3 has a negative sign, then regime

1 is the no news regime, regime 2 is the bad news regime and regime 3 is the

good news regime. Since the dependent variable is qualitative in nature, we

estimate the parameter vector of the regression function employing the probit

model. In order to find a reasonable specification for the regression function,

we tried several different model specifications, see Table 6.

< insert Table 6 about here >

The three specifications differ only with respect to the inclusion of explana-

tory variables, with model 1 including only a constant and the log ratios r(1,2)
n ,

sample of transactions there were 25 trades in total that could not be classified, so
the sample sizes for the regressions conducted in this section differ from those in
the last section.
14 Another explanation for time dependence of the bn sequence is herding behavior
induced by strategic considerations of uninformed traders, who condition their own
trades on the observed order flow.
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model 2 additionally includes sine and cosine terms, and model 3 includes lags

of bn in the regression function. 15

Model 3 provides the best fit to the data, when judged by the magnitudes

of the R2 goodness of fit measures and the value of the BIC. When lagged

bn are included, the sine and cosine terms tend to become insignificant, but

note that the coefficients of the log ratios in all three models are significantly

different from zero. Also, all three specifications imply, that the first regime

is the good news regime (since, the coefficient of the log ratio of regime 2 and

1 is always negative, implying, that a higher probability of being in regime 1

than in regime 2 increases the probability of observing a buy), while regime 2

is the no news regime and regime 3 is associated with bad news.

Another quantity of interest is the probability of informed trading, that is

implied by the parameter estimates of the EKOP model. The corresponding

quantities for our generalized version of the EKOP model can be derived

from the ergodic probabilities of the Markov chain. For our preferred 3-regime

MSACD model these are equal to π(1) = 0.2873, π(2) = 0.5445, and π(3) =

0.1682, see Table 5. Thus the probability of informed trading in the sample

period is equal to 1 − π(3) = 0.4555, while the probability of being in the

good news regime 1 is roughly two times that of the bad news regime 2. These

results nicely conform to our economic intuition, that the bulk of transactions

results from order placement by uninformed traders, and that the November

of 1996 basically saw a bull market for the common share of Boeing, with

prices rising by 6.25% during our sample period.

6 Conclusions

In this paper we proposed a new framework for modeling autocorrelated

inter trade duration time series obtained from high frequency data sets from

asset markets. The class of Markov switching models has been in use in econo-

15 We included all significant lags of bn in this specification. We also estimated spec-
ifications with higher order lags, but non of the corresponding parameter estimates
appeared to be significant.
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metrics for quite a while, but until now these models were based on marginal

Gaussian processes. We showed that by analogy this framework may be used

to estimate models based on non-Gaussian marginal distributions as well, and

we described two alternative estimation techniques that may be employed in

this context.

The MSACD model introduced in this paper was shown to be a successful

tool for forecasting time series of intraday transaction durations. We showed

that the MSACD model yields better in-sample fit and quite reasonable out-of-

sample forecast performance compared to alternative ACD models. A further

asset of the MSACD model is its interpretation in the context of recent market

microstructure models.

Recently, the ACD-framework has been extended to the multivariate case

as well (see Russell and Engle (1998) and Russell (1999)). A promising strategy

for future research would be to combine the Markov switching approach with

a multivariate extension of the ACD model. This would allow one to develop

a more natural test of implications of many related microstructure models, as

we might be able to explain the evolution of buyer and seller initiated trades

as a bivariate duration process that depends on the unobservable stochastic

information process.
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A Appendix

A.1 The distribution of the residuals in the MSACD model

Starting with the marginal density of xn given in (6), which is a mixture distri-

bution with expectation ψn =
J
∑

j=1
ξ
(j)
n|n−1 · ψ

(j)
n , the density of the residuals εn ≡ xn

ψn

is equal to

gn (εn | Fn−1; θ) = ψn ·

J
∑

j=1

p(sn = j | Fn−1; θ) · fx (εn · ψn | sn = j,Fn−1; θ) , (A.1)

where fx(·) denotes the density function of the durations xn. The mean of εn is
given by

E [εn | Fn−1] = E

[

xn

ψn
| Fn−1

]

=
ψn

ψn
= 1,

and thus independent of n as in a standard ACD model. Recall, that for a mixture

density of the form f (y) =
J
∑

j=1
p(s = j) · fj (y|s = j) the raw (uncentered) moments

µ′m are given by 16

µ′m = E (ym) =
J
∑

j=1

p(s = j) ·E (ym|s = j) .

In order to derive an expression for the variance of εn, we first define V ar(xn |

sn = j,Fn−1) ≡ %
(j)
n . In general the regime specific variance %

(j)
n will depend on

the conditional distribution assumed for xn. The uncentered second moment of xn

is equal to E
(

x2
n | sn = j,Fn−1

)

= %
(j)
n +

(

ψ
(j)
n

)2
and so the regime independent

second moment is E
(

x2
n | Fn−1

)

=
J
∑

j=1
ξ
(j)
n|n−1 ·

(

%
(j)
n +

(

ψ
(j)
n

)2
)

. Thus the regime

independent variance of xn is

V ar(xn | Fn−1) =E(x2
n | Fn−1) − [E(xn | Fn−1)]

2

=

J
∑

j=1

ξ
(j)
n|n−1 · %

(j)
n +

J
∑

j=1

ξ
(j)
n|n−1 ·

(

ψ(j)
n

)2
− (ψn)

2 .

The variance of εn is a function of the moments of xn and is equal to

V ar(εn | Fn−1) =
1

ψ2
n

· V ar(xn | Fn−1)

=

J
∑

j=1

ξ
(j)
n|n−1 ·

%
(j)
n

ψ2
n

+

J
∑

j=1

ξ
(j)
n|n−1 ·

(

ψ
(j)
n

ψn

)2

− 1

=
1

ψ2
n

·E(x2
n | Fn−1) − 1. (A.2)

16 See Cameron and Trivedi (1998), p. 130.
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Thus, in general the variance of εn will change over time (and higher moments of εn
also). From the expression in the second line of (A.2) a sufficient condition for time
invariance of V ar(εn | Fn−1) is satisfied, when all the regime specific conditional

means are equal (ψn = ψ
(j)
n ) and the regime probabilities are independent of time

(ξ
(j)
n|n−1 = π(j)). Expressions for higher order moments can be derived in the same

manner.

A.2 The Moving Average representation

Starting from the ARMA representation

xn =ωn|n−1 − βn|n−1νn−1 + (αn|n−1 + βn|n−1)xn−1 + νn (A.3)

of a linear first order MSACD process with complex specification of the mean func-
tion, successive recursion leads to an infinite sum

xn = ωn|n−1

+

∞
∑

m=1

ωn−m|n−m−1

m
∏

k=1

(

αn−k+1|n−k + βn−k+1|n−k

)

+
(

νn − βn|n−1 · νn−1

)

+

∞
∑

m=1

(

νn−m − βn−m|n−m−1 · νn−m−1

)

·
m
∏

k=1

(

αn−k+1|n−k + βn−k+1|n−k

)

(A.4)

Taking expectations of (A.4) under consideration that E(νn) = 0, we see that

E(xn) =E
(

ωn|n−1

)

+

∞
∑

m=1

E
(

ωn−m|n−m−1

)

·

m
∏

k=1





J
∑

j=1

(

α(j) + β(j)
)

·E
(

ξ
(j)
n−k+1|n−k

)





=





J
∑

j=1

ω(j) · π(j)



 ·
∞
∑

n=0





J
∑

j=1

(

α(j) + β(j)
)

· π(j)





m

=

J
∑

j=1
ω(j) · π(j)

1 −
J
∑

j=1

(

α(j) + β(j)
)

· π(j)

(A.5)

if |
J
∑

j=1

(

α(j) + β(j)
)

· π(j)| < 1 is satisfied.
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Tables

Table 1
Descriptive Statistics for trade durations

Subsamples
Statistic x̃n xn In-sample Out-sample

Mean 48.3248 1.0007 1.0435 0.9151
Standard deviation 61.8416 1.1933 1.2471 1.0727
Minimum 1.0000 0.0141 0.0141 0.0141
1st Quartile 10.0000 0.2323 0.2355 0.2272
Median 27.0000 0.5875 0.6014 0.5589
3rd Quartile 61.0000 1.2980 1.3739 1.1659
Maximum 894.0000 16.1672 16.1672 8.3896
Interquartile range 51.0000 1.0657 1.1384 0.9388
N 9092 9092 6060 3032
Ljung Boxa 3815.6633 1362.7593 1018.9819 249.8529

a The Ljung Box statistic is based on 50 lags. For a significance level of 5% the
tabulated critical value is 67.1671.
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Table 2
In-sample specification tests

Mean
Specification lnLI BIC P (RTζ) P (LBζ) P (FGε) P (LBε)

1 Regime model

-6025.59 12094.74 0.0000 0.3335 0.0000 0.6315

2 Regime model

S -5864.46 11833.44 0.1145 0.4048 0.0015 0.4905
S̄ -5883.20 11870.92 0.0125 0.2562 0.0020 0.5505

3 Regime model

S -5828.55 11840.00 0.2666 0.1609 0.0581 0.1822
S̄ -5840.06 11863.03 0.8391 0.2103 0.4758 0.7746

4 Regime model

S -5804.04 11886.78 0.4558 0.1188 0.7985 0.5552
S̄ -5834.64 11947.99 0.0556 0.0194 0.0349 0.1278

lnLI is the value of the incomplete log-likelihood function, BIC is the Bayesian
information criterion, computed as −2 · lnLI + ln(N) · k, where k is the number
of estimated parameters, P (RTζ) is the p-value of the ratio test for the i.i.d. uni-
formity of ζ, using an histogram estimator for its density based on 20 equal bins,
P (LBζ) is the p-value corresponding to the Ljung-Box statistic for 50 lags of ζ,
P (FGε) is the p-value of the nonparametric Fernandes and Grammig test statistic,
P (LBε) is the p-value corresponding to the Ljung-Box statistic for 50 lags of ε.
All LB-statistics have been compared to critical values from a χ2 distribution with
50 − (p+ q + k) degrees of freedom where k is the number of estimated transition
probabilities.
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Table 3
Out-sample specification tests

Mean
Specification MSE MAE P (RTζ) P (LBζ) P (FGε) P (LBε)

1 Regime model

1.1268 0.7268 0.0000 0.3802 0.0053 0.4840

2 Regime model

S 1.1255 0.7252 0.0228 0.2724 0.0011 0.3382
S̄ 1.1271 0.7266 0.0296 0.2762 0.0002 0.3258

3 Regime model

S 1.1227 0.7205 0.0124 0.0930 0.0000 0.1979
S̄ 1.1236 0.7271 0.0008 0.1466 0.0000 0.1527

4 Regime model

S 1.1247 0.7192 0.0105 0.0156 0.0416 0.0640
S̄ 1.1257 0.7302 0.0008 0.0217 0.0003 0.0127

MSE = N−1
∑

(xn−ψ̂n)
2, MAE = N−1

∑

|xn−ψ̂n|. P (RTζ) is the p-value of the
ratio test for the i.i.d. uniformity of ζ, using an histogram estimator for its density
based on 20 equal bins, P (LBζ) is the p-value corresponding to the Ljung-Box
statistic for 50 lags of ζ, P (FGε) is the p-value of the nonparametric Fernandes
and Grammig test statistic, P (LBε) is the p-value corresponding to the Ljung-Box
statistic for 50 lags of ε. All LB-statistics have been compared to critical values
from a χ2 distribution with 50 − (p + q + k) degrees of freedom where k is the
number of estimated transition probabilities.
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Table 4
In-Sample estimation results

Regime j = 1 Regime j = 2 Regime j = 3
Parameter Estimate Stderr Estimate Stderr Estimate Stderr

Mean function

ω(j) -0.0102 0.0107 0.0243 0.0161 -0.0181 0.0053

α(j) 0.0215 0.0072 0.0238 0.0159 0.0031 0.0018

β(j) 0.9663 0.0154 0.9757 0.0176 0.9883 0.0029

Distribution

κ(j) 2.1565 0.1570 1.6385 0.0776 3.4156 0.3910

σ(j) 0.8749 0.1366 0.3559 0.0516 1.8981 0.3673

Probability

p1j 0.4112 0.0701 0.2572 0.0386 0.3232 0.0817
p2j 0.4206 0.0821 0.5932 0.0377 0.5416 0.0943
p3j 0.1682 - 0.1496 - 0.1352 -

D(j) 1.6984 - 2.4582 - 1.1563 -

π(j) 0.3160 - 0.5307 - 0.1533 -

Standard errors have been computed based on numerical derivatives of the incom-
plete log likelihood function using the quasi-maximum likelihood (QML) estimates
of the information matrix as suggested by White (1982).
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Table 5
Total sample estimation results

Regime j = 1 Regime j = 2 Regime j = 3
Parameter Estimate Stderr Estimate Stderr Estimate Stderr

Mean function

ω(j) -0.0165 0.0166 0.0187 0.0043 -0.0399 0.0167

α(j) 0.0262 0.0125 0.0178 0.0046 0.0077 0.0043

β(j) 0.9511 0.0296 0.9812 0.0046 0.9741 0.0117

Distribution

κ(j) 2.1955 0.1228 1.6577 0.0600 3.0937 0.2745

σ(j) 0.8665 0.1286 0.4080 0.0444 1.6414 0.2246

Probability

p1j 0.3889 0.0581 0.2211 0.0341 0.3279 0.0660
p2j 0.4290 0.0607 0.6065 0.0382 0.5410 0.0849
p3j 0.1821 - 0.1724 - 0.1311 -

D(j) 1.6340 - 2.5413 - 1.1509 -

π(j) 0.2873 - 0.5445 - 0.1682 -

Standard errors have been computed based on numerical derivatives of the incom-
plete log likelihood function using the quasi-maximum likelihood (QML) estimates
of the information matrix as suggested by White (1982).

34



Table 6
Estimation results for probit models

Specification 1 Specification 2 Specification 3
Variable Estimate t-value Estimate t-value Estimate t-value

Constant 0.1551 7.8313 0.1562 7.7974 -0.7724 -24.4609

r
(2,1)
n -0.0843 -4.4836 -0.0835 -4.4281 -0.0484 -2.3643

r
(2,3)
n 0.0367 3.3643 0.0363 3.3200 0.0262 2.2527

cos(h(tn)) - - -0.0322 -1.6852 -0.0117 -0.5685
sin(h(tn)) - - 0.0380 1.9913 0.0193 0.9396

bn−1 - - - - 0.9185 29.5184
bn−2 - - - - 0.3297 9.9441
bn−3 - - - - 0.2080 6.1672
bn−4 - - - - 0.1116 3.2802
bn−5 - - - - 0.0960 2.9754

N 9067 9067 9067
lnL -6180.93 -6177.57 -5169.55
lnL0 -6191.96 -6191.96 -6188.88
LR0 22.0605 28.7946 2038.657
P (LR0) 0.0000 0.0000 0.0000
R2
MZ 0.0039 0.005 0.2869

R2
AN 0.0024 0.0032 0.1837

R2
MF 0.0018 0.0023 0.1647

BIC 12389.20 12400.7 10430.22

N is the number of observations, lnL is the value of the maximized log-likelihood
function, lnL0 is the value of the log-likelihood function when only a constant is
estimated, LR0 is the likelihood ratio statistic for testing the current model against
a specification with constant only, p(LR0) is the corresponding p-value, R2

MZ is
the value of the McKelvey and Zavoina R2, R2

AN is Aldrich and Nelson’s R2, and
R2
MF is McFadden’s R2. t-values have been computed based on QML estimates of

the information matrix.
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Figures

Raw durations x̃n Adjusted durations xn

Fig. 1. Autocorrelation function for durations
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In-sample results

Out-sample results

1-regime specification 3-regime specification

Fig. 2. Results of specification tests. First and third row: Estimates of the den-
sity and corresponding theoretical density of log residuals. Second and fourth row:
Histogram plots of the ζn sequence and 95% confidence intervals.
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Fig. 3. Regime specific λ(x|s = j) and unspecific λ(x) hazard function. Evaluated for

ψ
(j)
n = 1 using the total sample estimates of κ(j), σ(j) and the ergodic probabilities
π(j) from Table 5.

38


