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Abstract 

 

Data envelopment analysis (DEA) is used to assess the efficiency of 15 container terminals in 

Africa. The models proposed by Charnes, Cooper and Rhodes (1978) and Banker, Charnes 

and Cooper (1984) are used to determine and rank the efficiencies of the container terminals 

for 2013 and 2014. The results show that selected South African container terminals can 

improve on their operations relative to some of their neighbours to the North. Bootstrapping 

methods are used to investigate and clarify the results. The Malmquist Productivity Index 

(MPI) model is used to track and explain changes in efficiency over the period of assessment. 

 

Key words: Data envelopment analysis, efficiency, performance evaluation, shipping 

industry, bootstrapping. 
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1. Chapter One: Introduction 

 

1.1 Introduction 

Efficiency methods are useful when trying to compare homogenous operations. Several 

methods to estimate efficiency are available to researchers, and in many cases these methods 

have been compared. This dissertation used one of these efficiency methods to evaluate the 

operations of a selection of container terminals on the African continent. 

 

1.2 Problem Identification 

The motivation for this study was based on discussions with shipping-line companies (van 

Tonder, 2014), and the apparent lack of available information with respect to the 

efficiencies of different ports. These discussions were initiated by my interest in the 

shipping industry and a desire to use the technical skills learnt over the years to contribute 

meaningfully to it. 

 

The efficiency of processes used within 15 chosen African containerised terminals was 

evaluated. These efficiencies were determined by benchmarking African container terminals 

against each other through the use of data envelopment analysis (DEA). DEA is a linear 

programming method used to calculate the relative efficiencies of a set of organisations 

which display homogenous functional traits, but whose efficiency may differ due to internal 

factors. Such organisations are commonly referred to as decision making units (DMUs) 

(Charnes, Cooper & Rhodes, 1978). 

 

In addition, there has been very little documented research in the field of efficiency analysis 

in African container terminals. This lack of knowledge provided an opportunity for this 

dissertation to make a valuable contribution to the literature. 

 

It was believed that efficiency measurements would allow the shipping-line companies to 

benchmark container ports against one another. This would enable the companies to make 

better use of the more productive African container terminals, thereby saving both their time 

and money. The measurements would also make port authorities aware of inefficiencies 

within their port processes. Any relevant improvements could then attract more container 

traffic from shipping-line companies. 
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Particular focus was given to the efficiency of the Ngqura Container Terminal (NCT) and 

the Port Elizabeth Container Terminal (PECT), both situated in the Eastern Cape of South 

Africa. The positioning of NCT and PECT are illustrated in Figure 1.1. This figure shows 

the positioning of South Africa within Africa as well as the ports that are located in South 

Africa. This figure also gives a breakdown of the different forms of cargo, in their 

respective proportions, handled by each South African port. 
 
 

Figure 1.1: Positioning of NCT and PECT in South Africa 

 

Source: (Transnet Port Terminals, 2013) 

 

1.3 Objectives 

The objectives of this study were as follows: 

 To provide an overview of global research conducted on port efficiency. 

 

 To use statistical methods to determine the level of efficiency in the provision of 

container terminal services in South Africa’s NCT and PECT, as well as in other selected 

 Mineral Bulk Cargo 

 Break Bulk Cargo 

 Agricultural Bulk Cargo 

 RoRo Cargo 

 Container Cargo 

 

 

South African Ports 
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African container terminals. DEA and extensions thereof were used to establish relative 

efficiency scores for all the selected container terminals. 

 

 To use the efficiency results for the period 2013 – 2014 to comment on the efficiencies of 

the ports as well as any related trends over the sample period. The results were used to 

make recommendations as to how to improve any efficiency problems faced by the 

container terminals. 

 
 

1.4 Structure of the Dissertation 

This dissertation was structured as follows: Chapter 2 presents a review of the seaport 

literature concerning DEA, extensions of DEA, and other operation research techniques used 

in efficiency analysis. From this review the most suitable techniques were selected for this 

research. Chapter 3 identifies and justifies the variable selection, sample size and 

homogeneity of the sample, using the literature, industry objectives and selected statistical 

tests. Chapter 4 outlines the methodology for several efficiency models. Chapter 5 presents a 

validation of the code used to produce the DEA results. This was achieved by replicating the 

results of similar research. The results are presented and discussed in Chapter 6, with 

conclusions and recommendations in the final chapter, Chapter 7.  
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2. Chapter Two: Literature Review 

 

2.1 Introduction 

DEA is a mathematical technique which allows for the determination of efficiency 

measurements in an environment where input operations influence output operations. The 

volume of literature on DEA research has recently increased with the completion of many 

international and local studies. This increase can be attributed primarily to the 

methodological and computational benefits of the DEA technique (Panayides et al., 2009). 

 

The following literature review provides an introduction to the DEA techniques and studies 

undertaken in the seaport industry. The aim here was to identify the merits and limitations of 

the DEA method in aiding this study’s investigation of container terminal efficiency. 

 

2.2 A Review of the DEA Technique 

A flow chart of the breakdown of efficiency analysis techniques is shown in Figure 2.1. The 

chart shows some of the techniques used directly in this research, as well as a few alternative 

methods. The DEA techniques that this study used to calculate efficiency are highlighted by a 

dashed red line. 

Figure 2.1: Flowchart of Efficiency Analysis Techniques 

 

Efficiency 

DEA 

BCC 
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DEA is part of a large family of frontier estimation procedures. De Borger, Kerstens and 

Costa (2002) classify this family of frontier estimation procedures by functional form and 

measurement error. The functional form relates to a procedure being classified as parametric 

or non-parametric. The parametric approach assumes that a particular functional form with 

constant parameters can represent the boundary of the production possibility set. The non-

parametric approach imposes minimal regularity axioms on the production possibility set and 

directly imposes a piecewise approach on the sample. DEA is a non-parametric frontier 

estimation procedure. The measurement error relates to a procedure being classified as 

deterministic or stochastic. As a deterministic method, DEA takes all observations as given 

and implicitly assumes that these observations are exactly measured. Stochastic methods, in 

contrast, allow for random measurement error. 

 

DEA, as a deterministic non-parametric technique, is used in operations research and 

econometrics for multivariate frontier estimation and ranking. The source of DEA may be 

traced to Farrell’s 1957 study. These origins stem from a methodology of making evaluations 

from realised deviations from an idealised production frontier isoquant. Farrell (1957) 

introduced to this methodology an approach based on developing a piecewise linear, quasi-

convex, envelopment of the data in order to determine the frontier. The frontier is then used 

to measure the relative efficiency. The efficiency values are calculated by comparing the 

relative performance of the organisation under investigation, to the organisation within the 

group with the best practice observed. The model produces measures of efficiency reflecting 

equi-proportional reductions of inputs or outputs onto the best practice frontier, the so-called 

radial efficiency measures (Farrell, 1957). 

 

The technique referred to as DEA is concerned with the efficiency of individual 

organisations. The organisation of interest can be defined as the Unit of Assessment 

(Thanassoulis, 2001) or the Decision Making Unit (DMU) (Charnes, Cooper & Rhodes 

1978). This unit is responsible for controlling the process of production and decision making 

at various levels. These levels include daily operations, short-term tactics and long-term 

strategies. DEA is best suited to measure the efficiency of multiple DMUs each of which 

contain several inputs and outputs (Panayides et al., 2009). 

 

DEA efficiency can be classified into two categories. The first of these is called the technical 

efficiency and is defined as the relative productivity over time, space, or both. The second is 
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the scale efficiency and relates to a possible divergence between the actual and ideal 

production size (Munisamy & Danxia, 2013; Panayides et al., 2009; Wang, Cullinane & 

Song, 2005).  

 

The work of Farrell (1957) was expanded by Charnes, Cooper and Rhodes (1978), who 

introduced a linear programming (LP) methodology, which in turn lead to the DEA Charnes, 

Cooper and Rhodes (CCR) model. The CCR model is applied to situations in which constant 

returns-to-scale are applicable. The efficiency generated by the CCR model is a technical 

efficiency which has both a scale component and a pure technical component, driving the 

efficiency score. The pure technical efficiency measure is determined by comparing 

inefficient DMUs to efficient DMUs of the same scale size. In contrast, the technical 

efficiency measure is determined by comparing each inefficient DMU to efficient DMUs, 

irrespective of scale size. Therefore, the scale efficiency is the ratio of the technical efficiency 

and pure technical efficiency.  

 

The CCR model was followed by the introduction of the DEA Banker, Charnes and Cooper 

(BCC) model by Banker, Charnes and Cooper (1984). The BCC model is applied to 

situations in which variable returns-to-scale are applicable (Panayides et al., 2009). The 

efficiency generated by the BCC model is a pure technical efficiency. The difference between 

the CCR and BCC models is that, while the former provides information on technical and 

scale efficiency, the latter identifies pure technical efficiency alone. If both models are 

applied, then pure technical and scale efficiency can be calculated as separate values. 

 

If both the CCR and BCC models have the same efficient DMUs, then DEA super-efficiency 

and cross-efficiency models are possible. A super-efficiency model, introduced by Andersen 

and Petersen (1993), enabled researchers to distinguish between units rated as efficient, both 

within and between, the CCR and BCC models. An alternative to the super-efficiency 

evaluation is the cross-efficiency evaluation. The cross-efficiency model was pioneered by 

Doyle and Green in 1994. The model can be used to eliminate unrealistic weight schemes of 

classical DEA models and to provide further discrimination among efficient DMUs within 

and between CCR and BCC models. This approach allows for the ranking of the DMUs 

within each model. 
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The Free Disposal Hull (FDH) model is different from the CCR and BCC models as it does 

not operate with a convexity assumption. The FDH model has a discrete nature whereby the 

efficient reference point for an inefficient DMU is not chosen as a point on a continuous 

efficiency frontier, but among the existing DMUs (Pachkova, 2005). The results from 

applying the FDH model, therefore, may be more convincing in practice as counterpart 

DMUs identified as efficient actually do exist in every case. By the very nature of its 

underlying logic and step function solution algorithm, however, the FDH model is not very 

sensitive to comparatively small differences in efficiency. These differences can be better 

identified by the application of the CCR and/or BCC models (Cullinane, Song & Wang, 

2005). 

 

DEA determines efficiency by radially comparing DMUs to the production frontier. The 

production frontier consists of fully efficient DMUs. Inefficient DMUs are enveloped by the 

frontier. To correct for inefficiency, the inefficient DMU’s are projected to the production 

frontier. There are three orientations in which such a projection can take place. One of these 

orientations is called the input orientation and aims to reduce input amounts by as much as 

possible, whilst keeping the output levels fixed, in order to achieve efficiency. The second 

orientation is called the output-orientation and maximises output levels under the present 

input levels to achieve efficiency (Cooper, Seiford & Tone, 2006). The difference between 

these two orientations lies in how the variables are adjusted to achieve the projection path to 

the frontier. In the simplest single input-output situation, the input-oriented model’s 

projection path is horizontal, whilst the output-oriented model’s projection path is vertical 

(Panayides et al., 2009). Either the input-orientation or the output-orientation can be used to 

correct for inefficiency in the CCR and BCC models. The third and final orientation for 

correcting for inefficiency is used in the Additive model. This model is an alternative DEA 

model that adjusts input and output levels simultaneously to achieve efficiency (Cooper, 

Seiford & Tone, 2006). In the simplest single input-output case, the Additive model’s 

projection path is diagonal (Panayides et al., 2009). The BCC and Additive models are 

identical in terms of their production frontiers. The difference being the different projection 

paths to the production frontier for the inefficient DMUs. The orientation of a DEA model 

mainly depends on the nature of the production and the given constraints. The orientation of 

the selected DEA models is discussed in more detail in the Methodology Section (Chapter 4). 
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As a deterministic method, DEA does not explicitly model a random error term and the 

overall deviation from the frontier is interpreted only as inefficiency. However, the DEA 

method does use a sample for the analysis of efficiency. Thus, differences in estimations may 

be due to sampling error rather than actual differences in the efficiency levels of the 

respective DMUs. To overcome this limitation, a bootstrap methodology has been proposed 

to evaluate the sampling variability of DEA results (Hung, Lu & Wang, 2010). Bootstrapping 

in this case, is based on the belief that resampling from the original data, creates replicate 

datasets from which sampling error can be identified and corrected for in the efficiency 

results (Martınez-Nunez & Perez-Aguiar, 2014). 

 

When analysing cross-sectional data, DEA involves the comparison of one DMU with other 

DMUs sampled during the same time period. Panel data not only enables a DMU to be 

compared with other counterparts, but to also assess changes in the efficiency level over a 

period of time. In so doing, panel data reflect the pattern of efficiency of a DMU, and as such, 

are often preferred to cross-sectional data if available (Cullinane & Wang, 2010). 

 

When panel data is used, changes in efficiency are compared using the Malmquist 

Productivity Index (MPI) proposed by Färe et al., (1994). This index produces an efficiency 

change measure referred to as the Total Factor Productivity Change (TFPC). The TFPC 

provides an interpretation of the change in efficiency over time and can be divided into three 

components. These component measurements are; the changes in pure technical efficiency, 

the changes in scale efficiency and, the final component measures changes in technology. 

The change in technology is obtained by measuring the shift in the frontier produced by the 

DEA models from one period to the next. This development has allowed researchers to use 

DEA techniques in combination with the MPI (Panayides et al., 2009).  

 

One technique that has proven to be a popular alternative to DEA for determining the 

efficiencies of DMUs, is Stochastic Frontier Analysis (SFA). SFA was introduced 

simultaneously by Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck 

(1977). SFA assumes that a parametric function exists between production inputs and 

outputs. The analysis not only allows for the calculation of technical efficiency, but also 

acknowledges the fact that random shocks outside the control of producers can affect output. 

In SFA, these random shocks are accounted for in an error term composed of two parts. The 

first is a one-sided component that captures the effects of inefficiency relative to the 
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stochastic frontier. The second is a symmetric component that permits random variation of 

the frontier across firms, and also captures the effects of measurement error, other statistical 

noise, and random shocks outside the firms’ control (Cullinane et al., 2006). 

 

2.3 DEA Applications to Seaport Efficiency Measurement 

This section introduces the chronological sequence of research into seaport efficiency 

developments and provides the platform for the methodology adopted in this study. 

 

DEA has been used extensively to measure container terminal efficiency. Tables A and B in 

Appendix One provide a summary of important DEA based studies completed in the last two 

decades. These tabular summaries list the variables and data sets utilised in each of the 18 

studies. Seventeen of the studies were based outside Africa (see Table A). In contrast, only 

one study to date was conducted on the African continent (see Table B). No study using 

South African data could be sourced from the literature. Three additional studies, listed in 

Table B, are included as they are port efficiency studies in Sub-Saharan Africa using methods 

alternative to those used in this study. 

 

Roll and Hayuth (1993) pioneered the use of DEA to measure port efficiency in the 1990’s. 

Using the CCR model, their analysis evaluated 20 DMUs (ports). The outputs they chose for 

analysis included: container throughput (including container, general cargo and bulk cargo), 

the level of service (ratio between handling time and the total time a ship stays in port), users’ 

satisfaction (a score on a linear scale from 1 to 10, as obtained from a satisfaction 

questionnaire), and ship calls (the number of ship visits to port per year). The inputs selected 

for analysis included: manpower (the annual average number of labourers (un)loading cargo), 

capital (total invested capital during the year in the port and all its related facilities), and 

cargo uniformity (coefficient of variation of the types of cargo). A summary of their results is 

listed in Appendix One). Roll and Hayuth’s application did not use actual data, rather it was 

the first theoretical attempt to apply the DEA technique to measure port efficiency. The 

researchers proposed that the derivation of efficiency ratings should be a regular activity for 

port operators, as it is a useful tool for management control. The researchers concluded that 

DEA is a promising and easily adaptable approach for obtaining efficiency ratings.  
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Poitras, Tongzon and Li (1996) used DEA to measure the relative efficiency of 23 Australian 

and international ports for the year 1991. The empirical results used two output measures; the 

number of 20 foot container equivalent units (TEUs) handled per berth hour (TEUBH), and 

the total number of containers, both 20 and 40 foot, handled per year, (TH). The 20 and 40 

foot containers were treated equivalently. The input measures used were; the mixture of 20 

and 40 foot containers (CONMIX), the average delays in commencing stevedoring, 

calculated as the difference between the berth time and gross working time (BRLWT), the 

average quay crane productivity, represented by the number of containers lifted per quay 

crane hour (TEUCH), the number of gantry cranes present at the port (CRANE), the 

frequency of ship calls (container ships only) (FS), and the average government port charges 

per container (CH). These variables are summarised in Appendix One. The researchers 

applied both the CCR and Additive models to the 1991 data and found that the CCR model 

identifies more inefficient ports (13) than the Additive model (four). This is due to the CCR 

model having stricter relative efficiency criteria than the Additive model. The primary 

contribution of their study is in its methodological developments, such that DEA provides a 

viable method for evaluating port efficiencies (Panayides et al., 2009). 

 

Martinez-Budria et al., (1999) applied the BCC model to measure the efficiency of 26 

Spanish ports. The efficiency for each port was determined yearly during the five year sample 

period (1993-1997). Their model included two outputs, related to throughput and revenue, 

while inputs were financially related. The significance of this work is that they introduce two 

new elements in the application of DEA for the measurement of port efficiency. The first is 

the use of panel data (between 1993 and 1997) and the second is that the researchers 

recognise that the 23 ports have major differences in terms of the complexity associated with 

port size. They separated the 23 ports into three different categories based on complexity 

level (high, medium, low) and calculated efficiency values for each of these groups. The 

study concluded that the more complicated ports show higher comparative efficiency levels 

with a positive trend over time. The medium complexity group illustrate smaller growth in 

efficiency levels over the five year period, whereas the ports with the lowest complexity 

show a negative evolution in terms of relative efficiency levels (Panayides et al., 2009). 

 

Tongzon (2001) used DEA to assess the relative efficiency of selected major Australian ports 

and their international counterparts in the year 1996. The data used was cross-sectional and 

the selected outputs included throughputs and ship working rate.  The chosen inputs were 
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capital, labour, land and delay time. Both the CCR and Additive model were applied, with 

CCR having identified slightly more inefficient ports. These findings corroborate research by 

Poitras, Tongzon and Li (1996). It is recognised that the small sample size (16 observations) 

resulted in more efficient, rather than inefficient ports, leading Tongzon (2001) to 

recommend a larger sample in order to minimise observational biases. 

 

Valentine and Gray (2001; 2002) attempted to establish whether port performance and 

ownership structure were related. The researchers did this through the use of DEA. In their 

2001 study, 21 container ports sampled were retrieved from the Cargo Systems Journal 1999 

list of top 100 container ports. Data was cross-sectional. The outputs used were the number of 

containers and total throughput in tons. Inputs used were the value of the port assets in US 

dollars and quayage in metres. The DEA model used was the CCR model. The researchers 

used public, private and public/private ownership models and simple, divisional and 

bureaucratic port characteristics, to construct nine categories (Panayides et al., 2009). The 

study found the most efficient ownership structure to be joint public/private at an average 

efficiency of 58.5%. This was followed by private ports at 56.78% efficiency, and lastly 

publicly owned ports at 51.26% efficiency. In 2002, Valentine and Gray carried out a similar 

study to their 2001 one, with a sample of 19 ports in North America and Europe for the year 

1998. The outputs used were number of containers and throughput in tons. The inputs used 

were total length of berth and container berth length. The DEA model implemented was the 

CCR model, with cross-sectional data. The researchers found that both geographical regions 

show similar average efficiencies (Panayides et al., 2009). 

 

Barros (2003) analysed 11 seaports located in a wide geographical area of Portugal. MPI was 

used to determine the TFPC between 1990 and 2000. Outputs used were number of ships and 

freight and inputs applied were related to capital and labour. Barros (2003) found that none of 

the 11 authorities achieved total factor productivity improvements within this period. All 

ports achieved improvements in technical efficiency but not technological change. The 

researcher acknowledged the need to benchmark the Portuguese ports with other European 

ports in order to have a broader perspective of their efficiency (Panayides et al., 2009). 

 

Barros and Athanassiou (2004) used DEA to measure the relative efficiency of two Greek 

and four Portuguese ports. The study utilised panel data between 1998 and 2000. Outputs 

included movement of freight, total cargo handled, and containers loaded and unloaded. 
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Inputs included labour and capital. The values of the outputs and inputs were averaged over 

the three years for the CCR and BCC efficiencies to be calculated. The study’s major finding 

is that more than half of the selected ports operate at a high level of pure technical efficiency. 

Barros and Athanassiou (2004) recognised that the dataset was small (the number of DMUs 

was only six), which could explain why so many ports are purely technically efficient 

(Panayides et al., 2009). Similar observational bias was observed in the Tongzon (2001) 

study. 

 

Estache, De La Fé and Trujillo (2004) relied on an MPI to calculate and identify changes in 

productivity for Mexico’s 11 main ports between 1996 and 1999. This is similar to the 

approach applied by Barros (2003). Merchandise in tons is used as the single output. Labour 

and capital are used as inputs. The results indicate that TFPC in Mexican ports rose on 

average by 4.1% per year during 1996–1999. On a year to year basis, this 4.1% average was 

driven by the first three years of the period immediately after port reforms were initiated. 

During the last (fourth) year, there was a generalised technological regression. This was an 

expected result since world trade shrank due to the East Asia crisis—leading to a lack of 

traffic through the ports and thus a decrease in scale efficiency.  

 

The Cullinane, Song and Wang (2005) study contributed to the extant research in that two 

non-parametric approaches, the DEA and the FDH model, were evaluated simultaneously in 

the container terminal industry for the first time. A sample of 57 container ports and terminals 

was studied during 2001.  The output used was container throughput and the inputs consisted 

of both capital and land factors. Analysis of the efficiency estimates yielded by the two DEA 

models (CCR and BCC) and the FDH model confirm that the DEA and FDH methodologies 

tend to give different results. The study found that the results from the FDH model can only 

identify real life efficient benchmark counterpart(s) for the inefficient DMUs to learn from. 

These real life efficient benchmarks do not always represent a complete efficient version of 

the inefficient DMU that the inefficient DMU can learn from. These benchmarks are the 

closest efficient version of the inefficient DMU. This is because the efficient benchmark will 

simply be one of the already existing operating DMUs, whereas in DEA, the perfect efficient 

benchmarks are constructed by weighting fully efficient ports. This produces fully accurate 

efficient benchmarks for the inefficient DMUs to learn from.  
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Barros (2006) applied DEA to evaluate the performances of 24 Italian seaports, using data 

between 2002 and 2003. In the models, operational and financial variables are combined and 

averaged over the two year period. These values are used to calculate the BCC and CCR 

efficiencies. In order to discriminate among efficient ports, Barros (2006) used the cross-

efficiency and the super-efficiency models, concluding that large ports tend to have higher 

efficiency scores. This supports Martinez-Budria et al., (1999). It was also reported that 

containerised ports tend to have higher efficiency scores than less containerised ports. In 

addition, the ports with a smaller employee to sales ratio are more efficient than those with a 

higher employee to sales ratio (Panayides et al., 2009). 

 

Cullinane et al., (2006) undertook an empirical study with the aim of comparing DEA and 

SFA. A 2001 sample of 57 container ports and terminals was used with container throughput 

as the output and five inputs related to land and equipment. The study found similar estimates 

of efficiency in terms of the ranking of the ports for the two approaches. Another significant 

outcome is that the majority of large ports (arbitrarily identified as those with more than one 

million annual TEU container throughputs) are found to be scale inefficient (Panayides et al., 

2009). This contradicted the findings of other similar studies (Barros, 2006; Martinez-Budria 

et al., 1999) that larger ports are more efficient. 

 

Rios and Maçada (2006) applied DEA to assess and rank the efficiencies of container 

terminals of the Mercosur (comprising Argentina, Brazil, Paraguay, Uruguay and Venezuela) 

between 2002 and 2004, using the BCC model. Inputs consisted of land and capital factors. 

Outputs were the number of containers moved and the rate at which they were moved per 

hour per ship. The variables were recorded for each year and the efficiencies calculated using 

the BCC model. Results indicate that 75% of the terminals studied are 100% efficient in 

2002. This figure dropped in subsequent years, reaching only 65% in 2004. The researchers 

conclude that the terminals deemed efficient be considered as benchmarks, and the port 

managers should take reference of the practices used in the efficient terminals to improve 

operations (Panayides et al., 2009). 

 

Wang and Cullinane (2006) used DEA to determine the relative efficiency of Europe’s 

leading container terminals. Data for the year 2002 was used, consisting of 69 leading 

container terminals throughout 24 European countries. The single output used was container 

throughput and the inputs used were land and capital factors. The data collected was used to 
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estimate individual efficiency scores for each port/terminal. The primary finding of this paper 

is the significant inefficiency that generally pervades many of the terminals studied. The 

average efficiency of operations at the container terminals in the study amounted to 42% 

(assuming constant returns-to-scale or CCR) and 48% (assuming variable returns-to-scale or 

BCC). Given the large sample used, the efficiency estimates are likely to be more consistent 

and robust than the results in other studies (Barros & Athanassiou, 2004; Tongzon, 2001). 

The study reported that large production scale is associated with higher efficiency scores. 

This is similar to the findings of Barros (2006) and Martinez-Budria et al., (1999). 

 

Munisamy and Danxia (2013) used the smooth homogenous bootstrapped frontier to obtain 

bias free efficiency estimates of 69 major Asian container ports in 2007. The output used 

was total throughput in TEUs. The inputs included in the analysis were; berth length (in 

metres), terminal area (in metres squared), total reefer points (number of points where 

refrigerated containers can source power), total quayside cranes, and total yard equipment. 

The BCC model was used to determine the efficiencies. Once bias in the efficiency scores 

was addressed using the bootstrapping procedure, the ports were ranked in descending 

order. Munisamy and Danxia (2013) found that efficiency can be improved on average by 

37% through the expansion of outputs, while controlling for inputs, in these ports. 

 

The study by Herrera and Pang (2008) determined the efficiency of container ports for the 

years 2000-2001. The FDH, CCR and BCC models were used to determine the efficiency of 

86 ports. Although the models applied resemble those used in Cullinane, Song and Wang 

(2005), they are only used to determine efficiencies. The study did not compare the FDH and 

DEA procedures as in the Cullinane, Song and Wang (2005) study. The output used was 

container throughput. The inputs were land and capital factors. Output and input measures 

were averaged over the sample period. Results show that the most inefficient ports use inputs 

in excess of 20 to 40 percent. The results found that privately owned ports are more efficient 

than those publicly owned. This is similar to the findings of Valentine and Gray (2001). It 

was also identified that ports in similar geographical regions have similar efficiencies. This 

corroborates the findings of Valentine and Gray (2002).  The researchers also found that 

larger ports are more efficient, strengthening the findings of Barros (2006), Martinez-Budria 

et al., (1999), and Wang and Cullinane (2006), but contradicting those of Cullinane et al., 

(2006). The results showed that scale inefficiency can be remedied by increasing or 

decreasing the scale of production. 
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The study by de Oliveira and Cariou (2011) used the CCR and BCC models to assess the 

efficiency of 122 iron ore and coal ports in 2005. The output used was throughput in tons. 

The inputs selected were; draft (in metres), berth length (in metres), stockpile capacity (in 

tons), and (un)loading rates (metric-tons/hour). Efficiency estimates for 54 loading and 68 

unloading ports showed that the main source of inefficiency in bulk terminals is related to the 

scale. This is similar to the finding of Estache, De La Fé and Trujillo (2004) in the fourth and 

final year of their analysis. The study also found differences between loading and discharging 

ports. 
 

Limited literature exists on the application of DEA in an African port context. The most 

recent of these limited applications was conducted by Al-Eraqi et al., (2007). The study 

determined the efficiency of 22 seaports in Africa and the Middle East. Data was collected 

during six years (2000-2005) and CCR and BCC models applied. The aim of the study was to 

compare seaports situated on the maritime trade route between the East and the West. The 

output used was cargo throughput. The inputs used were; berth length (in metres), distance 

(in nautical miles), and terminal area (in metres squared). The output and input values used 

were averaged over the six years to calculate one efficiency value for each port for the sample 

period. The results showed that the BCC model has more efficient ports than CCR model. 

The average values were 77% and 69%, respectively, similar to results generated by Poitras, 

Tongzon and Li (1996). The inefficiency for CCR and BCC models is due to a decline in the 

numbers of ship calls. Researchers suggest that public and private sector investment can 

improve the efficiency of the inefficient ports in the region through development and 

expansion. 

 

2.4 Justifying Selected DEA Techniques 

The following section provides a justification for the use of DEA techniques to determine the 

efficiency scores of the selected African container terminals.  

 

2.4.1 DEA Models, Orientations and Data Sets 

CCR and BCC models were used in this study to determine the efficiencies of the selected 

African container terminals. This decision was based on the ability of the CCR and BCC 

models to account for constant and variable returns-to-scale. This enabled the author to 

calculate technical, pure technical and scale efficiency, which provided a thorough overview 

of efficiency in the ports. Secondary reasons for choosing the CCR and BCC models were the 
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high frequency of their use within the literature.  Researchers that have used these models 

include; Al-Eraqi et al., (2007), Barros (2006), Barros and Athanassiou (2004), Cullinane, 

Song and Wang (2005), de Oliveira and Cariou (2011), Herrera and Pang (2008) , and Wang 

and Cullinane (2006).  

 

A sample of DMUs was selected from a wider population of DMUs. Thus, sample bias needs 

to be accounted for. The bootstrap methodology was used to investigate the sampling 

variability present within DEA. This study used the Simar and Wilson (2000) method of 

homogenous bootstrapping to extend the DEA models in order to correct for sampling error. 

Sampling error was corrected for within the CCR and BCC estimates of efficiency. The 

removal of sampling error from the efficiency estimates provided a method of distinguishing 

between fully efficient DMUs. This enabled this study to rank the DMUs. Thus, 

bootstrapping provided an alternative to the super-efficiency or cross-efficiency methods. 

Munisamy and Danxia (2013) also applied bootstrapping procedures and successfully 

identified biases present within efficiency results. 

 

Once efficiencies were calculated using the CCR and BCC models, the MPI was used to track 

the movements in technical, pure technical, scale and technological efficiency over the 

sample period. These efficiencies were all sub-components of the TFPC calculated by the 

MPI. A unique benefit of the MPI was that it accounted for the change in technology in 

addition to the changes in technical, pure technical and scale efficiency. The change in 

technology was a result of the shift in the frontier from one sample period to the next. 

Researchers that have used this technique include Barros (2003) and Estache, De La Fé and 

Trujillo (2004).  

 

Many researchers have measured the efficiency in each period correctly using CCR and/or 

BCC models (Martinez-Budria et al., 1999 and Rios & Macada 2006). However, they tracked 

efficiency changes from one period to the next incorrectly by comparing the DEA efficiency 

in one period to the efficiency in the next. This does not account for the change in the sample 

or technology, ignoring the shift in the frontier from one period to the next. Researchers such 

as Al-Eraqi et al., (2007), Barros (2006), Barros and Anthanassiou (2004), and Herrera and 

Pang (2008) used panel data but did not track the efficiency over time. Instead these authors 

averaged the variable values over the sample period to calculate an average efficiency for the 
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sample period. The MPI used in this study was believed to be the best technique for tracking 

efficiency over time as it considered the shift in technology. 

 

The input-orientation and the output-orientation were used in equal frequencies throughout 

the literature surveyed. Wang, Song and Cullinane (2002) mentioned that input-oriented 

models are closely related to operational and managerial issues. However, output-oriented 

models are more associated with strategy development and evaluation. Given that this 

dissertation was concerned with strategy development and evaluation of operations in 

selected African container terminals, the output-orientated approach was selected for the 

DEA models used.  

 

This study used panel data consisting of 15 selected African container terminals during the 

period 2013-2014. Panel data were considered more appropriate to facilitate the measurement 

of efficiency over time. The main implication of cross-sectional data was that one observed 

efficiency at a certain point in time and not over one time period (Panayides et al., 2009).  

 

2.4.2 Combinations of Operations Research Techniques 

No other studies, except for those conducted by Cullinane, Song and Wang (2005), Cullinane 

et al., (2006) and Herrera and Pang (2008), calculated efficiency estimates using DEA and 

other operations research techniques. Cullinane, Song and Wang (2005) and Herrera and 

Pang (2008) used DEA and FDH. Cullinane et al., (2006) used DEA and SFA. This study 

produced efficiency estimates using only DEA. Alternative techniques such as FDH and SFA 

were not considered in this study and are areas for further research and investigation. 

 

2.5 Conclusion 

A review of the DEA techniques, as well as 20 years’ worth of DEA applications in the 

seaport industry, highlighted which DEA techniques are best suited to this study. These 

techniques will be used to calculate the efficiencies of 15 selected African container 

terminals. Output-orientated CCR and BCC models will be used to calculate the technical, 

pure technical and scale efficiencies. This decision was based on the fact that the models 

together provided a thorough overview of port efficiency. Sampling bias within the CCR and 

BCC efficiencies will be corrected for using the Simar and Wilson (2000) method of 

homogenous bootstrapping. The MPI will be used to track changes in the CCR and BCC 
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efficiencies and determine not only differences in the technical, pure technical and scale 

efficiencies, but also changes in technology. 
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3. Chapter Three: Data 

 

3.1 Introduction 

The selected data was obtained from 15 major container terminals on the African continent. 

The data was classified as panel data as it was acquired for the years 2013 and 2014. The 

information was obtained from multiple sources online, with no single source providing the 

majority of the data. The sources used for the data are listed in Table A and B within 

Appendix One as well as within the data references section contained in the references. 

 

Homogeneity within the data was necessary for DEA efficiency scores. This requirement was 

considered by looking at the geographical association between container terminals and the 

nature of the goods moving through them (Panayides et al., 2009). 

 

A pool of potential input and output variables was selected by considering the objectives of 

the container terminals in addition to the variables used in the literature. Thereafter, through 

the use of statistical techniques, a final set of input and output variables was selected from the 

pool of potential variables.  

 

After the final variables were selected, minimum sample size rules within DEA were 

considered to ensure that discriminatory power existed when calculating efficiencies (Sakris, 

2002). 

 

3.2 Homogeneity of the Sample Data 

An important issue in the application of DEA for container terminal efficiency measurement 

was the choice of the terminals. The rationale for this choice hinged on the principle of 

competition, as ranking of relative efficiency was more meaningful between competing ports. 

One had to consider the factors which created a general competitive environment between 

ports. These included the geographical location of the port and the nature of the goods 

moving through the terminals (Goss, 1990).  

 

The African container terminals were compared within countries, particularly South Africa, 

Egypt and Morocco, as well as between countries. Geographical location and the nature of 
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goods needed to be similar for competition to exist, were it within different or identical 

countries (Panayides et al., 2009). 
 

 

The African container terminals selected as DMUs are listed below in Table 3.1. 

 

Table 3.1: African Container Terminals Selected as DMUs 

Container Terminal African Country 

Alexandria International Container Terminal Egypt 

Cape Town Container Terminal South Africa 

Casablanca Container Terminal Morocco 

Damietta Container Terminal Egypt 

Tanzania International Container Terminal Services (Dar es Salaam) Tanzania 

Doraleh Container Terminal Djibouti 

Durban (Pier 1 and Pier 2) South Africa 

Apapa Container Terminal, Lagos Nigeria 

Luanda Container Terminal (CT2) Angola 

Mombasa Container Terminal Kenya 

Ngqura Container Terminal South Africa 

Port Elizabeth Container Terminal South Africa 

Suez Canal Container Terminal (Port Said) Egypt 

Tanger Med (Terminal 1 and Terminal 2) Morocco 

Tema Port Container Terminal Ghana 

Source: See subsection of “References” entitled “Data References”. 

 

The homogeneity of the above 15 container terminals was believed to be strong as all were 

located in one geographical region, namely Africa. The nature of goods travelling through the 

terminals was similar i.e. containers of 20 foot equivalent units (TEU). Some may argue that 

the geographical region was too large to substantiate competition. It should be noted, 

however, that container ports find themselves competing more intensively against ports 

thousands of miles away, in addition to the severe competition experienced from nearby 

rivals (Talley, 2000). This long distance competition exists as a result of globalisation. It is 

argued here that due to globalisation it was reasonable to accept that competition, and thus 

homogeneity, existed between the selected African container terminals. 
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3.3 Variable Selection 

To determine the most frequently used inputs and outputs in the container terminal DEA 

literature, several papers in the literature were reviewed. The majority of these papers were 

discussed in Chapter 2. 

 

Focusing particularly on the input variables, Figure 3.1 illustrates the frequency with which 

the input variables were used in the reviewed papers. 

Figure 3.1: Input Frequencies in Literature Survey 

 

0 2 4 6 8 10 12

Berth Length (in meters)

Size of Terminal Area (in meters squared)

Quay Length (in meters)

Size of Labour Force

Number of Quay Gantry Cranes

Number of Yard Gantry Cranes

Number of Straddle Carriers

Assets (in USD)

Number of Ship-to-Shore Cranes

Number of Stevedore Gangs

Number of Berths

Storage Area (meters squared)

Anual Investment per Port

The Uniformity of Facilities and Cargo

Mix of 20-foot and 40-foot Containers

Average Delays in Comencing Stevedoring

Number of Containers Lifted per Quay Crane Hour

Number of Gantry Cranes

Frequency of Ship Calls

Average Government Port Charges per Container

Labour Expenditure

Depreciation Charges

Miscellaneous Expenditure

Number of Berth, Cranes and Tugs

Length of Delay

Berthing Capacity (in terms of the number of ships)

Cargo-Handling Capacity per Year (units/tons)

Land Factor

Value of Capital Invested

Size of Operating Costs

Distance (Nautical Miles)

Draft (meters)

Stockpile Capacity

(Un)Loading Rates (metric-tons/hour)

Frequency 

In
p

u
ts

 



Chapter Three: Data 

22 
 

It was observed that the most frequently occurring input variables were, in order: 

1. Berth Length (in metres) occurring 10 times. 

2. Size of Terminal Area (in metres squared) occurring nine times. 

3. Quay Length (in metres) occurring eight times. 

4. Number of Yard Gantry Cranes/Number of Quay Gantry Cranes/Size of the Labour 

Force, occurring seven times. 

5. Number of Straddle Carriers occurring five times. 

6. Assets (in USD)/Number of Ship-to-Shore Cranes occurring three times. 

 

These high frequency inputs above were then cross-referenced with industry objectives, in 

order to establish which of the inputs should form the basis of the study’s input variable pool. 

During the process of data collection, multiple meetings were held with international 

shipping-line companies. The purpose of these meetings was to establish which variables 

were important to determine the efficiency of a container terminal. The discussions revealed 

that the variables could be categorised into four sections throughout each container terminal. 

These sections were defined as follows: 

Section 1: the size of the Quay i.e. the berthing capacity provided to ships. 

Section 2: the equipment available on the Quay to aid the loading and unloading of container 

vessels. 

Section 3: the equipment available in the yard just behind the terminal which is used to store 

and move containers around in the yard. 

Section 4: the labour present in all of Sections 1, 2 and 3. 

 

The information provided by the companies coincided with the inputs used in the literature. 

The inputs “Berth Length” and “Quay Length” were included in Section 1. The inputs 

“Number of Ship-to-Shore Cranes” and “Number of Quay Gantry Cranes” were added to 

Section 2 and Section 3 incorporated the inputs “Number of Yard Gantry Cranes” and 

“Number of Straddle Carriers”. Finally, the input “Size of the Labour Force” was included 

into Section 4 identified by the shipping-line companies. The inputs “Size of Terminal Area” 

and “Assets (US$)” could not be integrated into any of the sections and were thus ignored in 

this study. 
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These four categories, identified through the meetings with the companies, encompassed all 

of the most frequently used inputs in the literature. These inputs linked the objectives of 

academia and industry thereby forming the pool of variables from which the final inputs, to 

be used in the DEA models, were selected.  

 

When this pool of inputs was related back to the inputs used by the 15 African container 

terminals, a number of issues became apparent.  

 

The first of these was that information regarding the “Size of the Labour Force” in South 

African ports was not available to the public.  Transnet would not release these statistics. As 

the labour force could not be determined in South Africa, this study did not pursue acquiring 

this input in other African countries. Even if this input was acquired for these countries, it 

would be ignored, as the input would not be present in every DMU.  Therefore, this 

dissertation ignored the labour section, resulting in the pool of input variables becoming 

smaller by one. The lack of availability of the labour input was found to be a common issue 

throughout the literature. The exclusion of this variable would therefore not detract from this 

study’s contribution to the literature. 

 

The second issue was that additional inputs were present in the selected DMUs that were not 

contained within the pool of inputs. These inputs could not be ignored as they fell into the 

sections identified as important by the shipping-line companies. One of these sections was 

Section 2. The additional inputs were “Mobile Cranes” and “Rail Transfer Cranes”. The 

second section was Section 3. The additional inputs to this section were “Rubber-Tyre 

Gantries”, “Empty Handlers” and “Reach Stackers”. 

 

These additional inputs could not be added directly to the pool of inputs as they did not 

appear consistently in each DMU. To solve this problem, a general input was defined in both 

Section 2 and Section 3. In Section 2 this general input was called “Number of Terminal 

Cranes”. This input was equivalent to the sum of; “Mobile Cranes”, “Rail Transfer Cranes”, 

“Ship-to-Shore (STS) Cranes”, and “Quay Gantry Cranes”. In Section 3 the general input was 

called “Number of Operating Yard Equipment”. This input was equivalent to the sum of; 

“Rubber-Tyre Gantries”, “Empty Handlers”, “Reach Stackers”, “Straddle Carriers”, and 

“Yard Gantry Cranes”. “STS Cranes”, “Quay Gantry Cranes”, “Straddle Carriers” and “Yard 

Gantry Cranes” appeared consistently under each DMU. Thus, “Number of Terminal Cranes” 
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and “Number of Operating Yard Equipment” constantly appeared in each DMU, irrespective 

of the proportion in which additional inputs appeared in each DMU.  

 

The inputs present in Section 2 and Section 3, as well as the additional inputs in these 

sections, were included in; “Number of Terminal Cranes”, and “Number of Operating Yard 

Equipment” respectively. Consequently, “Number of Terminal Cranes” and “Number of 

Operating Yard Equipment” replaced their subordinate inputs in Section 2 and Section 3, 

respectively, and therefore in the potential input pool. 

 

In Section 1, the “Berth Length” was defined as the total length of all the berths. Thus, the 

variable was the same as the “Quay Length” variable. As a result, the input “Quay Length” 

was removed from the pool of potential inputs.  

 

To add slightly more detail to the input “Berth Length”, the input variable “Number of 

Berths” was added to the pool of inputs. This variable was included in Section 1. 

 

The final pool of potential inputs are summarized by section in Table 3.2. This final pool of 

potential inputs consisted of; Berth Length (in metres) and Number of Berths in Section 1, 

Number of Terminal Cranes (including STS Cranes, Quay Cranes, Rail Transfer Cranes and 

Mobile Cranes) in Section 2, and Number of Operating Yard Equipment (including Straddle 

Carriers, Gantry Cranes, Rubber-Tyre Gantries, Reach Stackers and Empty Handlers) in 

Section 3. Section 4 was ignored due to the lack of availability of the labour variable in this 

section. Please note that in the rest of this study; “Number of Berths” was abbreviated to 

“Num. Berth”, “Number of Terminal Cranes” abbreviated to “Num. Terminal Cranes”, and 

“Number of Operating Yard Equipment” abbreviated to “Num. Yard Equipment”. It was not 

necessary to abbreviate “Berth Length”. 

 

Table 3.2: Allocation of Potential Input Variables to Sections 1-4 

Section 1 Section 2 Section 3 Section 4 

Berth Length (in 

metres) 
Number of Terminal 

Cranes 

Number of Operating 

Yard Equipment 
Ignored 

Number of Berths 
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In terms of the pool of potential output variables, the literature provides overwhelming 

evidence that “Container Throughput in TEU’s (20 Foot Equivalent Units)” is the output to 

select (see Figure 3.2). This corresponded with the shipping-line companies’ feedback that 

“Container Throughput in TEU’s” was the best measure of output in a container terminal. 

The rationale was due to the relative ease of data collection and it being the primary basis 

upon which container ports were compared.  

 

Figure 3.2: Output Frequencies in Literature Survey 
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potential outputs, such as market share and customer satisfaction (Panayides et al., 2009). 

The author agrees with this sentiment, however, due to time constraints, this study did not 

investigate these issues, and will rather deal with them in future research.  

 

The final pool of potential inputs and outputs for the 15 African container terminals was 

therefore established. More concrete statistical techniques were required to transform this 

pool of potential variables into the variables to be used in the selected DEA models. 

 

The first technique involved establishing whether a positive correlation existed between each 

of the potential inputs and the potential output variable, using the Kendall correlation 

calculation. This was essential in determining whether the inputs used actually affected the 

output. This relationship between the variables ensured that efficiency could be calculated. 

The correlations are listed below in Table 3.3. 

 

Table 3.3: Correlation of Inputs with Output for 2013 and 2014 

Input Variables 2013 Correlation 2014 Correlation 

Num. Berths 0.421 0.316 

Berth Length 0.295 0.238 

Num. Terminal Cranes 0.461 0.473 

Num. Yard Equipment 0.490 0.587 

Num. TEU’s 1.000 1.000 

 

A positive correlation existed between each of the input variables and the output variable for 

both 2013 and 2014. “Num. Terminal Cranes” and “Num. Yard Equipment” had a stronger 

correlation with the output variable “Num. TEU’s” than the berth variables. “Num. Yard 

Equipment” exhibited the highest correlation with the output, with values equalling 0.49 and 

0.59 in both 2013 and 2014 respectively.  “Berth Length”, in contrast, had the lowest 

correlation with the output in both 2013 and 2014, with values equalling 0.30 and 0.24 

respectively. This indicated that capital intensity was very important to throughput, more so 

than the length of the quay in a container terminal. From 2013 to 2014, the berth variable 

correlations with the output decreased and “Num. Terminal Cranes” and “Num. Yard 

Equipment” correlations increased. 

 



Chapter Three: Data 

27 
 

The second statistical technique applied to identify final variables was called the forward 

Efficiency Contribution Measure (ECM) (Pastor, Ruiz & Sirvent, 2002). The forward ECM 

identified the significance of the potential variables, called candidate variables, in terms of 

their contribution to the efficiency measures of K DMUs (Pastor, Ruiz & Sirvent, 2002). The 

influence of a candidate variable was measured by the value 𝜙𝑘, where 𝑘 = 1, 2, … , 𝐾 

(Pastor, Ruiz & Sirvent, 2002). The value 𝜙𝑘 represents the proportional change to the 

efficiency of 𝐷𝑀𝑈𝑘, where 𝑘 = 1, 2, … , 𝐾, when the candidate variable was added to the 

DEA model (Pastor, Ruiz & Sirvent, 2002). To assist in determining whether the proportional 

change in the efficiency, 𝜙𝑘, across K DMUs was significant or not the forward ECM 

procedure defined two parameters externally (Pastor, Ruiz & Sirvent, 2002). These 

parameters were defined according to what the study believed to be reasonable. 

 

The first parameter was an efficiency score level. This level was represented by �̅�0, where 

�̅�0 > 1. The �̅�0 was the tolerance level for changes in efficiency scores when a candidate 

variable was added to the DEA model (Pastor, Ruiz & Sirvent, 2002). The second parameter 

was the probability level. The probability level was represented by 𝑝0, where 0 < 𝑝0 < 1. 

The 𝑝0 was the proportion of DMU’s with an efficiency change that exceeded the tolerance 

level (Pastor, Ruiz & Sirvent, 2002). As an example, 𝑝0 = 0.20 and �̅�0 = 1.1 indicated that 

efficiency scores of more than 20% of the DMUs would have to increase by more than 10% 

when a candidate variable was added to the DEA model for the candidate variable to be 

considered significant (Pastor, Ruiz & Sirvent, 2002). Thus, �̅�0 and 𝑝0 provided an operative 

influence statement to be tested by the ECM (Natatraja & Johnson, 2011). 

 

Let Ω1, Ω2, … , Ω𝐾 denote a sample from the distribution of the random variable Ω, since the 

values of the random variable are measures of the influence of the candidate variable on K 

DMUs (Pastor, Ruiz & Sirvent, 2002). The distribution of the random variable Ω was defined 

on the interval [0,1) (Pastor, Ruiz & Sirvent, 2002). An indicator variable, 

 

𝐴𝑘 {
1  𝑖𝑓 Ω𝑘 > �̅�0 
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.1) 

 

for 𝑘 = 1, 2, … , 𝐾, was defined (Pastor, Ruiz & Sirvent, 2002). Let 𝑝 = 𝑃(Ω > �̅�0), then it 

follows that 𝐴 = ∑  𝐴𝑘
𝐾
𝑘=1  follows a binomial distribution with parameters 𝐾 and 𝑝 (Pastor, 

Ruiz & Sirvent, 2002). Using 𝐴 as a test statistics the following was tested: 
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𝐻0 : 𝑝 ≤ 𝑝0 

𝐻1 : 𝑝 > 𝑝0 
(3.2) 

 

The rejection of the null hypothesis in this case will indicate that there is sufficient statistical 

evidence to conclude that the total efficiency scores of more than 𝑝0 × 100% changed by 

more than �̅�0 × 100% when the candidate variable was included in the model. To calculate 

p-values for this test it will be considered that 𝐴~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐾 − 1, 𝑝0) under the null 

(Pastor, Ruiz & Sirvent, 2002). The distribution considers 𝐾 − 1 DMU’s as DEA is a 

benchmarking technique that requires at least one DMU, 𝐷𝑀𝑈𝑘, to be fully efficiency in 

order to calculate the remaining relative efficiencies. Thus, 𝐷𝑀𝑈𝑘 will experience an 𝜙𝑘 

value equal to zero. The p-value, 𝑝𝑣𝑎𝑙, for the test was calculated as 

 

𝑝𝑣𝑎𝑙 = 𝑃(𝐴 > 𝐴0), (3.3) 

 

where 𝐴0 was the observed value of 𝐴 (Pastor, Ruiz & Sirvent, 2002).  

 

The tolerance level (�̅�0) used was equivalent to 1.01 and the proportion level (𝑝0) equivalent 

to 0.1. The levels were selected to ensure sensitivity to change. The levels selected were also 

in line with the literature (Pastor, Ruiz & Sirvent, 2002; Natatraja & Johnson, 2011). The p-

value, together with a desired significance level, was considered to determine whether the 

test-statistic, and its associated candidate variable, was significant (Pastor, Ruiz & Sirvent, 

2002). 

 

The forward ECM procedure was conducted on both the CCR and the BCC models in 2013 

and 2014. The orientation of the models was output-orientated. The significance level used in 

the forward ECM was 10%. The ECM consisted of three rounds to determine which of the 

four potential inputs was significant (Pastor, Ruiz & Sirvent, 2002). 

 

Tables C and D in Appendix Two illustrate the forward ECM procedure in detail. The 𝑋 

variables defined in the forward ECM represented the significant input(s) at the start of each 

step or round. These were the final input(s) to be used in the DEA models selected. Each 

round needed at least one significant input, or 𝑋, so that an efficiency measure could be 

calculated. As no test was conducted at the start of the forward ECM to prove the 
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significance of the initial 𝑋 input, this input had to be selected by other, credible, means. 

Thus, the initial 𝑋 variable had to be, without a doubt, the most important input amongst the 

potential pool of input variables. So important that it could immediately be considered as a 

final input to be used in the selected DEA models. This study identified its initial input by 

analysing the frequency with which the inputs were used in the literature as well as 

considering the input’s importance in the industry. The initial 𝑋 input selected was “Berth 

Length” as it was the most frequently used input in the literature surveyed, as evident in 

Figure 3.1. “Berth Length” was also identified by shipping-line companies as being important 

in calculating their industry efficiency measures. As such, “Berth Length” became the first 

definitive input to be used in the selected DEA models (Pastor, Ruiz & Sirvent, 2002). 

 

The 𝑍 variables defined in the forward ECM were the candidate (potential input) variables. 

These initially included; “Num. Berths”, “Num. Terminal Cranes”, and “Num. Yard 

Equipment”. In each round, the forward ECM identified the candidate variable that made the 

most significant (smallest p-value) contribution to the efficiency value. The most significant 

candidate then became an input variable 𝑋 in the next round of the forward ECM. This 

continued until there were no further significant candidates remaining. At this point, all the 

significant candidates, including the initial 𝑋 input, were the final input variables to be used 

in the DEA models selected (Pastor, Ruiz & Sirvent, 2002). 

 

The 𝑌 variable defined in the forward ECM represented the final output(s) “Num. TEU’s” to 

be used in the selected DEA models (Pastor, Ruiz & Sirvent, 2002). As there was only one 

potential output variable, it was not possible to perform this stepwise procedure with the 

output. Despite that, the output “Container Throughput in TEU’s” was selected as the final 

singular output. The reason for this being that the output was shown to be frequently used in 

the literature and industry for efficiency measurement. An additional reason for the selection 

of this output was that it strongly correlated with the potential inputs. The author is therefore 

confident of its significant contribution towards the efficiency value calculated using DEA 

(Pastor, Ruiz & Sirvent, 2002). 

 

In Tables C and D of Appendix Two, the colour red indicates the most significant candidate 

variable in each round. The colour green indicates insignificant candidate variables and the 

yellow colour highlights the final inputs selected. 
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In the 2013 CCR model, “Num. Yard Equipment” (1.000e-14), “Num. Terminal Cranes” 

(1.251e-06) and “Num. Berths” (0.002) was the order of significance. “Num. Yard 

Equipment” had the biggest effect on the CCR efficiency, followed by “Num. Terminal 

Cranes” and “Num. Berths” respectively. 

  

By contrast, in the 2013 BCC model, “Num. Terminal Cranes” (2.729e-09), “Num. Yard 

Equipment” (0.002) and “Num. Berths” (0.009) was the order of significance. “Num. 

Terminal Cranes” had the biggest effect on the BCC efficiency, followed by “Num. Yard 

Equipment” and “Num. Berths” respectively.  

 

In the 2014 CCR model, “Num. Yard Equipment” (1.270e-12) followed by “Num. Terminal 

Cranes” (0.009) was the order of significance. “Num. Yard Equipment” had the biggest effect 

on the CCR efficiency, followed by “Num. Terminal Cranes”. “Num. Berths” had no 

significant effect on the efficiency, with a p-value of 0.415.  

 

 “Num. Yard Equipment” (1.721e-05) followed by “Num. Terminal Cranes” (0.044) was the 

order of significance in the 2014 BCC (VRS) model. “Num. Yard Equipment” had the 

biggest effect on the BCC efficiency, followed by “Num. Terminal Cranes”. Again, “Num. 

Berths” had no significant effect on the efficiency score, with a p-value of 0.415. 

 

“Num. Berths” made no significant contribution to the DEA efficiency score. Thus, this 

variable would generally not be considered as a final input. However, it was retained in the 

CCR and BCC models for 2014 as it had a positive correlation (0.316) to the output “Num. 

TEU’s”. The variable was also found to be significant in 2013 and was a strong subordinate 

component of “Berth Length”, which was one of the most important inputs.  

 

Given their positive correlations, significant p-values and general importance, “Berth 

Length”, “Num. Terminal Cranes”, “Num. Yard Equipment” and “Num. Berths” were chosen 

as the final inputs. These inputs were used in the respective DEA models in 2013 and 2014 to 

calculate efficiency. 

 

The descriptive statistics for the final inputs and output are listed in Table 3.4. 

 



Chapter Three: Data 

31 
 

Table 3.4: Descriptive Statistics for Input and Output Variables 2013 and 2014 

Variable Descriptive 

Statistic 

2013 2014 

Berth Length (in metres) Number of Ports 15 15 

Minimum 400 400 

Maximum 2668 2668 

Mean 1109.333 1109.33 

Median 926 926 

SD 667.874 667.874 

Number of Berths Minimum 2 2 

Maximum 11 11 

Mean 4.8 4.8 

Median 4 4 

SD 2.731 2.731 

Number of Terminal 

Cranes 

Minimum 4 4 

Maximum 25 27 

Mean 9.867 10.133 

Median 8 8 

SD 6.081 6.424 

Number of Operating Yard 

Equipment 

Minimum 13 13 

Maximum 90 90 

Mean 38.2 38.4 

Median 29 29 

SD 20.953 21.260 

Container Throughput in 

TEU’s 

Minimum 289963 259917 

Maximum 4100000 4100000 

Mean 1207552 1286135 

Median 825189 860000 

SD 1043799 1085773 

 

The descriptive statistics indicate above that “Berth Length” and “Num. Berths” was 

unchanged over the sample period. There were slight increases in “Num. of Terminal 

Cranes”, “Num. Yard Equipment” and “Num. TEUs”. There were large differences between 

mean and median values in some of the variables. These differences were present in both 

2013 and 2014. The distributions of these variables were skewed to the right, believed to be 

caused by the outlier Port Said. This port was the only African container terminal to be 
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ranked in the top five container terminals in terms of TEU throughput, in the Mediterranean, 

for both 2013 and 2014 by Containerisation International (2015). 

 

3.4 Rules for Minimum Sample Size in DEA 

There are rules within the DEA literature that need be considered to ensure a minimum 

sample size in order to maintain discriminatory power of the DEA model. If this 

discriminatory power was not present in the DEA model, efficiency values would be biased 

upward to a point where DMUs that were inefficient, would be incorrectly identified as 

efficient. This would occur as a result of the sample of DMUs being too small (Panayides et 

al., 2009; Sakris, 2002). 

 

Four rules were identified to ensure that discriminatory power existed within the selected 

DEA models. These rules are listed below in Table 3.5. Each rule was met, ensuring the 

presence of discriminatory power in the selected DEA models. 

 

Table 3.5: Minimum Sample Size Rules for Discriminatory Power 

Rules 
Rule’s Minimum 

Sample Size 

Study’s Minimum 

Sample Size 

Discriminatory 

Power Exist 

(Yes)/Doesn’t Exist 

(No) in This Study 

Boussofiane, Dyson and 

Thanassoulis (1991) 

stipulate that to get good 

discriminatory power out 

of the CCR and BCC 

models the lower bound 

on the number of DMUs 

should be the multiple of 

the number of inputs and 

the number of outputs. 

4 15 Yes 

Golany and Roll (1989) 

establish a rule that the 

number of units (DMUs) 

should be at least twice the 

number of inputs and 

outputs considered. 

10 15 Yes 
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Bowlin (1998) mentions 

the need to have three 

times the number of 

DMUs as there are input 

and output variables. 

15 15 Yes 

Dyson et al.,(2001) 

recommend a total of two 

times the product of the 

number of input and 

output variables. 

8 15 Yes 

Source: (Sakris, 2002) 

 

3.5 Conclusion 

Homogeneity existed between the terminals given their geographical association and the 

nature of the goods moved through the terminals (Panayides et al., 2009). The input variables 

selected for the sample period were; Berth length, Number of Berths, Number of Terminal 

Cranes, and Number of Operating Yard Equipment. The output variable selected for the 

sample period was Container Throughput (in TEU’s). The variables were selected based on 

the high frequency with which they occurred in the literature, their importance in industry, as 

well as their positive correlation and significance in the statistical tests. Four popular 

minimum sample size rules were met. This ensured that discriminatory power existed within 

the selected DEA models. 
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4. Chapter Four: Methodology 

 

4.1 Introduction 

This section introduces the reader to the DEA methodology adopted in this study. Firstly, the 

technique used to calculate the relative efficiency for the simplest input-output case is 

illustrated. This is followed by a description of how to calculate efficiency for the single 

variable input-double variable output case, and concludes with the multiple input-output case. 

This process provides a basis for the methodologies of the CCR and BCC models used to 

calculate efficiency in a multiple input-output case. These models will be used to calculate 

efficiency within the selected African container terminals case study. 

 

The CCR and BCC models calculate technical efficiency (TE) and pure technical efficiency 

(PTE), respectively. In addition, to account for all forms of efficiency present in the selected 

African container terminals, the BCC methodology is extended to calculate scale efficiency 

(SE). 

 

A smooth homogenous bootstrapping procedure and the MPI are also presented in this 

section. The bootstrapping procedure is used to correct for sampling error bias present in the 

efficiency results, whilst the MPI is used to track efficiency changes over the sample period. 

 

4.2 Single Input-Output Efficiency Measures 

To provide the basics needed to understand the methodology related to DEA a single input-

output example was used to produce efficiency measures. This illustration of an example 

follows from Cooper, Seiford and Tone (2007), and provides a simple approach to those 

unfamiliar with DEA. The variable “throughput” is the output and the variable “stevedores” 

is the input. Stevedores are labourers that assist in the uploading and offloading of containers 

from the vessel. The variables were recorded for eight terminals labelled 𝑇1 to 𝑇8. The 

values of the variables for each terminal, as well as the productivity of each, are listed in 

Table 4.1. 
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Table 4.1: Single Input-Output Case 

Terminal T1 T2 T3 T4 T5 T6 T7 T8 

Stevedores 2 3 3 4 5 5 6 8 

Throughput 1 3 2 3 4 2 3 5 

Throughput/Stevedore 

(Productivity) 
0.5 1 0.67 0.75 0.8 0.4 0.5 0.63 

Source: (Cooper , Seiford & Tone, 2007) 

 

The basis of the DEA efficiency measure was the following productivity ratio 

𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
. (4.1) 

 

The above commonly used ratio measured the productivity of the terminals in this study. 

Based on terminal productivity defined as throughput per stevedore, 𝑇2 was considered to be 

the most productive terminal and 𝑇6 the least productive terminal (Cooper, Seiford & Tone, 

2007).  

 

For ease of interpretation, the results were shown graphically. The terminals were plotted as 

points in terms of their input and output values in Figure 4.1.  Stevedores were represented on 

the horizontal axis and throughput on the vertical axis. The slope of the line connecting each 

point to the origin corresponded to the productivity of that particular point in terms of Eq. 

(4.1) (Cooper, Seiford & Tone, 2007). 
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Figure 4.1: Illustration of the Efficient Frontier 

 

Source: (Cooper, Seiford & Tone, 2007) 

 

The line with the most positive slope in this case was that connecting 𝑇2 to the origin. This 

slope indicated the productivity of the terminal and was called the efficient frontier. The 

efficient frontier enveloped the unproductive points, namely 𝑇1, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7 and 

𝑇8, hence the terminology for DEA - data envelopment analysis. The efficient frontier in 

Figure 4.1 exhibited constant returns-to-scale because for every one unit increase in input 

there was a corresponding unit increase in output (Cooper, Seiford & Tone, 2007).  

 

The above ratio only considered the productivity of each terminal, and not its efficiency. To 

compare terminals, efficiency was defined as relative productivity. Within the relative 

productivity calculation, a benchmark productivity measurement was required to allow for an 

efficiency calculation for each terminal. Traditionally this benchmark measure was the 

productivity of the most efficient terminal, in this case, 𝑇2. The starting point for every 

efficiency calculation was therefore the determination of the efficient frontier as this frontier 

represented the performance of the most productive DMU, in this case terminal 𝑇2. As a 

result, the efficiency of each of the eight terminals was the productivity of each terminal 
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relative to the productivity of 𝑇2. Accordingly, DEA identified the most productive DMU, in 

this case 𝑇2, to serve as the benchmark to use in the comparisons. Thus, the following 

computation was applied  

 

0 ≤
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝑠𝑡𝑒𝑣𝑒𝑑𝑜𝑟𝑒 𝑜𝑓 𝑇𝑛

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝑠𝑡𝑒𝑣𝑒𝑑𝑜𝑟𝑒 𝑜𝑓 𝑇2
≤ 1 (4.2) 

 

where 𝑛 = 1, 2, … , 8, to determine the efficiency of each terminal. The efficiency results 

were between zero and unity. The full set of efficiency results obtained by applying this 

computation is listed in Table 4.2 (Cooper, Seiford & Tone, 2007). 

 

Table 4.2: Efficiency 

Terminal T1 T2 T3 T4 T5 T6 T7 T8 

Efficiency 0.5 1 0.67 0.75 0.8 0.4 0.5 0.63 

Source: (Cooper, Seiford & Tone, 2007) 

 

Defining efficiency as a relative productivity, as seen in Eq. (4.2), was based on the unit 

invariance property. If this study were to define efficiency and productivity values as equal, 

the value of efficiency would depend on the unit of measurement. However, defining 

efficiency as a relative productivity eliminated the effect of the unit of measurement. This 

was useful when measuring the efficiency of DMUs consisting of multiple inputs-outputs, 

where all were measured in different units of measurement (Cooper, Seiford & Tone, 2007). 

 

Inefficiency in the DEA model was the distance of an inefficient DMU, from an efficient 

version of itself, on the efficient frontier. Thus, to correct for inefficiency in a DEA model, an 

inefficient DMU was projected from its current point to a point on the frontier. To illustrate 

this movement, one of the inefficient DMU’s 𝑇1 was isolated in Figure 4.2. This movement 

was achieved by reducing the current input levels (number of stevedores) to move DMU 𝑇1 

to 𝑇1𝐴 , with coordinates (1, 1) on the efficient frontier. This orientation towards the efficient 

frontier was referred to as the input-orientation. The input-orientation involved a horizontal 

shift of DMU 𝑇1 to the efficient frontier. Another movement for correcting the inefficiency 

of DMU 𝑇1 involved raising the throughput up to move 𝑇1 to 𝑇1𝐵 (2, 2) on the efficient 
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frontier. This orientation towards the efficient frontier was referred to as the output-

orientation. The output-orientation involved a vertical shift of DMU 𝑇1 to the efficient 

frontier. Thus, the orientation selected for the DEA model determined how the model 

corrected for inefficiency (Cooper, Seiford & Tone, 2007). 

 

Figure 4.2: Correcting for Inefficiency in DEA 

 

Source:  (Cooper, Seiford & Tone, 2007) 

 

 

The approach used to determine the relative efficiency in a single input-output setting would 

not be appropriate when calculating efficiency in the selected African container terminals. 

Consequently, this approach needed to be adapted to consider more than a single input and 

output in order to calculate the efficiency of a multivariable terminal.  

 

The purpose of this simplified case was to introduce the basics of the DEA methodology, 

including its productivity ratio and the efficient frontier. These two components were 

essential parts of the benchmarking approach that DEA adopted towards calculating the 

efficiency of a DMU. This case also explained that DEA calculated relative efficiency to 

maintain the property of unit invariance. Finally, this case illustrated how the input- and 
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output-orientation work when correcting for inefficiency. These basics are extended to 

calculate efficiency for the selected African container terminals during the sample period. 

 

4.3 One Input-Two Outputs Case 

To make the extension to a multiple input-output case, this section considered the one input-

two outputs case. Again this was an illustration of an example from Cooper, Seiford and 

Tone (2007). Their example provided a simple approach to build on the methodologies used 

in the single input-output case. The input was “stevedores” and the outputs were “satisfied 

customers” and “throughput”. These variables were recorded for seven terminals labelled 𝑇1 

to 𝑇7. The variables and terminals are listed in Table 4.3. The input variable was defined as 

the only 𝑥 variable. The two output variables were defined as 𝑦 variables (Cooper, Seiford & 

Tone, 2007). 

 

Table 4.3: One Input-Two Outputs Case 

Terminal T1 T2 T3 T4 T5 T6 T7 

Stevedores 𝑥 1 1 1 1 1 1 1 

Satisfied 

Customers 
𝑦1 1 2 3 4 4 5 6 

Throughput 𝑦2 5 7 4 3 6 5 2 

Source: (Cooper, Seiford & Tone, 2007) 

 

To calculate the efficiency using DEA in a one input-two outputs case the first step was to 

divide each output by the number of stevedores as it was considered the only input of interest 

in this example. This division allowed for a unitised efficient frontier to be constructed.  

 

Figure 4.3 depicts the efficient frontier. This efficient frontier was constructed slightly 

differently to the efficient frontier in Figure 4.1. The efficient frontier in this multiple variable 

case was simply the line connecting the terminals that produced the most outputs with their 

given input. In the single input-double outputs case, these terminals were 𝑇2, 𝑇5, 𝑇6 and 

𝑇7. The trade-offs between these terminals were not discussed here. It was simply noted that 

none of the terminals on the frontier line could increase one of its outputs without worsening 

the other. As a result, it made sense to see these terminals as efficient. Figure 4.3 also depicts 
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the production possibility set. This was the region bounded by the axes and the frontier line. 

Figure 4.3 also depicts the labelled terminals which were plotted in terms of their unitised 

outputs given the unitisation of the efficient frontier (Cooper, Seiford & Tone, 2007). 

  

Figure 4.3: One Input-Two Outputs Case 

 

Source: (Cooper, Seiford & Tone, 2007) 

 

Terminals 𝑇1, 𝑇3 and 𝑇4 were inefficient as they were enveloped by the efficient frontier. 

Their efficiency could be evaluated by referring to the efficient frontier as a benchmark. To 

compute the efficiency of a particular DMU in this single input-double outputs variable case, 

a ratio was constructed and solved. This ratio consisted of the radial distance of a DMU 

relative to the radial distance of an efficient version of itself on the efficient frontier. This 

efficient version of itself may have been an existing efficient DMU or just a point on the 

efficient frontier. This point on the efficient frontier was referred to as the efficient composite 

of that particular DMU (Cooper, Seiford & Tone, 2007).  

 

To demonstrate the benchmarking approach in this single input-double outputs case, the 

efficiency of 𝑇4 was evaluated in Figure 4.4. This efficiency was calculated by the relative 

distance measure 
𝑑(𝑂,𝑇4)

𝑑(𝑂,𝑇8)
. The measures 𝑑(𝑂, 𝑇4) and 𝑑(𝑂, 𝑇8) represented the distances 
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from the origin to 𝑇4 and the origin to 𝑇8, respectively. The distance ratio used to evaluate 

the efficiency was referred to as a radial measure. As the radial extension of 𝑇4 did not 

coincide with an existing efficient terminal on the efficient frontier, an efficient composite of 

𝑇4 had to be defined. The terminal 𝑇8 was the efficient composite version of 𝑇4 and that 

point represented the radial intersection between the radial extension of 𝑇4 to the efficient 

frontier and the efficient frontier. The terminal 𝑇4 was benchmarked against 𝑇8 to determine 

its efficiency. The Euclidian measures were given by 𝑑(𝑂, 𝑇4) =  √42 + 32 = 5 and 

𝑑(𝑂, 𝑇8) =  √(
16

3
)2 + 42 =

20

3
. The terms under the radical signs were squares of 

𝑦1

𝑥
 and 

𝑦2

𝑥
 

variables of 𝑇4 and 𝑇8 , respectively.  As 𝑇4 was an existing terminal, its 
𝑦1

𝑥
 and 

𝑦2

𝑥
 values 

were obtained from Table 4.3. However, T8 was an efficient composite of T4 that needed to 

be defined. Thus, the 
𝑦1

𝑥
 and 

𝑦2

𝑥
 values needed to be calculated. This point of intersection could 

be found by solving simultaneously for  
𝑦2

𝑥
=

3

4

𝑦1

𝑥
 and 

𝑦2

𝑥
= 20 − 3

𝑦1

𝑥
. Substituting the 

distance values into the ratio of distances 
𝑑(𝑂,𝑇4)

𝑑(𝑂,𝑇8)
 yielded 5 ÷

20

3
=

15

20
= 0.75, or an efficiency 

of 75% for T4 (Cooper, Seiford & Tone, 2007).  

 

Figure 4.4: Efficiency Illustration in the Single Input-Double Outputs Case 

 

Source: (Cooper, Seiford & Tone, 2007) 
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The efficiency results generated were between zero and unity. This was due to the ratio being 

formed relative to the Euclidian distance from the origin over the production possibility set. 

However, in this case study the output-orientation was needed to correct for inefficiency. 

Thus, this research used calculations which corrected for outputs, while maintaining inputs, 

to obtain efficiency. As a result, the interpretation of the efficiency ratio was in terms of its 

reciprocal 
𝑑(𝑂,𝑇8)

𝑑(𝑂,𝑇4)
=

20

3
÷ 5 = 1.33. This result stated that to be efficient, 𝑇4 would have to 

increase its outputs by 33% to achieve full efficiency. To confirm that this was the case, this 

ratio was applied to the 𝑦1 and 𝑦2 values of 𝑇4 to obtain the co-ordinates 
4

3
(4, 3) = (

16

3
, 4). 

The co-ordinates are the values of the efficient composite 𝑇8. This was the point on the 

efficient frontier used to evaluate 𝑇4. Consequently, in these calculations the efficiency value 

would always be between one and infinity (Cooper, Seiford & Tone, 2007). 

 

In this case study, a higher dimension model is necessary. To demonstrate a higher dimension 

model and the interpretations, the single input-double outputs case is adapted. The three 

variable case was used to show that in all multiple variable cases DEA calculated the 

efficiency of a DMU by constructing an efficient composite of the DMU. The particular 

DMU was then radially compared to the efficient composite to determine its efficiency. It is 

important to consider the use of efficient composite DMUs in DEA efficiency calculation in 

addition to the basics learned in the single input-output case. All these components were used 

in the CCR and BCC models that estimate efficiency in the container terminals of the case 

study.  

 

The graphical illustrations such as Figure 4.1 to Figure 4.4 were used to visualise the single 

input-output and single input-double outputs examples. Unfortunately the analysis in this 

research used a single output and four inputs that cannot be shown graphically. The number 

of variables increased the dimensions to a point where the DEA process could no longer be 

represented two-dimensionally. As a result, greater emphasis was placed on the components 

identified as important in the single input-output, as well as the single input-double outputs, 

cases, rather than their graphical depictions. The reason being that these components are 

more important to the DEA process used to calculate the efficiency of the selected African 

container terminals.  
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4.4 The CCR and BCC Models 

The CCR and BCC models were used to calculate efficiency in the African container 

terminals. Each African container terminal represented a multiple input-output environment 

consisting of more than three variables.  

 

In the CCR and BCC models, virtual inputs and outputs were formed for each DMU using 

unknown weights 𝜆𝑖. The 𝜆𝑖’s were referred to as dual weights. DEA used variable weights 

that were derived directly from the data. The benefit of this was that numerous a priori 

assumptions and computations involved in fixed weight choices were avoided. The weights 

in DEA were chosen in a manner that assigned the best set of weights to each terminal. The 

term “best” was used here to mean that the resulting input-to-output ratio for each terminal 

was maximised relative to all the other terminals. The weights were determined within the 

CCR and BCC models (Cooper, Seiford & Tone, 2007). 

 

By weighting the inputs and outputs of respective fully efficient DMUs, an efficient 

composite DMU was established for each DMU. This efficient composite of the DMU was 

located on the efficient frontier. The efficiency of each DMU was determined radially, 

relative to the efficient composite of this DMU. The optimal weights may have (and 

generally would) vary from one DMU to another, and also between the models. Thus, in 

addition to the components identified as important in the previous two cases, dual weights 

were of great importance to efficiency calculations in the CCR and BCC models. 

 

4.4.1 The CCR Model 

The CCR (Charnes, Cooper & Rhodes, 1978) model allowed for the construction of an 

efficient frontier that accounted for the technical efficiency (TE) of the DMUs and assumed 

constant returns-to-scale (CRS). This CRS assumption was based on a property contained 

within the CCR production possibility set. This property stated that if (𝑥, 𝑦) is a feasible 

point, then (𝑎𝑥, 𝑎𝑦) for any positive 𝑎 would also be feasible. Thus, the CCR model’s 

efficient frontier, if depicted, would resemble the efficient frontier used in the single input-

output case in Figure 4.1 (Cooper, Seiford & Tone, 2007).  

 

An output-orientated CCR model was utilised as this orientation provided for an efficiency 

assessment of a port’s output capacity as recommended by Wu and Goh (2010). This 
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orientation indicated that inefficiency was corrected for by adjusting outputs whilst keeping 

inputs fixed.  

 

The CCR model used linear programming to calculate the dual weights which then allows 

for the determination of the TE of a DMU. The output-orientated formulation of the CCR 

linear programming model evaluated 𝐾 DMUs using the same 𝑚 inputs 𝑥𝑡 (𝑡 = 1, 2, … , 𝑚) 

to produce the same 𝑛 outputs 𝑦𝑠 (𝑠 = 1, 2, … , 𝑛) was given as 

max
𝜂𝐶𝐶𝑅,𝜆𝑖

𝜂𝐶𝐶𝑅 (4.3) 

subject to  

𝑥𝑡𝑘 − ∑ 𝜆𝑖

𝐾

𝑖=1

𝑥𝑡𝑖  ≥ 0 (𝑡 = 1, 2, … , 𝑚) (4.4) 

𝜂𝐶𝐶𝑅𝑦𝑠𝑘 − ∑ 𝜆𝑖

𝐾

𝑖=1

𝑦𝑠𝑖 ≤ 0 (𝑠 = 1, 2, … , 𝑛) (4.5) 

𝜆𝑖 ≥ 0 for all 𝑖 (4.6) 

 

where 𝑥𝑡𝑘 represented the quantity of input 𝑡 used by DMU 𝑘, and 𝑦𝑠𝑘 denoted the quantity 

of output 𝑠 produced by DMU 𝑘 (Brettenny & Sharp, 2016).  

 

The CCR model constructed a composite unit for DMU 𝑘, that outperformed DMU 𝑘, using 

the dual weights 𝜆𝑖 assigned to DMU 𝑘 by the linear programme. The efficient composite 

DMU of inefficient DMU 𝑘 was constructed by weighting and summing similar inputs and 

outputs of homogenous fully efficient DMUs. These efficient DMUs had non-zero dual 

weights 𝜆𝑖 and comprised the reference set for inefficient DMU 𝑘. This reference set served 

as a basis for computing the efficiency score of DMU 𝑘, through the construction of an 

efficient composite of DMU 𝑘  (El-Mahgary & Lahdelma, 1995). It should be noted that the 

DMUs of the reference set were the efficient composite versions of themselves. They had 

dual weights equal to unity and were therefore seen as fully efficient (El-Mahgary & 

Lahdelma, 1995). 

 

The composite unit consumed inputs ∑ 𝜆𝑖
𝐾
𝑖=1 𝑥𝑡𝑖, where 𝑡 = 1, 2, … , 𝑚. The efficient 

composite of DMU 𝑘 had inputs that were at most equal to the corresponding inputs of unit 𝑘 
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identified as 𝑥𝑡𝑘, where 𝑡 = 1, 2, … , 𝑚. The efficient composite of DMU 𝑘 produced at least 

a proportion 𝜂𝐶𝐶𝑅 of the outputs of DMU 𝑘 (El-Mahgary & Lahdelma, 1995). The 𝜂𝐶𝐶𝑅 

would represent the TE had the data represented the population. However, given that a 

sample is being used, solving the linear programme provided an estimate of this proportion, 

𝜂𝐶𝐶𝑅
∗, for each of the 𝐾 DMUs. The 𝜂𝐶𝐶𝑅

∗ value for DMU 𝑘 was referred to as its technical 

(Farrell) efficiency (TE). The Farrell efficiency measure stated that [(1 − 𝜂𝐶𝐶𝑅
∗) × 100] was 

equivalent to the percentage by which DMU 𝑘 must increase its outputs, while maintaining 

inputs, to become relatively efficient. DMU 𝑘 was deemed CCR efficient if the solution is 

𝜂𝐶𝐶𝑅
∗ = 1 and all associated slacks were equal to zero (Brettenny & Sharp, 2016). For each 

assessed DMU, the slacks were described as the excesses of inputs and/or shortfalls in 

outputs which could be required in addition to the proportional increase in outputs by the 

factor 𝜂𝐶𝐶𝑅
∗. The input and output slacks (𝑠−, 𝑠+) are used in the output-orientated CCR 

model as ∑ 𝜆𝑖
𝐾
𝑖=1 𝑥𝑡𝑖 + 𝑠− = 𝑥𝑡𝑘 and ∑ 𝜆𝑖

𝐾
𝑖=1 𝑦𝑠𝑖 − 𝑠+ =  𝜂𝐶𝐶𝑅𝑦𝑠𝑘, where 𝑡 = 1, 2, … , 𝑚 and  

𝑠 = 1, 2, … , 𝑛   to adjust for inputs and output, respectively, when necessary (Cooper, Seiford 

& Tone, 2007). 

 

4.4.2 The BCC Model 

Various extensions of the CCR model have been proposed, one of which was the BCC 

(Banker-Charnes-Cooper, 1984) model. The BCC model was used to construct an efficient 

frontier that accounted for the pure technical efficiency (PTE) of the DMUs. The BCC 

model’s efficient frontier assumed variable returns-to-scale (VRS). The BCC model had its 

efficient frontier spanned by the convex hull of efficient DMUs. The frontier had piecewise 

linear and concave characteristics which lead to VRS characterisation (Cooper, Seiford & 

Tone, 2007). The VRS assumption of the BCC model resulted in an efficient frontier which 

can exhibit CRS, increasing returns-to-scale and decreasing returns-to-scale. 

 

The BCC model used linear programming to calculate both the dual weights which then 

allowed for the determination of the PTE of a DMU. The output-orientated formulation of 

the BCC linear programming model evaluated 𝐾 DMUs using the same 𝑚 inputs 𝑥𝑡                      

(𝑡 = 1, 2, … , 𝑚) to produce the same 𝑛 outputs 𝑦𝑠 (𝑠 = 1, 2, … , 𝑛) was given as 

max
𝜂𝐵𝐶𝐶,𝜆𝑖

𝜂𝐵𝐶𝐶  (4.7) 

subject to  
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𝑥𝑡𝑘 − ∑ 𝜆𝑖

𝐾

𝑖=1

𝑥𝑡𝑖  ≥ 0 (𝑡 = 1, 2, … , 𝑚) (4.8) 

𝜂𝐵𝐶𝐶𝑦𝑠𝑘 − ∑ 𝜆𝑖

𝐾

𝑖=1

𝑦𝑠𝑖 ≤ 0 (𝑠 = 1, 2, … , 𝑛) (4.9) 

∑ 𝜆𝑖

𝐾

𝑖=1

= 1 (4.10) 

𝜆𝑖 ≥ 0 for all 𝑖 (4.11) 

 

where 𝑥𝑡𝑘 represented the quantity of input 𝑡 used by DMU 𝑘, and 𝑦𝑠𝑘 denoted the quantity 

of output 𝑠 produced by DMU 𝑘 (Brettenny & Sharp, 2016). 
 
  

The efficiency of DMU 𝑘 was calculated in the BCC model by the construction of an 

efficient composite of DMU 𝑘 using dual weights 𝜆𝑖 and the reference set identified in the 

linear programme. Then DMU 𝑘 was radially compared to the efficient composite of DMU 

𝑘, located on the efficient frontier, to determine its efficiency value (El-Mahgary & 

Lahdelma, 1995). Thus, the BCC model calculated efficiency in the same manner as the 

CCR model.  

 

Therefore, solving the linear programme provided an estimate of the proportional increase, 

𝜂𝐵𝐶𝐶
∗, in outputs for each of the 𝐾 DMUs. The 𝜂𝐵𝐶𝐶

∗ value for DMU 𝑘 was referred to as 

its pure technical (Farrell) efficiency (PTE). The Farrell efficiency measure stated that 

[(1 − 𝜂𝐵𝐶𝐶
∗) × 100] was equivalent to the percentage by which DMU 𝑘 must increase its 

outputs, while maintaining inputs, to become relatively efficient. A DMU was deemed BCC 

efficient if the solution is 𝜂𝐵𝐶𝐶
∗ = 1 and all associated slacks (𝑠−, 𝑠+) were equal to zero 

(Brettenny & Sharp, 2016).  For each assessed DMU, the slacks were described as the 

excesses of inputs and/or shortfalls in outputs which may be required in addition to the 

proportional increase in outputs by the factor 𝜂𝐵𝐶𝐶
∗. The slacks were applied, when 

necessary, in the same manner as in the CCR model (Cooper, Seiford & Tone, 2007).  

 

The only difference between the CCR and BCC model was the adjunction of the condition 

∑ 𝜆𝑖
𝐾
𝑖=1 = 1 on the dual weights. Together with the condition 𝜆𝑖 ≥ 0, for all 𝑖, this imposed a 

convexity condition on allowable ways in which efficient DMUs could be combined to 
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generate the efficient composite DMU 𝑘. The dual weight restriction ensured that the 

reference set was selected in such a way as to ensure that the efficient composite unit of 

DMU 𝑘 was of the same scale size (Cooper, Seiford & Tone, 2007). No such restriction 

existed when calculating TE in the CCR model.  

 

Despite this restriction on the dual weights, there would still be instances where 𝑇𝐸 = 𝑃𝑇𝐸. 

However, due to the VRS brought about by the convex hull for an efficient frontier of the 

BCC model, the PTE would generally be higher than TE. The reason for this was that the 

efficient frontier with its convex hull shape restricted the data points more in certain areas of 

the production possibility set than the CCR’s CRS efficient frontier. This meant that DMUs 

were closer to their efficient composites on the efficient frontier and thus had higher 

efficiencies (Cooper, Seiford & Tone, 2007). 

 

4.5  Scale Efficiency and Returns-to-Scale 

Based on the CCR and BCC scores, the study defined the scale efficiency (SE) of DMU 𝑘 as 

the ratio of the CCR efficiency of DMU 𝑘 over the BCC efficiency of DMU 𝑘. This ratio was 

defined as 

𝑆𝐸 =
𝜂𝐶𝐶𝑅

∗

𝜂𝐵𝐶𝐶
∗ 

 (4.12) 

 

This SE would exceed one when using CCR and BCC output-orientated models to calculate 

TE and PTE. The SE assumed a value between unity and infinity, with unity indicating full 

SE. This efficiency indicated the estimated proportion by which the scale of operations must 

be adjusted to achieve the optimal scale of operations and thus full SE for DMU 𝑘 (Cooper, 

Seiford & Tone, 2007).   

 

The SE, together with the PTE, formed the drivers of the TE. Using the relationship of         

𝑇𝐸 = 𝑃𝑇𝐸 × 𝑆𝐸, the decomposition of 𝑇𝐸 identified all sources of efficiency. Determining 

the SE, in addition to TE and PTE, was required in order to provide a comprehensive analysis 

of the efficiencies of the DMUs being assessed (Cooper, Seiford & Tone, 2007).  

  

To correct for scale inefficiency, the determination of returns-to-scale of a DMU was 

necessary. If DMU 𝑘 was scale inefficient and DMU 𝑘 experienced increasing returns-to-
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scale (IRS), then further investment in the scale of the operations was required. The decimal 

amount by which inefficient DMU 𝑘’s scale efficiency exceeded one multiplied by 100 

constituted the percentage by which DMU 𝑘 must increase the scale of operations to 

experience full SE. If DMU 𝑘 was scale inefficient and DMU 𝑘 experienced decreased 

returns-to-scale (DRS), then DMU 𝑘 should reduce its operations to experience full SE. 

Scaling back on operations involved a decrease in investment within the DMU’s operations 

(Cooper, Seiford & Tone, 2007). 

 

To determine the nature of the returns-to-scale of a DMU, the method proposed by Färe et 

al., (1994) was employed. This method required comparing the efficiencies of three DEA 

models. These were the CCR, the BCC and the non-increasing returns-to-scale (NIRS) 

model. 

 

The NIRS model used linear programming to calculate the dual weights which then allowed 

for the determination of the efficiency of a DMU. The output-orientated formulation of the 

NIRS linear programming model evaluated 𝐾 DMUs using the same 𝑚 inputs 𝑥𝑡 (𝑡 =

1, 2, … , 𝑚), to produce the same 𝑛 outputs 𝑦𝑠 (𝑠 = 1, 2, … , 𝑛) was given as 

max
𝜂𝑁𝐼𝑅𝑆,𝜆𝑖

𝜂𝑁𝐼𝑅𝑆 (4.13) 

subject to  

𝑥𝑡𝑘 − ∑ 𝜆𝑖

𝐾

𝑖=1

𝑥𝑡𝑖  ≥ 0 (𝑡 = 1, 2, … , 𝑚) (4.14) 

𝜂𝑁𝐼𝑅𝑆𝑦𝑠𝑘 − ∑ 𝜆𝑖

𝐾

𝑖=1

𝑦𝑠𝑖 ≤ 0 (𝑠 = 1, 2, … , 𝑛) (4.15) 

0 ≤ ∑ 𝜆𝑖

𝐾

𝑖=1

≤ 1 (4.16) 

𝜆𝑖 ≥ 0 for all 𝑖 (4.17) 

 

where 𝑥𝑡𝑘 represented the quantity of input 𝑡 used by DMU 𝑘, and 𝑦𝑠𝑘 denoted the quantity 

of output 𝑠, produced by DMU 𝑘 (Brettenny & Sharp, 2016). 
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Efficiency of DMU 𝑘 was calculated in the NIRS model by the construction of an efficient 

composite of DMU 𝑘 using dual weights 𝜆𝑖 and the reference set identified in the linear 

programme.  DMU 𝑘  was then radially compared to its efficient composite, on the efficient 

frontier, to determine its efficiency (El-Mahgary & Lahdelma, 1995). Thus, the NIRS model 

calculated efficiency estimates in the same manner as the CCR and BCC models. 
 
  

Therefore, solving the linear programme above provided an estimated proportion  𝜂𝑁𝐼𝑅𝑆
∗, 

for which outputs should be increased for each of the 𝐾 DMUs. The 𝜂𝑁𝐼𝑅𝑆
∗ value for DMU 

𝑘 was referred to as its non-increasing returns-to-scale (Farrell) efficiency (NIRSE). The 

Farrell efficiency measure stated that [(1 − 𝜂𝑁𝐼𝑅𝑆
∗) × 100] was equivalent to the percentage 

by which DMU 𝑘 must increase its outputs, while maintaining inputs, to become relatively 

efficient. A DMU was deemed NIRS efficient if the solution was 𝜂𝑁𝐼𝑅𝑆
∗ = 1 and all 

associated slacks (𝑠−, 𝑠+) were equal to zero (Brettenny & Sharp, 2016). For each assessed 

DMU, the slacks were described as the excesses of inputs and/or shortfalls in outputs which 

could be required in addition to the proportional increase in outputs by the factor 𝜂𝑁𝐼𝑅𝑆
∗. 

The slacks were applied, when necessary, in the same manner as in the CCR and BCC 

model (Cooper, Seiford & Tone, 2007).  

 

The difference between the NIRS and BCC models was that the NIRS efficiencies were 

calculated by extending the BCC model. This was done by relaxing the convexity 

assumption to 0 ≤ ∑ 𝜆𝑖
𝐾
𝑖=1 ≤ 1. This created an efficient frontier with less convexity than 

the efficient frontier in the BCC model, but without the stringent linear frontier of the CCR 

model. Thus, the NIRS efficient frontier was located between the BCC and CCR frontiers. 

The NIRS model had its efficient frontier spanned by efficient DMUs exhibiting DRS. This 

model put emphasis on larger DMUs where returns-to-scale were decreasing (Cooper, 

Seiford & Tone, 2007). 

 

The relaxation of the convexity assumption in the BCC model to establish the NIRS model 

could potentially alter the dual weight values 𝜆𝑖, the reference sets, and thus efficiencies of 

the NIRS model in comparison to those of the BCC model. How alike or different the BCC 

and NIRS efficiencies were of importance in the determination of the returns-to-scale. 
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Scale inefficient DMUs returns-to-scale could be obtained by comparing the efficiency 

measure derived from the NIRS and BCC models. DMU 𝑘 experienced IRS when 𝑃𝑇𝐸 >

𝑁𝐼𝑅𝑆𝐸 and DRS when 𝑃𝑇𝐸 = 𝑁𝐼𝑅𝑆𝐸 ≠ 1. CRS was experienced when DMU 𝑘 was at its 

most productive scale size (MPSS) when, 𝑃𝑇𝐸 = 𝑇𝐸 = 𝑆𝐸 = 1. CRS could also be 

experienced when a scale efficient DMU 𝑘 was not experiencing the most productive scale 

size as in the case of 𝑃𝑇𝐸 = 𝑇𝐸 = 𝑁𝐼𝑅𝑆𝐸 ≠ (𝑆𝐸 = 1) (Camanho & Dyson, 1999). 

 

All DMUs aim to perform at MPSS. When MPSS is achieved DMU 𝑘 experienced complete 

efficiency. The TE, PTE and SE are subcomponents of MPSS. Therefore, these efficiencies 

are an integral part of achieving the aim of all container terminals which is MPSS. This study 

calculated the TE, PTE and SE to determine whether MPSS was achieved by a terminal. If 

MPSS was not achieved, these efficiencies were used to suggest corrective procedures to aid 

in the achievement of MPSS. At MPSS a terminal experienced full TE. The TE represented a 

global efficiency as it was decomposed into PTE and SE. Thus, PTE and SE were imperative 

in achieving and correcting for MPSS. The PTE and SE were highlighted when analysing the 

results in Chapter 6.  

 

4.6 Bootstrapping in DEA 

The DEA method used a sample for the analysis of efficiency. However, as a deterministic 

method, DEA did not explicitly model the random sampling error associated with its 

efficiency estimates. The DEA method simply interpreted the overall deviation from the 

frontier as inefficiency only. However, this deviation was driven by both the variability 

(sampling error) and the location (inefficiency). As a result, the accuracy of the DEA 

efficiency estimates may have been affected by sampling variation. 

 

In multi-output and multi-input DEA models, the bootstrap methodology is a way to 

investigate the sampling variability present in the efficiency estimates (Hung, Lu & Wang, 

2010). Bootstrapping is based on the idea of resampling from the original values to create 

replicate datasets from which sampling error can be identified and corrected for (Martınez-

Nunez & Perez-Aguiar, 2014). 

 

The Simar and Wilson (2000) method of homogenous bootstrapping was adopted. This 

method assumes that the bootstrap distribution of efficiencies will imitate the original 
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unknown distribution of efficiencies. To establish the bootstrap distribution of efficiencies, 

the smooth homogenous bootstrapping approach non-parametrically estimates the densities of 

the efficiency scores using kernel smoothing methods, combined with a reflection method 

(Martınez-Nunez & Perez-Aguiar, 2014).  

 

For the DEA approach, the complete bootstrap algorithm, used to determine bias-corrected 

efficiency estimates, was summarised by the following steps (Hung, Lu & Wang, 2010; 

Martınez-Nunez & Perez-Aguiar, 2014).  

 

Step 1:  

Using the original data set, compute the original efficiency scores 𝜂∗ (for the respective year) 

for each of the 𝐾 DMUs using the CCR, BCC and/or NIRS model(s). 

 

Step 2:  

Establish the symmetric set 𝐷2𝑘 through a reflection method. This was achieved by 

combining 𝜂𝑖
∗ (original DEA efficiency scores) values and the (2 − 𝜂𝑖

∗) (a reflection of the 

original DEA efficiency scores) values, where 𝑖 = 1, … , 𝐾. The set 𝐷2𝑘 was thus presented as 

 

𝐷2𝐾 = {𝜂1
∗, … , 𝜂𝐾

∗ , (2 − 𝜂1
∗), … , (2 − 𝜂𝐾

∗ )} (4.18) 

 

Generate a random sample 𝛽𝑖
∗, where 𝑖 = 1, … , 𝐾 , by drawing with replacement from the 

reflected set 𝐷2𝑘. 

 

Step 3:  

Generate the kernel smoothed efficiencies �̃�𝑖
∗, for 𝑖 = 1, … , 𝐾, using 

 

�̃�𝑖
∗ = {

𝛽𝑖
∗ + ℎ𝜀𝑖

∗  𝑖𝑓 𝛽𝑖
∗ + ℎ𝜀𝑖

∗ ≤ 1

2 − (𝛽𝑖
∗ + ℎ𝜀𝑖

∗)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (4.19) 

 

In this way one obtains the smoothed bootstrap replicates, �̃�𝑖
∗, which is equivalent to 

sampling from the kernel smoothed density constructed from the values in the reflected set 

𝐷2𝐾. The value for ℎ in the kernel density function equation was by rule-of-thumb, as 

introduced by Silverman (1986), ℎ = 1.06𝑠𝛽𝑖
∗𝐾−1 5⁄ , where 𝑠𝛽𝑖

∗ represented the sample 
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standard deviation of the observations used to estimate the density, and where 𝜀𝑖
∗ was a 

random variant drawn from the standard normal distribution. The above value for ℎ provided 

a control parameter which aided the construction of a non-parametric normal kernel density 

function over the symmetric distribution of 𝐷2𝐾.  

 

Step 4: 

Compute 𝜃𝑖
∗ for 𝑖 = 1, … , 𝐾, where 

 

𝜃𝑖
∗ = (1 𝐾⁄ ) ∑ 𝛽𝑖

∗

𝐾

𝑖=1

+
1

√1 + ℎ2 𝑠𝛽𝑖
∗

2⁄

[�̃�𝑖
∗ − (1 𝐾⁄ ) ∑ 𝛽𝑖

∗

𝐾

𝑖=1

] (4.20) 

 

Step 5:  

Generate resampled pseudo-efficiencies 𝛾𝑖
∗ using 

 

𝛾𝑖
∗ = {

2 − 𝜃𝑖
∗, 𝑖𝑓 𝜃𝑖

∗ < 1

𝜃𝑖
∗,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (4.21) 

 

The pseudo-efficiencies transformed the data back to within the original range of the output-

orientated efficiencies between [1, ∞]. 

 

Step 6:  

Obtain and define the bootstrap sample 𝜒𝑏
∗ = {(𝑥𝑖, 𝑦𝑖𝑏

∗ )|𝑖 = 1, … , 𝐾}, where 𝑦𝑖𝑏
∗ = (𝛾𝑖

∗ 𝜂𝑖
∗⁄ )𝑦𝑖. 

Thus, 𝑥𝑖 remained fixed and outputs were shifted by 𝛾𝑖
∗ 𝜂𝑖

∗⁄  along a ray passing through 𝑦𝑖 

and the origin. The bootstrap sample 𝜒𝑏
∗  was used to construct a new frontier against which 

the original sample was compared. 

 

Step 7:  

Calculate the bootstrapped DEA efficiency score 𝜂𝑖 (𝑏𝑜𝑜𝑡)
∗  for each of the 𝐾 DMU’s, (𝑥𝑖, 𝑦𝑖), 

using the frontier created by the (𝑥𝑖, 𝑦𝑖𝑏
∗ ) data set.  
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Step 8:  

Repeat steps 2 to 7 𝐵 times to create a set with 𝐵 efficiency estimates for each DMU 

𝜂𝑖 (𝑏𝑜𝑜𝑡),𝑏
∗ ; 𝑖 = 1, … , 𝐾; 𝑏 = 1, … , 𝐵}. 𝐵 was taken to be 2000 and the mean of the bootstrap 

replicates 𝜂𝑖 (𝑏𝑜𝑜𝑡),𝑏
∗ ; 𝑏 = 1, … , 𝐵 will be used to approximate the ideal bootstrap estimate of 

the expected value of 𝜂𝑖
∗. This in order to ultimately obtain an estimate of bias. 

 

Step 9:  

The next step required the bias-correction of the DEA efficiency estimates using the 

bootstrapped efficiencies 𝜂𝑖 (𝑏𝑜𝑜𝑡),𝑏
∗ . The bias was defined by Simar and Wilson (2007) as 

 

𝐵𝑖𝑎𝑠(𝜂𝑖
∗) ≡ 𝐸(𝜂𝑖

∗) − 𝜂𝑖, where 𝑖 = 1, … , 𝐾. (4.22) 

 

However as the true value of 𝜂 was unknown, it was only possible to determine an estimate 

of the bias contained in the original DEA efficiency estimate 𝜂𝑖
∗. Using the bootstrapped DEA 

estimates, the bias estimate was determined by Simar and Wilson (2007) as 

 

𝐵𝑖𝑎�̂�𝐵(𝜂𝑖
∗) = 𝐵−1 ∑ 𝜂𝑖 (𝑏𝑜𝑜𝑡),𝑏

∗𝐵
𝑏=1 − 𝜂𝑖

∗, where 𝑖 = 1, … , 𝐾. (4.23) 

 

Step 10:  

A bias-corrected DEA efficiency value was then obtained by defining 

 

𝜂𝑖,𝐵𝐶
∗ = 𝜂𝑖

∗  − 𝐵𝑖𝑎�̂�𝐵(𝜂𝑖
∗) (4.24) 

⇒ 𝜂𝑖,𝐵𝐶
∗ = 𝜂𝑖

∗ − (𝐵−1 ∑ 𝜂𝑖 (𝑏𝑜𝑜𝑡),𝑏
∗

𝐵

𝑏=1

− 𝜂𝑖
∗) (4.25) 

⇒ 𝜂𝑖,𝐵𝐶
∗ = 2𝜂𝑖

∗ − 𝐵−1 ∑ 𝜂𝑖 (𝑏𝑜𝑜𝑡),𝑏
∗

𝐵

𝑏=1

. (4.26) 

 

This method provided bias-corrected DEA estimates for the set of 2000 bootstrap repetitions. 

Output-orientated DEA estimates between 1 and infinity were subjected to downward bias. 

This downward bias is a result of the sample error present in the DEA estimate. Since the 

modulus of the estimated bias was greater than the estimated standard errors in each analysis, 
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the bias-corrected estimates were preferred to the original DEA scores (Munisamy & Danxia, 

2013). Ultimately this provided a ranking method for the container terminals. 

 

4.7 Malmquist Productivity Index 

The MPI, proposed by Färe et al., (1994), produced an efficiency change measure referred to 

as the total factor productivity change (TFPC). The TFPC provided an interpretation of the 

change in efficiency over time and could be decomposed into three components. These 

component measurements were; the changes in PTE, the changes in SE, and the final 

component measures changes in technology. 

 

The TFPC measurement was calculated for each of the 𝐾 DMU’s. The TFPC of DMU 𝑘 was 

calculated using ratios of distances. Using DEA, the distances making up these ratios were 

simply radial comparisons of DMU 𝑘 from period 𝑠 to the efficient composite of DMU 𝑘, 

located on an efficient frontier, from period 𝑡. Thus, these distances represented by 𝐷𝑡(𝑌𝑠, 𝑋𝑠) 

were efficiencies. By placing these distances into the ratio’s that made up the TFPC, the 

TFPC calculated changes in efficiency. In this study the DEA approach was output-

orientated, and as a result so were the efficiencies (Estache, De La Fé & Trujillo, 2004). The 

output-orientated TFPC between the base period (zero) and the reference period (one) was 

given by 

 
  

𝑀𝑃𝐼 = 𝑇𝐹𝑃𝐶 =
𝐷0(𝑌0, 𝑋0)

𝐷1(𝑌1, 𝑋1)
[
𝐷1(𝑌0, 𝑋0)

𝐷0(𝑌0, 𝑋0)
 ×  

𝐷1(𝑌1, 𝑋1)

𝐷0(𝑌1, 𝑋1)
 ]

0.5

 . (4.27) 

 

The MPI defined by Färe et al., (1994), as seen in Eq. (4.27), defined the geometric mean of 

two indices, one evaluated with respect to the reference period technology and the second 

with respect to the base period technology (Estache, De La Fé & Trujillo, 2004).  

 

By comparing DMU 𝑘 in period 𝑠, to the efficient frontier in period 𝑡, the TFPC value 

accounted for changes in TE and shifts in the efficient frontier. The ratio outside the square 

brackets in Eq. (4.27) measured the change in the output-oriented measure of TE between 

periods zero and one. This ratio was the total technical efficiency change (TTEC) measure. 

The bracketed term of the index in Eq. (4.27) was a measure of technological change (TC) 
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which accounted for the shift in technology between the two periods (Estache, De La Fé & 

Trujillo, 2004). Thus, the MPI, and the TFPC that it calculated, was decomposed into 

 

 
𝑀𝑃𝐼 = 𝑇𝐹𝑃𝐶 = 𝑇𝑇𝐸𝐶 × 𝑇𝐶. (4.28) 

 

To measure TFPC, both PTE changes and SE changes needed to also be accounted for. Färe 

et al., (1994) used CRS distance functions to calculate the index in Eq. (4.28). The VRS 

distance functions was required for further decomposition of Eq. (4.28). The introduction of 

VRS decomposed the TTEC measure into a PTE change component and a SE change 

component. The mixture of CRS and VRS distance functions that achieved this 

decomposition of TTEC was given by Eq. (4.29). In Eq. (4.29), the 𝑉 superscripts referred to 

VRS technology and the 𝐶 superscripts referred to CRS technology. 

 

𝑀𝑃𝐼 = 𝑇𝐹𝑃𝐶 =
𝐷0

𝑉(𝑌0, 𝑋0)

𝐷1
𝑉(𝑌1, 𝑋1)

{[
𝐷1

𝑉(𝑌1, 𝑋1)

𝐷0
𝑉(𝑌0, 𝑋0)

 ×  
𝐷0

𝐶(𝑌0, 𝑋0)

𝐷1
𝐶(𝑌1, 𝑋1)

 ]

0.5

× [
𝐷1

𝐶(𝑌0, 𝑋0)

𝐷0
𝐶(𝑌0, 𝑋0)

 ×  
𝐷1

𝐶(𝑌1, 𝑋1)

𝐷0
𝐶(𝑌1, 𝑋1)

 ]

0.5

}. 

(4.29) 

 

Eq. (4.29) thus gave a pure technical efficiency change (PTEC) measure, a scale efficiency 

change (SEC) measure, and maintained the TC measure (Estache, De La Fé & Trujillo, 

2004). That is 

 

𝑀𝑃𝐼 = 𝑇𝐹𝑃𝐶 = 𝑃𝑇𝐸𝐶 × 𝑆𝐸𝐶 × 𝑇𝐶 (4.30) 

 

The decomposition in Eq. (4.30) was required for this core study in order to allow for all 

forms of efficiency changes within the selected container terminals to be analysed. 

 

4.8 Summary 

Several important components were identified within the DEA methodology in order to 

produce efficiency estimates for the container terminals case study. The basic components 

were identified in the single input-output case. These basic components were expanded upon 

in the single input-double outputs case and within the multiple variable CCR and BCC 
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models. All of the components would be utilised in the CCR and BCC models when 

calculating the TE and PTE for the selected African container terminals. 

 

These components included the use of the productivity ratio in Eq. (4.1) which was the basis 

of all efficiency results in DEA. This productivity ratio was used to construct another 

important component, namely the efficient frontier. This provided a benchmark against which 

the relative efficiency of a DMU could be determined. The relative efficiency was another 

important component of DEA. The DEA allowed one to estimate relative efficiency, as the 

efficiency contained the property of unit invariance, which was essential when dealing with 

multiple inputs and outputs. To determine the relative efficiency of a DMU, the CCR and 

BCC models identified the dual weights and an efficient composite of that DMU. These 

differing dual weights gave rise to the CRS and VRS properties of the CCR and BCC models. 

Once an efficient composite had been determined for a particular DMU, the CCR and BCC 

models identified the proportion by which outputs must be increased for that DMU to 

resemble its efficient composite. In the CCR and BCC models, these estimated proportions 

were the TE and PTE, respectively. The output-and input-orientations determined how 

inefficiency was corrected for radially. This was also an important component, as it 

determined whether outputs were increased, whilst keeping inputs constant, or vice versa, 

when correcting for inefficiency. 

 

In order to provide a more meaningful practical interpretation to the efficiencies, the SE of 

each DMU is required. This in turn requires the determination of the returns-to-scale of each 

DMU to correct for any scale inefficiency. The BCC efficiencies and NIRS efficiencies had 

to be obtained to establish these returns-to-scale. 

 

The TE, PTE and SE formed the subcomponents of the MPSS at which all container 

terminals aimed to operate. These efficiencies were essential to determine whether MPPS 

existed in a terminal, and if not, were used to make suggestions on how efficiency could be 

achieved by a terminal. Table 4.4 gives a brief description of MPSS, TE, PTE and SE and 

how the efficiencies fit into the MPSS. 
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Table 4.4: MPSS and Efficiency 

Most Productive Scale 

Size (MPSS) 

Where all terminals wanted to be operating. MPSS occurs when 

𝑇𝐸 = 1. 

TE 

How technically efficient the current inputs were in generating 

outputs when comparing terminals of all scale sizes. TE was a 

global efficiency and was decomposed into 

𝑇𝐸 = 𝑃𝑇𝐸 × 𝑆𝐸. 

PTE 
How technically efficient the current inputs were in generating 

outputs when comparing terminals of equal scale size. 

SE 
How scale efficient a terminal was in comparison to terminals 

operating at the optimal scale (CRS). 
 

 

Once TE, PTE and SE were determined for the DMUs under investigation the sampling 

variability needed to be accounted for. This was achieved using the smooth homogenous 

bootstrapping procedure, to produce bias free efficiency results. These provided potential 

corrections for the efficiency estimates. Finally, to track efficiency changes over the sample 

period, the MPI was used. The TFPC tracked the efficiency changes for the terms TE, PTE 

and SE. The TFPC also accounted for the shift in the frontier from one sample period to the 

next, identified as the technological change (TC). 

 

All of the above methodologies attempted to provide DEA efficiency estimates that can be 

used to give operational interpretations to the case study data for the selected African 

container terminals. 
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5. Chapter Five: Validation of DEA Code 

 

5.1 Introduction 

The analysis for this research was done using R v3.2.3 (R Core Team, 2015). Two R 

packages, Benchmarking (Bogetoft & Otto, 2011) and Frontier Efficiency Analysis with R 

FEAR (Wilson, 2008) were used for many of the routines. Considerable coding was 

necessary to complete this research. To validate the code that was written, this study 

replicated the results of the El-Mahgary and Lahdelma (1995) paper, entitled “Data 

envelopment analysis: Visualising the results”. This paper was selected for two reasons. 

Firstly, the results were published in a reputable journal entitled the European Journal of 

Operational Research. Secondly, El-Mahgary and Lahdelma (1995) produced visual displays 

of the results within the paper. This allowed for ease in comparison between this study’s 

results and those of El-Mahgary and Lahdelma (1995). 

 

Specifically, the dual weights, reference sets and TE results produced by the CCR model, for 

inefficient DMU’s in the El-Mahgary and Lahdelma (1995) paper, were replicated. The dual 

weights and reference sets are key to establishing the efficient composite of a DMU. This 

DMU is then radially compared to its efficient composite to determine its efficiency. Thus, 

replicating results of El-Mahgary and Lahdelma’s (1995) paper would justify the accuracy of 

the code written and lend credibility to the efficiency estimates generated for the African 

container terminals. 

 

It should be noted that the dual weights, reference sets and efficiencies were replicated for an 

input-orientated CCR model as used by El-Mahgary and Lahdelma (1995). As opposed to the 

output-orientation, the input-orientation efficiency would be between zero and unity. This 

was because the input-orientation efficiency represented the estimated proportion that inputs 

should be decreased, while keeping outputs unchanged, in order to achieve full efficiency of a 

particular DMU (Cooper, Seiford & Tone, 2007). 

 

5.2 The Variables and Data of El-Mahgary and Lahdelma (1995)  

The El-Mahgary and Lahdelma (1995) paper collected a cross-sectional data set from 20 

major Finnish Universities. The input and output variables, their symbols and units of 

measurement identified as important are listed in Table 5.1.  
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The inputs used in the study are expenditure and admission. Expenditure is the amount of 

Finnish Markka spent by each university on education. Admission is the inverse of the 

acceptance rate of a Finnish university. The reason for using the inverse of the acceptance 

rate is to make sure inputs were not too large. This prevented the input value from exceeding 

the output value. This correction was therefore essential for the efficiency calculations (El-

Mahgary & Lahdelma, 1995).  

 

The outputs used are; graduates, post-graduates, graduation speed, and completion. Graduates 

and post-graduates indicated the number of graduate and post-graduate degrees granted. 

Graduation speed is measured by the number of years spent acquiring a graduate degree. El-

Mahgary and Lahdelma (1995) note in their research that in Finnish universities there was no 

fixed time span for acquiring the graduate degree, resulting in, many students taking breaks, 

for various reasons, from their studies. As a result, the inverse of the median (being more 

robust to fluctuations than the mean), time taken to complete a degree, is used. Again, the 

inverse is used to keep the input values small, for efficiency calculation purposes. 

Completion indicated the number of students who finished their graduate degrees. This 

output is measured using the inverted drop-out rate for a period of six years, which was the 

typical time taken to complete a graduate degree (El-Mahgary & Lahdelma, 1995). 

 

Table 5.1: Variables in the Sample Analysis 

Factor Symbol Type Units 

Expenditure 𝑥1 Input Millions FIM (Finnish markka) 

Admission 𝑥2 Input Scalar 

Graduates 𝑦1 Output Quantity 

Post-graduates 𝑦2 Output Quantity 

Graduation speed 𝑦3 Output 1
𝑦𝑒𝑎𝑟𝑠⁄  

Completion 𝑦4 Output Scalar 
 

Source: Direct extract from (El-Mahgary & Lahdelma, 1995) 

 

 

Table E in Appendix Three of this study lists each of the 20 major Finnish universities and 

the values of their respective input and output variables.  
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5.3 Replication of El-Mahgary and Lahdelma (1995) Dual Weights, Reference 

Sets and Technical Efficiency 

The dual weights were assigned to the inputs and outputs of the reference set DMUs by the 

CCR model. Weighting and summing the inputs and outputs of a particular DMU’s reference 

set constructed an efficient composite of that DMU. That DMU was then radially compared 

to its efficient composite by the linear programme to determine the estimated proportion by 

which the inputs should be changed, while at the same time controlling for outputs. This 

estimated proportion was the TE of the input-orientated CCR model. 

 

These input orientated CCR model dual weights, reference sets and technical efficiencies 

were generated for inefficient Finish universities by El-Mahgary and Lahdelma (1995). These 

estimates are listed in Table 5.2. Each DMU also had a letter assigned to it, as can be seen in 

Table E of Appendix Three. There was no need to showcase the dual weights, reference sets 

and TE of the fully efficient Finnish universities, as fully efficient DMUs were the efficient 

composite DMUs of themselves. As a result, their dual weights were one, they were their 

own reference set and they all had TE equal to one (El-Mahgary & Lahdelma, 1995). 

 

Table 5.2: Reference Sets, TE and Dual Weights of El-Mahgary and Lahdelma (1995) 

DMU Reference Set TE Dual Weights 

E {M, Q} 0.800 {0.67, 0.297} 

J {M, Q} 0.710 {0.0016, 1.1} 

K {Q} 0.770 {0.82} 

O {D, Q} 0.710 {0.315, 0.65} 

R {Q, T} 0.460 {0.71, 0.071} 

S {H, P, Q} 0.360 {0.04, 0.398, 0.301} 

Source: Direct extract from (El-Mahgary & Lahdelma, 1995) 

 

Table 5.3 details this study’s replication of the dual weights, reference sets and technical 

efficiencies generated by El-Mahgary and Lahdelma (1995). 
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Table 5.3: Replicated Reference Sets, TE and Dual Weights 

DMU Reference Set TE Dual Weights 

E {M, Q} 0.799 {0.676, 0.297} 

J {M, Q} 0.707 {0.00178, 1.097} 

K {Q} 0.772 {0.818} 

O {D, Q} 0.705 {0.315, 0.654} 

R {Q, T} 0.455 {0.714, 0.0716} 

S {N, P, Q} 0.361 {0.04, 0.392, 0.305} 

 

A graphical representation of the dual weights and reference sets of Table 5.2 and Table 5.3 

is presented in Figure 5.1. This allowed for a visual comparison of the El-Mahgary and 

Lahdelma (1995) results and their replications. The y-axes in the figures indicate dual weight 

values. As indicated by the x-axes, each bar in these figures represented an inefficient Finnish 

university identified. Each bar in these figures were sub-compartmentalised by their reference 

sets. The particular Finnish universities that made up these reference sets were identified by 

the key on the left of the figures. The proportion of the total bar that a reference set DMU 

would constitute was associated with the weight assigned to that reference set DMU by the 

CCR model. 
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Figure 5.1: Reference Sets and Dual Weights from El-Mahgary & Lahdelma (1995) vs. Replicated Analysis 

  

Source: Direct extract from (El-Mahgary & Lahdelma, 1995) 
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The replication of the dual weights, reference sets and technical efficiencies were accurate for 

all inefficient Finnish university except for the Sibelius Academy, labelled S. Within S, the 

technical efficiency and dual weight values were replicated by this study accurately. The 

difference between the El-Mahgary and Lahdelma (1995) dual weights, reference sets and 

technical efficiencies and those replicated was the allocation of reference set DMUs to S.  

This study allocated the fully efficient N, P and Q DMUs to the reference set of S. El-

Mahgary and Lahdelma (1995) allocated the fully efficient DMUs H, P and Q to the 

reference set of S. Thus, the difference was one reference set DMU, namely the allocation of 

N instead of H by this study, to S. This difference was due to a discrepancy present within the 

El-Mahgary and Lahdelma (1995) paper. The reasoning for this was that the numerical 

efficiency value of S was replicated by this study. Additionally, despite this study using N 

instead of H as a reference set DMU, the study still managed to allocate the same numerical 

dual weight of H to N.  

 

It is believed that this small discrepancy might have arisen from the AskDEA package used 

by El-Mahgary and Lahdelma (1995). The researchers state that the AskDEA package is used 

as an experimental tool within their paper. The “Benchmarking” (Bogetoft & Otto, 2011) and 

“FEAR” (Wilson, 2008) packages used to replicate the El-Mahgary and Lahdelma (1995) 

results in R v3.2.3 (R Core Team, 2015) are more robust. The reason being that these 

packages are used more frequently throughout the DEA literature and thus have been 

validated by others. It is also possible that El-Mahgary and Lahdelma (1995) may have 

mislabelled the reference set DMU H instead of N. This maybe a typographical error as H 

and N are adjacent keys on the keyboard. This could probably be the more likely reason.     

 

This section managed to replicate the dual weights, reference sets and TE results produced by 

El-Mahgary and Lahdelma (1995). As a result, this study has confidence in the efficiency 

results produced by its code. 

 

5.4 Summary 

The technical efficiencies, dual weights and reference sets of the inefficient Finnish 

universities in the El-Mahgary and Lahdelma (1995) were replicated. The only discrepancy 

was the allocation of reference sets for Sibelius Academy. This study allocated P and Q as 

reference set DMUs of S. The same allocation was made by El-Mahgary and Lahdelma 
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(1995). However, this study allocated N (in)correctly to the reference set of S as opposed to 

the allocation of H by El-Mahgary and Lahdelma (1995). 

 

This discrepancy is believed to be a typographical error from the El-Mahgary and Lahdelma 

(1995) study. The reasons for this conclusion is that technical efficiencies, dual weights and 

all the reference set allocation generated by El-Mahgary and Lahdelma (1995) were 

replicated. The discrepancy may also have originated either from the experimental AskDEA 

package used to generate the results by El-Mahgary and Lahdelma (1995). The replication of 

the results in the El-Mahgary and Lahdelma (1995) study provided sufficient evidence to 

conclude that the code developed for this study was valid. 
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6. Chapter Six: Results and Analysis 

 

6.1 Introduction 

The results of the CCR and BCC models were presented in terms of the TE and PTE 

estimates, respectively. In addition to these estimates, the reference sets and dual weights 

associated with each DMU were shown. These results were presented for each one of the 15 

selected container terminals over the two year sample period. 

 

The technical (global) efficiency estimates of the 15 selected container terminals were 

identified. The TE estimates were divided into two components, namely PTE and SE. The 

study believed that PTE was the leading component in achieving full TE, and thus MPSS. 

The reason being that PTE estimates could be corrected without costly capital investment. 

The PTE indicated how technically efficient the current inputs were in generating outputs 

when comparing terminals of equal scale size. Thus, the terminal had only to make sure that 

existing inputs produced outputs as efficiently as possible. This was not the case when 

correcting for scale efficiency, which required capital investment. As not all the terminals 

may have had the capacity for capital investment, PTE was seen as the most important 

contributor to the global efficiency, or TE, of the port. Scale efficiency was considered as a 

secondary contributor to TE of a terminal. 

 

As a result, the bootstrapped pure technical efficiency estimates were used to establish a 

descending efficiency ranking of the selected African container terminals for each of the 

sample periods. The focus of this analysis was on how the highest ranked ports, some 

globally efficient and some not, and the lowest ranked ports could improve their current 

inefficiencies. This was done by suggesting corrections be made to either the PTE or SE 

inefficiencies, driving the low ranking or preventing higher efficiency in some of inefficient 

high ranking terminals. The primary objective was to achieve MPSS. In addition to the high 

and low ranking ports, focus was placed on the Eastern Cape ports, which was where this 

study originated. 

 

The TFPC was also analysed to showcase container terminals that improved or decreased 

their efficiency scores over the sample period. The components of the TFPC were analysed to 

determine what was driving these improvements or decreasing their efficiency.  
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6.2 Efficiency, Reference Set and Dual Weight Estimates 

Data from 15 of the major container terminals on the African continent were collected. The 

information from these container terminals was classified as panel data as it was acquired for 

the years 2013 and 2014. The data was acquired from multiple sources online and no single 

source can be identified as providing the majority of the data.  

 

The TE, PTE, reference sets and dual weight (𝜆) estimates for the selected container 

terminals are listed in Table 6.1. This table summarises the results of these estimates for each 

of the 15 container terminals. Table 6.1 used abbreviated names for the container terminals 

and thus refers the reader back to Table 3.1 for the full names. Each DMU had a number 

corresponding to it as well as a TE and PTE estimate. Every efficiency estimate had a 

corresponding dual weight and reference set DMU estimate. The reference set DMUs were 

identified by the number allocated to the DMU. All these estimates were generated by the 

“Benchmarking” (Bogetoft & Otto, 2011) package in R v3.2.3 (R Core Team, 2015). The 

estimates were generated for both 2013 and 2014.  

 

The PECT was isolated to provide a brief interpretation of the results in Table 6.1. In 2013, 

PECT had a TE and PTE equivalent to 2.747 and 1.000, respectively. The reference set 

associated with the TE result comprised of the Port Said SCCT with a dual weight of 0.194. 

The reference set associated with the PTE was PECT itself as it experienced full PTE. In 

2014, PECT had a TE and PTE equivalent to 2.924 and 1.000, respectively. Thus, there was a 

slight decrease in the TE. The reference set associated with the TE result comprised of the 

Port Said SCCT and Tanger Med with dual weights of 0.184 and 0.003, respectively. The 

reference set associated with the PTE was again PECT itself as it experienced full PTE in 

2014. 

 

No analysis was reported on these estimates at this stage. Table 6.1 was provided purely as a 

report of the dual weight and reference set results. These components were identified as 

important in the methodology of the CCR and BCC model and as such seen as important to 

inform the reader of their outcomes. The ranked African container terminals were analysed in 

terms of the PTE and SE in section 6.3. Suggestions are also made, within this section, on 

how inefficiencies could be corrected to achieve MPSS. 
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Table 6.1: Technical, Pure Technical and Non-Increasing Returns-to-Scale Efficiencies 

DMU 
Container 

Terminal 

2013 2014 

TE Reference Sets (𝝀) PTE Reference Sets (𝝀) TE Reference Sets (𝝀) PTE Reference Sets (𝝀) 

1 Alexandria (AICT) 1.193 9 (0.182), 13 (0.172) 1.000 1 (1.000) 1.297 
13 (0.052), 14 

(0.225) 
1.000 1 (1.000) 

2 Cape Town CT 2.123 
6 (0.281), 9 (0.214), 

13 (0.378) 
2.081 

3 (0.077), 9 (0.606), 13 

(0.317) 
2.398 

13 (0.067), 14 

(0.606) 
2.222 

1 (0.207), 9 (0.298), 

14 (0.495) 

3 Casablanca CT 1.263 6 (0.287), 13 (0.202) 1.000 3 (1.000) 1.355 6 (0.043), 14 (0.362) 1.000 3 (1.000) 

4 Damietta CT 2.358 
13 (0.278), 14 

(0.189) 
1.814 

1 (0.064), 9 (0.827), 13 

(0.109) 
2.357 

13 (0.236), 14 

(0.227) 
1.972 

1 (0.282), 9 (0.500), 

14 (0.218) 

5 
Dar es Salaam 

(TICTS) 
1.890 9 (0.882), 13 (0.059) 1.866 

1 (0.091), 9 (0.866), 13 

(0.043) 
1.825 9 (0.783), 14 (0.117) 1.777 

1 (0.130), 9 (0.797), 

14 (0.073) 

6 Doraleh CT 1.000 6 (1.000) 1.000 6(1.000) 1.000 6 (1.000) 1.000 6 (1.000) 

7 
Durban (Pier 1 and 

2) 
1.461 

9 (2.285), 13 (0.236), 

14 (0.311) 
1.269 9 (0.238), 13 (0.762) 1.647 9 (1.889), 14 (0.778) 1.295 13 (0.364), 14 (0.636) 

8 Apapa CT 2.551 
9 (0.145), 13 (0.195), 

14 (0.284) 
2.548 

6 (0.225), 9 (0.362), 13 

(0.067), 14 (0.346) 
1.996 

6 (0.342), 9 (0.476), 

14 (0.378) 
1.990 

6 (0.228), 9 (0.310), 

14 (0.462) 

9 Luanda (CT2) 1.000 9 (1.000) 1.000 9 (1.000) 1.000 9 (1.000) 1.000 9 (1.000) 

10 Mombasa CT 1.553 
9 (0.976), 13 (0.033), 

14 (0.142) 
1.520 

9 (0.833), 13 (0.111), 14 

(0.056) 
1.601 

6 (0.057), 9 (1.032), 

14 (0.158) 
1.542 9 (0.750), 14 (0.250) 

11 Ngqura CT 1.952 9 (0.857), 14 (0.286) 1.916 
9 (0.722), 13 (0.074), 14 

(0.204) 
2.930 9 (0.500), 14 (0.500) 2.930 9 (0.500), 14 (0.500) 

12 Port Eliz. CT 2.747 13 (0.194) 1.000 12 (1.000) 2.924 
13 (0.184), 14 

(0.003) 
1.000 12 (1.000) 

13 Port Said SCCT 1.000 13 (1.000) 1.000 13 (1.000) 1.000 13 (1.000) 1.000 13 (1.000) 

14 
Tanger Med (T1 

and T2) 
1.000 14 (1.000) 1.000 14 (1.000) 1.000 14 (1.000) 1.000 14 (1.000) 

15 Tema Port CT 1.000 15 (1.000) 1.000 15 (1.000) 1.089 6 (0.673), 14 (0.131) 1.000 15 (1.000) 
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6.3 Ranking and Analysis 

The selected African container terminals were ranked for both 2013 and 2014 of the sample 

period using the smooth homogenous bootstrap. The pure technical efficiencies were 

bootstrapped to establish bias-corrected PTE values. The container terminals were listed in 

descending order based on these bias-corrected pure technical efficiencies. 

 

The bias-corrected PTE values were better suited to ranking than the pure technical 

efficiencies. The bootstrapping procedure provided a method for distinguishing between 

DMU’s with equal PTE values. This was achieved by accounting for sampling variation 

within the bias-corrected PTE.  

 

In addition to being a valuable ranking tool, the bias-corrected efficiencies indicated further 

potential adjustments in PTE for a ranked DMU to obtain full PTE. These adjustments were 

in addition to those proposed by the original, pure technical efficiencies. As a result of the 

downward bias present in the original PTE, the bias-corrected PTE advocated greater 

adjustments in output to achieve full PTE efficiency where necessary. However, the original 

PTE and SE values remained the core result, in terms of achieving MPSS and thus technical 

efficiency for a ranked terminal. The bias-corrected PTE indicated potential corrections in 

efficiency, above and beyond the PTE and SE corrections needed for a ranked terminal to 

achieve MPSS. 

 

Table 6.2 lists the rankings of the 15 selected African container terminals in descending order 

over the sample period. The bias-corrected PTE values were calculated using the “FEAR” 

(Wilson, 2008) package in R v3.2.3 (R Core Team, 2015). The table also lists the PTE and 

SE values for both 2013 and 2014 as well as recording the NIRSE and returns-to-scale 

results.
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Table 6.2: Efficiency Rankings, Scale Efficiency & Returns-to-Scale for 2013 & 2014. 

 2013 2014 

Container Terminal Rank 

Bias-

corrected 

PTE 

PTE NIRSE SE RTS Rank 

Bias-

corrected 

PTE 

PTE NIRSE SE RTS 

Tema Port CT 1 1.214 1.000 1.000 1.000 CRS 1 1.227 1.000 1.089 1.089 IRS 

Tanger Med (T1 and 

T2) 
2 1.231 1.000 1.000 1.000 CRS 3 1.254 1.000 1.000 1.000 CRS 

Port Said SCCT 3 1.258 1.000 1.000 1.000 CRS 2 1.253 1.000 1.000 1.000 CRS 

Alexandria (AICT) 4 1.263 1.000 1.193 1.193 IRS 4 1.289 1.000 1.297 1.297 IRS 

Port Eliz. CT 5 1.273 1.000 2.747 2.747 IRS 8 1.309 1.000 2.924 2.924 IRS 

Casablanca CT 6 1.275 1.000 1.263 1.263 IRS 5 1.299 1.000 1.355 1.355 IRS 

Luanda (CT2) 7 1.277 1.000 1.000 1.000 CRS 7 1.305 1.000 1.000 1.000 CRS 

Doraleh CT 8 1.278 1.000 1.000 1.000 CRS 6 1.304 1.000 1.000 1.000 CRS 

Durban (Pier 1 and 2) 9 1.471 1.269 1.269 1.151 DRS 9 1.526 1.295 1.295 1.272 DRS 

Mombasa CT 10 1.733 1.520 1.520 1.022 DRS 10 1.793 1.542 1.542 1.038 DRS 

Damietta CT 11 2.029 1.814 2.358 1.300 IRS 12 2.234 1.972 2.353 1.195 IRS 

Ngqura CT 12 2.173 1.916 1.916 1.019 DRS 15 3.480 2.930 2.930 1.000 CRS 

Dar es Salaam (TICTS) 13 2.185 1.866 1.890 1.012 IRS 11 2.111 1.777 1.825 1.027 IRS 

Cape Town CT 14 2.402 2.081 2.123 1.020 IRS 14 2.535 2.222 2.398 1.079 IRS 

Apapa CT 15 2.916 2.548 2.548 1.001 DRS 13 2.322 1.990 1.990 1.003 DRS 
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The results of the analysis showed that Tema was a fully efficient port for both 2013 and 

2014, with a PTE of 1.000 in both years. Thus, it appears that best practises were in place 

within this port’s operations. However, the error within the sampling process, which was 

estimated by the bootstrapping procedure, indicated that there was scope for improvement. 

The result of the bias-correction estimated this error. The bias-corrected estimates are shown 

in Table 6.2, under the column labelled as “Bias-corrected PTE”. Considering year 2013, the 

study observed that the bias-corrected estimate increased from 1.000 to 1.214. This increase 

was an indication that the error within the sampling process was estimated at 21.4%. Given 

that the study was using an output-orientated analysis, this change indicated that the port 

operations were potentially inefficient due to sampling error, implying that the outputs could 

have been increased for port operations to become fully efficient. Thus, Tema could have 

potentially increased its container throughput by approximately 21% in 2013. The same 

analysis of sampling error took place in 2014 and thus, potentially Tema could have 

increased its container throughput by approximately 23%. This port was fully scale efficient 

and experienced CRS in 2013. In 2014 this port experienced a SE of 1.089. Given the IRS 

nature of the port, in 2014, there was the potential to increase the scale of operations by 8.9%, 

in order to achieve the MPSS.  

 

Tema’s top ranking and full PTE, for both years, came as a result of the terminal handling 

85% of Ghana’s trade, with coffee, cotton and fruit the major trade products. The labourers 

within the terminal experienced extremely high levels of training with the private sector 

being heavily involved in the labour practises (Ghana Ports & Harbour Authority, 2013). 

Container cargo constituted 80% of the Tema Port’s business and the terminal also served as 

a gateway for trade to Mali, Niger and Bukina Faso (Ghana Ports & Harbour Authority, 

2013). 

 

Apapa container terminal had the lowest PTE of 2.548 in 2013. This terminal needed to 

increase output levels by 154.8%, to ensure best practises were in place within its operations. 

In addition, the bias-corrected PTE efficiency value indicated that the port operations were 

potentially inefficient by a further 36.8%. This estimate was the difference between 2.548 and 

2.916, due to sampling error. The SE score of 1.001 indicated there was little potential to 

improve the scale of the operations. The port exhibiting a very slight DRS nature. Focus 

needed to be placed on doubling its 2013 level of outputs to achieve full PTE. 
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The bottom ranking and lowest PTE of Apapa in 2013 was possibly due to the lack of rail and 

road infrastructure leading in and out of the port. Trucks stand in lengthy queue’s waiting to 

off and up load containers as a result of no rail infrastructure in the Apapa container terminal 

(Rosendahl, 2014).  

 

Ngqura had the lowest PTE of 2.930 in 2014. Therefore, Ngqura needed to increase output 

levels by 193%, to ensure best practises were in place within the port’s operations. The bias-

corrected PTE efficiency value indicated that port operations were potentially further 

inefficient by 55%. Ngqura was fully scale efficient in 2014, as indicated by the CRS of the 

port. Thus, there was very little potential to increase the scale of operations and the focus 

needed to be placed on tripling outputs in order to achieve full PTE. 

 

The lowest ranking and PTE results for Ngqura in 2014 were not surprising as this was a new 

port which only began operations in October 2009. Skills development was still in the early 

stages and technological expertise still being introduced (Ports & Ships, 2012a). In addition, 

in 2014, South Africa experienced considerable labour force disputes with widespread 

striking affecting operations (de Bruyn, 2014).  

 

The Port Elizabeth container terminal (PECT) was the only South African terminal with full 

PTE of 1.000 in both 2013 and 2014. This terminal therefore had the best practices in place in 

terms of port operations within South Africa over the study period. However, as indicated by 

the bias-corrected PTE efficiencies of 1.273 (2013) and 1.309 (2014), there was potential for 

a 27.3% increase and 30.9% increase in outputs, respectively, due to sampling error. PECT 

had the lowest scale efficiencies of 2.747 and 2.924 in 2013 and 2014, respectively. Given 

the IRS nature of the port in both years, this implied there was the potential to increase the 

scale of operations by 174.7% and 192.4% in 2013 and 2014, respectively, in order to 

achieve MPSS. 

 

PECT had the highest ranking, relative to the other South African container terminals, in this 

study for both 2013 and 2014. The achieved ranking and full PTE, in both years, came as a 

result of high skills levels and technological expertise built up over many years of 

automotive, citrus and manganese exports. The automotive exports were from Volkswagen, 

Ford, Mercedes-Benz (Daimler Chrysler) and General Motors. The citrus exports were 

derived from the seasonal markets during May to October. These forms of trade have been 
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operational since the container and automotive terminal was opened in 1993 (Ports & Ships, 

2012b). PECT also played the major role in the export of Manganese ore. The primary 

destination was the Far East, and demand had climbed from 2.1 million tons per annum in 

2005 to 7.5 million tons per annum in 2012. The modest forecasted growth showed this 

export was expected to approach 16 million tons per annum by 2018 (van Tonder, 2014). 

  

The results of this study rank the Durban container terminal 9
th

 out of the 15 African 

terminals in both 2013 and 2014. In the South African context, Durban would be ranked 2
nd

 

of the four terminals in both years. These findings dispute the 2014 rankings by Maersk 

(Hutson, 2014a) which claim that Durban is the most efficient container terminal in Africa. 

 

The difference in rankings may be a result of the Maersk study relying on a single key 

performance indicator (KPI), whilst this current study utilised four input and one output 

variable. The Maersk KPI for efficiency measurement is “crane moves per hour” which is 

limited to only one part of a terminal’s operations, namely the crane operations on the berth. 

This measurement did not consider the yard where the containers were organised and stacked, 

nor had the measurement considered the berthing capacity of the terminal. The efficiency 

measurements reported in this study have accounted for more sectors of Durban’s terminal 

operations than the Maersk KPI. For this reason the efficiency results here were argued to be 

a more realistic indicator of actual port operations. 

 

Durban had a PTE of 1.269 and 1.295 in 2013 and 2014, respectively. Thus, Durban would 

have had to increase output levels by 26.9% in 2013 and 29.5% in 2014 to ensure best 

practises were in place within the port’s operations. The bias-corrected PTE efficiencies of 

1.471 in 2013 and 1.526 in 2014 account for the sampling error present in DEA. These values 

indicated that there was potential for a further 20.2% increase in outputs in 2013 and 23.1% 

increase in outputs in 2014. 

 

This surprisingly low ranking and low PTE of Durban, in both years, is possibly a result of 

the port looking to expand the input infrastructure of its terminals with long-term benefits in 

mind. State-owned logistics utility Transnet recently invested R2bn to enlarge the Durban 

port (Barradas, 2013; Mkhize, 2014). Thus, capitalisation or investment in inputs has taken 

preference over operating at the optimal scale in the interim. Durban had an SE of 1.151 in 

2013 and 1.272 in 2014. There was potential, therefore, as indicated by the DRS nature of the 
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port, to decrease the scale of operations to achieve MPSS. However, the nature of the returns-

to-scale should be reassessed once the new infrastructure is operational. 

 

The North African ports appeared to be more efficient than the other ports. There were four 

and five in the top seven ranked container terminals, in 2013 and 2014, respectively. The 

North African ports were all located on the major Asia - Europe trade route and formed the 

gateway to Africa, resulting in more frequent trading with Europe and other parts of the 

world (Fourie, 2011). This may have resulted in their high relative efficiency scores. 

 

6.4 Changes in Efficiency over the Sample Period 

The results of the TFPC, as well as its sub-components, are listed in Table 6.3. A value of one 

or more for the TFPC or any of its components indicated an improvement in that source of 

efficiency over the analysed time period. A value lower than one indicated deterioration over 

the analysed time period. As an example, a value of 1.025 corresponded to a 2.5% increase 

and a value of 0.95 corresponded to a 5% decrease over the sample period. 

Table 6.3: Malmquist Productivity Index Results 

African Container Terminal TC(1) PTEC(3) SEC(4) 
TTEC(2)=

(3) x (4) 

TFPC(5)=

(1) x (2) 

% 

Increase/ 

(decrease) 

Efficiency 

North African Terminals 

Alexandria (AICT) 1.044 1.000 0.919 0.919 0.960 (4%) 

Casablanca CT 1.100 1.000 0.933 0.933 1.026 2.6% 

Damietta CT 1.027 0.920 1.088 1.001 1.028 2.8% 

Doraleh CT 1.067 1.000 1.000 1.000 1.067 6.7% 

Port Said SCCT 0.974 1.000 1.000 1.000 0.974 (2.6%) 

Tanger Med (T1 and T2) 1.203 1.000 1.000 1.000 1.203 20.3% 

West African Terminals 

Apapa CT 1.167 1.281 0.998 1.279 1.492 49.2% 

Tema Port CT 1.112 1.000 0.918 0.918 1.021 2.1% 

East African Terminals 

Dar es Salaam (TICTS) 1.133 1.050 0.986 1.036 1.173 17.3% 

Mombasa CT 1.166 0.985 0.985 0.971 1.132 13.2% 

Southern African Terminals 

Ngqura CT 1.185 0.654 1.020 0.667 0.790 (21%) 

Port Eliz. CT 0.957 1.000 0.937 0.937 0.896 (10.4%) 

Durban (Pier 1 and 2) 1.140 0.980 0.905 0.887 1.012 1.2% 
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The results indicated that the port of Tanger Med increased total factor productivity by 20.3% 

from 2013 to 2014. This result was not surprising given the technological improvements 

made in 2014 (Navisworld 2015; 2015). The improvements included upgrading the terminal 

planning system as well as the radio communication system within the terminal. These 

upgrades were targeted at improving performance and service levels to customers, in order to 

ultimately improve productivity. Hence the results lend support to the justification for the 

capital expenditure invested in Tanger Med. 

 

Apapa container terminal was the most improved port during the period 2013 to 2014, with a 

TFPC increase equivalent to 49.2%. The increase in efficiency over the sample period was 

expected, given the large investment in rail and road infrastructure, as can be seen by the 

16.7% increase in TC. This led to a greater throughput of containers within the Apapa port 

and thus a greater PTEC, as indicated by the 28.1% increase. The large increase in PTEC 

filtered through to the TTEC due to a small decrease in the SEC. Thus, strong investment in 

infrastructure indirectly lead to a greater throughput of containers and a noticeable increase in 

the total factor productivity of the port. 

 

East Africa made noticeable gains in total factor productivity over the sample period. 

Mombasa container terminal in East Africa showed a 13.2% increase in total factor 

productivity. This gain in efficiency was largely attributed to a 16.6% increase in TC. 

According to managing director Gichiri Ndua, the port invested heavily in technology to 

increase the capacity at the port, improve marketing and improve coordination between the 

port authority and the general port community (Huston, 2014b). This resulted in a more 

efficient port, leading to greater quantities of containers being handled, as observed with the 

increase in TC and TFPC. Dar es Salaam container terminal had an increase in its total factor 

productivity, from 2013 to 2014, of 17.3%. This, according to new CEO of the terminal, Paul 

Wallace, was due to an upgrade in infrastructure to deliver significantly higher levels of 

operational productivity and service level reliability, an objective supported by the 13.3% 

increase in TC (The Report Company, 2014). This improvement in efficiency has led to 

greater quantities of containers being processed. 

Luanda (CT2) 1.156 1.000 1.000 1.000 1.156 15.6% 

Cape Town CT 1.094 0.937 0.946 0.886 0.970 (3%) 

Geometric Average 1.099 0.979 0.975 0.955 1.049 4.9% 
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The largest decrease in total factor productivity over the sample period, 2013 to 2014, was 

experienced at Ngqura port with a TFPC of 0.79, equivalent to a 21% decrease in total factor 

productivity. This decrease in total factor productivity over the sample period was due to a 

decrease in PTEC of 34.6%. This decrease in PTEC resulted in an almost equivalent decrease 

in TTEC, despite Ngqura being scale efficient in 2014 with a 2% increase in its SEC. The 

large reduction in PTEC was believed to be a result of declines in container throughput due to 

labour strikes experienced in South Africa in 2014, and further compounded by a lack of 

technological knowhow within the port (de Bruyn, 2014). Ngqura invested in technology 

over the sample period, resulting in an 18.5% increase in the TC of the port, which no doubt 

contributed to the SE of the port in 2014. 

 

The container terminal based in Port Elizabeth was one of the more efficient ports in Africa, 

and the most efficient in South Africa. PECT experienced full PTE in both 2013 and 2014. 

The technical ability of the terminal has not changed, with a PTEC score of 1.000. However, 

some scale issues were apparent. PECT is heavily developed in terms of infrastructure. It is 

located in the popular waterfront location of Humewood in Port Elizabeth and is surrounded 

by housing and industry, limiting the port’s ability to expand both internally and externally in 

order to cope with a potential increase in traffic. This restriction was supported by decreases 

in SEC (6.3%) and TC (4.3%), from 2013 to 2014, ultimately leading to a decrease in total 

factor productivity of 10.4%. This is an issue PECT must address in order to avoid losing 

competitiveness to other African container terminals. 

 

The Luanda container terminal experienced a 15.6% increase in total factor productivity from 

2013 to 2014. This was due to infrastructural developments over the past 5 years, shown by 

the 15.6% increase in TC. This translated into increased container throughput (Portalangop 

(ANGOP), 2014). 

 

The full sample suggested that the adoption of better technologies by operators led to 

dramatic improvement, in terms of the average efficiency growth of the 15 African container 

terminals. This was evident in the TC average which increased by 9.9%. This increase in 

technology resulted in an increase in the average amount of total factor productivity among 

the 15 container terminals, as observed by the 4.9% increase in average TFPC. 
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6.5 Conclusion 

This study applied DEA methods to rank container terminals on the African continent for 

both the years 2013 and 2014. Bias-corrected bootstrapping methods were used to rank 

efficiency measures and provide additional insight. PTE and SE were analysed to provide 

corrective measures to assist selective terminals achieve MPSS. The MPI enabled the study to 

determine changes in the efficiencies of the terminals over the sample period. All the DEA 

results analysed provided numerical support of what had been reported in annual reports. 

 

The rankings revealed that the port of Tema had the highest ranking, coupled with a relatively 

high PTE and SE. The North African container terminals close proximity to the Asia-Euro 

trade route resulted in these terminals clustering at the top of the relative efficiency rankings 

for 2013 and 2014. In 2013, Apapa container terminal had the lowest ranking and PTE, 

coupled with an almost perfect SE. Apapa needed to invest in rail and road infrastructure in 

2013 to improve container turnover and thus container throughput. These infrastructure 

improvements were justified by the 2014 results which showed noticeable improvements. 

  

Focusing the analysis on South African container terminals, Ngqura port had the lowest 

ranking and PTE, coupled with full SE in 2014. The port of Ngqura needed to triple its 

container throughput in 2014 to achieve full PTE. The PECT port had the highest ranking and 

PTE in relation to the other South Africa ports, coupled with the lowest SE in relation to the 

other African ports, for both 2013 and 2014. MPSS could be achieved in PECT through 

further operational expansion. The relatively low ranking of Durban, in both 2013 and 2014, 

was surprising given that an independent report listed Durban as the most efficient container 

terminal in 2014. This low ranking may be due to recent capital investment planning for long-

term growth by Transnet. This meant Durban’s throughput at the time of this study had not 

reached its full potential, given the increased infrastructure. 

 

The sampled African ports on average experienced a 4.9% increase in total factor 

productivity over the sample period, as estimated by the MPI. This increase in efficiency may 

be a result of investment in technology within the ports of Tanger Med, Apapa, Dar es 

Salaam, Mombasa and Luanda. The investments within the ports were justified by the greater 

total factor productivity score within the ports, with an average increase of 9.9% in TC. This 
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average increase in TC was largely responsible for the increase in the average total factor 

productivity of the sampled African ports.  

 

Regarding the analysis of South African ports, there were some points of concern, 

particularly in the Eastern Cape, where NCT and PECT experienced decreases in total factor 

productivity of 21% and 10.4% over the sample period, respectively. These were the largest 

decreases in efficiency experienced among the sampled African ports. The reasons for these 

decreases were arguably related to the labour strikes at Ngqura combined with a lack of 

technical expertise. At PECT, the decrease in efficiency was most likely due to a lack of 

infrastructure and space to manage expanding container traffic.  
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7. Chapter Seven: Conclusions and Recommendations 

 

7.1 Conclusion 

The three main objectives of this study were stated in the introductory chapter. The first of 

these was to provide a thorough review of global port efficiency research. The second 

objective was to determine the level of efficiency within each of the African container 

terminals, using the statistical technique, DEA. The third and final objective was to 

comment on the efficiency results as well as the trend of the results over the sample period. 

Within these comments, this study also aimed to provide corrective measures for any 

inefficiency experienced over the sample period.  

 

All the defined objectives were met. In terms of the first objective, the study reviewed 20 

years’ worth of DEA applications in the seaport industry. During this review, DEA 

techniques were found to be suitable for this case study research. These techniques included; 

the output-orientated CCR and BCC models, Simar and Wilson’s (2000) method of 

homogenous bootstrapping, and the MPI. These techniques were used to calculate the 

efficiencies of the 15 selected African container terminals. In addition to identifying DEA 

techniques, three frequently occurring results within the seaport literature were also 

identified. The first of these was that the smaller the sample size, the less discriminatory 

power existed within the DEA model. The second outcome was that the larger the port, the 

higher its efficiency and the final result was that privatisation led to higher efficiency. 

 

To ensure discriminatory power, identified to be important from the literature review, 

carefully selected variables were used in the DEA models. The selected variables were 

based on; the high frequency with which they occurred in the literature, their importance in 

industry, as well as their positive correlation and significance in the statistical tests. In 

addition, four popular minimum sample size rules were satisfied in order to ensure 

discriminatory power. 

 

The second objective was met by determining the TE, the PTE and the SE of the selected 

African container terminals using the CCR and BCC models. These three efficiencies 

provided a comprehensive measurement of the efficiency present within each of the 15 

African container terminals. 
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The third objective was met by focusing on the PTE and SE components of TE. The bias-

corrected pure technical efficiencies were used to rank the container terminals in descending 

order for each of the sample periods. Once ranking was established, high and low ranking 

terminals, as well as PECT and NCT, were discussed. Reference to their PTE and SE were 

made as suggestions for improving areas of inefficiency to achieve MPSS. Changes in 

efficiency over the sample period were recorded and analysed using the MPI. 

 

Tema had the highest ranking, operating at MPSS in 2013 and very close to MPSS in 2014. A 

large portion of Tema’s port operations are privately run, corroborating the literature review 

finding that privately run ports were more efficient. 

 

The North African container terminals close proximity to the Asia-Euro trade route resulted 

in these terminals clustering at the top of the relative efficiency rankings for 2013 and 2014. 

Half these terminals operated at the MPSS. The North African container terminals are some 

of the largest in Africa, supporting the literature reviews’ finding that larger ports are more 

efficient.  

 

PECT appeared to be a slight contradiction to the above finding that larger is better in terms 

of efficiency. PECT had the highest ranking and PTE in relation to the other South Africa 

ports. However in contrast, PECT had the lowest SE in relation to the other African ports, for 

both 2013 and 2014. To achieve MPSS, PECT would have to expand its operations given its 

low SE. Thus, ultimately larger was better in terms of efficiency. 

 

In 2013, Apapa container terminal had the lowest ranking and PTE coupled with an almost 

perfect SE. Apapa needed to invest in rail and road infrastructure leading into the terminal in 

2013 to improve container turnover and therefore container throughput. Ngqura port had the 

lowest ranking and PTE coupled with full SE in 2014. Ngqura port needed to triple its 

container throughput in 2014 to achieve full PTE. 

 

The MPI indicated that investments within the ports lead to an average increase of roughly 

5% in total factor productivity within the ports and ultimately an average increase of about 

10% in TC.  
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By achieving the three objectives, this study addressed the problem of a lack of information 

with respect to efficiencies of different ports, identified through discussions with shipping-

line companies. This study provided the shipping-line companies with efficiency 

information that could be used to benchmark the container ports against each other, thereby 

enabling the companies to make more use of the more efficient container terminals. The 

study also made port authorities aware of inefficiencies in their processes. These 

inefficiencies could then be addressed to attract more container traffic from shipping-line 

companies. In achieving these objectives this study maintained its focus on NCT and PECT 

in the Eastern Cape. 

 

7.2 Recommendations for Future Research 

Two limitations were identified, the first of which was the difficulty in sourcing data. The 

second shortcoming was the lack of comparison of the DEA efficiency results with 

alternative models’ efficiency results (e.g.  FDH, SFA etc.). 

 

If a researcher were able to acquire data for more than two years, unlike this study, compiling 

a greater number of DMUs and variables, the results should be more robust. The sample 

would be much larger and thus provide more discriminatory power when calculating the 

efficiency results. Thus, the use of a larger data set when calculating African container 

terminal efficiencies would be a possible future research option. 

 

Calculating the African container terminal efficiencies using DEA and an alternative model, 

for comparison purposes, could provide a more valuable overall analysis of efficiency. As an 

example, using both DEA and SFA to calculate efficiency would provide both a non-

parametric and parametric approach to calculating efficiency, respectively. Thus, allowing for 

random error to be accounted for in the efficiency result. Therefore, the use of a greater scope 

of efficiency models when calculating efficiency would be a possible future research option. 

 

However, despite these future recommendations it is believed that a useful contribution to the 

DEA literature has been made, particularly given the limited amount of DEA applications in 

African seaports. 
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9. Appendices 

Appendix One 

Table A:  International Literature 

Literature Synthesis Sorted by Date of Publication 

 Model Variables 

Author Domain Data DMU’s Outputs Inputs 

Roll & Hayuth, (1993) 

 

Entire world 

 

 

 

 

Fictitious and 

cross-sectional, 

single period 

 

20 ports 1.Container throughput 

2.Service level 

3.User satisfaction 

4.Ship calls 

 

1.Size of labour force 

2.Annual investment per port 

3.The uniformity of facilities and cargo 

 

Poitras, Tongzon & Li, 

(1996) 

Australian and 

international 

 

Cross-sectional 23 ports 1.TEU container berth hour 

(TEUBH) 

2.Total number of containers 

handled per year (TH) 

 

1.Mix of  20-foot and 40-foot containers (CONMIX) 

2.Average delays in commencing stevedoring, difference 

between the berth time and gross working time 

(BRLWT)   

3.Number of containers lifted per quay crane hour 

(TEUCH) 

4.Number of gantry cranes (CRANE) 

5.Frequency of ship calls (FH) 

6.Average government port charges per container (CH) 
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Martinez-Budria, Diax-

Armas, Navarro-Ibanez 

& Ravelo-Mesa, (1999) 

 

Spain Panel 

 

26 ports in 

five year 

span 

 

1.Total cargo moved 

through the docks (in 

thousands of tons) 

2.Revenue obtained from rent of 

port facilities (millions of 

pesetas) 

 

1.Labour expenditures 

2.Depreciation charges 

3.Miscellaneous expenditures 

 

Tongzon,  (2001) Australia & 

International 

Cross-sectional 16 ports 1.Cargo throughput (containers) 

2.Ship working rate (container 

moves per hour) 

1.Capital (number of berths, cranes, tugs) 

2.Labour (number of stevedore gangs) 

3.Land (size of terminal areas) 

4.Length of delay 

Valentine & Gray,  

(2001) 

Entire World Cross-sectional 21  Ports 1.Total tons throughput 

2.Number of containers 

1.Quay length (in metres) 

2.Assets (USD OR $) 

Valentine & Gray  (2002) North America and 

Europe 

Cross-sectional 19  Ports 1.Total tons throughput 

2.Number of containers 

1.Total length of berth (in metres) 

2.Container berth length (in metres) 

Barros  (2003) Portugal Panel  11 ports 1.Number of Ships 

2.Movement of freight 

3.Gross gauge 

4.Break-bulk cargo 

5.Containerized freight 

6.Solid bulk and liquid bulk 

1.Labour (number of workers) 

2.Capital (book value of the assets) 
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Barros & Anthanassiou  

(2004) 

Greece and Portugal Panel 6 ports 1.Movement of freight 

2.Total cargo handled 

3.Containers loaded and 

unloaded 

 

1.Number of workers 

2.Book value of assets 

Estache, De la Fe & 

Trujillo (2004) 

Mexico Panel 11 ports 1.Cargo (volume in tons of 

merchandize handled) 

1.Labour (number at each port) 

2.Capital (length of docks) 

Cullinane, Song & Wang  

(2005) 

Worldwide Cross-sectional 57 ports/container 

terminals 

1.Container throughput (in TEU 

containers) 

1.Terminal length (in metres) 

2.Terminal area (in hectors)  

3.Number of quayside gantry 

4.Number of yard gantry 

5.Number of straddle carrier 

Barros (2006) Italy Panel  24 ports 1.Liquid bulk (oil and other 

liquid products) 

2.Dry bulk (Ro-Ro Cargo and 

other dry bulk) 

3.Number of ships 

4.Number of passengers 

5.Number of  TEU containers 

6.Number of non TEU 

containers 

7.Total sales 

1.Number of personnel 

2.Value of capital invested 

3.Size of operating costs 

Cullinane, Wang, Song & 

Ji  (2006) 

Worldwide Cross-sectional 57 1.Container throughput (in TEU 

containers) 

1.Terminal length (in metres) 

2.Terminal area (in hectares) 

3.Number of quayside gantry cranes 

4.Number of yard gantry cranes 

5.Number of straddle carriers 
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Rios & Macada (2006) Brazil, Argentina 

and Uruguay 

Panel 23 terminals 1.TEU containers handled 

2.Average number of containers 

handled per hour per ship 

1.Number of cranes 

2.Number of berths 

3.Number of employees 

4.Terminal area (in square metres) 

5.Amount of yard equipment 

Wang & Cullinane 

(2006) 

Pan European Cross-sectional 69 terminals 1.Container throughput (in TEU 

containers) 

1.Terminal length (in metres) 

2.Terminal area (in hectares) 

3.Amount of equipment 

Herrera & Pang (2008) International Panel  86 ports 1.Throughput (container TEUs) 1.Terminal Area 

2.Ship-to-shore gantries 

3.Number of quay gantries  

4.Number of yard gantries 

5.Number of mobile gantries 

6.Number of tractors and trailers 

de Oliveira & Cariou 

(2011) 

International Cross-sectional  122 ports 1.Cargo throughput (in tons) 1.Draaght (in metres) (nautical assistance and resources 

to accommodate the vessel) 

2.Berth length (in metres) 

3.Stockpile capacity (in tons) 

4.(Un)Loading rates (in metric-tons/hour) 
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Munisamy & Danxia 

(2013) 

Asia Cross-sectional 69 Ports 1.Total throughput in TEUs 1.Berth length (in metres) 

2.Terminal area (in metres squared) 

3.Total reefer points (number of points where 

refrigerated containers can be plugged in to keep them 

cold) 

4.Total quayside cranes 

5.Total yard equipment 

 

Table B: Local (African and/or South African) Literature 

Literature Synthesis Sorted by Date of Publication 

 Model Variables 

Author Domain Data DMU’s Outputs Inputs 

Al-Eraqi, Barros, 

Mustaffa & Khader 

(2007) 

Middle East and 

East Africa 

Panel  22 ports 1.Number of ship Calls 

2.Cargo throughput (in tons) 

1.Berth length (in metres) 

2.Distance (in nautical miles) 

3.Terminal area (in metres squared) 

Ocean Shipping 

Consultants (2008) 

Sub-Saharan Africa Non-DEA application, but is a seaport based application. 

Notteboom  (2010) South Africa Non-DEA application, but is a seaport based application. 

Notteboom  (2011) South Africa Non-DEA application, but is a seaport based application. 
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Appendix Two 

Table C: Forward ECM for 2013 (CCR and BCC) Inputs 

Rounds Input Variable(s) 𝑿 (Significant Inputs) 𝒁 (Candidate Inputs) 𝒀 (Significant 

Output) 

Test Statistic for 

Candidates (𝒁) 

P-value for Candidates 

(𝒁) 

Model CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC 

Round 1 Berth 

Length 

Berth 

Length 

Berth 

Length 

Berth 

Length 

Num. Berths Num. Berths Num. 

TEU’s 

Num. 

TEU’s 

9 6 1.2510e-6 1.474e-03 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

13 11 1.270e-12 2.729e-09 

Num. Yard 

Equipment 

Num. Yard 

Equipment 

14 8 1.000e-14 1.721e-05 

Round 2 Berth 

Length 

Berth 

Length 

Berth 

Length 

Berth 

Length 

Num. Berths Num. Berths Num. 

TEU’s 

Num. 

TEU’s 

12 6 1.474e-03 0.002 

Num. Yard 

Equipment 

Num. 

Terminal 

Cranes 

Num. Yard 

Equipment 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

Num. Yard 

Equipment 

11 6 1.251e-06 0.002 

Round 3 Berth 

Length 

Berth 

Length 

Berth 

Length 

Berth 

Length 

Num. Berths Num. Berths Num. 

TEU’s 

Num. 

TEU’s 

7 5 0.0002 0.009 

Num. Yard 

Equipment 

Num. 

Terminal 

Cranes 

Num. 

Berths 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

Num. Yard 

Equipment 

Num. 

Terminal 

Cranes 

Num. Yard 

Equipment 
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Round 4 Berth 

Length 

Berth 

Length 

- - - - - 

Num. 

Berths 

Num. 

Berths 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

Num. Yard 

Equipment 

Num. Yard 

Equipment 

 

Table D: Forward ECM for 2014 (CCR and BCC) Inputs 

Rounds Input Variable(s) 𝑿 (Significant Inputs) 𝒁 (Candidate Inputs) 𝒀 (Significant 

Output) 

Test Statistic for 

Candidates (𝒁) 

P-value for Candidates 

(𝒁) 

Model CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC CCR BCC 

Round 1 Berth 

Length 

Berth 

Length 

Berth 

Length 

Berth 

Length 

Num. Berths Num. 

Berths 

Num. 

TEU’s 

Num. 

TEU’s 

7 3 1.814e-04 0.158 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

12 7 7.498e-11 1.814e-04 

Num. Yard 

Equipment 

Num. Yard 

Equipment 

13 8 1.270e-12 1.721e-05 

Round 2 Berth 

Length 

Berth 

Length 

Berth 

Length 

Berth 

Length 

Num. Berths Num. 

Berths 

Num. 

TEU’s 

Num. 

TEU’s 

3 3 0.158 0.158 
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Num. Yard 

Equipment 

Num. Yard 

Equipment 

Num. Yard 

Equipment 

Num. Yard 

Equipment 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

5 4 0.009 0.044 

Round 3 Berth 

Length 

Berth 

Length 

Berth 

Length 

Berth 

Length 

Num. Berths Num. 

Berths 

Num. 

TEU’s 

Num. 

TEU’s 

2 2 0.415 0.415 

Num. Yard 

Equipment 

Num. Yard 

Equipment 

Num. 

Berths 

Num. Yard 

Equipment 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

Round 4 Berth 

Length 

Berth 

Length 

- - - - - 

Num. 

Berths 

Num. Berths 

Num. 

Terminal 

Cranes 

Num. 

Terminal 

Cranes 

Num. Yard 

Equipment 

Num. Yard 

Equipment 
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Appendix Three 

Table E: Universities A-T Variable Values used in El-Mahgary & Lahdelma (1995) 

Universities Inputs Outputs 

Symbol Expenditure Admission 

Policy 

Graduates Post-graduates Graduation 

Speed 

Completion 

University of Helsinki A 1204.651 4.542 1707 330 0.143 0.587 

University of Jyvaskyla B 349.531 4.966 776 107 0.167 0.718 

University of Oulu C 504.882 2.983 860 115 0.154 0.662 

University of Joensuu D 179.618 3.445 492 52 0.167 0.717 

University of Kuopio E 196.747 3.66 265 50 0.167 0.593 

University of Turku F 457.718 4.727 881 105 0.154 0.68 

University of Tampere G 338.626 5.28 722 91 0.154 0.537 

Abo Academy H 207.752 1.796 377 51 0.143 0.701 

University of Vaasa I 71.724 3.162 227 11 0.2 0.739 

University of Lapland J 82.839 5.941 225 10 0.2 1.018 

College of Veterinary Medicine K 56.176 7.349 33 2 0.143 0.767 

Helsinki University of Technology L 467.668 2.563 724 156 0.133 0.681 

Tampere University of Technology M 209.132 2.701 364 70 0.167 0.704 

Lappeenranta Univer. of Technology N 105.861 1.718 190 11 0.154 0.629 

Helsinki School of Econ. & Bus. Adm. O 129.407 4.551 293 17 0.167 0.72 

Swedish School of Econ. & Bus. Adm. P 50.129 2.551 140 6 0.182 0.543 

Turku School of Econ. & Bus. Adm. Q 53.018 3.247 211 9 0.182 0.938 

University of Industrial Arts R 90.132 16.429 119 2 0.143 0.696 

Sibelius Academy S 111.031 5.706 88 2 0.133 0.524 

Theatre Academy T 44.482 50.277 19 0 0.182 0.365 

Source: Direct extract from (El-Mahgary & Lahdelma, 1995) 

 

 


