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Abstract 

Financial market integration, in particular, portfolio allocations from advanced economies to South 

African markets, continues to strengthen volatility linkages and quicken volatility transmissions 

between participating markets. Largely as a result, South African portfolios are net recipients of 

returns and volatility shocks emanating from major world markets. In light of these, and other, 

sources of risk, this dissertation proposes a methodology to improve risk management systems in 

funds by building a contemporary asset allocation framework that offers practitioners an opportunity 

to explicitly model combinations of hypothesised global risks and the effects on their investments. 

The framework models portfolio return variables and their key risk driver variables separately and 

then joins them to model their combined dependence structure. The separate modelling of univariate 

and multivariate (MV) components admits the benefit of capturing the data generating processes 

with improved accuracy.  

Univariate variables were modelled using ARMA-GARCH-family structures paired with a variety of 

skewed and leptokurtic conditional distributions. Model residuals were fit using the Peaks-over-

Threshold method from Extreme Value Theory for the tails and a non-parametric, kernel density for 

the interior, forming a completed semi-parametric distribution (SPD) for each variable. Asset and risk 

factor returns were then combined and their dependence structure jointly modelled with a MV 

Student t copula. Finally, the SPD margins and Student t copula were used to construct a MV meta 

t distribution. 

Monte Carlo simulations were generated from the fitted MV meta t distribution on which an out-of-

sample test was conducted. The 2014-to-2015 horizon served to proxy as an out-of-sample, forward-

looking scenario for a set of key risk factors against which a hypothetical, diversified portfolio was 

optimised. Traditional mean-variance and contemporary mean-CVaR optimisation techniques were 

used and their results compared. As an addendum, performance over the in-sample 2008 financial 

crisis was reported. 

Keywords: GARCH, Extreme Value Theory, Copula, Simulation, Conditional Value-at-Risk, Portfolio 

Optimisation. 
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Chapter 1 

Introduction 

The secret of all victory lies in the organisation of the non-obvious. 

Marcus Aurelius 

1.1 Brief South African Macro Risk Landscape 

An overarching characteristic of global financial markets is the trend towards unification of financial 

markets in advanced economies with those in emerging market economies. Factors such as 

increasing globalisation, financial and exchange rate liberalisation and financial innovation are key 

contributors strengthening the linkages between international markets (Lane & Milesi-Ferretti, 2008). 

Emerging market (EM) economies have been, partly as a result, absorbing a much larger share of 

outward portfolio investment from advanced economies than was the case prior to the 2008 financial 

crisis. For example, the International Monetary Fund [IMF] (2014) observed that, between 2002 and 

2012, equity portfolio allocations to EM economies from advanced economies increased from 7 

percent of the total stock of advanced economy portfolio investment to almost 20 percent. Similarly 

for bond portfolio allocations, from 4 percent of the total stock of outward portfolio investment from 

advanced economy markets in 2002 to almost 10 percent in 2012. These portfolio allocations are 

principally directed towards only a few destination countries. Of the portfolio allocations to EM 

equities in 2012, 80 percent was invested in 12 of the 190 emerging market economies. Similarly for 

EM fixed income, with 75 percent directed to the same 12 economies. South Africa is among the 12 

destination markets. Concomitantly, a significant degree of portfolio concentration to emerging 

market economies hails from only a handful of advanced economies (viz., the United States [US], 

United Kingdom [UK], Hong Kong SAR and Singapore). One consequence is an increasing 

synchronisation in asset price movements and volatilities between these dualistic market-types. 

Existing globalised portfolio investment channels facilitate market liquidity that may rapidly be 

mobilised, enabling shocks from advanced economies to quickly propagate to emerging market 

economies.  Amplifying the transmission of such shocks is an appreciable uptrend in “herding” 

behaviour observed among not only investor groups and across investment styles, but predominantly 

in the exceptionally large $25 trillion United States mutual fund industry (IMF, 2015). In the strict, 

investor-behaviour sense, herding refers to actions taken only because investors see other investors 

taking them. Relaxing this definition, the degree of “correlated trading” within an investor group 

serves as an adequate proxy measure for herding (Lakonishok, Shleifer & Vishny, 1992). The trend 

in rising herding levels, observed in the largest U.S. investment vehicles, is highest too for emerging 

market asset and high-yield asset groups. Combined with increasingly mobile cross-jurisdictional 
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market liquidity, these factors should add to the list of sources of contagion risk to emerging markets. 

Investor decisions, particularly when they aggregate on the downside, can activate shock 

externalities that transmit through asset classes and across financial markets. Linking asset co-

movements, correlation spillovers and market liquidity is an important step towards appreciating 

contemporary risk undercurrents. Such risk undercurrents are continuously evolving as a function 

of, notably, increasingly homogenous global markets, technological change, regulation and the 

shifting composition of market participants. It is well documented (e.g., Fenn, et al., 2011; IMF, 2015; 

J.P. Morgan, 2011) that cross-asset correlations and correlation levels among major asset classes 

have risen markedly in recent years, particularly since the 2008 financial crisis. There has also been 

a substantial rise in correlations between asset markets in advanced and emerging market 

economies. The major asset classes considered generally fall into the categories of international 

equities, government bonds, corporate bonds, exchange rates, hard commodities and soft 

commodities, with further differentiation along emerging market and developed market lines. At a 

more granular level, asymmetries emerge in exceedance correlation structures of asset returns and 

return volatilities (Baruník, Kočenda & Vácha, 2014; Christoffersen, Errunza, Jacobs & Langlois, 

2012; Longin & Solnik, 2001; Mashal & Zeevi, 2002). Asymmetric co-movements in asset returns 

implies higher return and volatility correlations in market downturns than in upturns, where large 

negative returns are more correlated than large positive returns. When negative returns in an asset 

class or market are driven to extreme levels, the inverse relationship between contemporaneous 

returns and their conditional volatility cause volatility levels to spike. If such idiosyncratic price shocks 

are large enough, volatility spikes in one (typically important) market cause not only volatility, but 

also correlation, to “spill over” to other markets. In a heightened correlation world with advanced 

financial networks, “contagion” can quickly transmit across markets. This has been observed over 

the regularly occurring financial crises experienced in the last 30 years (Forbes, 2012). 

South African (SA) financial markets are subsumed in the momentum of unification, becoming more 

synchronised both laterally with emerging markets and vertically with developed markets. For an 

emerging market, they are also relatively deep and informational-efficient (McKinsey & Company, 

2013). In an investigation of the degree of South Africa’s global interdependence, Chinzara and 

Aziakpono (2009) analysed returns and volatility linkages between the SA equity market and six 

major world equity markets, those of Australia, China, Germany, Japan, UK and US. The authors 

found the SA equity market to be a statistically significant net recipient of returns and volatility shocks 

from the majority of the markets in the study. Importantly, exogenous volatility is quickly transmitted 

to the SA equity market which, in turn, could spill over to other domestic asset classes. Indeed, 

Duncan and Kabundi (2011) found significant interdependence in volatility across three of South 

Africa’s major asset classes: rand/dollar currency, yields on SA 10-year government bonds and 

returns to the Johannesburg Stock Exchange (JSE) all-share equities index. The SA equity market 
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is, in general, the primary source of domestic volatility transmission to the currency and bond 

markets. 

1.2 On the Traditional Model and Model Risk 

The global financial crisis of 2007-2008 was followed by significant losses in portfolios across the 

globe and, indeed, in portfolios of South African investors. It ushered in a protracted period of market 

volatility, with traditional risk management models failing because of increased correlation among all 

asset classes (Stefanova, 2015). The pendulum of investors’ attention has since swung away from 

portfolio returns as the singular measure of success to a more holistic domain focusing on risk 

management practices. 

Traditional portfolio risk management models are those developed under the auspices of Modern 

Portfolio Theory (MPT). Introduced by Markowitz (1952), MPT revolutionised asset allocation 

decision-making by using statistical methods to determine how to efficiently distribute wealth across 

a portfolio of risky assets. Investment allocation decisions are based on a mean-variance 

optimisation (MVO) problem with the objective of maximising portfolio returns for given levels of 

portfolio risk (equivalently, minimising portfolio risks for given levels of portfolio return), subject to 

certain constraints. The theory is consistent with the assumptions in a normal distribution 

probabilistic setting, where sample mean and variance estimators proxy the first two population 

moments of asset returns data (i.e., returns and risk) and a sample variance-covariance matrix 

captures return dynamics. The latter structure is equivalently a scaled correlation matrix deemed, in 

the MPT setting, an appropriate statistic for defining diversification (Fabozzi, Kolm, Pachamanova & 

Focardi, 2007). Diversification is the core concept of MPT. In formalising the mathematics behind 

combining risky assets in a portfolio setting, Markowitz quantified a path for portfolio managers to 

efficiently reduce exposure by diversifying away non-systematic risks. This “traditional” asset 

allocation framework is used extensively in present day institutional investment management. In 

what may suffice as an indicator for the industry, a 2013 risk study by Six and Wiedemann (2013) 

found that more than two-thirds of the 104 institutional investors surveyed in Germany use MVO 

when making investment decisions. Fabozzi, Focardi and Jonas (2007) surveyed 38 large and 

medium-sized U.S. and European equity investment managers managing a combined $4.3 trillion in 

assets. The authors found that 83% of the managers employed MVO. Other research affirms mean-

variance optimisation as the dominant asset allocation framework among institutional investors (see, 

for example, Amenc, Goltz & Lioui, 2011; Dempster, Pflug & Mitra, 2009; Idzorek, 2006; IMF, 2011). 

Diversification, as a means to reduce portfolio risks and extract risk premia, is an effective concept 

over long-term investment horizons. It provides investors with the best reward per unit risk through 

an efficient combination of individual assets. The demand for greater diversification is, in fact, one of 
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the drivers of globalisation, as investors increasingly trade their “home bias” for exposure outside 

their home markets (Boston Consulting Group, 2014; Institute of International Finance, 2014; 

Phillips, 2014). However, short-term, systemic crashes destroy diversification benefits as asset class 

correlations converge and shocks rapidly propagate through global financial networks. The 

traditional MPT framework does not protect portfolios against severe losses, or wealth destruction, 

over such periods. In “normal” markets, the distributional setting in MPT may serve investors well, 

but financial crises punctuate this state far more often than the normal distribution suggests (Xiong, 

2010 and references therein). In “non-normal” markets, current risk management approaches 

underestimate downside risks, supporting the continued investigation of new approaches and 

applications of statistical methods. 

Extreme market events represent incidences of “non-normality”: environments in which asset 

classes exhibit so-called “stylised facts”. Stylised characteristics of asset returns are well 

documented for both the univariate (Chakraborti, Toke, Patriarca & Abergel, 2011; Cont, 2001) and 

multivariate schema (e.g. Delatte & Lopez, 2013; McNeil, Frey & Embrechts, 2005; Nyström & 

Skoglund, 2002a). The following stylised facts are typical for univariate returns: 

1. Returns are not independent and identically distributed (i.i.d.). They may also show low 

absolute values for a first-order autocorrelation coefficient. 

2. Serial correlation in returns is not significant, whereas corresponding absolute or squared 

returns are mostly autocorrelated (i.e., they exhibit volatility persistence or “long memory”). 

3. Return volatilities exhibit conditional heteroskedasticity (i.e., time-varying volatility). 

4. Return distributions are leptokurtic, reflecting fatter tails and “peakedness” around (mostly1) 

positive arithmetic means (i.e., higher probabilities for extreme events and greater central 

tendency, respectively, than what the normal distribution would generate). 

5. Returns exhibit skewness, reflecting asymmetry in the tails. Distributions are generally 

negatively skewed, implying higher probabilities of negative returns. 

6. Extreme returns are observed closely in time (i.e., volatility clustering); the clustering itself 

generates excess volatility, or fat tails. 

Similarly for multivariate return series: 

1. There is little evidence of cross-correlations between return series (i.e., insignificant similarity 

between one series and shifted/lagged copies of another, as a function of the lag), except for 

when returns are not shifted (i.e., strong evidence of contemporaneous cross-correlations 

between returns). In other words, there is time-dependent co-dependence between return 

                                                           
1 It is likely an artefact, in this study, of the sampling frequency of the data that two variables exhibit negative arithmetic 
means. 
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series. 

2. There is strong evidence of cross-correlation between absolute or squared returns. 

3. Contemporaneous correlations vary over time. 

4. Extreme returns in one series are often accompanied by extreme returns in several other 

series (i.e., evidence of non-linear correlation or spillover effects). 

These empirical properties represent real limitations in traditional asset management, as well as 

imply real “model risks” in using MPT. On the other hand, the MPT models are theoretically and 

computationally tractable. Therefore, one of the aims of this paper is to incorporate these properties 

in a way that extends and supports the basic Markowitz portfolio theory. 

1.3 Qualitative Aim of the Paper 

Assets under management in South African pension funds, collective investment schemes (CIS) and 

hedge funds are in the region of $302 billion, $147 billion and $4.6 billion, respectively2 

(PricewaterhouseCoopers, 2015). As net recipients of global returns and volatility shocks originating 

exogenously and from a structurally changing and expanding pool of risk, it may materially benefit 

investors to be able to explicitly model combinations of these global risks and the effects on their 

portfolios. As well, the bulk of the variation in SA equity markets is driven by global, rather than local, 

risk factors (Polakow & Flint, 2014), with co-movement in world equity markets significantly higher 

during crisis than non-crisis periods (Duncan & Kabundi, 2014). These notions form a 

macroeconomic backdrop highly conducive to a flexible, bottom-up, macro-driven model to augment 

top-down South African portfolio management systems; a quantitative framework able to capture 

anticipated shifts in global risk-return expectations across an array of asset classes and market 

environments. 

This paper proposes a technically advanced, yet tractable, quantitative decision support framework 

designed to work in lockstep with economists’ and experts’ opinions on core (statistically or feasibly 

meaningful) risk drivers to portfolio asset classes. Non-normal stylised facts of univariate and 

multivariate financial data are explicitly modelled in the framework. The resulting model is an 

empirically- and theoretically-consistent simulation engine customised to a portfolio of asset classes 

and corresponding set of risk drivers. The model is the centre of a Monte Carlo simulation framework 

capable of extrapolating the observed underlying multivariate and univariate data generating 

processes beyond past observations. Simulations are ultimately used for conditioning on any number 

of combinations of forward-looking views in the form of range expectations of key asset class drivers. 

Sets of scenarios are formed under which portfolio optimisations take place with the goal of enriching 

the insight and risk management practices of practitioners. The model admits fat-tailed events and 

                                                           
2 As at December 2014 and exchange rate USD/ZAR 11.55. Also, 8.4% of pension assets were invested in CIS. 
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asymmetric expected returns to be explicitly factored into the asset allocation process. Optimisation 

is implemented as a function of maximised expected portfolio return per given level of portfolio 

conditional value-at-risk3 (CVaR), as opposed to portfolio variance4. Each resulting efficient frontier 

of asset class weights is, hence, optimally diversified against downside risk as well as against any 

backdrop of forecast scenarios of a practitioner’s choosing. This approach significantly improves on 

the traditional Markowitz MVO method, as is shown in an out-of-sample evaluation. 

The framework lends itself well to evaluating stochastic spillover effects on portfolios. Not only can 

magnitudes of univariate return and/or volatility shocks be adjusted, but they may be done so under 

a sliding scale of multivariate co-dependence. Forward-looking scenarios may be set and portfolios 

evaluated under varying degrees of multivariate co-dependence. For each stress-period scenario 

considered, portfolio diversification is maximised along an efficient frontier. However, while merely 

using sophisticated distributional models and downside risk measures may lead to more effective 

diversification, it may not lead to substantially smaller losses in extreme stress-period scenarios. By 

taking a step further and analysing scenario-conditioned portfolios along the frontier and 

corresponding expected profits and losses in portfolio assets, areas and degrees of vulnerability in 

portfolios can be identified in advance of extreme stress periods. Clear-sighted hedging instruments 

or strategies may be determined ex ante, as well as proactive response plans mandated. In addition, 

common portfolio risk measures, such as value-at-risk (VaR) and CVaR, may be generated for 

analysis. By becoming a key technology in risk management practices, the conditional Monte Carlo 

framework may serve to add material value through actionable insight. 

The approach in this paper builds on research by Inanoglu and Ulman (2009), Mashal and Zeevi 

(2002), Nyström and Skoglund (2002a), Wang, Sullivan and Ge (2012) and Xiong and Idzorek 

(2011). All data in this paper were prepared using Microsoft Excel and all results produced using the 

statistical package R (R Development Core Team, 2014), with various R packages used in subsets 

of analysis. The computer used to implement codes is a Lenovo laptop with Intel Core i5-4200M 

processor with a clock speed of 2.50 GHz and 8 GB memory, running on a 64-bit Windows 7 

Operating System. 

The remainder of this paper is organised as follows: Chapter 2 provides a survey of the literature 

and forms the basis for the methodology chapter; Chapter 3 describes the theories and 

methodologies used in building the framework and presents results; Chapter 4 concludes and gives 

some suggestions for further research.  

                                                           
3 Equivalently, expected shortfall (ES), expected tail loss (ETL), tail-VaR, average VaR (AVaR), mean excess loss and 
mean shortfall in the literature. 
4 This paper assumes an asymmetric risk preference for risk-averse investors and uses CVaR as the preferred measure 
of downside risk. Optimisation may be modified to optimise using other downside risk measures (e.g., Omega, Kappa 
measure or Sortino ratio).  
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Chapter 2 

Literature Review 

Much of the real world is controlled as much by the 
“tails” of distributions as by means or averages: 

by the exceptional, not the mean; 
by the catastrophe, not the steady drip; 
by the very rich, not the “middle class”. 

We need to free ourselves from “average” thinking. 

Philip W. Anderson, Nobel-prize-winning physicist. 

This chapter provides a literature review of the topics relevant to the dissertation. It is divided into 

four sub-sections governing the main theoretical concepts used: Time Series Analysis (TSA), 

Extreme Value Theory (EVT), Dependence and Portfolio Optimisation. 

2.1 Time Series Analysis 

The subject of correct distributional form for univariate financial data is a dynamic and deeply 

researched area in finance. Louis Bachelier, through his 1900 doctoral dissertation, is credited as 

the first to assign a probability distribution to financial process data, that of “la loi de Gauss”, or “the 

law of Gauss”. (Bachelier, 1900; Lévy, 1940, p. 487). That the normal distribution describes 

stochastic (equity) return processes was further supported in Osborne (1959). 

However, empirical research deepened and, as Kim and Kon (1994) showed, “sampling independent 

observations from an identical Gaussian distribution” has proved less and less accurate in describing 

financial returns. Mandelbrot (1963) found that the many outliers in the tails of empirical commodity 

return distributions tended to pull the central peak of the Gaussian distribution “much lower and 

flatter” than what the data suggested (i.e., the data are leptokurtic: too many observations near the 

mean and too many in the extreme tails than what the normal distribution generates). The author 

further identified differing slopes between the two tails in graphs of returns data (i.e., skewness in 

returns) and that “large [price] changes tend to be followed by large [price] changes - of either sign 

- and small [price] changes tend to be followed by small [price] changes” (i.e., volatility clustering in 

returns). Such alternating periods of high and low volatility contradict the idea that sampled 

observations are i.i.d. 

These (and other) univariate stylised facts have since been found to be pervasive across all major 

asset classes: leptokurtosis in equities (Fama, 1965), fixed income (Amin & Kat, 2003), foreign 

exchange (Huisman, Koedijk, Kool & Palm, 2002) and listed real estate (Lizieri, Satchell & Qi, 2007); 

skewness in equities (Fama, 1965), fixed income (Alles & Kling, 1994), foreign exchange 

(Brunnermeier, Nagel & Pedersen, 2009) and listed real estate (Hutson & Stevenson, 2008); volatility 
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clustering in equities (Fama, 1965), fixed income (Cappiello, 2000), foreign exchange (Baillie & 

Bollerslev, 1989) and listed real estate (Cotter & Stevenson, 2007). Cont (2001) provides a detailed 

survey of univariate financial return stylised facts (see also Pagan, 1996). 

Since the rejection of the normal distribution as adequate in describing return characteristics, many 

distributional forms have been investigated. These forms can be described by either unconditional 

models (i.e., time-independent models, where the assumption is that return distributions and 

distribution moments are constant through time) or conditional (i.e., time-dependent) models. 

Before conditioning on time became widely adopted, research effort was aligned with extending the 

unconditional modelling framework. The unconditional approach considers financial return data as 

random draws from a static, time-invariant distribution. Returns are assumed to be i.i.d., implying 

distribution moments evolve unchanged through time, with each observation representing a draw 

from an identical distribution. The focus of this research typically centred on adequately representing 

empirically fatter-than-normal tails. 

Mandelbrot (1963) modelled the excess kurtosis of commodity returns under this approach using the 

stable-Lévy, or stable Paretian, family of probability laws, which nests the Gaussian distribution as 

a limiting case. Fama (1963, 1965) found support for the stable laws applied to equity returns. A 

number of drawbacks of this class of distributions exist, however, such as non-existent second and 

higher moments for characteristic exponent less than two and varying fitted characteristic exponents 

(or tail indices) under temporal aggregation (Akgiray & Booth, 1988). As a consequence, many of 

the assumptions in classical financial theory (e.g., in portfolio theory and the capital asset pricing 

model) could not hold as they did for the Gaussian model, leading other researchers to propose 

simpler, finite-variance alternative distributions. 

A number of competing distributions in the unconditional framework have been considered. Box and 

Tiao (1962, 1973) introduced the exponential power distribution, more commonly known as the 

generalised error distribution (GED) as per Nelson (1991). Blattberg and Gonedes (1974) proposed 

the Student t distribution; Mittnik and Rachev (1993), the Laplace and Weibull distributions. 

Unconditional mixture distributions have been proposed (Akgiray & Booth, 1988; Ball & Torous, 

1983; Kon, 1984; Peiró, 1994; Tucker, 1992). Temporal dependencies in return series, however, 

violate too many constraints implicit in unconditional distributions. This directed the trend in financial 

research towards investigating capacities of time-dependent, conditional approaches (Bollerslev, 

Chou & Kroner, 1992; Kim & Kon, 1994; Tucker, 1992; Yu, 2001). 

Time series analysis (TSA) techniques are built around identifying underlying structures that manifest 

in the data through the changing characteristics of financial variables. The theory develops through 

the point of view of returns as ordered sequences of values of a variable at equally spaced time 



  

9 
 

intervals (i.e., a time series). The concept of time-ordering is the premise underpinning conditional 

distribution models. Parameter dynamics in such models are modelled on information of past market 

movements or, at times, a more general or exogenous information set. 

In univariate financial time series, a dynamic conditional mean model may be specified to filter out 

serial correlation in the series. Logarithmic returns (log returns) are predominantly used as the time 

series as they have attractive properties, such as stationarity and ergodicity (Cambell, Lo & 

MacKinlay, 1997), independence of the unit of time and stability under time-aggregation (Longin, 

1999). Financial time series returns, however, at lower frequency levels (such as weekly or monthly), 

rarely exhibit non-spurious serial dependence. The conditional means in the ARMA model may, in 

such instances and where significant, be specified as a constant (i.e., set to the unconditional mean 

or simply to zero). The benchmark conditional mean specification in TSA is that of a low order 

autoregressive moving-average (ARMA) process. The specification is favoured due to its ability to 

produce acceptably accurate short term forecasts of time series (Nyström & Skoglund, 2002b). In its 

standard form, the ARMA framework implies a homoskedastic distribution reflective of constant 

conditional volatility. A natural extension is to assume a weakly stationary white noise innovation 

process for the ARMA model (Cryer & Chan, 2008; Tsay, 2012) and to model the innovation process 

with a varying, or dynamic, conditional volatility structure. This extension shifts the conditional mean 

equation out of the (largely unsupported) domain of conditional homoskedasticity and into the 

domain of ubiquitously observed conditional heteroskedasticity (Dias & Embrechts, 2003; Nyström 

& Skoglund, 2002a). The innovation process may, thus represented, be modelled by one of the many 

generalised autoregressive conditionally heteroskedastic (GARCH) family of models to capture, 

most notably, the stylised fact of volatility clustering in the underlying data. The combination of ARMA 

model for the conditional mean process and GARCH model for the conditional variance of the ARMA 

innovation process is referred to as a composite ARMA-GARCH model. 

Engle (1982) introduced the autoregressive conditional heteroskedastic (ARCH) model and 

Bollerslev (1986) the GARCH generalisation. The authors showed the effectiveness of using the 

respective specifications in modelling the conditional volatility of financial time series. Since these 

seminal publications, a great deal of related research and application has taken place. Engle and 

Bollerslev (1986) defined a “persistent variance” integrated GARCH (IGARCH) model, where 

conditional volatility is considered integrated of order one and shocks to the system permanent. 

Caution has been advised to first investigate the possibility of omitted structural breaks prior to using 

the IGARCH model (Diebold, 1986).  Hypothesising that conditional volatility may be related to risk 

premia on assets, Engle, Lilien and Robins (1987) presented a more sophisticated specification for 

the conditional mean: the ARCH-in-mean model (GARCH-M), where conditional variance is 

estimated as a regressor in the conditional mean equation. To the extent that observed asymmetric 

responses of volatility to positive and negative return shocks are significant, Nelson (1991) and 
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Glosten, Jagannathan and Runkle (1993) defined, respectively, the exponential GARCH (EGARCH) 

and GJR-GARCH models. These models admit leverage terms for the modelling of asymmetric 

volatility clustering. Ding, Granger and Engle (1993) proposed the asymmetric power ARCH (A-

PARCH) specification as an alternative ARCH-based model to capture asymmetric volatility 

clustering. Instead of assuming conditional volatility in square form, the authors suggested a varying 

power term in the heteroskedastic equation, to be estimated directly from the data. The A-PARCH 

specification nests a number of ARCH-based sub-models for different power and leverage parameter 

settings. Zakoïan (1994) introduced the threshold GARCH (TGARCH) model, the first-order 

specification of which is a variant of the GJR-GARCH model. The model introduces a threshold effect 

into the innovation volatility process to capture GARCH features within a regime-switching 

framework. 

On the whole, the abovementioned models are among the more popular GARCH-family 

specifications for conditional volatility. “Essentially”, as Focardi and Fabozzi (2004, p. 379) point out, 

“one wants to understand how the decisions of a large number of economic agents do not average 

out, but produce cascading and amplification phenomena”. Identifying and capturing this effect as 

quickly as possible is an overarching theme in conditional volatility modelling. A comprehensive 

review of different GARCH specifications may be found in Bollerslev, Chou and Kroner (1992) and, 

for more recent work, Carmona (2014), Francq and Zakoïan (2010) and Tsay (2010). Of interest to 

note is the Hansen and Lunde (2005) study conducted as an out-of-sample test of the superior 

predictive ability of over 330 different conditional volatility models. The authors showed that the best 

models do not provide a significantly better forecast than the parsimonious GARCH(1,1) model for 

daily exchange rate data (DM-$). However, for daily equity data (IBM shares), the symmetric 

GARCH(1,1) model is inferior to models that account for asymmetric volatility clustering. Conditional 

densities used were limited to the Gaussian and Student t specification. 

In the GARCH model, the shape of the conditional distribution of the innovations is the same shape 

as the conditional distribution of future returns. This has implications for under- or overestimating 

future risks. The standard form of the model assumes a conditional Gaussian distribution. While the 

ARMA-GARCH-family structure may capture dependency in the conditional time variation of the 

distributional parameters of the mean and variance, employing a conditional Gaussian distribution 

does not account for leptokurtosis or skewness (Bai, Russell & Tiao, 2003); conditional heavy tails 

typically remain after filtering returns for volatility clustering. The Gaussian law places an exponential 

speed at which the downside tail of the distribution decays. This is empirically too fast a decay, 

prompting the consideration of non-normal conditional densities to improve capturing of stylised 

facts. In terms of optimal asset allocations, Xiong and Idzorek (2011) demonstrated the adverse 

effects of ignoring skewness and kurtosis. 
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Candidate (standardised) conditional distributions considered in this dissertation include the 

following: Gaussian, Student t (Bollerslev, 1987; So & Yu, 2006), GED (Nelson, 1991) and their 

associated skewed variants (Fernández & Steel, 1998; Ferreira & Steel, 2006), as well as the 

Generalised Hyperbolic [GHYP] (Prause, 1999), Normal Inverse Gaussian (NIG), nested in the 

GHYP distribution, Generalised Hyperbolic Skew Student t  [GHST] (Aas & Haff, 2006) and 

Johnson's reparameterised SU [JSU] (Rigby & Stasinopoulos, 2005, 2010). Ghalanos (2014a) 

provides a concise overview of the candidate distributions. In terms of the Fernández and Steel 

(1998) skewing mechanism used to distort distributions, the reader is referred to Li, Wang and Tian 

(2013) for the standardised skewed normal, Bao, Lee and Saltoğlu (2007) for the standardised 

skewed Student t and Bao, Lee and Saltoğlu (2004) for the standardised skewed GED distributions, 

as well as to Palmitesta and Provasi (2006) for the latter two distributions. 

Despite the useful features of the ARMA-GARCH-family model, the structure may still be challenged 

in capturing extremal behaviour, in the asymptotic sense, of asset returns (Davis & Mikosch, 2009; 

Mikosch & Stărică, 2000). The added flexibility of controlling the thickness and skewness in 

conditional returns via the innovation distribution “allows for some off-load of the impact of outliers 

from the volatility estimates” (O’Brian & Szerszen, 2014). However, regardless of choice of 

distribution, GARCH-family innovation processes still tend to exhibit uncaptured density in the tail 

extrema. The ARMA model produces model residuals, which are modelled with a GARCH structure, 

producing filtered residuals. The conditional density choices for the filtered residuals, even with fat-

tail and skewness optionalities, are generally unable to allocate sufficient density deep in the tails, 

or outlier areas, of the typical financial variable. There is a forced compromise in the fit of a single 

set of parameters to competing conforming and non-conforming distributional behaviour. The bulk 

of the innovations may be fit well, but at the compromise of a sub-standard fit to the scarcely 

populated tails. 

To this end, TSA serves two purposes: it provides techniques capable of capturing a large degree 

of stylised facts in return data and, in so doing, pre-whitens the data for EVT analysis. The GARCH-

filtered innovation series may be standardised by its conditional volatility series. The resulting 

standardised series is assumed to follow an uncorrelated strict white noise process, approximately 

i.i.d., with zero mean and unit variance. Byström (2004, 2005), Diebold, Schuermann and Stroughair 

(2000), Ghorbel and Trabelsi (2009), McNeil and Frey (2000), Nyström and Skoglund (2002b) and 

Rocco (2010), among others, advocate this method of pre-whitening in order to produce 

(approximately) i.i.d. data, as EVT analysis requires data to be i.i.d. Jalal and Rockinger (2008) 

showed that even for cases when the ARMA-GARCH-family model is misspecified, applying EVT to 

the resulting filtered standardised residuals remains a robust technique that “delivers good results”. 
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2.2 Extreme Value Theory 

The weight of individual tails prevails 
and drives the aggregate process. 

Focardi and Fabozzi (2004, p. 380) 

A critical element in modelling samples of univariate financial returns is proper management of the 

set of extreme observations populating, essentially, all such data. The EVT branch of statistics 

provides a formal framework for studying the statistical behaviour expected in the tail(s) of a 

distribution. In the sense that the central limit theorem (CLT) is a limit law for the mean, EVT is a limit 

law for extremes (Ergen, 2010). The CLT states that the Gaussian distribution, regardless of the 

finite-variance underlying distribution (or stable Paretian distribution, regardless of the infinite-

variance underlying distribution), is the limiting distribution for sums and averages of i.i.d. random 

variables, provided the sample size is sufficiently large. Similarly, but with regards to extremes, EVT 

deals with the convergence of sample maxima5. Specifically, EVT deals with the distribution of the 

smallest and largest order statistics (Kuester, Mittnik & Paolella, 2006). To effectively do so, the 

theory differs from classical statistics in that it is developed without imposing a distribution (or 

mixtures thereof) over the entire sample; rather, focus is on the density in each tail region, allowing 

the density in each region to be modelled as distinct from the whole sample. This difference implicitly 

admits asymmetry in tail modelling, creating an opportunity to improve accuracy in capturing the 

probabilistic structure behind high-risk market moves. A further distinguishing feature of EVT is the 

calibration of a parametric form to discrete, empirical tail aspects of the random variable. The 

parametric nature of EVT enables users to extrapolate to “parts of the distribution that have yet to 

be observed in the empirical data” (LeBaron & Samanta, 2005). This has clear advantages for 

simulating tail events beyond the range of historical data. 

Fisher and Tippett (1928) derived the three foundational limit laws describing the type of distributional 

form a set of suitably normalised maxima may belong6. The form of the asymptotic distribution is 

independent of the process generating the maxima; only the distribution’s parameter values depend 

on the process (Longin, 1996).  The three standard limiting distributions can therefore be mapped 

onto different domains of attraction, belonging to the type of either Fréchet, Gumbel or Weibull. 

Depending on the speed of tail decay of the density function (and in order of left-tail favour7), 

1. slower, fat-tail, power-law decay, such as that described by (unbounded) stable Paretian, 

Cauchy, Burr, loggamma and Student t distributions, belong to the Fréchet domain8; 

                                                           
5 Noting that max(𝑋1, 𝑋2, … , 𝑋𝑛) = min(−𝑋1, −𝑋2, … , −𝑋𝑛), results for the distribution of maxima hold similarly for the 

distribution of minima and vice versa. For convenience, results of maxima are discussed. 
6 Distributions of the same “type” are obtained from one another through normalisation by using appropriate location and 
scale transformations (McNeil, Frey & Embrechts, 2005). 
7 With respect to financial modelling of downside risks (McNeil, et al., 2005). 
8 The ARCH class of distributions also belongs to the domain of attraction of the Fréchet law (Jansen & de Vries, 1991). 
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2. quicker, exponential-decaying distributions (bounded or unbounded, but with all finite 

moments), such as the Gaussian, exponential, gamma and lognormal, belong to the Gumbel 

domain; and 

3. bounded tail decay distributions, such as the uniform and beta distributions, having finite 

endpoints, belong to the Weibull domain of attraction. 

All three limit laws are, however, subsumed in the unifying, parametric generalised extreme value 

(GEV) distribution (Jenkinson, 1955; McFadden, 1978). 

There are two common parametric approaches to EVT that differ on how maxima and their 

corresponding limit models of behaviour are defined: the initial Block Maxima (BM) approach and 

the more contemporary Peaks-over-Threshold (POT) approach. The BM approach models 

fluctuations of normalised maxima in the framework of the GEV distribution. A set of maxima is 

constructed by dividing the sample into non-overlapping blocks and selecting the maximum 

observation from each block. Sets constructed in this way may be expected to approximate an i.i.d. 

series more closely than sets created using the POT approach, but at a cost of losing (often limited) 

data points and increasing parameter estimate uncertainty. Since only one data point within each 

block is used, large observations that are smaller than the local maxima (but which may be significant 

for risk management purposes) are discarded from analysis. At the same time, data points selected 

as block maxima over low volatility periods are regarded as extrema and included in the analysis. 

Consequently, unacceptable levels of estimation bias enter into the BM framework. The method is 

therefore considered data inefficient. The POT method, on the other hand, is less wasteful of data 

in that the focus is on modelling excess losses above high thresholds (i.e., in the tails of the 

distribution). Sets of extrema are populated with observations exceeding some high predetermined 

threshold, enabling extreme data other than just the block maxima to be modelled. No clear method 

of threshold selection has, however, been advised in the literature. The user is forced to assume, 

arbitrarily, that the tail of the parent distribution starts at the threshold value. The reader is referred 

to Daníelsson and de Vries (1997), Dupuis (1999) and McNeil and Saladin (1997) for treatments on 

threshold selection, as well as to Chapter 3.4.3 of this dissertation. Nyström and Skoglund (2002b) 

conducted Monte Carlo experiments for different parent distributions and sample sizes and showed 

that the maximum likelihood (ML) estimator was virtually invariant to the choice of threshold for 

threshold values in the range of 5-13% of the data. Arbitrarily, this paper sets the threshold at 10% 

of each side of the (ordered) data as per guidance in Chavez-Demoulin and Embrechts (2004), 

Chavez-Demoulin, Embrechts and Sardy (2014) and Nyström and Skoglund (2002b). With reference 

to the BM method, the reader is referred to the texts of Embrechts, Klüppelberg and Mikosch (2001) 

and Jondeau, Poon and Rockinger (2007). 

While both approaches have advantages and disadvantages, it is primarily the POT approach’s 
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efficient use of scarce tail data that makes it the method of choice in modelling financial time series 

extrema (Chavez-Demoulin, et al., 2014; Davison & Smith, 1990; Embrechts, et al., 2001; McNeil, 

1999; Nyström & Skoglund, 2002a, 2002b). This dissertation employs the POT method. 

The mathematical proofs extending the classic Fisher and Tippett (1928) limit laws and laying the 

groundwork supporting the POT approach may be found in Balkema and de Haan (1974) and 

Pickands (1975). The latter author proved the generalised Pareto distribution (GPD) to be a natural, 

albeit approximate, limit law for modelling excesses over asymptotically high thresholds, conditional 

on the excesses being above the threshold. The threshold exceedance and associated limit law 

approach introduced an alternative and statistically sound method for examining extrema in the EVT 

literature. The concept is similar to how convergence to the non-degenerate Gaussian distribution is 

proved in the CLT. The “Pickands-Balkema-de Haan” theorem proves that essentially all commonly 

encountered continuous distributions are in the maximum domain of attraction of the GPD, but only 

in terms of modelling appropriately normalised excesses from these distributions above a high 

threshold and as this threshold tends to the right endpoint, or limit, of the respective distribution. That 

is to say, appropriately normalised sample maxima from the parent distribution converge in 

distribution and in the limit to the non-degenerate GPD (McNeil & Saladin, 1997). Figure 2.1 depicts 

a graphical description behind the POT theory, where a hypothetical generalised Pareto distribution 

is fit to excesses above a high threshold. 

 

Figure 2.1: Graphical Concept behind Extreme Value Distributions 

Hosking and Wallace (1987) investigated methods of estimating the GPD on simulated data samples 

of size 15 to 500. The authors found preference for using the sample-size based method of 

probability-weighted moments (PWM), compared to the method of maximum likelihood and method 

of moments. However, the preference towards the better small sample properties of PWM decreased 

as sample size increased and, as a result, mean square errors among the competing methods 
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converged. On the other hand, Smith (1987) chose maximum likelihood estimation (MLE), 

exclusively, to examine and compare asymptotic properties of various GPD estimators. MLE is 

supported in Longin (1996) in that the method yielded efficient estimates that were “unbiased, 

asymptotically normal and of minimum variance”. Grimshaw (1993) showed MLE estimates of GPD 

parameters to be, in most cases, asymptotically normal and asymptotically efficient. Rootzén and 

Tajvidi (1997) showed that, in the domain of attraction of the heavy-tailed Fréchet distribution, PWM 

estimates became significantly biased and severely and systematically underestimated the quantiles 

of the distributions of maxima. The MLE estimates remained significantly less biased, although they 

exhibited a higher degree of variability. For reasons mentioned above and for the fact that it is the 

more commonly used method (McNeil, et al., 2005), this dissertation uses the MLE method for two-

tailed GPD estimation. 

Longin (1996) applied the BM method using the GEV distribution framework to model raw, un-

declustered, unfiltered daily, weekly and monthly log return percentages of the most traded stocks 

on the New York Stock Exchange (NYSE). The data set spanned a period of over a century. The 

author reported a number of notable findings. Among them are that (1) the asymptotic distribution of 

extreme returns obeyed a Fréchet distribution, (2) as the sample period increased so too did the 

distribution of extremes shift to the right for maxima and to the left for minima, while the shape of the 

distribution remained the same, (3) the shape of the tails remained stable over the entire period, 

including the Great Depression era, and (4) the limiting distribution was stable under temporal 

aggregation (i.e., extrema sets selected from daily, weekly and monthly returns consistently obeyed 

the Fréchet law).  

It has been shown that the restrictive i.i.d. assumption of EVT may be relaxed without a consequent 

change in the resulting limit theory. Conditions do apply, but the assumption holds for ARMA-GARCH 

filtered innovation series (Embrechts, et al., 1997, Chapter 4.4). McNeil and Frey (2000) applied the 

POT method to the returns series of the S&P 500 index, the DAX index, the BMW share price, the 

U.S. dollar British pound exchange rate and gold. The authors approximated the GPD to tails of 

standardised residuals, pre-whitened through an AR(1)-GARCH(1,1) filter. The two-stage, 

conditional EVT approach (or GARCH-EVT approach), taking into account the current volatility 

background, improved VaR and CVaR estimates compared to corresponding estimates from 

unconditional EVT and the classical GARCH model with normal and Student t innovations. The two-

stage approach added risk measurement gains by enabling periods of high and low volatility to be 

more accurately reflected through time-varying tail quantiles. Fernandez (2005) applied the same 

two-stage methodology to thirteen equity indices spanning the United States, Europe, Asia and Latin 

America (i.e., developed and emerging market equities). The author’s conclusions were consistent 

with those of McNeil and Frey (2000). In a related study, Byström (2004) applied the POT methods 

used in McNeil and Frey (2000) to Sweden’s AFF and the United States’ DOW (both equity) indices. 
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The author extended the conditional EVT approach to include the BM method and found similar 

performance across both methods, as well as improved risk measure estimates consistent with the 

findings of McNeil and Frey (2000). Krehbiel and Adkins (2005) showed similar results for the 

extended methods of Byström (2004) applied to daily spot and futures contract returns of the 

commodities traded on the NYMEX (i.e., West Texas Intermediate (WTI) crude oil, Brent crude oil, 

natural gas, heating oil and unleaded gasoline). Marimoutou, Raggad and Trabelsi (2009) evaluated 

daily WTI and Brent crude oil returns and found support for the modelling gains resulting from the 

conditional EVT approach. Furió and Climent (2013) modelled daily log returns from three equity 

indices (the S&P 500, UK’s FTSE 100 and Japan’s Nikkei 225) using the same conditional and 

unconditional EVT methods in McNeil and Frey (2000). To simultaneously address the question of 

whether conditional EVT quantile estimates differ under different GARCH specifications9, the authors 

expanded the scope of GARCH models to include the asymmetric EGARCH and TGARCH 

specifications. The authors found that the three GARCH specifications produced robust results 

across all indices and that the conditional EVT framework was superior to the unconditional 

framework10. 

In order to complete the univariate density model, the two individual parametric GPD tails need to 

be spliced into the remaining high-density central portion of the distribution. A resulting “semi-

parametric”, approximate piecewise, constant density function may be created using linear 

interpolation to splice together the GPD tails into a smoothed gradient interior.  Nyström and 

Skoglund (2002a) recommended standard non-parametric methods to model the interior of the 

distribution, thereby avoiding assumptions on the nature of the empirical distribution. The authors 

chose the empirical cumulative distribution function (CDF). This approach is supported in Carmona 

(2014) and Zivot and Wang (2006). MacDonald, Scarrott, Lee, Darlow, Reale and Russell (2011) 

and Wang, et al. (2012) chose a non-parametric smoothing kernel method based on a mean zero 

Gaussian probability density function (PDF) for the interior distribution. Other kernel functions are 

available (e.g., Epanechnikov, triangular, cosine or box). MacDonald, et al. (2011) noted, however, 

that the choice of kernel function is not critical in the semi-parametric setup, provided the selected 

kernel is not unreasonable. This is motivated by how the tail behaviour associated with the kernel 

will be diminished by the mechanism through which the kernel distributes, or averages, probability 

mass in the less-populated neighbourhoods of the tails (see also Alexander, 2008, p. 165). This 

dissertation implements a GPD-Gaussian kernel-GPD conditional EVT approach (i.e., a semi-

parametric “tail-interior portion-tail” distribution). 

The completed semi-parametric probabilistic model is a key component in the portfolio risk 

                                                           
9 Chavez-Demoulin, Davison and McNeil (2005) claimed that one drawback of the conditional EVT methodology was that 
it, being a two-stage procedure, would result in EVT analysis sensitive to the fitting of the GARCH model to the dataset in 
the first stage. 
10 See also Jalal and Rockinger (2008). 
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management framework proposed in this study. It allows the granular modelling of variations of each 

marginal11 asset, composing the set of positions held in a portfolio, and of the risk factors to the 

portfolio. The univariate step segues into the multivariate step: fitting the category of copula models 

well-suited to capturing non-linear multivariate co-variation in asset class returns, notably during 

periods of high market volatility. The completed semi-parametric distribution (SPD) represents a 

CDF, which is used to map from the 𝑥-domain (i.e., standardised innovations) to the 𝑦-range (i.e., 

the uniform [0,1] range). The latter, transformed series, termed “pseudo-observations”, forms inputs 

to the copula-fitting step.  

According to Malevergne and Sornette (2006, p. 273), “concerning the cross-dependence between 

assets … copulas are the most fundamental concept and tool. They should … constitute a 

cornerstone of modern risk management practices”. For the multivariate component, the second 

step captures and represents the collective dependence in the portfolio with a copula model. 

2.3 Dependence 

Capturing the [data generating] 
mechanism well enough to be able to 

explain events that did not occur in the 
given sample, but do occur later on or 

in other related populations is the 
essence of statistical modelling. 

Peter C.B. Phillips 

This chapter explains the approach to modelling multivariate dependence between asset returns in 

the portfolio and risk factors driving the returns. 

There are several methods used in quantitative analysis to measure dependence. Arguably the most 

widely used measure of dependence in risk management is Pearson’s linear correlation coefficient12. 

It is a quintessential part of MPT, used in determining covariance structure inputs to the Markowitz 

mean-variance framework. The estimator measures the statistical, linear dependence between two 

jointly normally distributed variables (Embrechts, McNeil & Straumann, 1999). It is assumed to fully 

describe the relationships between financial returns and so directly influences diversification 

benefits. However, the stylised facts of univariate returns practically ensure that respective 

distributions are non-normal, giving way to non-linear co-variation between them. Malevergne and 

Sornette (2006) and Mashal and Zeevi (2002) discuss some of the inadequacies of the estimator as 

a descriptor of multivariate dependencies, particularly its inability to characterise extreme co-

                                                           
11 Instead of “univariate”, the term “marginal” is used here to indicate the transition to multivariate terminology. The 
individual univariate distributions in a multivariate distribution are known as marginal distributions. 
12 This is also, arguably, a function of the ubiquitous use of Markowitz-based portfolio theory. See, for example, Kat (2003) 
and Rodgers and Nicewander (1988). 
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movements in the underlying variables. Chicheportiche and Bouchaud (2012) noted that for any case 

other than the multivariate Gaussian, the linear correlation matrix is unable to describe non-linear 

dependence.  Embrechts, et al. (1999) listed a number of shortcomings to using the Pearson’s 

correlation coefficient. Among them are: 

1. The scalar nature of the measure implies it can only partially capture the dependence 

relationship between risks. Simply as a measure of the degree of dependence, it is unable to 

characterise the structure of dependence. It has been widely observed that market crashes 

or financial crises often occur in different countries or asset classes at about the same time 

period, even when the correlation among those markets is fairly low; hence, only a partial 

capture of dependence relationships is reflected. 

2. The measure assumes all correlation values in the range [−1,1] are attainable. This range, 

however, depends on the marginal distributions of the risks and may not, in fact, be 

attainable. 

3. Perfectly positively (negatively) dependent risks do not necessarily have a correlation of 1    

(-1). 

4. A correlation measure of zero (i.e., uncorrelatedness) does not imply independence between 

risks. 

5. The measure is not invariant under non-linear strictly increasing transformations of the risks13 

(e.g., the correlation between log𝑋 and log 𝑌 generally does not equal the correlation 

between 𝑋 and 𝑌). 

6. Correlation is only defined for finite-variance risks. It is undefined for infinite-variance risks 

and performs poorly for very heavy-tailed risks 14. In other words, the measure cannot 

sensibly model dependence in jointly non-elliptically15 distributed risks, nor even in jointly 

elliptically distributed risks with heavy-tailed marginal distributions (Embrechts, Lindskog & 

McNeil, 2003). 

7. The measure is sensitive to extreme values (Kowalski, 1972). 

The above shortcomings imply that traditional MVO portfolios are not efficient with respect to their 

effective risk profiles (Boubaker & Sghaier, 2013) and diversification benefits tend to be higher than 

expected. 

To alleviate some of the shortcomings (those of 2, 3, 5, 6 and 7), Embrechts, et al. (1999), McNeil, 

                                                           
13 One implication is that while the returns may be uncorrelated, the prices are correlated, or vice versa (Sun, Rachev, 
Fabozzi & Kalev, 2009). 
14 Very heavy-tailed risks refer here to power-law distributed random variables with tail index in the interval (2,4] 
(Malevergne & Sornette, 2006, p.148). 
15 With reference to elliptical distributions (e.g. Gaussian and Student t) and non-elliptical distributions (shapes exhibiting 
multimodality, extreme skewness and/or heavy tails) see Jondeau, et al. (2007, Section 6.2), McNeil, et al. (2005, pp. 89-
102) and Miller (2014, pp. 93-103). 
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et al. (2005) and Nelsen (2006), among others, suggest alternative dependence estimators, derived 

from copulas, known as rank correlation measures. These measures, the popular ones being 

Kendall’s tau 𝜏 (Kendall, 1938) and Spearman’s rho 𝜌𝑆 (Spearman, 1904), measure the intensity of 

monotonic (as opposed to linear) dependence between two random variables on a quantile scale 

(Schweizer & Wolff, 1981; Wolff, 1980 and references therein). The assumption of a monotonic 

relationship is less restrictive than a linear relationship. The middle image in Figure 2.2 illustrates 

the point well: a non-linear dependence relationship exists, but the relationship is monotonic and is 

suitable for analysis by a rank-order estimator, but not by a linear correlation estimator. This 

dependence concept provides a valid alternative to linear correlation as a measure for non-elliptical 

distributions, for which linear correlation is an inappropriate measure of dependence and is often 

misleading. In contrast to the shortcomings listed above, rank-based estimators do not depend on 

marginal distributions16, can attain values in the range [−1,1] for joint distributions, are invariant 

under monotonic marginal transformations17, are defined for margins with infinite variance (i.e., 

robust to heavy-tailed data) and, finally, represent outliers well, in that they ignore exact numerical 

values of variable attributes and consider only the ordering (ranking) of the values. In terms of 

selecting a rank estimator, Giplin (1993) and Newson (2002) argued the superiority of Kendall’s tau 

over Spearman’s rho. In terms of expedient calculation for elliptically contoured distributions, Fang, 

Fang and Kotz (2002) selected Kendall’s tau over Spearman’s rho and further noted its invariance 

property for extension to the class of meta-elliptical distributions18. Genest, Nešlehová and Ghorbal 

(2011) noted the preference for rank-based procedures in dependence calculations in that they to 

guard against misspecification of marginal distributions19. Differences between the two estimators 

are discussed in Fredericks and Nelsen (2007) and Nelsen (2006). Figure 2.3 depicts the generic 

relationships between Kendall’s tau, Spearman’s rho and Pearson’s linear correlation coefficient. 

The relative magnitudes of dependence are shown for Spearman's 𝜌𝑆 and Kendall's 𝜏 in relation to 

Pearson’s linear correlation coefficient 𝜌 of the Gaussian copula 𝐶𝜌
𝐺𝑎. The relationships hold for other 

normal variance mixture distributions with correlation parameter 𝜌, such as the Student t copula 𝐶𝜈,𝜌
𝑡  

(McNeil, et al., 2005). This dissertation uses the tau measure. 

The rank-based estimators, however, still yield a pairwise scalar measurement and, also, measures 

of zero do not imply independence between risks (i.e., shortcomings 1 and 4 remain). Shortcoming 

1 is mitigated by 𝜏 and 𝜌𝑆 serving as inputs to the larger copula dependence structure. A further point 

worth noting is that the measures, being scale invariant, do not directly tie into the mean-variance 

                                                           
16 The choice of marginal is irrelevant, as the rank-order estimators depend only on the copula (Ruppert, 2011, p. 184). 
17 A monotonic transformation is a means of transforming one set of numbers into another set of numbers in a way that 
preserves the order of the numbers. For example, inputting an arbitrary random variable 𝑋 through its own CDF will map 

to a transformed variable, called the grade of 𝑋, uniform on the unit interval [0,1]. See Figure 2.5. 
18 A multivariate distribution is said to be “meta-elliptical” if its dependence structure is governed by an elliptical copula and 
where the marginal distributions are arbitrary. For example, a multivariate meta Student t distribution (i.e., meta 𝑡𝜈), with 

elliptical Student t copula 𝐶𝜈,𝜌
𝑡  with arbitrary marginal distributions, say, Gaussian, exponential or skew Student t margins. 

19 Used in the calibration of the multivariate copula model. 



  

20 
 

framework. 

 

Figure 2.2: Monotonic and Non-Monotonic Relationships  

 

Figure 2.3: Relationships between Rank Correlation Measures and Pearson’s Linear Correlation Measure 

Under MPT, the dependence structure is contained within the multivariate Gaussian distribution 

model. The model is based on marginal normally distributed variables whose pairwise dependence 

relationships are captured by Pearson’s linear correlation coefficient. The aforementioned building 

blocks20 of the MPT framework allocates zero21 density to extreme joint tail events (such as multi-

asset market crashes) leading to severely overestimated diversification benefits. Including copula 

theory in a portfolio modelling framework offers a way of improving not only multivariate return 

distribution models, but also co-variation in the model framework.   

Optimisation, risk management and stress testing in a portfolio can be organised around “the key 

idea that the risk of a set of positions can be decomposed into two major components: 

1. The marginal risk associated with the variations of wealth of each risky position, 

2. The cross-dependence between the change in the wealth of each position.” (Malevergne 

                                                           
20 That is, the multivariate Gaussian distribution, marginal Gaussian distributions and Pearson’s linear correlation 
coefficient matrix. The implied copula in this framework is the Gaussian copula. 
21 The Gaussian copula has zero asymptotic tail dependence (Malevergne & Sornette, 2006, p. 212). 
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& Sornette, 2006, p. 272). 

The decomposition is justified by the introduction of copula theory. 

 

Figure 2.4: Dual Correlation Structure between the FTSE/JSE All Share Index (ALSI) and FTSE/JSE All Bond 
Index (ALBI) 

In Figure 2.4, empirical outliers exert influence, which disrupts the efficacy of the linear correlation 

coefficient. The straight line segment leading up from the outlier into the bulk of the data represents 

the initial section of a local polynomial (non-linear) regression. The line segment in the bulk of the 

data represents the numeric Pearson correlation coefficient response of the ALBI to linear predictor 

ALSI, with the respective contemporaneous outlier removed. The complete dependence relationship 

appears monotone, indicating that a measure of monotone association may better summarise the 

relationship than that of a linear measure. 

Figure 2.5 illustrates the concept of mapping a random variable through its CDF. The CDF 𝐹𝑋 of a 

random variable 𝑋 represents a non-linear, strictly increasing, monotone function acting as a two-

way transformation mapping (a) from 𝐹𝑋(𝑥)~𝑈[0,1] and, the reverse, (b) from 𝐹𝑋
−1(𝑈[0,1])~𝑓𝑋, where 

𝑓𝑋 is the probability distribution function of 𝑋. The CDF of 𝑋 in copula vernacular is called the “grade” 

of 𝑋 and its inverse 𝐹𝑋
−1(∙) the “quantile” of 𝑋. 

A multivariate distribution function may be factorised into it’s purely univariate components (i.e., the 

marginal distributions) and a purely joint, or collective dependence, component (i.e., the copula 

function). Essentially, a copula is a multivariate CDF dependence structure. 
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Figure 2.5: Mapping an Arbitrary Random Variable to a Uniform Variable 

The multivariate distribution decomposition provides a flexible approach to managing aggregate 

randomness in the context of portfolio management. The factorisation, or copula technique, enables 

an elegant separation of marginal distributions from the joint dependence structure. There is an 

advantage to separate modelling at the two levels, the univariate and multivariate. At each level, the 

opportunity to fit more precise distributions is afforded. At the multivariate level, the copula framework 

subsumes both elliptical and non-elliptical distributions. Since most real-world multivariate 

distributions are non-elliptical, copula theory not only facilitates a universally valid alternative to the 

modelling of empirical distributions with rudimentary correlation-based distributions, but it also 

increases the range of applicability beyond the domain of traditional correlation-based approaches. 

 

Figure 2.6: Factorisation of a Multivariate Distribution into Component Parts 
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Sklar (1959) formally introduced the copula notion into mathematical and statistical theory. The 

copula function is the multivariate CDF, on the unit hypercube [0,1]𝑑, of the 𝑑 marginal grades (each 

on the unit interval [0,1]) that captures the pure dependence between (transformed) random vectors. 

Embrechts and Hofert (2014) described a graphic worth noting and is adapted here. It may also be 

used to highlight the importance of shortcoming 5 on the Embrechts, et al. (1999) list, above. Figure 

2.7 shows two empirical relationships between two hypothetical data sets (𝑋1, 𝑋2). In what follows, 𝐻 

represents a multivariate distribution function, 𝐹1 = 𝐹2 = 𝐹 represents a univariate distribution 

function and 𝐶 represents a copula function. Data is simulated for 𝑛 = 500 realisations of (𝑋1, 𝑋2)~ 𝐻. 

In the left panel, CDFs 𝐹1 and 𝐹2 are standard normal 𝛮(0,1) with 𝐹(𝑥) = 𝛷(𝑥); in the right panel 𝐹1 

and 𝐹2 are standard exponential 𝐸𝑥𝑝(1) with 𝐹(𝑥) = 1 − 𝑒𝑥𝑝(𝑥). The generated data sets may proxy, 

for example, historical risk-factor returns. The questions posed by the authors regarding dependence 

between 𝑋1and 𝑋2 concern, firstly, how the dependence may be modelled and, secondly, which of 

the left-hand or right-hand panels show a “stronger” dependence relationship. The margins in Figure 

2.7 are supported on distinctly different scales and, thereby, disguise the underlying dependence 

structure. 

 

Figure 2.7: Simulations from Standard Normal and Standard Exponential Distributions 

The Pearson correlation coefficients differ for the two panels, with the right panel showing stronger 

correlation. The copula approach, however, makes a like-for-like comparison possible. Margin 

influences are removed by transforming each variable via their respective CDFs to output on the 

uniform [0,1] scale. 
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Figure 2.8: Copula Dependence Structure Underlying the Corresponding Simulated Data 

The results in Figure 2.8 are obtained by fitting a copula 𝐶 (in this case, a Student t copula) to 

(𝑈1, 𝑈2) = (𝐹1(𝑋1), 𝐹2(𝑋2)) ~ 𝐶. They show that when the data sets (𝑋1, 𝑋2) are monotone-

transformed, in this case by their respective non-linear marginal CDFs, their underlying dependence 

structure (i.e., the copula 𝐶) is exactly, not only in distribution, equal. Given that the margins are not 

known in practical applications, the typical approach is either to (1) assume a distributional form, (2) 

use the empirical CDF form or (3) use the semi-parametric form described in the previous section. 

Copulas have the property of being invariant to monotonic transformations of the margins, validating 

any of the three CDF inverse-transform approaches to creating pseudo-copula data. 

The Student t copula may be considered a first-step extension of the Gaussian correlation-based 

dependence structure and is one of the most popular copulas in modelling multivariate financial data. 

The t copula is the elliptical copula derived from the elliptical multivariate t distribution. It extends the 

Gaussian copula (used implicitly in MPT) by way of an additional degrees of freedom (df) 

parameter22. Whereas the normal copula is not parameterised to assign probability mass to joint tail 

events, the addition of the df parameter 𝜈 does so in the t copula formulation. The parameter controls 

the degree of extreme co-movements, thereby also measuring the extent of departure from the 

Gaussian dependence structure (Mashal, Naldi & Zeevi, 2003). Schmidt (2006) highlighted the t 

copula advantage over the Gaussian in a bivariate portfolio setting, citing similar densities in the 

centre of the distribution, but with the t copula allocating density to joint tail observations.  

Klüppelberg, Kuhn and Peng (2007) noted growing interest in the t copula, primarily due to its 

properties of avoiding the curse of dimensionality23, providing a robust way of dealing with tail 

dependence and its simplicity in simulating multivariate extremes. 

                                                           
22 The Gaussian copula is nested within the t copula family. As the df estimate gets bigger, so too does the t copula 

resemble more and more the Gaussian copula. Functionally, { 𝜈: 𝜈 > 2, 𝜈 ∈ ℝ} to ensure a finite second moment. Where 

𝜈 > 30 the multivariate t copula begins to “close-in” on the Gaussian representation; at the limit (where 𝜈 → ∞), the t copula 

degenerates to the Gaussian copula. In fact, for 𝜈 > 103, Mashal and Zeevi (2002) show that the two copulas are essentially 
indistinguishable. 
23 That is, the issue of data sparsity encountered when fitting models to high dimensional data. In high dimensions, local 
neighbourhoods tend to be empty, affecting the error properties of density estimates. 
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Mashal and Zeevi (2002) investigated dependence patterns and extremal behaviour using the 

Gaussian and t copula framework applied to three representative financial asset classes (G524 

equities, commodities and foreign exchange). The authors found empirical support for extreme co-

movements in all data sets. In addition, the Gaussian copula was rejected in all data sets (with 

negligible error probability) and dimensionality effects were found to characterise the data, where 

extreme co-movements became increasingly significant and more pronounced as the number of 

underlying assets increased (dimension 𝑑 = 2,3,… ,9 assets). Kole, Koedijk and Verbeek (2007) 

stress tested the adequacy of three copula models (the Gaussian, t and Gumbel25) and their ability 

to capture the risk of joint downward movements in a portfolio of stocks, bonds and real estate 

(proxied, respectively, by the S&P 500 Composite Index, JP Morgan Government Bond Index and 

National Association of Real Estate Investment Trusts [NAREIT] All REITs Index). The authors found 

that the trivariate Gaussian (resp. Gumbel) copula significantly underestimated (resp. overestimated) 

the risk of joint downward movements which, in turn, translated to overestimated (resp. 

underestimated) diversification benefits in the portfolio. The Student t copula, on the other hand, 

allocated an empirically commensurate and statistically significant amount of density in both the 

centre and the tails of the portfolio distribution. Martellini and Meyfredi (2007) chose the t copula to 

model the non-linear dependence structures underlying key risk factor proxies to a set of fixed 

income portfolios. The copula model was part of a framework proposed as an alternative to 

calculating VaR estimates and was tested on a bond portfolio of nine French benchmark-quality 

bond issues of varying durations. The authors showed a marked improvement in risk calculations 

compared to those obtained with standard Gaussian VaR and historical VaR methods. Fischer, 

Köck, Schlüter and Weigert (2009) investigated the performance of higher dimensional copula 

construction schemes. The authors set the (static) multivariate t copula as the benchmark 

dependence structure against which they compared over two dozen competing copula schemes in 

the four-dimensional case. The data sets studied came from three different markets (German equity, 

foreign exchange and commodities) from each of which four representative variables were selected. 

The authors showed the t copula to be superior to the Gaussian and Archimedean26 copulas and 

also, due to the complexities associated with higher dimensionality and the large number of 

parameters, to the D-vine pair-copula decompositions considered. Wang, et al. (2012) built a 

dynamic, risk-on/risk-off, regime-based portfolio construction framework using the t copula to 

represent co-dependence in a portfolio of five asset classes (global equity, commodities, real estate, 

high-yield bonds and investment grade bonds). The authors chose the t copula for its noted ability 

“to better capture the effects of fat tails and allocate non-zero probabilities to observations that may 

                                                           
24 G5, the Group of Five of the world’s leading industrialised nations: France, Germany, Japan, the UK and US.  
25 The Gumbel copula, parameterised to reflect mostly tail dependence, extends univariate EVT techniques to the 
multivariate setting. 
26 Archimedean copulas with dimension 3 or higher allow only positive association between variables (Yan, 2007). This 
constraint supports the decision in this dissertation to use the t copula over Archimdedean copulas in the modelling 
framework. 
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occur outside of the range of historical returns”. 

Boubaker and Sghaier (2013) considered the bivariate case of five Archimedean copulas (the 

Gumbel, survival Gumbel, Frank, Clayton and survival Clayton) as a first step in a portfolio 

optimisation investigation. The authors modelled the copulas on an equity pair (the Dow Jones 

Industrial Average [DJIA] Index and the French CAC40 Index) and an exchange rate pair (USD/EUR 

and JPY/EUR) using, first, the raw log return series and, second, filtered residuals from an ARFIMA-

FIGARCH model fit to the raw log returns. The Gumbel copula was the appropriate model in both 

cases, justified by its asymmetric and EVT-based characteristics. An important observation worth 

noting, however, was the higher co-dependence estimates reported in the filtered series than in the 

raw series, the implication being that the paired raw returns masked the true dependence structure. 

Termed a “long memory in volatility” characteristic, the ARFIMA-FIGARCH filtering process 

uncovered this masking characteristic by virtue of that dependence intensity outputs were higher in 

filtered returns than in unfiltered returns. In short, the authors reported that “the true dependence 

between financial returns series is higher than the one observed”. In the second step, the authors 

showed that the traditional mean-variance efficient frontier constructed using unfiltered returns 

underestimated (resp. overestimated) portfolio risk as risk appetite grew (resp. shrunk). The efficient 

frontier constructed using a copula for dependency and accounting for long memory volatility in the 

univariate series uncovered higher risk-per-given-return features. The traditional investor assumed 

more risk than expected. Riccetti (2013) compared traditional MVO macro asset allocation decisions 

with a number of copula-constructed portfolios comprising two, three and four asset classes (a 

representative commodities index, the DJIA equity index, the Merrill Lynch US Treasury 1-10 years 

fixed income index and the USD/EUR exchange rate). Copulas considered were the Clayton, 

Gumbel, Frank, Gaussian, Student t and Canonical Vine copulas. For the specified two- and three-

asset portfolios, the t copula performed best. For the four-asset portfolio, the author reported mixed 

results. 

In terms of an ideal copula, Allen and Satchell (2014) argued that the following four characteristics 

should be accommodated: 

1. Tail dependence; 

2. Asymmetric tail dependence; 

3. Heterogeneous tail dependence; 

4. Scalable in high dimensions. 

The authors proposed and implemented a skew Student t copula as an asymmetric dependence 

model for a portfolio of five asset classes, viz. US equities (S&P 500), MSCI EAFE27 equities, 

                                                           
27 MSCI EAFE Index: Morgan Stanley Capital International’s Europe, Australasia and Far East equities index. 
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corporate bonds (Barclay’s Corporate Bond Index), commodities (GSCI28) and US real estate 

(FTSE/EPRA REITs29). Although the authors reported net gains over competing copula models 

(such as the Gaussian and Student t), they also noted the increased complexity embedded in the 

skewed t framework. Indeed, Wei, Li, Cao, Sun, Liu and Li (2013) noted the computationally 

challenging and structurally complex task associated with modelling asymmetries and skewness of 

joint distributions of returns in high dimensional space. Comparatively, the t copula is not only 

computationally tractable, but it also admits ideal characteristics 1, 3 (partially) and 4. The t copula 

admits tail dependence via its functional structure, allows for partial heterogeneous levels of 

dependence via the pair-wise construct of the elements of its (rank-measured) covariance matrix 

parameter (Owen & Rabinovitch, 1983) and is scalable in high dimensions. Tsuchida, Giacometti, 

Fabozzi, Kim and Frey (2014) included the skew Student t copula in a study of copula dependency 

in sovereign bond returns across seven Eurozone countries (France, Germany, Greece, Ireland, 

Italy, Portugal and Spain). The authors used ARMA-GARCH models based on five different 

innovation distributions and, for each model, applied four copula dependence structures: Gaussian, 

Student t, skewed Student t and multivariate normal tempered stable. The study concluded that the 

multivariate Student t distribution gave the best fit to the empirical distribution. 

A fifth characteristic may be noted in that, generally, the copulas used in finance and risk 

management are easily simulated, lending themselves well to Monte Carlo studies of risk (McNeil, 

et al., 2005). 

This paper uses the radially symmetric30 Student t copula to represent multivariate dependence 

between asset and risk factor returns which, respectively, are modelled with (arbitrary) semi-

parametric distributions. The completed distribution is referred to as a “meta t distribution”. Inanoglu 

and Ulman (2009) defined a “meta-x distribution” as a “joint distribution created from an ‘x’-copula 

model using arbitrary margins” (see also Demarta & McNeil, 2005; Fang, Fang & Kotz, 2002; Quessy 

& Bellerive, 2013). Copula theory lends itself well to a top-down, macro-driven portfolio management 

system in allowing, via the univariate channel, for a “bottom-up approach to multivariate model 

building” (McNeil, et al., 2005, p. 185). 

There are several methods to fit copulas to data, such as method-of-moments (using rank 

correlation), exact maximum likelihood (which attempts to simultaneously estimate all parameters of 

the marginal and copula models in a single optimisation) and inference-functions for margins (where 

ML estimation is split into two steps: margins estimated parametrically and the likelihood function 

maximised with respect to the vector of marginal parameter estimates from step one). This 

                                                           
28 GSCI: Goldman Sachs Commodity Index. 
29 FTSE EPRA/NAREIT: The Financial Times Stock Exchange European Public Real Estate Association/NAREIT US 
Super Liquid Index. 
30 Copulas of multivariate elliptical distributions are radially symmetric (Joe, 2015, p. 65; McNeil, et al., 2005, p. 196). 
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dissertation uses canonical maximum likelihood (CML), where copula parameters are also estimated 

in two steps, but without specifying the marginal distributions. The distribution-free margins may be 

estimated using the empirical CDF or semi-parametric CDF (discussed in the previous section), a 

pseudo-sample of uniform (0,1) variates31 formed via inverse transformation and the copula 

parameters estimated by ML as a function of the pseudo-sample. The articles by Bouyé, Durrleman, 

Nikeghbali, Riboulet and Roncalli (2000, pp. 23-28) and Scaillet and Fermanian (2002) and the text 

of Cherubini, Luciano and Vecchiato (2004, pp. 153-174) may be referenced for details on copula 

fitting methods. Specifically, this dissertation follows the procedure detailed in Ruppert (2011, pp. 

188-191). Details on CML are given in Chapter 3.5.2. 

Copula theory is reviewed in the monographs of Joe (2015), Nelsen (2006) and Ruppert (2011); for 

empirical applications, the monographs of Cherubini, et al. (2004), Jondeau, et al. (2007) and McNeil, 

et al. (2005). For articles on the subject, the reader is referred to Bouyé, et al. (2000), Embrechts, et 

al. (1999), Embrechts, et al. (2003) and Meucci (2011). 

In summary, the standard correlation measure has been shown to have a number of shortcomings 

when applied to financial data, similarly for univariate and multivariate Gaussian distributions. Copula 

theory admits a flexible methodology to capture and overcome many of the shortcomings. Given that 

bivariate data is easier to visualise than multivariate data, Figure 2.9 provides a graphical summary 

of the methodology in the bivariate case. The copula dependence structure in a portfolio comprising 

a representative equity asset class and bond asset class is output. The portfolio’s marginal return 

distributions are first transformed via their respective CDFs into uniform variates, before “gluing” 

them together to form the joint dependence distribution. This process admits simulation methods for 

the fitted elliptical t copula and transfers a major advantage to practitioners modelling portfolios. The 

advantage is discussed next in the Portfolio Optimisation section. 

 

 

 

 

 

 

                                                           
31 Uniform [0,1] is scaled to uniform (0,1), where required. This is because the maximum likelihood routine evaluates the 

copula density at each uniform observation and, for pseudo-copula data on the boundary of the unit cube, may evaluate 
to infinite density at the corresponding boundary observation (McNeil, et al., 2005, p. 233). 
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Figure 2.9: Flow Diagram of a Bivariate Student t Copula Density Construction 
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2.4 Portfolio Optimisation 

The framework of this dissertation is based on Monte Carlo simulations (draws from a parametric 

distribution) of log returns for portfolio asset classes that have been conditioned on forward-looking 

scenarios. The concept behind the Monte Carlo approach used is to repeatedly simulate a correlated 

random process for the multivariate financial variable (i.e., the portfolio, its risks and the collective 

dependence structure) and then use the output as input to simulate random processes for the 

univariate financial variables (i.e., asset classes and risk factors). The resulting distribution of 

portfolio values covers a wide range of possible scenarios and allows sampling from anticipated 

states of the world. Importantly, the simulated returns maintain the dependence structure induced 

by the copula (Brandimarte, 2014, p. 283). Scherer (2002, p. 152) noted that, while it required 

considerably more effort from investors than traditional Markowitz optimisation32, scenario 

optimisation is worth the effort if returns are non-normally distributed. 

Nyström and Skoglund (2002a) emphasised sound economic reasoning and informed, considered 

judgment, with respect to constructing forward-looking scenarios33, as being a value-add approach 

over strictly quantitative (e.g., cointegration) approaches. By simulating forward-looking scenarios 

for all assets, the practitioner is able to “turn a stochastic problem into a deterministic problem [and] 

in this form the problem can now be solved using mathematical (mostly linear) programming 

techniques” (Scherer, 2002, p. 141). Meucci, Gan and Lazanas (2007) built a comprehensive 

scenario-based market representation using Monte Carlo simulations. Alexander (2008, p. 364) 

provides a guideline to creating a mathematically coherent hypothetical distribution scenario for a 

vector of risk factors to a portfolio. 

Grégoire, Genest and Gendron (2008) used simulations from a fitted t copula to construct an 

empirical predictive price distribution of crude oil and natural gas contracts. Wang, et al. (2012) used 

a fitted t copula to simulate forward-looking scenario-based outcomes to extrapolate portfolio CVaR 

beyond the range of historical observations. Brandimarte (2014, p. 283), Cherubini, et al. (2004, p. 

181) and McNeil, et al. (2005, p. 193) provide versions of the algorithmic steps required in simulating 

random variates from the multivariate t copula. 

In 1996, the Basel Committee adopted the VaR quantile measure into its capital-adequacy 

framework (Basel Committee on Banking Supervision, 1996). VaR has since become widely used 

as a risk management tool by corporate treasurers, dealers, fund managers, financial institutions 

and regulators (Alexander & Baptista, 2004).  Notwithstanding it being an industry standard, the risk 

measure has a number of criticisms. Bouyé, et al. (2000) and McNeil, et al. (2005) noted systematic 

                                                           
32 The ease of use attributed to widely available mean-variance optimisation software. 
33 The term “scenarios” is consistent with the term “information hypercubes” referred to in Nyström and Skoglund (2002a). 
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underestimation of risk in Gaussian distribution-based VaR models. On the other hand, the copula 

approach to portfolio optimisation enables not only VaR, but also other risk measures (e.g., variance 

and CVaR) to be expressed without the Gaussian hypothesis. Artzner, Delbaen, Eber and Heath 

(1999) defined a set of axioms a risk measure should satisfy in order to qualify as a “coherent 

measure of risk”. Importantly, VaR has been shown to disobey the axiom of subadditivity34, a 

consequence of which may result in otherwise higher risk concentration in the portfolio. This is at 

odds with the key principle of diversification. Furthermore, VaR, as a financial metric, represents the 

minimum amount that a portfolio can expect to lose within a specified time period, at a given 

confidence level. The metric is silent on the possibility and magnitude of extreme events (i.e., high-

impact, low probability tail events beyond the given confidence, or quantile, level remain undetected 

by construction). Daníelsson (2002) and Szegö (2002) detail some of the criticisms of VaR. See 

Figure 2.10 for a graphical description of VaR and CVaR for probability level, in this case, 5%35. A 

5% VaR reflects the expected minimum loss that the portfolio can expect 5% of the time. A 5% CVaR 

reflects the size of the expected loss, given that a 5% VaR event occurs. Sarykalin, Serraino and 

Uryasev (2008) provide a thorough mathematical and case-study comparison of VaR and CVaR in 

the risk management and optimisation context. 

 

Figure 2.10: Graphical Description of VaR and CVaR Risk Measures  

A coherent measure of risk that has gained popularity is the CVaR asymmetric, downside risk 

measure36. For general distributions, both continuous and discrete, CVaR measures the weighted 

average of VaR and the expected losses strictly exceeding VaR (i.e., the expected loss in the tail, 

                                                           
34 The subadditivity property implies that the measure of risk in a portfolio should be less than or equal to the sum of the 
measures of risk of the instruments comprising the portfolio. It is the mathematical description of the diversification effect 
(Fabozzi, et al., 2007). Formally, for a measure 𝜌 of the risk 𝑋 in a set of all risks 𝒢, for all 𝑋1, 𝑋2 ∈ 𝒢, 𝜌( 𝑋1 + 𝑋2) ≤ 𝜌( 𝑋1) +
𝜌( 𝑋2). VaR is not always subadditive outside the elliptical distribution framework (Embrechts, et al., 1999). Outside of this 

framework (e.g., in a fat-tailed framework), it has been shown to be subadditive only when calculated very deep in the tail 
(Daníelsson, Jorgensen, Samorodnitsky, Sarma & de Vries, 2013). 
35 It is convention to invert the VaR and CVaR 𝑥-axis, meaning that risk and losses increase as one moves into the right 

tail of the distribution. Positive, larger values represent increasing downside risk (i.e., bigger tail losses). 
36 Coherency, with respect to Artzner, et al. (1999), proved by Pflug (2000). 
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given that the loss is greater than or equal to the VaR value). Rockafellar and Uryasev (2000) 

developed a linear programming (i.e., non-smooth programming) optimisation technique efficient in 

simultaneously minimising the CVaR risk measure, subject to a minimum expected return constraint, 

and calculating VaR. The linear programming technique is effective under both normal and non-

normal distributions. The authors showed that, for Gaussian distributed loss functions, the solutions 

to minimising variance in the standard Markowitz MV framework and to minimising CVaR generated 

the same optimal portfolio. An optimal, or efficient, portfolio is the investor-preferred set of asset 

weights that maximises the investor’s risk-return preferences (i.e., the portfolio that best 

approximates the risk-return characteristics of the investor’s utility function). Optimal sets plot an 

“efficient frontier”, depicting an equivalence representation of concave reward and convex risk 

functions (see Figure 2.11). Krokhmal, Palmquist and Uryasev (2002) adapted the Rockafellar and 

Uryasev (2000) technique to optimisation problems with CVaR constraints, as opposed to expected 

return constraints per Rockafellar and Uryasev (2000). Specifically, the authors swapped the CVaR 

function and expected return in the Rockafellar and Uryasev (2000) problem formulation: the reward 

function is optimised subject to, among others, a CVaR constraint. The authors constructed efficient 

frontiers, for both mean-variance and mean-CVaR optimisations, of portfolios comprising stocks from 

the S&P 100 index and a cash asset as the investible set for the portfolio. It was shown that as the 

CVaR constraint decreased (i.e., as the quantile threshold decreased), the expected return 

increased. In other words, as tail risk (CVaR) constraints decreased, the portfolio expected return 

increased. Important to the case supporting mean-CVaR optimisation, the authors showed that, for 

any given return level, the MV portfolio reflected higher CVaR tail risk levels than in the efficient 

mean-CVaR portfolio. The difference in CVaR risk levels between the two portfolios further increased 

as the constraint increased. The authors also confirmed (per Rockafellar & Uryasev, 2000) the 

closeness of solutions of CVaR and MV optimisation problems as being a function of “close-to-

normal” distributions of returns. For non-normal, especially asymmetric, distributions, however, the 

authors noted that MV and mean-CVaR optimisations may lead to significantly different optimal 

portfolios. 

 

Figure 2.11: Efficient Frontier as an Equivalence Representation 
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Investors’ risk preferences tend to be asymmetric, where agents place greater weight on downside 

risks relative to upside gains (Ang, Chen & Xing, 2006). Ang, et al. (2006) isolated a robust premium 

associated with downside risk exposure in a cross-section of equity returns37. Fabozzi, et al. (2007) 

remarked on the mean-variance and mean-CVaR methodologies. On the one hand, the MV 

approach defines risk symmetrically by the variance statistic of the returns distribution; hence, 

incorporating information from both lower and upper tails of the distribution, with losses and gains 

contributing equally to the risk magnitude. On the other hand, the mean-CVaR approach considers 

(asymmetrically) only the segment of the tail of the distribution that contributes to high losses. Sheikh 

and Qiao (2010) incorporated and advocated the use of CVaR in their asset allocation model, noting 

the measure as an improved risk quantifier over the variance measure in a non-normal environment. 

The authors showed the measure’s ability to capture investors’ asymmetric risk preferences as well 

as left tail incidences of events induced by skewed and leptokurtic return distributions.  Wang and 

Zheng (2010) used CVaR as the downside risk measure in a study that included a comparison of 

the measure’s use to the traditional MVO method. Monthly returns were considered on indices 

representing seven asset classes38. The authors showed sub-optimal performance of the MV 

portfolios in terms of underestimating downside risk. Optimal mean-CVaR portfolios reflected slightly 

higher variances than portfolios on the optimal mean-variance efficient frontier. In compensation, 

though, the optimal mean-CVaR portfolios exhibited a net comparable gain in terms of containing 

much less downside risk. Xiong and Idzorek (2010) compared the variance risk measure in MVO to 

the CVaR measure in mean-CVaR optimisation. The authors simulated hypothetical asset classes 

and compared optimisations under various moment characteristics by varying skewness and 

kurtosis levels. A representative asset class case-study was also investigated. Variance considers 

strictly the first two moments of a variable; CVaR, the first four moments (i.e., additional kurtosis and 

skewness moments outside of the Gaussian domain). The authors noted similar allocations between 

the MVO and mean-CVaR optimisations under Gaussian conditions and, more generally, under 

symmetric conditions combined with uniform kurtosis characteristics. When skewness and kurtosis 

levels varied among asset classes, the two frameworks output differing asset allocations, with the 

mean-CVaR optimisation preferring assets with “higher skewness, lower kurtosis and lower 

variance”. 

Meucci, et al. (2007) succinctly summarised the above three portfolio risk measures as follows: 

1. Volatility as the regular fluctuations in return. 

2. VaR as the best of worst case scenarios. 

                                                           
37 Listed equities restricted to the NYSE, AMEX and NASDAQ exchanges. 
38 MSCI All World equity index, GSCI for representative global commodities, a blend of benchmark indices for credit, 
Barclays Capital US Treasury Intermediate index for interest rate, a blend of benchmarks for Treasury Inflation Protected 
Securities for inflation, NAREIT for real estate and Citi 3-month US Treasury bills for cash. 
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3. CVaR as the mean of worst case scenarios. 

Stoyanov, Rachev, Racheva-Iotova and Fabozzi (2010) summarised the attractive properties of 

CVaR as a measure that: 

1. Gives an informed view of losses beyond VaR (by accounting for risks in excess of VaR). 

2. Is a convex function with respect to portfolio weights. Convexity eliminates the possibility 

of a local minimum being different from a global minimum (this is a key property, 

computationally, in optimising portfolios in terms of CVaR being continuously differentiable 

with respect to a quantile threshold39). In a scenario simulation model40, VaR is a non-

convex, non-smooth function of weights, with multiple local extrema (Uryasev, 2000). See 

also Figure 2.11. 

3. Is subadditive, making it practical beyond the one-instrument setting, as well as satisfies 

the Artzner, et al. (1999) set of intuitively appealing coherent risk measure properties. 

4. As a form of expected loss (i.e., conditional expected loss), is convenient for use in 

scenario-based portfolio optimisation. It is also a natural form of risk-adjustment to 

expected return. 

Not accounted for in the above list, but which may be considered an attractive property of CVaR is: 

5. Linear programming and non-smooth optimisation algorithms allow the “handling [of] 

portfolios with very large numbers of instruments and scenarios.… For instance, a problem 

with 1,000 instruments and 20,000 scenarios … can be optimised … in less than one 

minute.” (Uryasev, 2000). 

It is worth noting that CVaR-optimisation is not a panacea for risk management, as is shown in a 

minimum-variance versus minimum-CVaR investment style study41. Tokpavi and Vaucher (2012) 

showed the outperformance of the variance measure compared to the CVaR measure in portfolios 

that seek to obtain (and maintain) minimum global risk. However, this dissertation does not seek to 

obtain the global minimum CVaR portfolio; the objective is to obtain sets of portfolios with maximised 

expected returns across varying levels of CVaR (equivalently, with minimised CVaR for given levels 

of returns). 

                                                           
39 Rockafellar and Uryasev (2000, pp. 23-26). 
40 Here, the term “scenario” is used in the context of VaR and CVaR calculations where the analytical representation of the 
portfolio density function is not available. Calculations are sample-built, on historical portfolio observations, or from Monte 
Carlo simulations (Uryasev, 2000). 
41 The “minimum-variance”, or low-volatility (or low-beta), equity investment style has gained popularity since the 2008 
global financial crisis (Brochart, Taillardat & Jourovski, 2013). This is true also in South Africa. For example (though not 
strictly “minimum-variance”), low-beta, mid-capitalisation companies are used in the construction of the long side of a 
portfolio in a hedged investment strategy, with the polar high-beta, large-capitalisation domain of companies used in the 
construction of the short hedge side (Tower Capital, 2013). 
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In summary, non-normality can impact asset allocation by way of different asset classes exhibiting 

different downside risks. For example, equity type investments entail greater degrees of downside 

risk than fixed income type investments (Sheikh & Qiao, 2010). Incorporating non-normality, 

however, necessitates an alternative to Markowitz’s mean-variance framework. CVaR is an 

improved risk measure over variance in terms of optimising on tail risk. It also makes no assumptions 

on the underlying distributions of assets. The potential for marginal gains in switching to mean-CVaR 

optimisation is acknowledged and is the method that will be used in this study. The illustration in 

Figure 2.13 provides an integrated summary of the selection-to-simulation-to-optimisation process 

(Absa Capital, 2013). The following steps, demarcated in the graphic, correspond to the steps taken 

in the forward-looking scenario-based simulation and asset allocation process: 

1. Select risk factor input variables and construct scenarios. 

2. Simulate returns from multivariate distribution using fitted t copula. 

3. Match scenarios and extract corresponding portfolio returns. 

4. Measure the conditional asset class return distributions. 

5. Build efficient frontiers using mean-CVaR as the optimisation criteria. 

Figure 2.12 is used to introduce the subsequent methodology chapter. The graphic captures the 

essence of the methodological steps relevant to the dissertation. 

 

Figure 2.12: Methodological Steps Used to Build the Framework 
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Figure 2.13: Illustration of the Forward-Looking Scenario-Based Simulation and Asset Allocation Process

INPUTS (non-Gaussian): Risk Factors INPUTS (non-Gaussian): Asset Classes

Brent Crude Bond Rates USDZAR ALSI ALBI Cash

OUTPUTS

ALSI ALBI Cash

Select Risk Factors and Forecast Scenarios Empirical Asset Class Returns 
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Chapter 3 

Methodology and Results 

This chapter combines two purposes: first, it describes the methodology and theory used in building 

the framework and, second, it presents the main results from each methodology of the framework, 

concluding with an out-of-sample evaluation. It is divided into six sub-sections: Data Description, 

Exploratory Data Analysis, TSA, EVT, Dependence and Portfolio Optimisation. 

3.1 Data Description 

This study uses 18 variables in the model: 6 asset class variables and 12 key sector and asset class 

return driver variables. Asset classes are selected based on a representative, diversified portfolio. 

Asset classes (e.g., equities) may be decomposed into sector and sub-sector levels (e.g., industrial 

sector  sub-sectors: aerospace and defence, electronic and electrical equipment, general 

industrials, industrial engineering, industrial transportation, etc.) with, on the one hand, the caveat 

that the significance of the copula model diminishes as correlation among portfolio variables 

becomes less varied (Riccetti, 2013) but, on the other hand, with the confidence that the copula 

model is robust to the opportunity set typical of a sophisticated investor42 (Wang, Sullivan & Ge, 

2012). 

The data were obtained from INET BFA. End-of-month observations, spanning 20 years, from the 

period 31 March 1994 to 30 April 2014 were used to fit the model. End-of-month observations for 

the period 30 April 2014 to 30 April 2015 were used to evaluate the model out-of-sample. 

Indices were used to represent portfolio asset classes and portfolio return drivers. For portfolio asset 

classes: FTSE/JSE All Share Total Return Index (ALSI) for South African equities, FTSE/JSE All 

Bond Index (ALBI) for South African fixed income, MSCI World Index (MSCI.WRLD.ZAR) for 

international equities43, Alexander Forbes money-market index (GMC1) for cash, JP Morgan Global 

Government Bond Index (GLOUS) for international bonds and the FTSE/JSE Listed Property Index 

(J253T) for South African real estate. For portfolio return drivers: domestic currency (USDZAR), 

dollar strength/weakness proxy44 (EURUSD), Brent crude oil45 (BRSPOT), Goldman Sachs 

                                                           
42 Typical opportunity set of a sophisticated (U.S.) investor includes the following asset classes: large value equity, large 
growth equity, small value equity, small growth equity, non-U.S. developed market equities, emerging market equities, 
commodities, non-U.S. REITs, U.S. REITs, U.S. TIPS, U.S. bonds, non-U.S. bonds, global high yield bonds and cash 
(Xiong & Idzorek, 2011). 
43 Converted from USD to ZAR to be consistent with the perspective of a holding in a South African portfolio. 
44 The USDZAR and EURUSD exchange rate components admit a means of representing USD strength (via EURUSD 
returns) as distinct from ZAR weakness (via USDZAR returns). 
45 Changes in the oil price typically impact on the domestic expected rate of inflation. 



  

38 
 

Commodity Index46 (GSCI), gold price47 (GLFX), platinum price48 (PLAT), MSCI Emerging Market 

equities (MSCI.EM.USD), S&P 500 developed market equities (FSPI), JP Morgan Emerging Market 

Bond Index (JPEMBI), JP Morgan US Government Bond Index (USALCI), the 90-day Banker’s 

Acceptance Rate (RBAS) for domestic short-term interest rates and the 10-year point on the yield 

curve (JAYC10) for the domestic medium-to-long-term South African Treasury bill yield49. Figure 3.1 

illustrates heterogeneity across portfolio asset classes based on the empirical monthly log returns.  

 

 

Figure 3.1: Summary Statistics and Empirical Histograms  

                                                           
46 Changes in hard commodity (i.e., metal) prices typically impact on domestic equity prices (e.g., mining and industrial 
sectors). 
47 Changes in gold prices may proxy for global inflation expectations as well as proxy for market instability through its status 
as being a safe-haven asset. 
48 Changes in platinum prices typically impact on domestic equity prices (e.g., in mining and industrial sectors). 
49 Changes in interest rates typically impact on ALSI, ALBI and sector returns. 

Series Mean %
Standard 

Deviation %
Distribution %

FTSE/JSE All Share Index 1.2 5.6

FTSE/JSE All Bond Index 0.9 2.5

Money-Market Cash 0.8 0.3

MSCI World Int'l Equities 0.9 4.7

FTSE/JSE Listed Property Index 1.5 4.6

JP Morgan Global Govt Bond Index 0.5 1.9
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Table 3.1 presents summary statistics for the 20 year sample of monthly log returns of all variables. 

For each displayed is the mean, median, maximum, minimum, standard deviation, skewness, excess 

kurtosis and test statistics and p-values of the Jarque-Bera test for normality, the Augmented Dickey-

Fuller (ADF) test for a unit root (i.e., for non-stationarity) and the Ljung-Box (LB) test for 

independence (at the first autocorrelation lag). In the column of means, RBAS and JAYC10 evaluate 

to negative numbers, suspected to be an anomaly of the low sampling frequency of the data. The 

JP Morgan Global Government Bond and US Government Bond Indices were the only two variables 

that possibly could be approximated by a Gaussian distribution (Jarque-Bera test p-values of 0.135 

and 0.017, respectively). The money-market cash variable (GMC1) exhibited a degree of statistically 

significant non-stationarity (ADF test p-value of 0.082). The Global Government Bond (GLOUS) and 

commodities (GSCI, GLFX and PLAT) indices showed minor evidence of dependence in the returns 

(LB test p-values of 0.089, 0.084, 0.013 and 0.011, respectively), while, naturally, the money-market 

cash and domestic short-term interest rate (RBAS) variables showed strong evidence of dependence 

in the returns (LB test p-values are both approximately zero). 

For simplicity, portfolios are constructed with the first 4 of the 6 asset classes (ALSI, ALBI, 

MSCI.WRLD.ZAR and Cash). Cash is the flagship asset class in a risk-averse investor’s portfolio, 

typically exhibiting the lowest average real return. The advantage of a cash holding, however, is the 

certainty of its nominal return not becoming negative. The MSCI World Index, converted to Rand 

denomination, is used to proxy offshore equities and the allocation limit is constrained to the 

domestic limit of 25% of the portfolio. The EURUSD time series admits a switch in the sample at the 

time the euro was introduced to world financial markets. In lieu of a synthetic historical price series 

constructed as weighted averages of the previous currencies, the INET BFA sample transitions from 

the Deutsche mark (DEM), as the prior assumed benchmark European currency, to the euro on 1 

January 1999, at an exchange rate of USD 1.172 per euro (European Central Bank, 1999) 50. Prior 

to the switch date, the EURUSD series is proxied by the DEMUSD series. 

3.2 Exploratory Data Analysis 

Since prices in financial series are mostly non-stationary, they are transformed to returns for 

modelling. In particular, logarithmic returns are constructed as:  

where 𝑟𝑡 denotes the continuously compounded return (equivalently, the log return) at time 𝑡, 𝑝𝑡 

denotes the asset price (or value of the series) at time 𝑡, ln denotes the natural logarithm and 𝑡 =

1,… , 𝑛, for sample size 𝑛. 

                                                           
50 Personal correspondence with INET BFA.  

𝑟𝑡 = ln (
𝑝𝑡

𝑝𝑡−1
) = ln(𝑝𝑡) − ln(𝑝𝑡−1) , ∀𝑡 ∈ ℤ , ( 1 ) 
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Table 3.1: Descriptive Statistics of the Data Set 

  

 

 ----------------------- Selection of representative portfolio asset classes 

 ----------------------- Actual portfolio asset classes used in this dissertation 

 ----------------------- Selection of asset class return drivers (used in this dissertation) 

                                                           
51 Results are consistent with those found with the Anderson-Darling and Shapiro-Wilk tests for normality.  
* Variables did not require demeaning (refer Chapter 3.3.1). 

Index Name 
Mean Median Max. Min. Std. Dev. 

Skewness Kurtosis 
Jarque-Bera Test51 ADF Test Ljung-Box Test 

% % % % % Statistic p-Value Statistic p-Value Statistic p-Value 

ALSI 1.22 1.60 13.43 -34.58 5.62 -1.27 6.24 457.29 0.000 -6.39 0.01 0.33 0.568 

ALBI 0.98 1.12 10.69 -15.37 2.52 -0.85 7.93 663.58 0.000 -7.39 0.01 0.27 0.606 

MSCI.WRLD.ZAR 0.89 0.67 17.14 -12.79 4.72 0.22 1.28 18.48 0.000 -4.90 0.01 0.44 0.510 

GMC1 Cash 0.85 0.85 1.72 0.42 0.31 0.48 -0.50 11.69 0.003 -3.24 0.082 240.81 0.000 

GLOUS 0.47 0.30 6.82 -5.12 1.85 0.07 0.62 4.00 0.135 -7.69 0.01 2.88 0.089 

J253T 1.47 1.81 16.71 -15.00 4.60 -0.36 1.03 15.84 0.000 -6.08 0.01 1.58 0.209 

USDZAR 0.46* 0.43 17.02 -12.64 4.45 0.56 1.46 34.03 0.000 -5.97 0.01 0.13 0.713 

EURUSD 0.06* 0.17 9.77 -10.32 2.95 -0.21 0.92 10.42 0.005 -6.17 0.01 0.09 0.754 

BRSPOT 0.86 1.66 33.22 -49.20 9.80 -0.70 3.20 122.74 0.000 -6.85 0.01 0.20 0.652 

GSCI 0.55* 1.34 20.93 -37.97 6.61 -1.07 4.52 251.61 0.000 -6.43 0.01 0.56 0.453 

GLFX 0.50 0.14 16.20 -12.44 3.71 0.36 1.68 33.66 0.000 -5.08 0.01 2.98 0.084 

PLAT 0.52 0.81 22.01 -38.20 6.19 -1.29 6.76 527.09 0.000 -6.13 0.01 6.13 0.013 

MSCI.EM.USD 0.31* 0.69 15.41 -34.65 7.04 -1.14 3.54 178.49 0.000 -5.72 0.01 6.54 0.011 

FSPI 0.60 1.21 10.23 -18.56 4.42 -0.90 1.66 60.27 0.000 -5.22 0.01 2.11 0.146 

JPEMBI 0.91 1.41 10.17 -33.88 4.04 -2.99 22.55 5489.29 0.000 -6.15 0.01 0.04 0.833 

USALCI 0.47 0.52 5.48 -3.38 1.29 -0.12 0.87 8.17 0.017 -7.23 0.01 2.02 0.155 

RBAS -0.24* 0.00 28.09 -13.44 4.21 0.62 8.96 824.74 0.000 -5.07 0.01 39.17 0.000 

JAYC10 -0.19* -0.51 22.86 -15.34 4.46 0.57 3.33 124.78 0.000 -7.28 0.01 0.25 0.619 
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Financial return time series represented by equation (1) exhibit many of the so-called stylised facts, 

mentioned in Chapter 1.2. To illustrate the univariate data modelling process, we consider the ALSI 

variable as a representative variable for the data. 

 

Figure 3.2: ALSI Data in Price Level and Log Return Level 

 

Figure 3.3: ALSI Histogram with Normal Density Overlay and Boxplot of ALSI Returns 

The left panel in Figure 3.2 depicts the reconstructed FTSE/JSE All Share Total Return Index, using 

share price and dividend data, in raw price format. The series is clearly non-stationary, hence the 

transformation via log return function, displayed in the right panel. There is visual evidence of 

volatility clustering in the log returns. From Table 3.1, the mean of the log return series is 1.22% per 

month and is less than the median of 1.60%. The fluctuations are around the mean and the mean 

does not change with time (an indication of stationarity in the log return series). The largest loss 

occurred over August 1998, at -34.58%. The highest return occurred over May 2003, at 13.43%.  

The mean less than the median signals an asymmetric return distribution with a negative skew. 

Asymmetry is statistically confirmed via the skewness estimate of -1.27. The excess kurtosis 

estimate is 6.24, describing a heavy-tailed, or leptokurtic, distribution. The left panel of Figure 3.3 

plots the normal density curve over the empirical histogram and illustrates the negative skew and 

leptokurtic characteristics. The negative outlier pulls the left tail beyond the reach of the fitted 

Gaussian density and the peakedness around the mean pushes the distribution up higher than that 

of the Gaussian fit. The boxplot (see Appendix) in the right panel displays an alternative view of the 
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negatively skewed and heavy tailed returns. 

 

Figure 3.4: ALSI Returns with 3-Sigma Event Downside Band 

The Gaussian distribution assumes that a 3-sigma lower-tail event (e.g., an asset return observation 

more than three standard deviations below the asset’s mean return value) has approximately a 

0.135% probability of occurring, or roughly one occurrence per 1000 return periods. From 30 June 

1960 to 30 May 2014, the FTSE/JSE All Share Index had a monthly mean return of 1.03% and 

monthly standard deviation of 6.05%. These statistics imply that a negative 3-sigma event would 

result in a monthly loss of at least 3𝜎 − 𝜇 ≈ 17.12%. Figure 3.4 plots the long ALSI time series, 

spanning 54 years, with a 3-sigma event downside band. There are 7 occurrences in the 3-sigma 

neighbourhood (out of 648 observations). Scaling to 1000 return periods, there may be 10.8 such 

downside occurrences, or roughly ten times as many empirical losses beyond the three standard 

deviation level as the normal distribution generates. As Xiong (2010) pointed out, underestimating 

such extreme risks through modelling with thin-tailed distributions (e.g., normal and lognormal) can 

severely impair wealth accumulation, particularly for investors approaching retirement. 

The Jarque-Bera test is a formal, numerical, asymptotic, or large-sample, goodness-of-fit test which 

assesses whether both skewness and kurtosis in the data are consistent with a Gaussian model. 

The test statistic follows a chi-square distribution with two degrees of freedom under the null 

hypothesis of normality and is given by: 

𝐽𝐵 = 𝑛 [
𝑆2

6
+ 
(𝐾 − 3)2

24
]  ∼ 𝛸2

2 , 

where 𝑛 is the sample size, 𝑆 =  
𝐸(𝑋−𝜇)3

𝜎3
, the theoretical skewness measure, 𝐾 =

𝐸(𝑋−𝜇)4

[𝐸(𝑋−𝜇)2]2
, the 

theoretical kurtosis measure and 𝜇 and 𝜎, the theoretical mean and standard deviation, respectively, 

of a random variable 𝑋 (e.g., returns data). The value of the 𝐽𝐵 statistic is expected to be zero under 

normality (i.e., where 𝑆 and 𝐾 jointly equal zero and three, respectively). Sample kurtosis and 

skewness values differing widely from three and zero, respectively, may lead to rejection of 
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normality. The large 𝐽𝐵 test statistic (equivalently, the small p-value) for the ALSI sample leads to 

rejection of the assumption of normality in the ALSI distribution, at the 99.9% confidence level. The 

quantile-quantile plot in the left panel of Figure 3.7 graphically supports the rejection of normality in 

the data. 

A stationary process is characterised by a mean and variance that are constant over time, with the 

covariance between any two time points dependent only on the lag between the two points and not 

on the actual time at which the covariance is calculated (Gujarati & Porter, 2009). The variance, or 

second moment, of a stochastic return process {𝑟𝑡}𝑡∈ℤ is given by: 

𝑉𝑎𝑟(𝑟𝑡) = 𝐸(𝑟𝑡 − 𝜇)(𝑟𝑡 − 𝜇) =  𝜎
2, ∀𝑡 ∈ ℤ, 𝜇 = 𝐸(𝑟𝑡) ∀𝑡. 

The autocovariance is the covariance of 𝑟𝑡 with its own previous values (i.e., it determines how 𝑟𝑡 is 

related to its previous values) and is given by the autocovariance function: 

𝛾𝑟(𝑠, 𝑡) = 𝐶𝑜𝑣(𝑟𝑠, 𝑟𝑡) = 𝐸[𝑟𝑠 − 𝐸(𝑟𝑠)][𝑟𝑡 − 𝐸(𝑟𝑡)], for 𝑠, 𝑡 ∈ ℤ, [= 𝑉𝑎𝑟(𝑟𝑡) when 𝑠 = 𝑡]. 

Autocorrelation is a measure of the strength of linear dependence of a variable with itself at two 

points in time. For the stochastic process {𝑟𝑡}𝑡∈ℤ the autocorrelation measure is given by: 

𝜌𝑘(𝑠, 𝑡) = 𝐶𝑜𝑟𝑟(𝑟𝑠, 𝑟𝑡) =
𝐶𝑜𝑣(𝑟𝑠,𝑟𝑡)

√𝑉𝑎𝑟(𝑟𝑠)𝑉𝑎𝑟(𝑟𝑡)
=

𝛾𝑟(𝑠,𝑡)

√𝛾𝑟(𝑠,𝑠)𝛾𝑟(𝑡,𝑡)
, for 𝑠, 𝑡 ∈ ℤ, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 < ∞ and −1 < 𝜌𝑘 < 1 

and a plot of 𝜌𝑘 against 𝑘 is called the autocorrelation function (ACF). The ACF is a useful qualitative 

tool to assess the presence of autocorrelation at different individual lags in a time series. Figure 3.5 

illustrates the usefulness of ACF plots. By construction of the ACF, mutual linear dependence on 

other variables between the two time points (𝑠, 𝑡) considered may distort the measure. Therefore, 

the sample partial ACF (PACF), which removes inter-variable linear dependence, is typically also 

computed and displayed. The graph in the left panel of Figure 3.5 shows the sample ACF of the 

ALSI price series decaying slowly over its lagged values. The slow decay indicates non-stationarity 

or possibly (though highly unlikely in most financial data) stationarity with long-memory dependence. 

The middle panel graphs the sample ACF for the ALSI return series and the graph is typical of a 

stationary series. Bounds, in red, are set at 0.05, the level of the test of the null hypothesis of an 

autocorrelation coefficient being equal to zero (i.e., insignificant autocorrelation). The right panel 

graphs the sample PACF. The figure is consistent with non-stationarity in a time series. 
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Figure 3.5: Sample ACF for the ALSI Price Series and Sample ACF and PACF for the ALSI Return Series 

One of the stylised facts of financial returns is autocorrelation in absolute or squared returns. Figure 

3.6 displays the sample ACF  (left) and sample PACF (middle) for the absolute returns in the ALSI 

series, as well as the ACF for squared returns (right). There are a number of spikes breaching the 

test bounds, indicating autocorrelation in the absolute and squared returns. The presence of 

significant autocorrelations suggests that a GARCH model with lagged variances and lagged 

squared innovations may serve as an appropriate model for the log return series. 

 

Figure 3.6: Sample ACF and PACF for the ALSI Absolute Returns and Sample ACF for the ALSI Squared 
Absolute Returns 

The ADF test is a unit root test used to evaluate a time series for non-stationarity. The Dickey-Fuller 

test tests for the presence of a unit root in an AR(1) time series model representation. The ADF test 

augments the Dickey-Fuller test by expanding the time series model to admit testing for additional 

“drift” and “trend” characteristics.  The ADF test is performed using the following (augmented) AR(𝑝) 

model: 

Δ𝑟𝑡 = 𝜇 + 𝛾𝑡 + 𝛿𝑟𝑡−1 +∑𝛽𝑖Δ𝑟𝑡−𝑖 + 𝜖𝑡 ,

𝑝

𝑖=1

 

where Δ is the difference operator, 𝑟𝑡 a time series, 𝜇 a constant (i.e., drift), 𝛾𝑡 a linear trend (i.e., 

trend), 𝑝 is the lag order, 𝜖𝑡 a white-noise innovation, and choosing 𝑝 (the number of lagged Δ𝑟𝑡−𝑖 

terms to include52) such that the test statistic is insignificant for autocorrelation in the innovations. 

The ALSI log return series rejected the null of non-stationarity at the 99.9% confidence level. This is 

                                                           
52 For 𝑝 = 0 the standard Dickey-Fuller test is performed. 
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supported graphically in the middle panel of Figure 3.5. Similarly, drift and trend characteristics were 

rejected with high confidence53. Of the testing for each of unit root, drift and trend characteristics, all 

variables, except the cash variable, were stationary. The cash variable exhibited a degree of unit-

root presence and a degree of drift in the returns level, but exhibited no significant degree of trend 

presence. This was a challenging variable to model. To manage the explosive nature of the variable 

in the AR representation, the AR coefficient was restricted to the bounds of −0.9 < 𝛿 < 0.9 before 

the GARCH component of the model was fit. Further details are discussed in the GARCH-fitting 

section of the dissertation. 

Financial data at returns level typically do not exhibit serial correlation. The Ljung-Box (LB) test54, 

developed by Ljung and Box (1978), is used as a portmanteau joint test of linear dependence and is 

used to test a time series for autocorrelation. The test statistic is: 

𝑄∗ = 𝑛(𝑛 + 2)∑
�̂�𝑘
2

𝑛 − 𝑘
∼ 𝛸𝑚

2

𝑚

𝑘=1

 , 

where 𝑛 is the sample size, 𝑚 the maximum lag length, �̂�𝑘 the autocorrelation coefficient at lag 𝑘, 

estimated from the sample, and where the 𝑄∗-statistic is asymptotically distributed as a 𝛸𝑚
2  (i.e., chi-

square with 𝑚 df). When 𝑄∗ > 𝛸𝑚
2 , for a given significance level, the joint null hypothesis that the 

first 𝑚 autocorrelation coefficients are zero is rejected. The ALSI log returns show, in Table 3.1, 

statistically significant independence at lag one, with a p-value of 0.568. Table C.1 and Table C.2 in 

the Appendix show the p-values of the LB test on log returns and absolute log returns, respectively, 

evaluated at lags one through twelve (suggested by Daníelsson, 2011, pp. 12-14). Since data are 

sampled monthly, the presence of autocorrelation in returns is unlikely and, if present, may simply 

be spurious. However, the highly-predictable and slow-moving GMC1 (cash) and RBAS (90-day 

Banker’s Acceptance Rate) variables, expectedly, showed significant dependence in the returns. In 

both cases, an AR(1) conditional mean model was used to capture lag-one autocorrelation. 

As seen in Table C.2, there is evidence of statistical dependence (i.e., autocorrelation) in the 

absolute log returns of the variables. This is evidence of the stylised fact of volatility clustering in 

financial return data, also known as ARCH effects in the data55. A second statistical test for 

conditional heteroskedasticity (i.e., volatility clustering) is the Lagrange multiplier test of Engle 

(1982). The test is applied to demeaned data, so we construct demeaned data sets as: 𝛼𝑡 = 𝑟𝑡 − 𝜇𝑡 

(Tsay, 2012, pp. 182-189). The ARCH test is performed on the linear regression: 

𝛼𝑡
2 = 𝛽0 + 𝛽1𝛼𝑡−1

2 +⋯+ 𝛽𝑚𝛼𝑡−𝑚
2 + 𝜖𝑡 for 𝑡 = 𝑚 + 1,… , 𝑛 

                                                           
53 Drift is represented by the constant 𝜇; trend, by the constant 𝜇 and time component 𝛾𝑡. In both “drift” and “trend” cases 

the series will typically be integrated of order one (i.e., contain a unit root). 
54 The LB test is preferred to the precursor Box-Pierce test due to improved small-sample properties (Gujarati & Porter, 
2009, p. 754). 
55 The evidence is similar for squared log returns. 
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where 𝜖𝑡 denotes the error term, 𝑚 is a prespecified lag term and 𝑛 is the sample size. This is also 

a joint test of linear dependence, where the null hypothesis is 𝐻0: 𝛽1 = ⋯ = 𝛽𝑚 = 0 (i.e., no ARCH 

effects) and the alternative hypothesis is 𝐻𝑎: 𝛽𝑖 ≠ 0 for some 𝑖 between 1 and 𝑚 (i.e., ARCH effects). 

Table C.3 in the Appendix gives the p-values of the ARCH test on the demeaned ALSI log return 

series. The ALSI log returns exhibit ARCH effects at lags 2, 3 and 4 (p-values equal to 0.023, 0.052 

and 0.104, respectively). Table C.3 shows evidence of ARCH effects in the majority of the variables 

and at multiple lags. The right panel of Figure 3.7 illustrates evidence of ARCH effects. The group of 

absolute log returns from the ALSI series that are greater than the 40th largest absolute return (of 

242 total observations) is plotted against time. The 40th largest absolute value was arbitrarily chosen 

as the threshold and used to highlight the presence of volatility clustering in the data. As is seen in 

the graph, volatility clustering appears to be present in the returns series. Overall, the ARCH testing 

provides support for the use of a GARCH structure to model the conditional variance. 

 

Figure 3.7: QQ Plot of the ALSI Returns and Plot of Volatility Clustering in the ALSI Absolute Returns 

The left panel in Figure 3.7 shows the quantile-quantile (QQ) plot, comparing quantiles from the ALSI 

log return data to quantiles of a reference distribution, in this case the normal distribution56. If the two 

sample sets come from a population with the same distribution the points lie along the 45-degree 

line plotted in the graph. This is not the case, with the QQ plot showing negative skewness and 

heavy-tailedness in comparison to the Gaussian reference. 

3.3 Return Filtering 

Having determined support in the returns data for GARCH modelling, marginal model fitting may 

commence. This dissertation allows for a conditional mean equation57 and an ARMA structure to 

model stationarity and any significant serial dependence (AR term) and residual influence (MA term) 

                                                           
56 Here, quantiles are the standardised data values taken at regular intervals along the domain of the inverse function of 
the CDF of the random variable. The quantiles of the ALSI log return data are plotted on the 𝑦-axis and the theoretical 

standard normal quantiles are plotted on the 𝑥-axis. 
57 With a view to parsimony and practical use, the conditional mean equation is restricted to the series’ unconditional mean 
plus an optional term for modelling ARCH-in-mean effects. 
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in the return series. The GARCH-family extension is included to represent the conditional variance 

component. The AR(m) component captures autocorrelation between returns and the MA(n) 

component captures shocks to the long-term average over time. Compared to linear AR models, MA 

structures can be used to model and forecast variables exhibiting less persistence and shorter 

memory (Bao, 2015). 

3.3.1 Conditional Mean Modelling 

The conditional mean equation is defined as follows: 

where 𝜇 is the unconditional mean and the second term is activated when modelling ARCH effects 

in the mean process either as conditional volatility (𝑘 = 1) or as conditional variance (𝑘 = 2). 

The return series mean component is modelled with an ARMA(𝑚, 𝑛) process, of autoregressive 

order 𝑚 and moving average order 𝑛 (𝑚, 𝑛 ∈ ℤ), defined as follows:  

where 𝑦𝑡 = 𝑟𝑡 − 𝜇𝑡 denotes a “demeaned” (i.e., mean-centred) process, 𝑐 represents a constant 

related to the unconditional mean58 and the (weak white noise) innovation process, 휀𝑡~(0, 𝜎
2), is 

split into two terms to admit a GARCH-family variance equation. The latter process is defined as: 

where 𝑧𝑡 is a strong white noise process, assumed to be i.i.d. with mean zero and unit variance and 

distributed as a standardised, known distribution, 𝑧𝑡~𝑖𝑖𝑑 𝒟𝜗(0,1), 𝑧𝑡 and 𝜎𝑡 are stochastically 

independent and 𝜎𝑡, the conditional standard deviation of 𝑦𝑡 at time 𝑡, models the conditional volatility 

dynamics through the GARCH-family model. In terms of maximum likelihood estimation, applied 

economists often demean data in order to reduce the parameter estimation set by the 𝜇-variable 

(i.e., one less parameter to estimate by choosing to model 𝑦𝑡, as in (2) above). The technique is 

simply to estimate the population mean externally using the unbiased sample mean estimator of the 

population mean (�̅�𝑡 = 𝑛
−1∑ 𝑟𝑡

𝑛
𝑡=1 ≈ 𝜇𝑡). On the other hand, Bao (2015) showed that (a) for linear 

AR models, demeaning data does not seriously affect estimation of non-intercept parameters and 

(b) for a MA(1) model, it is not always advisable to demean the data if the model parameter is of 

direct interest and if the parameter is moderately large (i.e., 0.5 < 𝜃 < 1). In case of not demeaning, 

the data are passed straight to the GARCH routine and assumed to be zero-mean residuals. Of the 

                                                           
58 It is generally suggested to include a constant term in the mean equation in order not to force the model towards the 
origin. 

𝑦𝑡 = 𝑐 +∑𝜙𝑖𝑦𝑡−𝑖 +∑𝜃𝑗휀𝑡−𝑗 + 휀𝑡  ,

𝑛

𝑗=1

𝑚

𝑖=1

 

( 2 ) 

휀𝑡 = 𝜎𝑡𝑧𝑡 , ( 4 ) 

𝜇𝑡 = 𝜇 + 𝜉𝜎𝑡
𝑘  , 

( 3 ) 
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18 variables initially estimated as 𝑦𝑡, 6 were found not to require demeaning based on statistical 

insignificance of their mean estimates when estimated in the model per equation (3)59. The 

respective 6 variables skipped the conditional mean modelling and were passed directly to the 

GARCH routine as 𝑟𝑡.  

The innovation series is influenced by its conditional distributional form: 

where 𝒟 is the standardised, conditional distribution function of the series and the optional 𝜗 may 

contain additional distribution parameters to modify the skewness and kurtosis of the distribution. 

3.3.2 Conditional Volatility Modelling 

Several of the more popular GARCH-family specifications for conditional volatility are considered, 

although the standard GARCH(1,1) model consistently performed better in terms of parsimony and 

cohesiveness between information criteria and log-likelihood estimates. The following section 

references Ghalanos (2014a), since modelling is implemented using the rugarch package in R 

(Ghalanos, 2014b). 

3.3.2.1 The Standard GARCH Model 

The Bollerslev (1986) GARCH(𝑝, 𝑞) generalisation of Engle’s (1982) ARCH model is defined as:  

where 𝜎𝑡
2 denotes a strictly positive conditional variance process, 𝜔 > 0 an intercept term 

representing the long-term average variance value, 𝛼𝑖 ≥ 0 for 𝑖 = 1,… , 𝑞 controlling ARCH influences 

(i.e., lagged squared innovations), 𝛽𝑗 ≥ 0 for 𝑗 = 1,… , 𝑝 controlling GARCH influences (i.e., lagged 

conditional variances), 휀𝑡
2 the squared innovations from the mean filtration process in equation (3) 

and 𝑡 ∈ ℤ. The ARCH(p) process is recovered by setting 𝑚 = 𝑝 = 0. The case 𝑝 = 𝑞 = 1 is the 

ubiquitous GARCH(1,1) model. The model admits 𝑚 external, pre-lagged regressors 𝜐𝑗. For 

simplicity, no external regressors are used in this study, so this variable is omitted in subsequent 

parameterisations. 

The GARCH model is designed to capture volatility clustering, which, in turn, may be quantified by 

the following persistence parameter: 

                                                           
59 The 6 variables: USDZAR, EURUSD, GSCI, MSCI.EM.USD, RBAS and JAYC10. 

( 5 ) 

𝜎𝑡
2 = (𝜔 +∑휁𝑘𝜐𝑘𝑡

𝑚

𝑘=1

) +∑𝛼𝑖휀𝑡−𝑖
2

𝑞

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 , ( 6 ) 

𝑧𝑡~𝑖𝑖𝑑 𝒟𝜗(0,1) , 
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The unconditional variance of the model is given by: 

3.3.2.2 The Integrated GARCH Model 

The persistent variance IGARCH model (Engle & Bollerslev, 1986) is designed for modelling time 

series exhibiting permanent shocks in the process, where conditional volatility is considered 

integrated of order one. The model is identical to the GARCH(p,q) model, but is fit setting on �̂� = 1 

in equation (7). 

3.3.2.3 The ARCH-in-Mean Model 

Motivated by the idea that returns on a risky asset should be positively related to its risk, Engle, et 

al. (1987) specified the conditional mean equation to depend on some function of its conditional 

volatility, or conditional variance. 

Modifying the conditional mean in equation (2), the GARCH-M model may be represented as: 

where 𝜉 describes the impact of risk on the conditional mean and the ARCH-in-mean term, 𝜑(𝜎𝑡), 

may be specified as, for example, conditional volatility (𝜑(𝜎𝑡) = 𝜎𝑡), conditional variance 

(𝜑(𝜎𝑡) = 𝜎𝑡
2) or simply as 𝜑(𝜎𝑡) = log(𝜎𝑡), as in Engle, et al. (1987). 

3.3.2.4 The Exponential GARCH Model 

The EGARCH model was introduced by Nelson (1991) to capture asymmetric responses of volatility 

to shocks. Conditional volatility in the model depends on both the size and sign of lagged shocks, 

parameterised and through weighting the innovations as follows: 

where lagged shocks are given by 𝑧𝑡 =
𝜀𝑡−𝑖
𝜎𝑡−𝑗

, 𝛼𝑖 allows for sign effects (i.e., asymmetry influences 

along different lags), 𝛾𝑖 captures size effects (i.e., volatility impacts induced by lagged shocks) where, 

�̂� =∑𝛼𝑖

𝑞

𝑖=1

+∑𝛽𝑗 .

𝑝

𝑗=1

 

 

( 7 ) 

𝑉𝑎𝑟(휀�̂�) = �̂�
2 =

�̂�

1 − �̂�
 . ( 8 ) 

𝜇𝑡 = 𝜉𝜑(𝜎𝑡) + ℇ𝑡  [= 𝜉𝜑(𝜎𝑡) + 𝑧𝑡𝜎𝑡] , ( 9 ) 

ln(𝜎𝑡
2) = 𝜔 +∑𝛼𝑖𝑧𝑡−𝑖 +

𝑞

𝑖=1

∑𝛾𝑖[|𝑧𝑡−𝑖| − 𝐸(|𝑧𝑡−𝑖|)] +

𝑞

𝑖=1

∑𝛽𝑗 ln(𝜎𝑡−𝑗
2 ) ,

𝑝

𝑗=1

 ( 10 ) 
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as opposed to the combination of 𝛼𝑖 and 𝛽𝑗 capturing volatility clustering in the GARCH model, the 

𝛽𝑗 in the EGARCH model are entirely responsible for capturing volatility clustering. 

3.3.2.5 The GJR-GARCH Model 

Glosten, et al. (1993) specified a Boolean indicator function, where leverage coefficients are 

activated by past negative innovations. The model is defined as follows: 

where 𝛾𝑖 captures the leverage effect induced by asymmetric volatility and 𝐼 is the indicator function 

evaluating to 1 for 휀 ≤ 0 and zero otherwise (i.e., the model uses zero as the threshold to separate 

the impacts of past shocks60). 

3.3.2.6 The Asymmetric Power ARCH Model 

Ding, et al. (1993) introduced the A-PARCH model to capture the leverage effect, but with a power 

variable estimated from the data instead of a square on the lagged innovations and lagged 

conditional variances. The authors built the A-PARCH specification in response to their observation 

that sample autocorrelations of absolute daily returns (in the S&P 500 index for the period 1928 to 

1991) were larger than those of the squared daily returns (for every lag up to at least 100 lags). The 

model is specified as:  

where power parameter 𝛿 > ℝ+, a Box-Cox (1964) transformation of the conditional volatility, is 

estimated directly from the data and leverage parameter |𝛾𝑖| ≤ 1. The A-PARCH specification nests 

a number of ARCH-based sub-models for different power and leverage parameter settings. 

3.3.2.7 The Threshold GARCH Model 

Zakoïan (1994) introduced the threshold GARCH (TGARCH) model, the first-order specification of 

which is a variant of the GJR-GARCH model. TGARCH models volatility clustering by specifying 

conditional volatility (as opposed to conditional variance) as a function of the lagged positive and 

negative parts of the innovations. The model is defined as61:  

                                                           
60 See, for example, Tsay (2012, p. 222). 
61 This specification is a reparameterised version of Francq and Zakoïan’s (2010, p. 250) TGARCH model, where, there, 

the leverage term 𝛾𝑖 in equation (13) is specified as (𝛼𝑖,+ − 𝛼𝑖,−). 

( 11 ) 𝜎𝑡
2 = 𝜔 +∑(𝛼𝑖휀𝑡−𝑖

2 + 𝛾𝑖𝐼𝑡−𝑖휀𝑡−𝑖
2 ) +

𝑞

𝑖=1

∑𝛽𝑗𝜎𝑡−𝑗
2  ,

𝑝

𝑗=1

 

 

𝜎𝑡
𝛿 = 𝜔 +∑𝛼𝑖(|휀𝑡−𝑖| − 𝛾𝑖휀𝑡−𝑖)

𝛿 +

𝑞

𝑖=1

∑𝛽𝑗𝜎𝑡−𝑗
𝛿  ,

𝑝

𝑗=1

 

 

( 12 ) 
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where 𝛾𝑖 is the coefficient of the leverage term and is activated when 휀𝑡−𝑖 < 0. 

3.3.3 GARCH-family Conditional Distributions 

The shape of the conditional distribution of the innovations 𝑧𝑡 in equation (4) is assumed to be the 

same for future returns. This has implications for under- or overestimating future risks in the variable. 

In addition the distribution is required to admit standardisation through linear transformation of the 

innovations (i.e., centring about the returns using the conditional mean, [𝑦𝑡 − 𝜇𝑡], and scaling on 

conditional volatility, [휀𝑡 𝜎𝑡⁄ ]). After appropriate transformation, standardised innovations 𝑧𝑡 = 휀𝑡 𝜎𝑡⁄  

are assumed to be mean zero and unit variance and are modelled with (the now scaled version of) 

the same conditional distribution of 𝑦𝑡. Several models for the innovations 𝑧𝑡 are considered. 

3.3.3.1 The Normal Distribution 

The default choice for innovation distribution 𝒟 is the Gaussian probability function. A normally 

distributed random variable 𝑋 has density given by: 

where mean 𝜇 and variance 𝜎2 may both be time-varying (i.e., evaluated conditionally). 

The standardised normal probability function for the innovations is given by: 

3.3.3.2 The Student t Distribution 

The standardised Student t distribution has density given by: 

where 𝜈 > 2 is the shape parameter measuring tail thickness and Γ(𝜈) = ∫ 𝑒−𝑥𝑥𝜈−1 𝑑𝑥
∞

0
 is the 

gamma function. 

 

𝜎𝑡 = 𝜔 +∑𝛼𝑖(|휀𝑡−𝑖| − 𝛾𝑖휀𝑡−𝑖) +

𝑞

𝑖=1

∑𝛽𝑗𝜎𝑡−𝑗 ,

𝑝

𝑗=1

 

 

( 14 ) 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  , 

 

𝑓(𝑧) =
1

√2𝜋
𝑒−
𝑧2

2  . 

 

( 15 ) 

𝑓(𝑧|𝜈) =
Γ (
𝜈 + 1
2 )

√𝜋(𝜈 − 2)Γ (
𝜈
2)
(1 +

𝑧2

(𝜈 − 2)
)

−(
𝜈+1
2
)

 , 

 

( 16 ) 

( 13 ) 
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3.3.3.3 The Generalised Error Distribution 

The standardised GED has density given by: 

where 0 < 𝜅 ≤ ∞ is the shape parameter. 

3.3.3.4 The Skewed Distributions 

Fernández and Steel (1998) specified a general density function to admit skewness in any unimodal 

and symmetric distribution by changing the shape on each side of the mode. The density of a random 

variable 𝑧, given a shape parameter 𝜉, is hereby given as:  

where 0 < 𝜉 < ∞ describes the degree of asymmetry62 and 𝐻(𝑧) = [1 + sign(𝑧)] 2⁄  is the Heaviside 

unit step function. When 𝜉 = 1, 𝑓(𝑧|𝜉 = 1) = 𝑓(𝑧), yielding a symmetric distribution. 

3.3.3.4.1 The Skewed Normal Distribution 

The standardised skewed normal density63, denoted by SN(0,1, 𝜉), is given by: 

where 𝜉 > 0 is the skewness parameter, determining the direction and intensity of the skewness, 

and sign(𝑧) is the sign function evaluating to 1 if 𝑧 > 0, −1 if 𝑧 < 0 and 0 if 𝑧 = 0 (i.e., the skewing 

mechanism scales 𝑓(𝑧) differently for negative and positive values). 

3.3.3.4.2 The Skewed Student t Distribution 

The standardised skewed Student t density64, denoted by SKST(0,1, 𝜉, 𝜈), is given by: 

                                                           
62 𝜉 < 1 produces left skewness; 𝜉 > 1 produces right skewness. 
63 See, for example, Li, et al. (2013). 
64 See, for example, Bao, Lee and Saltoğlu (2007) and Palmitesta and Provasi (2006). 

𝑓(𝑧|𝜅) =
𝜅

𝜆𝜅2
1+𝜅−1Γ(𝜅−1)

𝑒
−
1
2
|
𝑧
𝜆𝜅
|
𝜅

  , 

 

( 17 ) 

𝜆𝜅 = (2
−2 𝜅⁄

Γ(𝜅−1)

Γ(3𝜅−1)
)

1 2⁄

 , 

 

𝑓(𝑧|𝜉) =
2

𝜉 + 𝜉−1
[𝑓(𝜉𝑧)𝐻(−𝑧) + 𝑓(𝜉−1𝑧)𝐻(𝑧)] , 

 

𝑓(𝑧|𝜉) =
2

(𝜉 + 𝜉−1)

1

√2𝜋
𝑒
[−
1
2(
𝑧𝜉−sign(𝑧))

2
]
 , 

 

( 18 ) 

( 19 ) 
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where 𝜉 > 0 and 𝜈 > 2. If 𝜉 = 1, the distribution is symmetric about zero, with zero mean and unit 

variance. 

3.3.3.4.3 The Skewed Generalised Error Distribution 

The standardised skewed GED65, denoted by SGED(0,1, 𝜉, 𝜅), is given by:  

where 𝜉 > 0 and 𝜅 > 0. The distribution collapses to the skew normal when 𝜅 = 1 and becomes the 

skew Laplace distribution when 𝜉 ≠ 1 and 𝜅 = 1 2⁄ . 

3.3.3.5 The Generalised Hyperbolic Distribution 

The generalised hyperbolic distribution, denoted by GHYP(𝜆, 𝛼, 𝛽, 𝛿, 𝜇), is given by:  

where 𝑥 ∈ ℝ, Κ𝜆B(𝑥) =
1

2
∫ 𝑢𝜆B−1𝑒−𝑥(𝑢+𝑢

−1) 2⁄∞

0
𝑑𝑢, 𝑥 > 0, is the modified Bessel function of the third 

kind66 (with index parameter 𝜆B ∈ ℝ), 𝜇 ∈ ℝ is the location parameter, 𝛿 ≥ 0 the scale parameter, 

𝛽 ∈ [−𝛼, 𝛼] the skewness parameter, 𝛼 ≥ 0 the tail parameter and 𝜆 ∈ ℝ the shape parameter. 

The distribution GHYP(𝑥|𝜆, 𝛼, 𝛽, 𝛿, 𝜇) is reparameterised to obtain the standardised GHYP(𝑧|휁, 𝜌) 

distribution. This is done by estimating 휁 = 𝛿√𝛼2 − 𝛽2 and 𝜌 = 𝛽 𝛼⁄ , setting the mean equal to zero 

and variance equal to one and demeaning and scaling the random variable 𝑥 to obtain the 

standardised variable 𝑧 (Ghalanos, Rossi & Urga, 2015). 

                                                           
65 See, for example, Bao, Lee and Saltoğlu (2004) and Palmitesta and Provasi (2006). 
66 See, for example, Bibby and Sørensen (2003, p. 243) and Paolella (2007, pp. 315-320). 

( 20 ) 𝑓(𝑧|𝜉, 𝜈) = (
2

𝜉 + 𝜉−1
)

Γ (
𝜈 + 1
2
)

√𝜋(𝜈 − 2)Γ (
𝜈
2)
[1 +

𝜉−2 sign(𝑧)𝑧2

𝜈 − 2
]

−
(𝜈+1)
2

 , 
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2
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) Γ

1
2 (
3

2𝜅
) Γ−

3
2 (
1

2𝜅
)𝜅𝑒[−𝑐
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( 21 ) 

𝑐 =
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3

2𝜅
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Γ(
1

2𝜅
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    𝑓(𝑥|𝜆, 𝛼, 𝛽, 𝛿, 𝜇) =
(
𝛾
𝛿
)
𝜆

√2𝜋Κ𝜆B(𝛿𝛾)

Κ𝜆−1
2
(𝛼√𝛿2 + (𝑥 − 𝜇)2)
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−𝜆
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( 22 ) 

𝛾2 = 𝛼2 − 𝛽2 , 
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3.3.3.6 The Normal Inverse Gaussian Distribution 

The normal inverse Gaussian (NIG) distribution is the sub-class distribution nested in the 

GHYP(𝜆, 𝛼, 𝛽, 𝛿, 𝜇) distribution and obtained when 𝜆 = −1 2⁄ . The density67, denoted by 

NIG(𝛼, 𝛽, 𝛿, 𝜇), is given by:  

where 𝑥, 𝜇 ∈ ℝ, 𝛼, 𝛿 ≥ 0, 𝛽 ∈ (−𝛼, 𝛼) and 𝛾2 = 𝛼2 − 𝛽2. Standardisation of 𝑥 is done using the 

distribution’s associated expressions for the mean and variance. 

3.3.3.7 The Generalised Hyperbolic Skew Student t Distribution 

Aas and Haff (2006) specified the GHST distribution, a limiting case of the GHYP distribution, to 

admit one tail to decay at a polynomial rate and one at an exponential rate. The limiting case arises 

when 𝛼 → |𝛽| and 𝜆 = −𝜈 2⁄ , where 𝜈 is the shape (df) parameter of the Student t distribution. In 

terms of scaling, variance is only finite for 𝜈 > 4. Skewness exists only for 𝜈 > 6 and kurtosis only 

for 𝜈 > 8 (i.e., the 𝑛-th moment exists when 𝜈 > 2𝑛). The GHST density68 is given by: 

where 𝛼 → |𝛽|, 𝜆 = −𝜈 2⁄ ⇒ 𝜈 = −2𝜆, 𝜈 > 0, 𝛾 = 0, 𝛿 > 0 and 𝜇, 𝛽 ∈ ℝ. As with the previous 

generalised hyperbolic distributions, standardisation of 𝑥 is done using the distribution’s associated 

expressions for the mean and variance. 

3.3.3.8 The Reparameterised Johnson’s SU Distribution 

Johnson (1949) introduced an “unbounded” distribution, or “system of frequency curves”, using a 

particular transformation on a random variable. The unbounded distribution, called “the system SU”, 

is known commonly as Johnson’s SU distribution and is appropriate for leptokurtic data. The 

distribution, denoted by JSUo(𝑥|𝜇, 𝜎, 𝜈, 𝜏), accommodates the mean-variance-skewness-kurtosis 

parameter hyperspace, but with the mean and variance specified as functions of the scale (𝜎), 

                                                           
67 See, for example, Bibby and Sørensen (2003, p. 218) and Paolella (2007, p. 325). 
68 See also, for example, Bibby and Sørensen (2003, p. 221) and Paolella (2007, p. 322). 
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skewness (𝜈) and kurtosis (𝜏) parameters69 (i.e., 𝐸(𝑋) ≠ 𝜇 and 𝑉𝑎𝑟(𝑋) ≠ 𝜎). The reparameterisation 

of the original Johnson SU distribution (Rigby & Stasinopoulos, 2005, 2010), denoted by 

JSU(𝑥|𝜇, 𝜎, 𝜈, 𝜏), has been done so to set 𝐸(𝑋) = 𝜇 and 𝑉𝑎𝑟(𝑋) = 𝜎 for all values of the skew (𝜈) 

and shape (𝜏) parameters. The JSU density is given by: 

where −∞ < 𝑥 < ∞, −∞ < 𝜇 < ∞, 𝜎 > 0, −∞ < 𝜈 < ∞, 𝜏 > 0 and 𝑍~𝑁(0,1). 

Figure 3.8 plots the standardised versions of the skew normal, GED, skew GED, Student t, skew 

Student t, GHST, GHYP (𝜆 = 1, 휁 = 0), NIG (휁 = 0) and JSU density functions for different 

parameter settings. The dashed lines in each plot mark the standard normal density function. 

Figure 3.8: Standardised Conditional Distributions Used in the GARCH Models 
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2⁄ ) (Rigby & Stasinopoulos, 

2010, p. 205). 
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𝑧 = −𝜈 + 𝜏 sinh−1(𝑟) = −𝜈 + 𝜏 log (𝑟 + √𝑟2 + 1) , 
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2 sinhΩ)
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 , 
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2⁄ )  and  Ω = −𝜈 𝜏⁄  , 
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3.3.4 ARMA-GARCH Model Estimation 

The parameters of the ARMA-GARCH-family model are estimated jointly via quasi maximum 

likelihood estimation (QMLE), based on the Gaussian log-likelihood function. Assume that the time 

series { 𝑟𝑡} from equation (3) is generated by a strictly stationary, non-anticipative solution of the 

ARMA(𝑚, 𝑛)-GARCH(𝑝, 𝑞) model70, where the orders 𝑚, 𝑛, 𝑝, 𝑞 are assumed known. The vector of 

parameters is given by: 

 

For 𝑞 ≥ 𝑛 (referring to the ARMA-GARCH lag lengths) and for any 𝜚 and 𝜓, the values of conditional 

moments 휀�̃�(𝜚), first, and �̃�𝑡
2(𝜑), second, may be approximated71, in the aforementioned order, by: 

where the �̃�𝑡
2 are defined recursively for 𝑡 > 1 and fed into the conditional Gaussian quasi-likelihood 

function, given by: 

  

Whereas a joint probability density function is a function of the data given a set of parameters, 

𝑓(𝑦1,  𝑦2, … , 𝑦𝑛|Φ), maximum likelihood uses a likelihood function as a function of the parameters 

given a set of data, ℒ𝑛(Φ|𝑦1,  𝑦2, … , 𝑦𝑛). To write the likelihood of the model, a distribution 𝒟𝜗 must 

                                                           
70 QMLE is not the focus of the dissertation, therefore estimation is illustrated for strictly the GARCH(𝑝, 𝑞) model and 

without external regressors 𝜐𝑗. 
71 This section references Francq and Zakoïan (2010, pp. 150-151). 

      𝜑 = (𝜚𝑇 , 𝜓𝑇) = (𝜇𝑡 , 𝑐, 𝜙1, … , 𝜙𝑚, 𝜃1, … , 𝜃𝑛, 𝜓
𝑇)𝑇 , 

    𝜓 = (𝜓𝑡 , … , 𝜓𝑝+𝑞+1)
𝑇
= (𝜔, 𝛼1, … , 𝛼𝑞 , 𝛽1, … , 𝛽𝑝 )

𝑇
. 

{
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𝑛

𝑗=1

𝑚

𝑖=1

 �̃�𝑡
2 = �̃�𝑡

2(𝜑) = 𝜔 +∑𝛼𝑖휀�̃�−𝑖
2

𝑞

𝑖=1

+∑𝛽𝑗�̃�𝑡−𝑗
2

𝑝

𝑗=1

,

 

 

ℒ𝑛(𝜑) = ℒ𝑛(𝜑 ∈ Φ|휀1̃, 휀2̃, … , 휀�̃�) =∏
1

√2𝜋�̃�𝑡
2
𝑒
(−

̃𝑡
2�̃�𝑡
2)

𝑛

𝑡=1

 . 

 



  

57 
 

be specified for the i.i.d. variables 𝑧𝑡. However, QMLE does not make any assumption on the 

distribution 𝒟𝜗. The Gaussian quasi-likelihood has been shown to coincide with the likelihood of 

distribution 𝒟𝜗 when the 𝑧𝑡 are distributed as standard Gaussian. The log of this function is 

maximised with respect to the parameters, essentially the same as finding the mode of the 

distribution. 

The Gaussian log-likelihood is given by:  

where 𝜑 is a subset of parameter space Φ.  

A QMLE of 𝜑 is defined as any measurable solution �̂�𝑛 to the following equation:  

Put another way (Amendola & Francq, 2009, pp. 401-402), which highlights the importance of 

“standardisable” distributions in time series analysis, parameters are estimated as per equation (27), 

but with ℓ̃𝑡 = [(𝑌𝑡 − �̃�𝑡)
2 �̃�𝑡

2 + log �̃�𝑡
2⁄ ], where the model is of the typical form 𝑌𝑡 = 𝑚𝑡(Φ) + 𝜎𝑡(Φ)𝑧𝑡, 

𝑧𝑡~ 𝑖𝑖𝑑 𝒟𝜗(0,1). The parameter space is Φ, with �̃�𝑡(Φ) ≔ �̃�𝑡 = 𝐸Φ(𝑌𝑡|𝑌𝑡−1, … , 𝑌1) and �̃�𝑡
2(Φ) ≔ �̃�𝑡

2 =

𝑉𝑎𝑟Φ(𝑌𝑡|𝑌𝑡−1, … , 𝑌1). 

3.3.5 ARMA-GARCH Model Selection 

The procedure used to select the best fitting model per variable was initially implemented as follows: 

 Fit the univariate time series with a mean and variance equation, the mean equation to be 

modelled under the ARMA(𝑚, 𝑛) specification for 𝑚, 𝑛 ∈  {0,1,2,3}. 

 Fit each of the 16 ARMA(m,n) specifications with a variance equation from one of the 

following: GARCH(1,1), IGARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1), A-PARCH(1,1), 

TGARCH(1,1) and GARCH-In-Mean. 

 Pair each composite structure with a conditional distribution: normal, skew normal, Student 

t, skew Student t, GED, skew GED, GHYP, NIG, GHST and JSU. 

 Rank each model according to smallest Akaike and Bayesian information criterion scores 

(AIC and BIC, respectively) and largest log-likelihood (LLH) values. Search for cohesiveness, 

or agreement, in the ranking criteria. 

The AIC and BIC statistics are calculated, respectively, as: 

�̃�𝑛(𝜑) = 𝑛
−1∑ℓ̃𝑡

𝑛

𝑡=1

 ,         ℓ̃𝑡 = ℓ̃𝑡(𝜙) =
휀�̃�
2(𝜚)

�̃�𝑡
2(𝜑)

+ log �̃�𝑡
2(𝜑) = −2 log(ℒ𝑛(𝜑)) , 

 

�̂�𝑛 = arg min
𝜑∈Φ

�̃�𝑛(𝜑) ≡ arg max
𝜑∈Φ

 ℒ𝑛(𝜑) . ( 27 ) 

𝐴𝐼𝐶 = −
2

𝑛
ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑀𝐿) +

2

𝑛
× (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

( 26 ) 
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The AIC imposes a penalty equal to a sample size-related scaling of the number of model parameters 

on the log-likelihood value at the maximum. The BIC tends to select simpler models by imposing a 

greater penalty related to the magnitude of a function of the sample size. The increase in the 

“complexity penalty” between the AIC to BIC increases the tendency of the BIC to select simpler 

models. The BIC tends towards underparameterisation, a problem that may be a benefit when the 

purpose is true out-of-sample forecasting. Simpler models often perform better out-of-sample than 

do overparameterised models. The LLH has no complexity penalty, with emphasis placed on 

minimising innovation variances in-sample and tending towards overfit models with more parameters 

(which increases the risk of fitting noise and thereby forecasting poorly out-of-sample). If there is no 

cohesiveness among ranking criteria, the model which minimises the BIC is selected. 

Meaningful discrepancies were found when cross-validating model fits produced by two different R 

software packages72. Simplifying the ARMA(𝑚, 𝑛) specification to 𝑚, 𝑛 = 0 or restricting the estimate 

bounds when 𝑚 or 𝑛 = 1 (e.g., −0.9 ≤ 𝜙1 ≤ 0.9) produced concordant estimates. Fitting ARMA(0,0) 

structures as the mean equation implies there is no measurable or meaningful difference in the 

residuals from raw log returns and the residuals from respective fitted models. Since the difference 

between the raw return residuals and the fitted residuals depends on the mean equation, not the 

variance equation, this phenomenon may be expected. ARMA(0,0) models, therefore, do not explain 

anything about the level of return; rather, they are a preliminary pass-through filter aimed at 

presenting a weak white noise innovation series to the GARCH process. Capturing the variation in 

the conditional standard deviation is the modelling priority in this section of the dissertation. Further, 

for any given variable, the return equation has no explanatory power (returns are unpredictable), 

whereas the volatility equation does have explanatory power (volatility may be forecast with a degree 

of confidence73). 

In terms of data granularity at a “coarse” monthly sampling frequency, it was found that the IGARCH 

and the larger-parameterised asymmetric GARCH models were failing to compete against the 

simpler GARCH(1,1) models. GARCH-family models tend to suit data sampled at daily, or higher, 

frequencies. The twenty years of monthly data used in the dissertation amounted to 242 data points 

per series. For sample sizes of 𝑛 < 700, Ng and Lam (2006) showed that there may be two, or more, 

solutions to the conventional GARCH(1,1) model estimated by maximum likelihood. The authors 

recommended using samples of size 𝑛 > 1000 for conventional GARCH(1,1) fitting. In light of the 

                                                           
72 The rugarch (Ghalanos, 2014b) and fGarch (Wuertz & Chalabi, 2009) packages output conflicting parameter estimates 
in the conditional mean equations. In discussing the problem with the developer and maintainer of the rugarch package, 
the conflicting results were attributed to (1) spurious regression resulting from (2) over-parameterising the model to too 
little data. 
73 See, for example, Brownlees, Engle and Kelly (2011). 

𝐵𝐼𝐶 = −
2

𝑛
ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑀𝐿) +

2log (𝑛)

𝑛
× (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) . 
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above, the procedure used to select the best fitting model per variable was adjusted to the following: 

 Fit the univariate time series with a mean and variance equation, the mean equation to be 

modelled under the ARMA(𝑚, 𝑛) specification, for 𝑚, 𝑛 ∈  {0,1}, with optional restriction on 

the AR(1) coefficient when the tendency towards first-differencing was strong74. 

 Fit each of the ARMA(m,n) specifications with a variance equation from one of the following: 

GARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1) and GARCH-In-Mean. 

 Pair each composite structure with a conditional distribution: normal, skew normal, Student 

t, skew Student t, GED, skew GED, GHYP, NIG, GHST and JSU. 

Model fits were ranked according to cohesiveness among the AIC, BIC and LLH ranking criteria. 

Continuing with the theme of analysing a representative variable, results for the ALSI return filtering 

follows. 

The ARMA(0,0)-GARCH(1,1) model, fit to demeaned data75, was selected. The conditional 

distribution for the ALSI GARCH model is the Student t distribution with shape parameter (robustly76) 

significant at the 5% level. Table 3.2 presents the parameter estimates and associated standard and 

robustified p-values. 

Table 3.2: Optimal Parameter Estimates for the ALSI ARMA-GARCH Model 

 Estimate p-value (standard errors) p-value (robust errors) 

Mu  0.0159*** 0.0000 0.0000 

Omega  0.0003 0.2028 0.2243 

Alpha1  0.2342 0.1109 0.2666 

Beta1  0.6839*** 0.0001 0.0031 

Shape  7.2137*** 0.0092 0.0374 

*p < 0.1, **p < 0.05, ***p < 0.01, n = 242, based on standard errors. 
 

Residuals from the fitted model are standardised and checked for model adequacy. They should 

form an approximately i.i.d. series, though with heavy tails, as well as an assumed realisation of a 

strict white noise process for use in EVT modelling. Standardised residual series are calculated as 

follows: 

                                                           
74 The GMC1 Cash variable required a first-differencing (i.e., setting 𝜙1 = 1 in equation (3)) to improve the modelling. 
However, doing so alienated the variable from the (un-differenced) set of portfolio variables in terms of modelling its co-
relationship in the copula model. It was therefore decided to bound the AR coefficient and proceed with this caveat in mind. 
In addition, cash is a stalwart asset in a portfolio and its return series is not expected to co-vary meaningfully with other 
assets. The latter implies that, in terms of copula modelling of co-variation, cash may be considered a “non-critical” variable. 
75 That is, the estimated mean 𝜇 (with p-value approximately zero) was significant enough to include in the mean equation. 
76 Robust standard errors are based on asymptotically valid confidence intervals per White (1982). 

(𝑧𝑡−𝑛+1, … , 𝑧𝑡) = (
𝑟𝑡−𝑛+1 − �̂�𝑡−𝑛+1

�̂�𝑡−𝑛+1
, … ,

𝑟𝑡 − �̂�𝑡
�̂�𝑡

) . 
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The weighted Ljung-Box test (Fisher & Gallagher, 2012) for serial correlation, or independence, was 

applied to standardised residuals and standardised squared residuals produced in-sample from the 

fitted model77. The former (with df set to the number of AR and MA parameters) is used to test for 

ARMA effects and the latter (with df set to the number of ARCH and GARCH parameters) is used to 

test for ARCH/GARCH effects. Lag lengths vary as a function of the number of GARCH parameters 

in the model. If the null of no serial correlation in the data is rejected, then there is statistical evidence 

of the model not capturing ARMA and/or ARCH/GARCH effects (i.e., the model is misspecified). 

Table 3.3 reports t-values of the test with p-values in parentheses. The high p-values indicate little 

chance of serial correlation in the standardised residuals and standardised squared residuals at the 

lags tested. 

Table 3.3: Weighted LB Test Results on Standardised Residuals and Standardised Squared Residuals 

Lag 1 2(𝑝 + 𝑞) + (𝑝 + 𝑞) − 1 4(𝑝 + 𝑞) + (𝑝 + 𝑞) − 1 

Standardised Residuals 0.0038 0.0845 0.8014 

 (0.9506) (0.9306) (0.9027) 

Standardised Squared Residuals 0.5764 1.0507 1.6469 

 (0.4477) (0.8481) (0.9427) 

*p < 0.1, **p < 0.05, ***p < 0.01, n = 242. 

The weighted ARCH LM test for the null of an adequately fit ARCH process (i.e., no ARCH effects) 

was applied to the residuals of the fitted model (Fisher & Gallagher, 2012)78. Table 3.4 provides a 

summary report. The high p-values indicate statistically significant removal of ARCH effects by the 

model, at the respective lags. Test statistics are shown with p-values in parentheses. 

Table 3.4: Weighted ARCH LM Test Results on Model Residuals  

           ARCH Lag 3 5 7 

 0.3938 0.7366 1.0849 

 (0.5303) (0.8123) (0.8994) 

*p < 0.1, **p < 0.05, ***p < 0.01, n = 242. 

The Nyblom (1989) stability test evaluates in-sample individual and joint parameter stability. The test 

is a Lagrange multiplier test based on maximum likelihood scores for the null hypothesis of 

parameter stability (against a martingale process alternative79). The test statistic for the individual 

parameter Nyblom test is given by: 

where 𝑖 = 1,… , (𝑘 + 1) is the number of exogenous variables, 𝑉𝑖 = ∑ 𝑓𝑖𝑡
2𝑛

𝑡=1  ∀𝑖 = 1,… , (𝑘 + 1), the 

                                                           
77 The use and interpretation of the weighted LB test statistics remain unchanged. 
78 The use and interpretation of the weighted ARCH LM test statistics remain unchanged. 
79 The martingale specification can cover a number of types of departure from parameter constancy, such as a random 
walk (i.e., slow random variation) or a change-point model (e.g., a single jump at an unknown time point in the series). 

𝐿𝑖 =
1

𝑛
𝑉𝑖
−1∑𝑆𝑖𝑡  ,

𝑛

𝑡=1
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sum of 𝑓𝑡 over time is calculated as 𝑆𝑖𝑡 = ∑ 𝑓𝑖𝑡
𝑛
𝑡=1  with 𝑓𝑖𝑡 = {

𝑥𝑖𝑡휀�̂� , 𝑖 = 1,… , 𝑘

휀�̂�
2 − �̂� , 𝑖 = 𝑘 + 1

 (where 𝑓𝑖𝑡 

approximating zero implies parameter stability). 

The test statistic for the joint parameter Nyblom test is given by: 

where 𝐻0: parameters are constant ⇔ 𝜎
𝑖
2 = 0 for all 𝑖, against 𝐻𝑎: 𝜎 𝑖

2 > 0 for some 𝑖, 𝜎
𝑖
2  is the 

variance at time 𝑡 for parameter 𝑖, cumulative MLE scores 𝑆𝑡 = ∑ 𝑓𝑡
𝑛
𝑡=1 , with 𝑓𝑡 = 𝑥𝑡휀�̂�, and 𝑉 =

𝑛−1𝑋′𝑋 for 𝑛 observations and 𝑋 is a matrix of variables from the regression model. For both tests, 

the null is rejected if the test statistic is greater than the respective asymptotic critical value (provided 

by the software). 

From Table 3.5, it can be seen that, jointly, the model parameters are stable over the 20 years of 

monthly data. The mean, alpha1 (i.e., ARCH) and beta1 (i.e., GARCH) parameters exhibit stability 

over the sample period, while the omega (related to unconditional variance) and shape (related to 

tail behaviour) parameters exhibit instability at the 10% levels, at the monthly sampling frequency. 

Table 3.5: Nyblom Test Results for Individual and Joint Parameter Stability 

 Test Statistic Asymptotic Critical Values 

  10% 5% 1% 

Joint 1.1404 1.28 1.47 1.88 

Mu 0.1360 0.35 0.47 0.75 

Omega 0.3599* 0.35 0.47 0.75 

Alpha1 0.1144 0.35 0.47 0.75 

Beta1 0.2603 0.35 0.47 0.75 

Shape 0.4077* 0.35 0.47 0.75 

Decision rule: Reject 𝐻0 if test statistic > critical value. Significance levels: *10%, **5%, ***1%, n = 242. 

The sign bias test of Engle and Ng (1993) tests for different leverage effects in the standardised 

squared residuals and, thereby, for possible GARCH model misspecification. The test is 

administered through a regression of the standardised squared residuals from the fitted model on 

lagged positive and negative shocks (i.e., good news and bad news impacts), as follows: 

where 𝐻0: 𝑐𝑖 = 0 (for 𝑖 = 1,2.3) and jointly 𝐻0: 𝑐1 = 𝑐2 = 𝑐3 = 0, evaluator function 𝛪 assumes one if 

true (zero otherwise) and 휀�̂� are the estimated residuals from the GARCH model. Rejection of the 

null hypothesis implies that an asymmetric GARCH-type structure may better model the presence of 

leverage effects. 

𝐿 =
1

𝑛�̂�2
𝑡𝑟 [𝑉−1∑𝑆𝑡𝑆𝑡

′

𝑛

𝑡=1

] , 

�̂�𝑡
2 = 𝑐0 + 𝑐1𝛪̂𝑡−1<0 + 𝑐2𝛪̂𝑡−1<0휀�̂�−1 + 𝑐3𝛪̂𝑡−1≥0휀�̂�−1 + 𝜇𝑡  , 
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Table 3.6: Sign Bias Test Results for Leverage Effects in the ALSI Model 

 t-value p-value 

Sign Bias ( 𝐻0: 𝑐1 = 0) 0.3264 0.7444 

Negative Sign Bias ( 𝐻0: 𝑐2 = 0) 0.2380 0.8121 

Positive Sign Bias ( 𝐻0: 𝑐3 = 0) 1.0342 0.3021 

Joint Effect ( 𝐻0: 𝑐1 = 𝑐2 = 𝑐3 = 0) 1.2010 0.7528 

*p < 0.1, **p < 0.05, ***p < 0.01, n = 242. 

As can be seen in Table 3.6, there is no statistical evidence (individually or jointly) supporting any 

sign or presence of asymmetric leverage effects in the ALSI model residuals.  

The Pearson goodness-of-fit test is used to compare the empirical distribution of the standardised 

residuals to the theoretical distribution of the chosen conditional density. The standard test is 

adjusted, per Palm (1996), to admit non-i.i.d. observations: standardised residuals are re-classified 

based on magnitude (as opposed to value) and test statistics calculated as a function of the 

probability of observing a value smaller than the standardised residual. The default number of bins 

in the histograms that are tested are 20, 30, 40 and 50. The null is that the data follow the given 

distribution. 

As can be seen in Table 3.7, the goodness-of-fit test fails to reject the Student t distribution as 

appropriate in the ALSI model (i.e., the chosen conditional density appears appropriate in modelling 

the standardised residuals). 

Table 3.7: Adjusted Pearson Goodness-of-Fit Test Results of the Estimated Conditional Density in the ALSI 
Model 

Number of Bins Test Statistic p-value 

20 12.88 0.8449 

30 23.04 0.7746 

40 23.79 0.9738 

50 32.79 0.9738 

*p < 0.1, **p < 0.05, ***p < 0.01, n = 242. 

In addition to statistical evaluation, results of the return filtering may be evaluated graphically. The 

left panel of Figure 3.9 displays the ALSI sample series plotted with upper and lower estimated 2-

sigma conditional standard deviations superimposed. The right panel plots the estimated conditional 

standard deviation series �̂�𝑡 superimposed over the absolute value of the log return series |𝑟𝑡|. 
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Figure 3.9: ALSI Returns with 2-Sigma Conditional Volatility Overlay and ALSI Absolute Returns with Conditional 
Volatility Overlay 

Figure 3.10 plots the sample ACFs of the standardised residuals 휀�̂� and squared standardised 

residuals 휀�̂�
2, respectively. There are no signs of autocorrelation in either series. 

 

Figure 3.10: Sample ACF for Standardised Residuals and Standardised Squared Residuals 

The left panel of Figure 3.11 displays the empirical histogram of the standardised residuals 휀�̂� with 

fitted normal and Student t distributions superimposed. The Student t distribution is fit as this was 

the chosen conditional density for the ALSI model. The right panel plots the Student t QQ plot of the 

standardised residuals 휀�̂�. 

The QQ plot illustrates graphically the prudence of using Extreme Value Theory as a subsequent 

and intermediate step before copula modelling. While the estimated GARCH model, with the 

selected fat-tailed density, is able to capture the bulk of the excess kurtosis found in the return series, 

there is still meaningful deviation observed in the tails of the distribution. The curve down at the left 

of the QQ plot is evidence of a heavier lower tail than the reference distribution. Contrastingly, the 

curve down at the right of the QQ plot is evidence of lighter-than-Student t upper tail density. EVT 

provides a formal framework for studying the statistical behaviour expected in the extreme areas of 



  

64 
 

the distribution. The EVT framework further admits asymmetric modelling through the separate fitting 

of each tail. 

 

Figure 3.11: Histogram of Standardised Residuals with Normal and Student t Distributions and the Student t QQ 
Plot of Standardised Residuals 

Table 3.8 displays the fitting results for all asset classes and risk factors consistent with the 

methodology of this section. Output includes the ARMA-GARCH model specification, conditional 

density family, estimated parameters with respective p-values of the t-test, log-likelihood estimates 

and information criteria estimates of the fitted time series models. 
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Table 3.8: Model Specification, Estimated Parameters, Log-Likelihood and Information Criteria of the Fitted Time Series Models 

Index Name Model Specification Parameters LLH Info. Crit. 
 ARMA GARCH Distr.   ARMA GARCH-(M) Distribution  AIC BIC 
 m n p q M   𝜇 𝜙 𝜃 𝜉† 𝜔 𝛼 𝛽 𝜈 𝜉‡ 𝜅    

ALSI 
0 0 1 1  t estimate 0.0159    0.0003 0.2343 0.6839 7.2137   376.33 -3.07 -2.99 

p-value 0.0000    0.2029 0.1109 0.0001 0.0092      

ALBI 
0 0 1 1  t estimate 0.0110    0.0001 0.2961 0.4766 5.1385   586.61 -4.81 -4.73 

p-value 0.0000    0.0125 0.0174 0.0001 0.0021      

MSCI.WRLD.ZAR 
0 0 1 1  skew t estimate 0.0129    0.0003 0.2726 0.6335  1.2060 6.0890 414.42 -3.38 -3.29 

p-value 0.0000    0.0381 0.0243 0.0000  0.0000 0.0147    

GMC1 Cash§ 
1 0 1 1 × skew GED estimate 0.0038 0.9000  6.0911 0.0000 0.1382 0.8544  0.6655 1.1696 1637.10 -13.47 -13.37 

p-value 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000 0.0000    

GLOUS 
0 0 1 1  GED estimate 0.0041    0.0000 0.0657 0.8717 1.7251   625.64 -5.13 -5.06 

p-value 0.0004    0.2308 0.1451 0.0000 0.0000      

J253T 
0 0 1 1  skew t estimate 0.0161    0.0003 0.2134 0.6260 11.0473 0.9010  417.48 -3.40 -3.31 

p-value 0.0000    0.0717 0.0290 0.0000 0.1011 0.0000     

USDZAR 
0 0 1 1  skew GED estimate     0.0001 0.2231 0.7533  1.0747 1.1875 428.06 -3.50 -3.42 

p-value     0.0432 0.0046 0.0000  0.0000 0.0000    

EURUSD 
0 0 1 1  GED estimate     0.0001 0.0724 0.8513 1.5580   516.48 -4.24 -4.18 

p-value     0.2809 0.0774 0.0000 0.0000      

BRSPOT 
0 0 1 1  t estimate 0.0099    0.0005 0.1796 0.7755 8.2630   241.59 -1.96 -1.88 

p-value 0.0604    0.3023 0.0146 0.0000 0.0438      

GSCI 
0 0 1 1  skew GED estimate     0.0004 0.0642 0.8436  0.7343 1.4539 329.96 -2.69 -2.61 

p-value     0.0424 0.0914 0.0000  0.0000 0.0000    

GLFX 
0 0 1 1  skew t estimate 0.0046    0.0001 0.2363 0.7020 6.1742 1.2780  474.99 -3.88 -3.79 

p-value 0.0379    0.1169 0.0083 0.0000 0.0123 0.0000     

PLAT 
0 0 1 1  t estimate 0.0086    0.0007 0.2522 0.5792 5.6716   361.36 -2.95 -2.87 

p-value 0.0058    0.0465 0.0122 0.0000 0.0058      

MSCI.EM.USD 
0 0 1 1  skew GED estimate     0.0004 0.1305 0.8035  0.6174 1.7926 323.70 -2.63 -2.56 

p-value     0.0642 0.0098 0.0000  0.0000 0.0000    

FSPI 
0 0 1 1  t estimate 0.0102    0.0001 0.1993 0.7758 8.6394   435.89 -3.56 -3.49 

p-value 0.0000    0.1812 0.0045 0.0000 0.0417      

JPEMBI§ 
0 0 1 1 × skew GED estimate -0.0066   0.4277 0.0000 0.0817 0.8954  0.7099 0.8608 507.51 -4.14 -4.06 

p-value 0.0000   0.0000 0.0000 0.0000 0.0000  0.0000 0.0000    

USALCI 
0 0 1 1  t estimate 0.0047    0.0000 0.0505 0.8490 10.8323   714.81 -5.87 -5.79 

p-value 0.0000    0.0000 0.0002 0.0000 0.0694      

RBAS§ 
1 0 1 1  GED estimate  0.2542   0.0001 0.2665 0.6474   0.4687 552.83 -4.54 -4.48 

p-value  0.0000   0.0000 0.0010 0.0000   0.0000    

JAYC10§ 
1 1 1 1  skew GED estimate  -0.7597 0.8219  0.0006 0.1780 0.4665  1.1689 1.2659 432.47 -3.52 -3.44 

p-value  0.0000 0.0000  0.0000 0.0180 0.0234  0.0000 0.0000   80 

                                                           
§ Variance targeting, where the long-run variance 𝜔 is imposed to be the sample variance, was used to stabilise and simplify the model. The technique results in the conditional variance converging towards the unconditional long-run 

variance �̂�2. In the GARCH(𝑝, 𝑞) equation (6), the following replacement is made: 𝜔 = (1 − ∑ 𝛼𝑖 − ∑ 𝛽𝑗
𝑝
𝑗=1

𝑞
𝑖=1 )𝜎2, where the sample variance estimate �̂�2 = 𝑛−1∑ 휀𝑡

2𝑛
𝑡=1  is substituted for 𝜎2, before estimating the remaining parameters 

(Teräsvirta, 2009, p. 20). For JPEMBI the full sample variance was used; for RBAS and JAYC10, the variance of the last 5 years was used; for GMC1 Cash, the variance of the last 3 years was used. 
† GARCH-In-Mean parameter. 
‡ Skewness parameter. 



  

66 
 

3.4 Extreme Value Theory Modelling 

The estimation procedure of EVT relies on the assumption that the given data points are realisations 

of i.i.d. random variables. The ARMA-GARCH filtering process is a first-step towards producing sets 

of such variables. Although the assumption appears restrictive in terms of behaviour in financial data, 

it may nonetheless be satisfied for many stationary time series in the limit of exceedances over high 

thresholds (Carmona, 2014, p. 119). The data may indeed be assumed to be weakly dependent 

(McNeil, 1999, p. 6). 

The BDS test (Brock, Dechert, Scheinkman & LeBaron, 1996) is a portmanteau test for the null 

hypothesis of i.i.d., designed for estimated residuals from fitted time series models. Before 

proceeding with EVT, standardised residuals are subjected to the test. The test uses a measure of 

the frequency with which temporal patterns are repeated in the data, called a correlation integral. A 

time series 𝑧𝑡 for 𝑡 = 1,… , 𝑛 is defined along its 𝑚-history as 𝑧𝑡
𝑚 = (𝑧𝑡 , 𝑧𝑡−1, … , 𝑧𝑡−𝑚+1). The 

correlation integral, at embedding dimension 𝑚, is estimated by: 

where 𝑛𝑚 = 𝑛 −𝑚 + 1 and 𝛪(𝑧𝑡
𝑚, 𝑧𝑠

𝑚; 𝜖) is an indicator function evaluating to one if |𝑧𝑡−𝑖 − 𝑧𝑠−𝑖| < 𝜖 

for 𝑖 = 0,1,… ,𝑚 − 1 (zero otherwise). The correlation integral estimates the probability that any two 

𝑚-dimensional points are within a distance 𝜖 of each other and may be understood as estimating the 

joint probability: 

If 𝑧𝑡 are i.i.d., the joint probability should equate to, in the limiting case: 

The BDS statistic is then defined as follows: 

where 𝑠𝑚,𝜖 is a consistent estimate of the standard deviation of √𝑛(𝐶𝑚,𝜖 − 𝐶1,𝜖
𝑚 ). The null hypothesis 

of i.i.d. is rejected at the 5% significance level when |𝑉𝑚,𝜖| > 1.96. The epsilon points 𝜖 in the test 

should be set to between 1
2
�̂�𝑧𝑡 and 3

2
�̂�𝑧𝑡 (Wang, 2006, p. 115). For a small sample of 242 data points, 

the standardised residual series is embedded in 𝑚-space where 𝑚 = 2. Table 3.9 displays results 

from the BDS test for i.i.d. in the GARCH-standardised residuals from the fitted ALSI model. The 

results indicate independence in the series. 

 

𝐶𝑚,𝜖 =
2

𝑛𝑚(𝑛𝑚 − 1)
∑ ∑𝛪(𝑧𝑡

𝑚, 𝑧𝑠
𝑚; 𝜖)

𝑡≤𝑛𝑚≤𝑠<

 , 

𝑃(|𝑧𝑡 − 𝑧𝑠| < 𝜖, |𝑧𝑡−1 − 𝑧𝑠−1| < 𝜖,… , |𝑧𝑡−𝑚+1 − 𝑧𝑠−𝑚+1| < 𝜖) . 

𝐶1,𝜖
𝑚 = 𝑃(|𝑧𝑡 − 𝑧𝑠| < 𝜖)

𝑚 . 

𝑉𝑚,𝜖 = √𝑛
𝐶𝑚,𝜖 − 𝐶1,𝜖

𝑚

𝑠𝑚,𝜖
 , 
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Table 3.9: BDS Test Results for i.i.d. in the Standardised Residuals of the Fitted ALSI GARCH Model 

𝜖 for near points Test Statistic p-value 

0.5032 = 1
2
�̂�𝑧𝑡 1.1741 0.2404 

1.0063 =   �̂�𝑧𝑡 0.6709 0.5023 

1.5095 = 3
2
�̂�𝑧𝑡 0.3245 0.7455 

*p < 0.1, **p < 0.05, ***p < 0.01, n = 242, �̂�𝑧𝑡 = 1.0063. The GLFX variable rejected the null for = 1

2
�̂�𝑧𝑡 , possibly 

spuriously; however, GMC1 Cash, JPEMBI and RBAS strongly rejected the null at all epsilon points.  

The marginal distribution for each variable is estimated using the respective standardised, 

uncorrelated residuals. A semi-parametric method is used, where the interior, or bulk, of the 

distribution is modelled with a non-parametric Gaussian kernel density estimator, while each tail of 

the distribution is modelled with a parametric generalised Pareto distribution. 

3.4.1 The Kernel Density Estimator 

Given a sequence of 𝑛 i.i.d. observations 𝑥1, … , 𝑥𝑛 from random variable 𝑋, with unknown true density 

ℎ(𝑥) defined on ℝ, a kernel density estimator (KDE) of ℎ is the function ℎ̂𝑏 defined by: 

where 𝑏 > 0 is the bandwidth, a smoothing parameter, and 𝛫(𝑥) is a kernel function, usually defined 

to be a smooth, symmetric-about-zero and unimodal PDF satisfying the conditions 𝛫(𝑥) ≥ 0 and 

∫ 𝛫(𝑥)𝑑𝑥 = 1
∞

−∞
. For consistency in the outside divisor (i.e., 1 𝑛𝑏⁄ ) with respect later in this chapter 

to the GPD tail estimators, the KDE in equation (28) is redefined using the scale notation 𝛫𝑏(𝑦) =

𝑏−1𝛫(𝑦 𝑏⁄ ), transforming the KDE to: 

A mean zero Gaussian PDF, given by 𝛫(𝑥) = (1 √2𝜋⁄ )exp(−𝑥2 2⁄ ), is used as the kernel in this 

dissertation. Bandwidth is computed using the oversmoothed bandwidth selector, which, for the 

Gaussian KDE, is given by81: 

where �̂� is the standard deviation of the observations82. The form of the KDE used in this dissertation, 

therefore, becomes:  

                                                           
81 See Wolters (2012, p. 48).  
82 For the ALSI GARCH model, �̂�𝑧𝑡 ≈ 1.0063, yielding 𝑏𝑂𝑆 = 1.14

�̂�

𝑛1 5⁄
= 1.14

1.0063

2421 5⁄
≈ 0.3827. 

ℎ̂𝑏(𝑥) =
1

𝑛𝑏
∑𝛫(

𝑥 − 𝑥𝑖
𝑏

)

𝑛

𝑖=1

 , 

𝑏𝑂𝑆 = 1.14
�̂�

𝑛1 5⁄
 , 

ℎ̂𝑏(𝑦) = 𝑛
−1∑𝛫𝑏(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 . ( 29 ) 

( 28 ) 
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The kernel estimate converges in probability to the true density under the mild condition of 

decreasing the bandwidth as the sample size increases. 

3.4.2 The Extreme Value Model 

The Peaks-over-Threshold (POT) approach is the method of choice for modelling threshold 

exceedances. For a sequence of 𝑛 i.i.d. observations 𝑥1, … , 𝑥𝑛 from random variable 𝑋 and threshold 

𝑢, a fixed, real number in the support of 𝑋, the excess distribution over 𝑢 is defined as the conditional 

excess distribution of 𝑋 − 𝑢 given 𝑋 > 𝑢. The corresponding CDF is given by:  

where 𝑥 ≥ 0, 𝑦 = 𝑥 − 𝑢 are the excesses and 0 ≤ 𝑦 ≤ 𝑥𝐹 − 𝑢 for 𝑥𝐹 the right endpoint of 𝐹. The 

excess CDF 𝐹𝑢 describes the distribution of the excess losses over threshold 𝑢, given that the 

threshold is exceeded. The excess distribution 𝐹𝑢 is also known as the residual life distribution 

function. 

The mean of the excess distribution 𝐹𝑢, called the mean excess over threshold 𝑢, is given by:  

and expresses the mean of 𝐹𝑢 as a function of 𝑢. It describes the expected overshoot of a threshold, 

given that exceedance occurs. The mean excess function is also known as the mean residual life 

function. For the GPD, the mean excess function is given by: 

where  

 

Note that in equation (32), the mean excess is linear in the threshold 𝑢. This property is useful in 

helping determine a threshold when estimating the shape and scale parameters for the GPD. 

The POT approach is underpinned by the theorem of Balkema and de Haan (1974) and Pickands 

(1975). 

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢) =
𝐹(𝑦 + 𝑢) − 𝐹(𝑢)

1 − 𝐹(𝑢)
=
𝐹(𝑥) − 𝐹(𝑢)

1 − 𝐹(𝑢)
 , ( 31 ) 

𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢) , 

{
0 ≤ 𝑢 < ∞         0 ≤ 𝜉 < 1  

0 ≤ 𝑢 ≤
−𝛽

𝜉
                 𝜉 < 0 .

  

𝑒(𝑢) =  
𝛽(𝑢)

1 − 𝜉
=
𝛽 + 𝜉𝑢

1 − 𝜉
 , ( 32 ) 

ℎ̂𝑏𝑂𝑆(𝑦) = 𝑛
−1∑

1

𝑏𝑂𝑆√2𝜋
exp [−

1

2
(
𝑥 − 𝑥𝑖
𝑏𝑂𝑆

)
2

]

𝑛

𝑖=1

 . ( 30 ) 
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Theorem 1 (Pickands-Balkema-de Haan). The distribution of the block maxima 𝑀𝑛 converge 

towards a GEV with shape parameter 𝜉 if and only if the excess distribution 𝐹𝑢(𝑥) over a threshold 

𝑢 converges uniformly in 𝑥 as 𝑢 increases, toward a GPD with shape parameter 𝜉 and a scale 

parameter possibly varying with 𝑢 (Carmona, 2014, p. 99). 

In other words, if 𝐹𝑋 is in the domain of attraction of the GEV distribution 𝑀𝑛(∙; 𝜉), the excess 

distribution 𝐹𝑢(𝑥) of the sample of exceedances may be approximated by a GPD with shape 

parameter 𝜉 (independent of the threshold) and a scale parameter 𝛽 = 𝛽(𝑢), which may depend on 

𝑢. Formally, 

where 𝐺𝜉,𝛽(𝑥) is a generalised Pareto distribution defined as follows: 

where 

with [𝑦]+ = max(𝑦, 0) and 𝜉 ∈ ℝ and 𝛽 > 0, the shape and scale parameters, respectively. The shape 

parameter determines the size of the tail of the distribution, as well as controls the magnitude and 

frequency of the extreme value occurrences. The parameter is therefore key in tail extrapolations of 

the GPD, as follows: 

 𝜉 = 0 ⇒ exponential tail decay (and in the limit 𝜉 → 0); 

 𝜉 > 0 ⇒ heavier tail decay than exponential (e.g., power law decay or reparameterised 

Pareto distribution with shape 𝛼 = 1 𝜉⁄ ); 

 𝜉 < 0 ⇒ short tail (e.g., Pareto type II distribution) with finite upper end point 𝑢 − 𝛽 𝜉⁄ . 

Figure 3.12 plots GPD CDFs and PDFs for different shape parameter settings: 𝜉 = 0 for exponential, 

𝜉 = 0.5 for Pareto and 𝜉 = -0.5 for Pareto type II functions. In all cases 𝛽 = 1 and 𝑢 = 0. 

In fact, for a large class of distributions, as 𝑢 → 𝑥𝐹, the excess distribution 𝐹𝑢 approaches a GPD83. 

This fact is comforting when choosing a Gaussian kernel to approximate the interior of the distribution 

                                                           
83 The class of distributions includes all the common, continuous distributions typically used in actuarial and statistical 
science, such as the Gaussian, lognormal, exponential, F, gamma, loggamma, Burr, Cauchy, Student t, uniform, beta, etc. 
(McNeil, 1996, pp. 6-7).  

 𝐹𝑢(𝑥) ≈ 𝐺𝜉,𝛽,𝑢(𝑥), 𝑥 → ∞ , 

𝐺𝜉,𝛽,𝑢(𝑥) = 𝐺𝜉,𝛽(𝑥 − 𝑢) = 𝑃(𝑋 < 𝑥|𝑋 > 𝑢) =

{
 
 

 
 1 − [1 + 𝜉 (

𝑥 − 𝑢

𝛽
)]
+

−1 𝜉⁄

         𝜉 ≠ 0 ,

1 − exp [− (
𝑥 − 𝑢

𝛽
)]
+

              𝜉 = 0 ,

 ( 33 ) 

{
𝑥 ≥ 0                         𝜉 ≥ 0  

0 ≤ 𝑥 ≤
−𝛽

𝜉
              𝜉 < 0 ,
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and splice into the two GPD tails. 

The generalised Pareto probability density function is given by: 

where  

with 𝜉 ∈ ℝ and 𝛽 > 0. 

 

Figure 3.12: GPD CDFs and PDFs 

In the semi-parametric distribution setting, the location parameter in equation (33) is set to the 

threshold 𝑢. This setting determines the beginning of the tail and implies that only the shape and 

scale parameters are fitted. Selecting a threshold necessarily involves a bias-variance trade-off. 

Choosing too high a threshold reduces the number of data points to which the GPD is fit, increasing 

variance and decreasing bias in parameter estimates. Conversely, choosing too low a threshold 

admits data that are not necessarily approximated well by a GPD, thereby increasing bias in 

parameter estimates in exchange for reduced variance in the model fit. 

Using equation (31), theorem 1 and setting an empirical estimate for 𝐹𝑢 to 𝑛−𝑘
𝑛

 (McNeil, et al., 2005, 

p. 283), where 𝑛 is the total number of observations and 𝑘 is the number of excesses over the 

threshold, the CDF for the completed model is defined similarly to that of McNeil and Frey (2000, p. 

296) as follows:  

𝑔𝜉,𝛽,𝑢(𝑥) =

{
 
 

 
 (
1

𝛽
) [1 + 𝜉 (

𝑥 − 𝑢

𝛽
)]
−(1 𝜉⁄ +1)

     𝜉 ≠ 0 ,

(
1

𝛽
)exp [−(

𝑥 − 𝑢

𝛽
)]                    𝜉 = 0 ,

 ( 34 ) 

{
𝑢 ≤ 𝑥 < ∞               𝜉 ≥ 0  

𝑢 ≤ 𝑥 < 𝑢 −
𝛽

𝜉
        𝜉 < 0 .
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where 𝑧(1) ≥ 𝑧(2) ≥ ⋯ ≥  𝑧(𝑛) represents the ordered standardised GARCH residuals, 𝑘𝐿 𝑛⁄  is the 

sample proportion less than a fixed, lower threshold 𝑘𝐿 and (1 − 𝑘𝑈 𝑛⁄ ), the sample proportion 

greater than a fixed, upper threshold 𝑘𝑈. The sample data for the lower tail is the set of excesses 

{𝑧(𝑛) − 𝑧(𝑛−𝑘𝐿), … , 𝑧(𝑛−𝑘𝐿+1) − 𝑧(𝑛−𝑘𝐿)}, fit with a 𝐺
𝜉(𝑘𝐿),𝛽(𝑘𝐿)

(𝑧 − 𝑧(𝑛−𝑘𝐿)), and sample data for the 

upper tail is the set of excesses {𝑧(1) − 𝑧(𝑘𝑈+1), … , 𝑧(𝑘𝑈) − 𝑧(𝑘𝑈+1)}, fit with a 𝐺
𝜉(𝑘𝑈),𝛽(𝑘𝑈)

(𝑧 − 𝑧(𝑘𝑈+1)). 

The remaining, interior portion of the data is fit with 𝐻(∙ |𝑍, 𝑏), the distribution function obtained by 

integrating the kernel in equation (30). 

3.4.3 Threshold Selection and Model Estimation 

The interior empirical density is computed non-parametrically using the bandwidth estimate as input 

to the Gaussian kernel’s standard deviation parameter and the respective kernel function to distribute 

density smoothly over the local neighbourhood of each data point. 

Each tail is fit separately by maximum likelihood based on the log of the GPD density, given by: 

 

and for 𝜉 = 0, the log-likelihood function is similarly obtained as:  

where the conditions are consistent with those for equation (35). 

A threshold needs to be chosen before model fitting may commence. The mean residual life plot has 

been suggested as a possible guide in threshold selection. Although notoriously difficult to interpret, 

�̂�𝑍(𝑧) =

{
 
 
 

 
 
 𝑘𝐿
𝑛
[1 + 𝜉(𝑘𝐿) (

|𝑧 − 𝑧(𝑛−𝑘𝐿)|

𝛽(𝑘𝐿)
)]
+

−1 𝜉(𝑘𝐿)⁄

,                                   𝑧 < 𝑧(𝑛−𝑘𝐿)

𝐻(𝑧|𝑍, 𝑏) ,                                                                    𝑧(𝑛−𝑘𝐿) ≤ 𝑧 ≤ 𝑧(𝑘𝑈+1)

1 −
𝑘𝑈
𝑛
[1 + 𝜉(𝑘𝑈) (

𝑧 − 𝑧(𝑘𝑈+1)

𝛽(𝑘𝑈)
)]
+

−1 𝜉(𝑘𝑈)⁄

,                            𝑧 > 𝑧(𝑘𝑈+1)

 

 

( 35 ) 

ln 𝐿(𝜉, 𝛽|𝑍1, … , 𝑍𝑘) =∑ln𝑔𝜉,𝛽(𝑍𝑗)

𝑘

𝑗=1

 

=∑ln
1

𝛽
+∑ln [1 + 𝜉 (

𝑧𝑗 − 𝑢

𝛽
)]
−(1 𝜉⁄ +1)

 

𝑘

𝑗=1

 

𝑘

𝑗=1

 

= −𝑘 ln 𝛽 − (1 +
1

𝜉
)∑ln [1 + 𝜉 (

𝑧𝑗 − 𝑢

𝛽
)]

𝑘

𝑗=1

             𝜉 ≠ 0 ( 36 ) 

ln 𝐿(𝛽|𝑍1, … , 𝑍𝑘) =∑ln𝑔𝜉,𝛽(𝑍𝑗) = −𝑘 ln 𝛽 −∑(
𝑧𝑗 − 𝑢

𝛽
)

𝑘

𝑗=1

𝑘

𝑗=1

                  𝜉 = 0 . ( 37 ) 
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ideally, the mean excess above a threshold 𝑢 is linear. Additional help in choosing a threshold is 

sourced from a variety of simulation studies on the topic, such as those from Chavez-Demoulin and 

Embrechts (2004), Chavez-Demoulin, et al. (2014), Embrechts, et al. (1997) and Nyström and 

Skoglund (2002b). This paper sets the threshold at 10% on each side of the (ordered) data and 

investigates these regions graphically to reinforce judgment. Figure 3.13 shows the mean residual 

life (MRL) plots for lower and upper tail ALSI GARCH-fit standardised residuals over the respective 

maximum ranges of threshold values. An upward trend in a MRL plot is characteristic of heavy-tailed 

behaviour. In particular, a straight line with positive gradient above some threshold is a sign of Pareto 

behaviour in the tail. A downward trend implies thin-tailed behaviour and a line with zero gradient 

implies an exponential tail. The initial negative-gradient to zero-gradient to positive-gradient 

transition in the left panel can be interpreted as thin-tailed behaviour gradually becoming 

exponential-tailed behaviour and, finally, becoming heavy-tailed as the threshold value moves 

beyond, roughly, 1.5 (or -1.5 in unsorted data).  The 10% lower tail threshold evaluates to -1.286. 

The threshold is shown as a positive number in the figure since the GPD is fit to positive values 

(requiring a sign switch in the ordered data when this is not done automatically in the software). The 

10% upper tail threshold is 1.197 (right panel). The right panel shows much of thin-tailed behaviour 

in the ALSI upper tail residuals, which, eventually, beyond a threshold of roughly 1.2, approaches 

exponential-tailed behaviour. The figures are plotted with approximate 95% confidence bands 

around the mean excesses superimposed, which further highlights the instability in mean excess 

estimates across varying levels of threshold values. As is evident, a precise choice for threshold 

value cannot be deduced from this kind of plot. 

 

Figure 3.13: Mean Residual Life Plots for the Lower and Upper Tails of Standardised ALSI GARCH Residuals 

Figure 3.14 plots maximum likelihood estimates of the scale and shape parameters of the GPD, with 

95% confidence bands, along a zoomed-in range of threshold values in the proximity of the 10% 

lower and 10% upper tail thresholds. The threshold ranges have been narrowed to envelope the 

10% lower (left panel) and 10% upper (right panel) threshold values. The graphs further highlight the 

degree of variability that exists in modelling sparse tail data. Nonetheless, it is interesting to note the 
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positive and increasing slope on the lower tail shape parameter estimate (lower left panel), which 

points to an increasingly heavy-tail estimate as a function of an increasing threshold. The upper tail 

shape parameter estimate points to an exponential tail decay. 

 

Figure 3.14: Maximum Likelihood Estimates for Scale and Shape Parameters of the GPD 

Figure 3.15 is used to illustrate the intuitive effects of the chosen 10% threshold placement. The left 

panel plots the ordered residuals with the 10% lower and upper cut-off points. The right panel plots 

the raw residual data with the 10% lower and upper cut-off points. Clearly, the lower 10% of 

exceedances exhibit a greater range of magnitudes than do the upper 10% of exceedances. This 

variability in the exceedance data naturally transmits through to parameter estimation. 

 

Figure 3.15: Ordered ALSI Standardised Residuals and Raw Residuals with 10% Lower and Upper Tail 
Threshold Points 

Figures 3.16 and 3.17 contain four popular GPD diagnostic plots for the lower and upper tail fits, 

respectively. In the top left panels, the theoretical GPD distribution of excesses is plotted and 

superimposed on points plotted at empirical estimates of the excess probabilities for each 

exceedance. The top right panels plot the lower and upper tails of the fitted GPD, respectively, 

together with the empirical tails given by the actual data points. The bottom left panels show 
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scatterplots of each tail’s GPD residuals with a locally-weighted polynomial regression smoother 

(i.e., a fitted ordinary least-squares line) of the residuals superimposed. To note here is the 

steepness of the regression line in both plots, signalling a size effect in the extreme quantile data. A 

consequence of the size effect is difficulty in determining the extreme tail bound84, making estimates 

unstable with time. The bottom right panels plot a QQ plot for the threshold data. The standard 

exponential is the reference distribution in the QQ plots, with 𝜉 = 0, where the theoretical quantiles 

are plotted as the straight red line. If 𝜉 ≠ 0, the reference distribution is the generalised Pareto with 

that value of 𝜉. The approximate linear QQ plot in both graphs indicate that the residuals from the 

GPD follow the reference distribution; the upper tail more so than the lower tail. The diagnostic plots 

show that the tails are well fit by the GPD model. 

Lower tail diagnostics in Figure 3.16: the top left panel plots a GPD fit to 23 exceedances of the 

threshold 𝑢 = -1.286. The top right panel plots the GPD fit to the tail of the underlying distribution. 

The bottom left panel shows a scatterplot of the GPD residuals. The bottom right panel shows a QQ 

plot of GPD residuals against the exponential reference distribution. 

 

 

Figure 3.16: GPD Diagnostic Plots for the ALSI Lower Tail Fit 

Upper tail diagnostics in Figure 3.17: the top left panel plots a GPD fit to 23 exceedances of the 

                                                           
84 𝜉 > 0 indicates fat-tailed behaviour and possible difficulty determining boundedness; 𝜉 < 0 indicates bounded tails. 
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threshold 𝑢 = 1.197. The top right panel plots the GPD fit to the tail of the underlying distribution. 

The bottom left panel shows a scatterplot of the GPD residuals. The bottom right panel shows a QQ 

plot of GPD residuals against the exponential reference distribution. 

 

Figure 3.17: GPD Diagnostic Plots for the ALSI Upper Tail Fit 

3.4.4 The Semi-Parametric Distribution  

The final step in the EVT modelling section is creating the completed semi-parametric distribution. 

Each variable is represented by: 

1. A lower tail fitted with generalised Pareto density estimates for shape and scale; 

2. An interior represented by density estimates along an equally-spaced grid spanning the 

range of the data (and extended into the tails by the support of the kernel); 

3. An upper tail fitted with generalised Pareto density estimates for shape and scale. 

Figure 3.18 shows the combined non-parametric interior distribution and parametric tail GPDs for 

the ALSI standardised residual series superimposed over their empirical counterparts. Table 3.10 

displays the fitted results for all asset classes and risk factors consistent with the methodology of 

this section. Output includes the GPD lower tail and upper tail estimated threshold values and 

parameter estimates (standard errors in parentheses) of the return filtered standardised residuals. 
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Estimates were obtained using the spd package in R (Ghalanos, 2014c). 

 

Figure 3.18: Semi-Parametric CDF and PDF for ALSI Standardised Residuals 

Table 3.10: GPD Threshold Value and Parameter Estimates 

Index Name GPD Parameters 
  Lower Tail  Upper Tail  

  𝑘𝐿  𝜉(𝑘𝐿) 𝛽(𝑘𝐿) Heavy? 𝑘𝑈  𝜉(𝑘𝑈) 𝛽(𝑘𝑈) Heavy? 

ALSI 
estimate 1.2863 0.2620 0.5420  1.1979 -0.0561 0.3186  

std. error  (0.2638) (0.1798)   (0.2463) (0.1018)  

ALBI 
estimate 1.2213 0.0657 0.7653  1.2223 -0.1861 0.4870  
std. error  (0.2321) (0.2385)   (0.2640) (0.1615)  

MSCI.WRLD.ZAR 
estimate 1.0509 -0.4749 0.9465  1.0680 -0.1691 0.8982  

std. error  (0.2831) (0.3193)   (0.1861) (0.2462)  

GMC1 Cash estimate 0.3473 -0.6201 1.4153  1.3985 0.2789 0.4606  

std. error  (0.2209) (0.3890)   (0.2689) (0.1533)  

GLOUS 
estimate 1.0986 -0.7506 1.1732  1.2286 -0.2283 0.7475  

std. error  (0.2973) (0.3844)   (0.2523) (0.2401)  

J253T 
estimate 1.2068 -0.2325 0.8586  1.2226 0.1817 0.3551  

std. error  (0.2817) (0.2980)   (0.2382) (0.1106)  

USDZAR 
estimate 0.9121 -0.6600 0.8078  1.2941 -0.0344 0.9952  

std. error  (0.2202) (0.2213)   (0.2192) (0.2980)  

EURUSD 
estimate 1.3262 -0.1650 0.6748  1.2410 -0.4945 0.7752  

std. error  (0.2048) (0.1958)   (0.2326) (0.2268)  

BRSPOT 
estimate 1.3674 0.0702 0.5602  1.1151 -0.1217 0.5387  

std. error  (0.2030) (0.1628)   (0.1901) (0.1497)  

GSCI 
estimate 1.1097 0.1534 0.5824  1.1966 -0.8014 0.7836  

std. error  (0.2233) (0.1770)   (0.3604) (0.2983)  

GLFX 
estimate 1.0683 -0.1909 0.5945  1.2540 0.2733 0.4721  

std. error  (0.4178) (0.2766)   (0.2747) (0.1594)  

PLAT 
estimate 1.1034 -0.1656 0.9610  1.1089 -0.3287 0.7509  

std. error  (0.2255) (0.2933)   (0.2620) (0.2443)  

MSCI.EM.USD 
estimate 1.3343 -0.0127 0.7157  1.2109 -0.4111 0.3631  

std. error  (0.2681) (0.2430)   (0.2901) (0.1251)  

FSPI 
estimate 1.4959 0.0628 0.5978  1.0488 -0.0734 0.2600  

std. error  (0.2024) (0.1735)   (0.2706) (0.0880)  

JPEMBI estimate 1.1585 0.5103† 0.5906  0.9734 -0.4721 0.4769  

std. error  (0.3127) (0.2129)   (0.2111) (0.1323)  

USALCI 
estimate 1.2686 -0.3722 0.8071  1.1229 0.0222 0.5661  

std. error  (0.2723) (0.2696)   (0.1737) (0.1517)  

RBAS estimate 1.2962 -0.1484 1.7023  0.9817 -0.0095 1.1338  

std. error  (0.2436) (0.5434)   (0.2961) (0.4078)  

JAYC10 estimate 1.2621 -0.2298 0.7521  1.1868 0.0362 0.7947  

std. error  (0.1746) (0.2013)   (0.2259) (0.2419) 85 

                                                           
† As noted in Inanoglu and Ulman (2009, p. 16), a GPD has an infinite variance if its shape parameter is greater than or 
equal to 0.5 (𝜉 ≥ 0.5) and an infinite mean for shape parameter greater than or equal to 1 (𝜉 ≥ 1). 
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3.5 Dependence Modelling 

In a portfolio of multiple financial instruments, all the information on the stochastic behaviour of the 

portfolio is fully described by the joint probability distribution. The multivariate (MV) distribution of a 

portfolio may be fully specified by the separate marginal distributions of the variables and by their 

copula (or dependence structure). Marginal distributions were modelled in Chapter 3.4, resulting in 

common continuous distributions �̂�𝑍𝑖 for the 𝑖 = 1,… ,18 variables. This section fits an MV t copula to 

the univariate marginals. 

3.5.1 Copulas  

A univariate distribution function 𝐹𝑋, which maps from the domain of a random variable 𝑋 to the 

“grade” of the random variable 𝑋 (i.e., a mapping from ℝ to 𝕀 ∈ [0,1]), has the following basic 

properties: 

1. 𝐹𝑋 is non-decreasing; 

2. 𝐹𝑋(−∞) = 0; 

3. 𝐹𝑋(∞) = 1. 

An arbitrarily-distributed random variable 𝑋 may be transformed by its own CDF (known as a 

probability transform) to obtain the grade of 𝑋: 𝑈 ≡ 𝐹𝑋(𝑋). The distribution of the grade of 𝑋 is uniform 

on the unit interval, regardless of the original distribution: 𝑈 ≡ 𝐹𝑋(𝑋)~𝑈[0,1]
86. The result also works 

backwards. A standard uniform random variable 𝑈 may be fed into the inverse CDF 𝐹𝑋
−1 to obtain a 

random variable 𝑋 (known as a quantile or inverse transform): 𝑋 ≡  𝐹𝑋
−1(𝑈)~𝑓𝑋

87. In addition, any 

continuous distribution 𝐹𝑋 may be chosen, thus admitting the completed semi-parametric distribution 

form of Chapter 3.4. 

In the following, let 𝑿 = (𝑋1, … , 𝑋𝑑) be a vector of random variables 𝑋1, … , 𝑋𝑑 described by joint 

density function 𝑓 and joint cumulative distribution function 𝐹. Further, let 𝑓1, … ,  𝑓𝑑 denote the 

corresponding marginal density functions and 𝐹1, … ,  𝐹𝑑 the strictly increasing and continuous 

marginal distribution functions of 𝑋1, … , 𝑋𝑑. A joint multivariate distribution function 𝐹, which maps 

from ℝ𝑑 to 𝕀 = [0,1], has the properties: 

1. 𝐹 is 𝑑-increasing (see point 1 below); 

                                                           
86 It may be noted that the CDF of a uniform distribution 𝐹𝑈(𝑢) = 𝑃(𝑈 ≤ 𝑢) = 𝑃(𝐹𝑋(𝑋) ≤ 𝑢) = 𝑃(𝑋 ≤ 𝐹𝑋

−1(𝑢)) =

𝐹𝑋(𝐹𝑋
−1(𝑢)) = 𝑢. 

87 Some caveats do apply. For example, the normal inverse CDF is not defined for the uniform boundary values 𝑢 = 0 or 

𝑢 = 1. 
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2. 𝐹 is grounded (see point 2 below); 

3. 𝐹(∞) = 1; 

4. 𝐹(∞,… ,∞, 𝑥𝑗, ∞,… ,∞) = 𝐹𝑗(𝑥𝑗) for 𝑗 = 1,… , 𝑑. 

A 𝑑-dimensional copula 𝐶(𝑢1, … , 𝑢𝑑) is a MV uniform distribution function of the univariate grades, is 

defined on the unit hypercube [0,1]𝑑, and has 𝑑 univariate margins distributed standard uniformly on 

the closed unit interval 𝕀 = [0,1]. Formally, 𝐶: [0,1]𝑑 ↦ [0,1], where 𝐶(𝒖) = 𝐶(𝑢1, … , 𝑢𝑑) is a 𝑑-

dimensional copula if: 

1. 𝐶(𝒖) ≥ 0 ∀ 𝒖 ∈ 𝕀𝑑 (i.e., 𝐶(𝒖) is 𝑑-increasing in each component 𝑢𝑖 for 𝑖 = 1,… , 𝑑); 

2. 𝐶(𝑢1, … , 𝑢𝑖, … , 𝑢𝑑) = 0 if any 𝑢𝑖 = 0 for 𝑖 = 1,… , 𝑑 (i.e., the function is grounded); 

3. 𝐶(1,… ,1, 𝑢𝑖, 1… ,1) = 𝑢𝑖 ∀ 𝑖 ∈ {1,… , 𝑑}, 𝑢𝑖 ∈ [0,1]. 

Sklar’s theorem (Sklar, 1959) admits a copula function to characterise multivariate dependence. This 

function is the link which “glues together” the univariate distributions to create a multivariate 

distribution. 

Theorem 2 (Sklar’s Theorem). Let 𝐹 be a 𝑑-dimensional distribution function with margins 𝐹1, … , 𝐹𝑑. 

Then there exists a 𝑑-dimensional copula 𝐶 such that for all 𝒙 = (𝑥1, … , 𝑥𝑑)
′ ∈ ℝ𝑑, 

If the margins 𝐹1, … , 𝐹𝑑 are continuous, then 𝐶 is unique. Conversely, if 𝐶 is a 𝑑-dimensional copula 

and 𝐹1, … , 𝐹𝑑 are univariate distribution functions, then the function 𝐹 defined in equation (38) is a 𝑑-

dimensional distribution function with margins 𝐹1, … , 𝐹𝑑. 

For the 𝑑-dimensional random vector 𝑿 = (𝑋1, … , 𝑋𝑑)
′, the copula 𝐶  of joint distribution function 𝐹 in 

equation (38) may be extracted as follows: 

where 𝐹1
−1(𝑢1), … , 𝐹𝑑

−1(𝑢𝑑) denote the generalised inverse functions, or quantile transforms, of the 

margins, defined by 𝐹𝑖
−1(𝑢) = inf{𝑥 ∈ ℝ1;  𝐹𝑖(𝑥) ≥ 𝑢}. 

Assuming a joint multivariate PDF 𝑓𝑿 of vectors 𝑿, Sklar admitted the following procedure: 

1. Extract all the 𝑑 marginal distributions 𝑋𝑗~𝑓𝑋𝑗, where 𝑗 = 1,… , 𝑑, by: 

2. Compute the marginal CDFs by 𝐹𝑋𝑗(𝑥𝑗) = ∫ 𝑓𝑋𝑗(𝑧)𝑑𝑧
𝑥

−∞
. 

𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑑(𝑥𝑑)) . ( 38 ) 

𝐶(𝒖) ∶= 𝐶(𝑢1, … , 𝑢𝑑) = 𝐹 (𝐹1
−1(𝑢1),… , 𝐹𝑑

−1(𝑢𝑑)) , ( 39 ) 

𝑓𝑋𝑗(𝑥𝑗) = ∫ 𝑓𝑿
ℝ𝑑−1

(𝑥1, … , 𝑥𝑑) 𝑑𝑥1 ∙∙∙ 𝑑𝑥𝑗−1 𝑑𝑥𝑗+1 ∙∙∙ 𝑑𝑥𝑑  . 
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3. Feed each CDF 𝐹𝑋𝑗 with the corresponding entry of the vector 𝑿 (i.e., the random variable 

𝑋𝑗) to obtain the grades with uniform distribution on the unit interval: 𝑈𝑗 = 𝐹𝑋𝑗(𝑋𝑗)~𝑈[0,1]. This 

probability transform removes the idiosyncratic information contained in each marginal 

distribution. The resulting entries of 𝑼 ≡ (𝑈1, … , 𝑈𝑑) 

a. are not independent 

b. represent the pure joint information amongst the 𝑋𝑗’s. 

4. Estimate the joint distribution 𝑓𝑼 (the copula function) on the grades of arbitrary distribution 

𝑓𝑿. The joint distribution 𝑓𝑼 of the grades is, by 3(a), not uniform on its domain, the unit 

hypercube [0,1]𝑑: 

 

Sklar’s “joint = copula + marginals” decomposition may formally be defined as follows (Meucci, 

2011): 

where 

with 𝑓𝑖(𝑥𝑖) = d𝐹𝑗(𝑥𝑗) d𝑥𝑗⁄  and 𝑐, the density of the copula used to calibrate its parameters to the data, 

follows as: 

 

Equation (41) is the canonical copula representation in copula theory (care of Sklar’s decomposition 

theorem) for the MV density function. 

In practice, steps 1 – 4 may be adjusted and manipulated to accommodate the copula fitting. 

Analytical derivation is typically not possible, necessitating the use of numerical techniques (e.g., 

Monte Carlo simulation) in the majority of practical applications. 

pure marginal pure joint 

(

𝑈1 ≡ 𝐹𝑋1
⋮

𝑈𝑑 ≡ 𝐹𝑋𝑑
)~ 𝑓𝑼 . 

joint 

𝑓𝑿 (𝐹𝑋1
−1(𝑢1),… , 𝐹𝑋𝑑

−1(𝑢𝑑)) = 𝑓𝑼(𝑢1, … 𝑢𝑑) × [𝑓𝑋1 (𝐹𝑋1
−1(𝑢1)) × ⋯× 𝑓𝑋𝑑 (𝐹𝑋𝑑

−1(𝑢𝑑))] 

 

 

 𝑓𝑿 (𝐹𝑋1
−1(𝑢1),… , 𝐹𝑋𝑑

−1(𝑢𝑑)) = 𝑓𝑿(𝑥1, … , 𝑥𝑑) 

 

 

 

=
𝜕𝑑[𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑))]

𝜕𝐹1(𝑥1)⋯𝜕𝐹𝑑(𝑥𝑑)
∙∏𝑓𝑖(𝑥𝑖)

𝑑

𝑖=1

 

 

 

 

= 𝑐(𝐹1(𝑥1),… , 𝐹𝑑(𝑥𝑑)) ∙∏𝑓𝑖(𝑥𝑖)

𝑑

𝑖=1

 

 

 

 
𝑐(𝐹1(𝑥1),… , 𝐹𝑑(𝑥𝑑)) = 𝑐(𝑢1, … , 𝑢𝑑) 

 

 

 
=
𝜕𝑑𝐶(𝑢1, … , 𝑢𝑑)

𝜕𝑢1⋯𝜕𝑢𝑑
~ 𝑓𝑼 . 

 

 

 

( 40 ) 

( 41 ) 

( 42 ) 
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3.5.1.1 The Standard Student t Copula 

An elliptical copula is the copula that, by Sklar’s theorem, derives from its corresponding elliptical 

distribution. Elliptical distributions are those whose multivariate densities 𝑓𝑿 depend on 𝐱 only through 

the quadratic form (𝐱 − 𝜇)′Σ−1(𝐱 − 𝜇). The MV Student t copula is the copula structure extracted 

from the MV Student t distribution. 

The 𝑑-dimensional random vector 𝑿 = (𝑋1, … , 𝑋𝑑)
′, is said to have a (non-singular) MV Student t 

distribution with 𝜈 degrees of freedom, mean vector 𝝁 and positive-definite dispersion or scatter 

matrix Σ, denoted 𝑿~𝑡𝑑(𝜈, 𝝁, Σ), if its density is given by (Demarta & McNeil, 2005, p. 2):  

where Γ(∙) is the gamma function and |∙| denotes the determinant function. Note that in this standard 

parameterisation, the expectation vector 𝐸(𝑿) = 𝝁 is only defined for 𝜈 > 1 and the covariance matrix 

𝑐𝑜𝑣(𝑿) = 𝜈

𝜈−2
Σ (≠ Σ) is only defined for 𝜈 > 2. Also, for 𝜈 > 2, the shape parameter matrix Σ can be 

interpreted as the linear correlation matrix. It is not necessarily the shape parameter matrix Σ, 

equivalently in 𝜈 > 2 the linear correlation matrix Σ, that determines the extent of tail dependence, 

but rather the df parameter 𝜈 that controls dependence and, thus, the tendency to exhibit extreme 

co-movements. 

A key property of the copula is that it remains invariant under any application of strictly increasing, 

or co-monotonic transformations (vs. counter-monotonic decreasing transforms), of the components 

of the random vector 𝑿. A series of co-monotonic transformations 𝑌𝑗 ≡ 𝑔𝑗(𝑋𝑗) of the entries of 𝑿, 

where 𝑔𝑗(𝑥) ≡ 𝐹𝑌𝑗
−1 (𝐹𝑋𝑗(𝑥)) for arbitrary inverse CDFs 𝐹𝑌𝑗

−1, do not alter the copula structure of 𝑿: 

𝑓𝑡𝑑(𝜈,𝝁,Σ)(𝐱) =
Γ (
𝜈 + 𝑑
2
)

Γ (
𝜈
2
)√(𝜋𝜈)𝑑|Σ|

(1 +
(𝐱 − 𝝁)′Σ−1(𝐱 − 𝝁)

𝜈
)

−
𝜈+𝑑
2

 , 

 

 

( 43 ) 

(

𝑋1
⋮
𝑋𝑑
)~ 𝑓𝑿                               

𝑔1,…,𝑔𝑑
→                                   

(

 
 
𝑌1 ≡ 𝐹𝑌1

−1 (𝐹𝑋1(𝑋1))

⋮

𝑌𝑑 ≡ 𝐹𝑌𝑑
−1 (𝐹𝑋𝑑(𝑋𝑑))

)

 
 
~ 𝑓𝒀 

𝐹𝑋1 , … , 𝐹𝑋𝑑                                      𝐹𝑌1 , … , 𝐹𝑌𝑑 

(

𝑈1
⋮
𝑈𝑑
)~ 𝑓𝑼 . 
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The co-monotonic invariance property implies that the copula remains invariant under a 

standardisation of the marginal distributions. Hence, the copula of a 𝑡𝑑(𝜈, 𝝁, Σ) is identical to that of 

a 𝑡𝑑(𝜈, 𝟎, 𝛲) distribution, where 𝛲 is the correlation matrix implied by the dispersion matrix Σ. The 

corresponding standardised MV Student t distribution, with 𝜈 df and 𝛲 a symmetric, positive-definite 

correlation matrix with diag(𝛲) = 𝟏, is given by (Bouyé, et al., 2000, p. 16):  

The unique MV Student t copula is thus given by (Demarta & McNeil, 2005, p. 3):  

where 𝑡𝜈
−1 denotes the quantile function of a standard univariate Student 𝑡𝜈 distribution. For 

estimation purposes, the corresponding t copula density may be calculated per equation (39) and 

has the form: 

where 𝑓𝜈,𝛲 is the joint density of a 𝑡𝑑(𝜈, 𝟎, 𝛲)-distributed random vector, 𝑓𝜈 is the density of the 

univariate standard Student t distribution with 𝜈 df and 𝝇𝑖 = 𝑡𝜈
−1(𝑢𝑖) (Bouyé, et al., 2000, p. 16). 

3.5.1.2 The Meta Student t Copula with SPD-distributed Margins 

The traditional way to construct multivariate distributions suffers from the restriction that the margins 

are usually of the same type (i.e., the corresponding random variables are a linear affine 

transformation of each other). The second part of Sklar’s decomposition in equation (38) admits a 

converse process: given any copula 𝐶 and univariate distribution functions 𝐹1, … , 𝐹𝑑, the 𝑑-

dimensional distribution function 𝐹 defined by (38) is a MV distribution function with margins 𝐹1, … , 𝐹𝑑. 

In what follows the margins 𝐹1, … , 𝐹𝑑 are assumed to be continuous, implying 𝐹 has a unique 

representation in terms of the copula 𝐶 and the margins of 𝐹. This converse statement a very 

powerful technique for constructing multivariate distributions with arbitrary margins and copulas. 

 

𝑇𝜈,𝛲(𝑥1, … , 𝑥𝑑) = ∫ ⋯∫
Γ(
𝜈 + 𝑑
2 )

Γ (
𝜈
2
)√(𝜋𝜈)𝑑|𝛲|

𝑥𝑑

−∞

𝑥1

−∞

(1 +
𝐱′𝛲−1𝐱

𝜈
)

−
𝜈+𝑑
2

𝑑𝐱 . 

 

 

( 44 ) 

𝐶(𝑢1, … , 𝑢𝑑; 𝜈, 𝛲) = 𝐶𝜈,𝛲
𝑡 (𝒖) = 𝑇𝜈,𝛲(𝑡𝜈

−1(𝑢1),… , 𝑡𝜈
−1(𝑢𝑑)) = 𝑃(𝑡𝜈(𝑋1) ≤ 𝑢1, … , 𝑡𝜈(𝑋𝑑) ≤ 𝑢𝑑) 
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𝑐(𝑢1, … , 𝑢𝑑; 𝜈, 𝛲) = 𝑐𝜈,𝛲
𝑡 (𝒖) =

𝑓𝜈,𝛲(𝑡𝜈
−1(𝑢1),… , 𝑡𝜈

−1(𝑢𝑑))
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Rewriting the first line of equation (45) as:  

where the 𝐹𝑡𝜈
−1 denote the quantile functions of the standard univariate Student t distribution with 𝜈 

df, it is clear that the univariate df parameter is both static across the univariate distributions and 

consistent with the df parameter of the MV t distribution function 𝐹𝑇𝜈,𝛲. What is not immediately clear 

in (47) is that the probability transformed 𝑈𝑗 = 𝐹𝑋𝑗(𝑋𝑗) are also each transformed by 𝐹𝑋𝑗(𝑋𝑗) = 𝑇𝑣(𝑋𝑗), 

where the “local” degrees of freedom parameters are equal to the “global” df parameter from 𝐹𝑇𝜈,𝛲. 

In fact, the strict underlying assumption supporting the Student t copula may be conveyed in the 

more transparent setting: 

where 𝑇𝜈,𝛲
𝑑  is the MV t distribution function, 𝑡𝜈

−1 the univariate Student t quantile function and 𝑇𝜈 the 

univariate Student t distribution function, all with the same, static global degrees of freedom estimate 

𝜈. In addition, the 𝑑-dimensional random vector 𝒀 = (𝑌1, … , 𝑌𝑑)
′ in (48) is (strictly) assumed to 

comprise centred Student t distributed random variables, with 𝜈 degrees of freedom, given by:  

where 𝒁~𝑁𝒅(𝟎, 𝚺), 𝐴 ∈ ℝ
𝑑×𝑑 is a (𝑑 × 𝑑) matrix, 𝑅 = √𝜈 √𝑆⁄ , with 𝑆~𝜒𝜈

2 (a chi-square distribution 

with 𝜈 > 0 df), and 𝒁 and 𝑅, statistically independent random variables. In other words, the MV t 

distribution with 𝜈 df is constructed with the 𝐶𝜈,𝛲
𝑡  t copula function, which distributes a [0,1]𝑑 

“probability layer” that binds together the 𝑑 univariate Student t margins with the same degrees of 

freedom parameter 𝜈. 

By admitting separate modelling of marginals, Sklar’s theorem enables a greater degree of flexibility 

in MV distribution construction. Univariate Student t distributions with different df parameters 𝜈1, … , 𝜈𝑑 

may be combined in the 𝐶𝜈,𝛲
𝑡  copula function to construct meta 𝑡𝜈 distribution functions. The density 

of the meta 𝑡𝜈 copula with t-distributed margins may be calculated from (47) and has the form 

(Ageeva, 2011, p. 14): 

where 

The form (50) introduces a class of new distributions termed, by Fang, et al. (2002), “multivariate 

𝐶𝜈,𝛲
𝑡 (𝒖) ∶= 𝐹𝑇𝜈,𝛲 (𝐹𝑡𝜈

−1(𝑢1),… , 𝐹𝑡𝜈
−1(𝑢𝑑)) , 

 

 

𝐶𝜈,𝛲
𝑡 (𝒖) ∶= 𝑇𝜈,𝛲

𝑑 (𝑡𝜈
−1(𝑇𝜈(𝑌1)),… , 𝑡𝜈

−1(𝑇𝜈(𝑌𝑑))) , 

 

 

𝒀 = 𝑅𝐴𝒁 , 

 

 

( 47 ) 

( 48 ) 
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𝜈 + d
2 ) Γ (
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( 50 ) 

𝒛 = (𝐹𝑡𝜈1
−1(𝑢1),… , 𝐹𝑡𝜈𝑑

−1(𝑢𝑑))
′

= (𝑡𝜈1
−1 (𝑇𝜈1(𝑌1)) , … , 𝑡𝜈𝑑

−1 (𝑇𝜈𝑑(𝑌𝑑)))
′

 . 

 

 

( 49 ) 
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asymmetric t-distributions”, which “enjoy certain symmetry, but the marginal degrees of freedom are 

different”. 

This dissertation uses the meta 𝑡𝜈 copula, with SPD-distributed margins, as the “density weighting 

function” in the multivariate structure to construct the combined assets and risk factors process. The 

function is given by:  

where 𝐹𝑆𝑃𝐷𝑖(𝑥𝑖) denotes the probability transform function for variable 𝑖 = 1,… , 𝑑 where 𝐹𝑆𝑃𝐷𝑖 is the 

semi-parametric form of the distribution function given by equation (35). The density 𝑐𝜈,𝛲
meta−𝑡 in (51) 

has the same functional form as that of equation (46), but with:  

and 𝜈 denoting the global degrees of freedom parameter. 

The copula density in (51) is used to construct a 𝑑-dimensional “asymmetric” meta t distribution88, 

with the joint density specified as:  

where 𝑓𝑆𝑃𝐷𝑖 denotes the PDF corresponding to the semi-parametric distribution of variable 𝑖 = 1,… , 𝑑 

and the 𝑡𝜈 in the product term denotes the univariate Student t density function operating on 𝑥𝑖 

constructed as 𝑥𝑖 = 𝑡𝜈
−1 (𝐹𝑆𝑃𝐷𝑖(𝑥𝑖)) (i.e., constructed from the pseudo-copula data with the global df 

parameter). 

The left panel in Figure 3.19 plots a standard Student t copula density surface fit on univariate t 

margins of the ALSI and ALBI log returns. The copula density surface fit is 𝑐�̂�=5.659,�̂�𝜏=0.255
𝑡 . A similar 

surface could be constructed for the transformed uniform variates. The right panel plots 

corresponding Monte Carlo simulated copula density output for the two variables. 

Figure 3.20 maps the surface of the meta Student t distribution and density constructed using the 

meta t copula fit to ARMA-GARCH-EVT filtered standardised ALSI and ALBI residuals (i.e., in the 

bivariate case) with Kendall’s tau rank correlation parameter 𝜌𝜏. The bivariate meta t distribution 

                                                           
88 Asymmetric in the sense that, since the parameters in the marginal semi-parametric distributions govern asymmetric tail 
probabilities in the marginal distributions, the tail probabilities for the new class of meta-elliptical MV distributions 
constructed in this manner may be different in different directions (Fang, et al., 2002, p. 12). 

𝑐𝜈,𝛲
meta−𝑡(𝒖) = 𝑇𝜈,𝛲

𝑑 (𝑡𝜈
−1 (𝐹𝑆𝑃𝐷1(𝑥1)) , … , 𝑡𝜈

−1 (𝐹𝑆𝑃𝐷𝑑(𝑥𝑑))) , 
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𝑑 (𝑡𝜈
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surface is built using copula distribution 𝐶�̂�=5.659,�̂�𝜏=0.255
𝑡  (left). The bivariate meta t density surface is 

built using copula density 𝑐�̂�=5.659,�̂�𝜏=0.255
𝑡  (right). 

 

Figure 3.19: Empirical Standard Bivariate Student t Copula Density Surface and Corresponding Simulated 
Sample 

 

Figure 3.20: Bivariate Meta t Distribution and Density Surfaces 

Figure 3.21 illustrates the practical differences between modelling within the Gaussian framework 

versus a heavier-tailed framework. The Gaussian model lacks a tail parameter to allocate density in 

the extremes and the dispersion is fairly symmetric as a function of the linear correlation matrix (or 

linear coefficient in the bivariate case) and symmetric Gaussian margins. The (symmetric) Student t 

copula allocates probability in both upper and lower tails. This is true even for the case where 

correlation is zero between variables. The figure plots 10,000 simulated points, each from the two 

multivariate distributions, with the empirical ALSI and ALBI data superimposed. In the left panel, a 

standard bivariate Gaussian distribution is constructed with Gaussian-fitted margins and a Gaussian 

copula, with correlation parameter �̂� = 0.483. In the right panel, a bivariate meta t distribution is 

constructed with SPD-fitted margins and a Student t copula 𝑐�̂�=5.659,�̂�𝜏=0.255
𝑡 . Consistent with the claim 

in Fang, et al. (2002), it appears the meta t distribution does indeed exhibit a degree of distributional 

asymmetry, likely induced by admitting asymmetry via the EVT-based marginal models. The positive 

lower tail dependence, observed in the lower left region of the graph, may be interpreted as the 
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variables exhibiting similar behaviour in the lower tail. It represents an allocation of probability to both 

variables jointly producing losses in the same time period and, in terms of portfolio risk, reflects the 

opposite of diversification (i.e., a reduction in diversification gains). Accurate modelling of, in 

particular, positive lower tail dependence allows for potential improvement in diversification. 

 

Figure 3.21: Simulation from a Bivariate Gaussian and Bivariate Meta t Distribution 

3.5.2 Maximum Likelihood Based Estimation of the Student t Copula 

Several methods of estimating copula parameters exist. However, this dissertation uses the 

canonical maximum likelihood (CML) method due to the method not requiring any a priori assumption 

on the distributional form of the margins. Typically, CML relies on the empirical distribution function 

(ECDF) to approximate the unknown parametric margins and the associated empirical probability 

integral transforms to obtain uniform margins required for copula fitting. Consequently, only the 

copula parameters need estimating, which significantly reduces complexity and computational 

burden in higher-dimensional modelling. This dissertation uses EVT-based margins instead of 

ECDFs due to the latter not able to extrapolate beyond the data. 

Mashal and Zeevi (2002, p. 43) suggested an algorithm, similar to the following, to estimate the 

parameters 𝜈 and 𝛲 of the Student t copula via the CML method. 

Algorithm 1 (CML Estimation): 

1. Transform the standardised residual data 𝒁 = (𝑍𝑡,1, … , 𝑍𝑡,𝑑) for 𝑡 = 1,… , 𝑛 to a “pseudo-

sample” of uniform variates �̂�𝑡 = (�̂�1
𝑡 , … , �̂�𝑑

𝑡) = (�̂�𝑍1(𝑍𝑡,1),… , �̂�𝑍𝑑(𝑍𝑡,𝑑)) using the respective 

probability transform functions (i.e., the SPD CDFs) from equation (35); 
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2. Estimate the correlation matrix �̂� using a transformation of the non-parametric Kendall’s tau 

estimated for each pair of bivariate margins of the copula:  

where 𝑋𝑖 , 𝑋𝑗 represent a pair of original data vectors, �̂�𝑖𝑗 denotes Kendall’s tau for rank 

correlations and 𝑈𝑖 , 𝑈𝑗 represent a pair of probability-transformed vectors (see Figure 3.22); 

3. Perform a numerical search for the remaining degrees of freedom parameter 𝜈 of the copula: 

 

Kendall’s tau, in equation (53), is a robust and efficient bivariate measure of dependence (or rank 

correlation) that is, further, invariant under co-monotonic transformations of the margins. The 

estimator may be defined as:  

  

As can be seen in equation (55), Kendall’s tau measures dependency between the CDFs of the 

random variables 𝑋1 and 𝑋2 and does not depend on the actual random variables. The measure may 

be contrasted with the linear correlation measure, defined as: 

where 𝜎𝑋𝑖 denotes the standard deviation of random variable 𝑋𝑖. As can be seen in equation (56), 

dependency in the copula form of 𝜚 is a function of data-dependent distorting factors, the volatilities 

𝜎𝑋𝑖. 

Figure 3.22 plots Kendall’s 𝜏 estimates evaluated, firstly, on the 18 original log return data (dark grey 

dots) and, secondly, on uniform data transformed by the SPD CDFs fitted and applied to the 18 

respective GARCH-standardised variables (green dots). The number of bivariate pairs evaluated are 

𝑑(𝑑 − 1) 2⁄ = 18(17) 2⁄ = 153 pairs. Reference point 2 of Algorithm 1, above. 

 �̂�𝑖𝑗 = �̂�𝜏(𝑋𝑖, 𝑋𝑗) =
2

𝜋
arcsin(�̂�𝑖𝑗) ≈ �̂�𝜏(𝑈𝑖 , 𝑈𝑗) ,             𝑖, 𝑗 = 1,… , 𝑑 
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Figure 3.22: Kendall’s Tau Estimates on Empirical Returns and Transformed Uniform Copula-Data 

Under full MLE, the LLH function for the standard t copula in equation (46) is represented as: 

where the second summand depends on the degrees of freedom parameter 𝜈 (Inanoglu & Ulman, 

2009, p. 27). 

For any the meta t distribution, the LLH equation for the meta t copula would change significantly. 

For example, consider: 

where the marginal density functions 𝑔𝑖 could be represented by any arbitrary, continuous univariate 

distribution. In equation (58), the second summand does not depend on the degrees of freedom 

parameter 𝜈. 

Inanoglu and Ulman (2009) noted the above differences in “full” MLE between the standard and 

meta t distribution estimators. The first summands on the right hand side of LLH functions (57) and 

(58) are essentially similar, since each sums the logarithms of a joint Student t distribution (although 

evaluated at different arguments over the domain). The second summand introduces a significant 

difference on the LLH estimation of parameter 𝜈 where, in equation (58), the second summand has 

no influence on the 𝜈-estimator. 

CML estimation admits a “hybrid” technique (with respect to standard t copula LLH estimation), 

where the issue of the second summand is addressed. Since the margins are estimated externally, 

only the first summand in the meta t copula depends on 𝜈. The authors noted that “the same software 

functions cannot be employed to fit a standard t copula and to fit a meta t distribution (copula)” (p. 

28). However, they also noted that, with the goal of simulation, sample data could be fit to a standard 

ln 𝐿(𝜈, 𝛲; �̂�) =∑ln𝑓𝜈,𝛲 (𝑡𝜈
−1(�̂�𝑡,1),… , 𝑡𝜈

−1(�̂�𝑡,𝑑))

𝑛

𝑡=1

−∑∑ln𝑓𝜈 (𝑡𝜈
−1(�̂�𝑡,𝑖))

𝑑

𝑖=1

 ,

𝑛

𝑡=1

 

 

 

( 57 ) 

ln 𝐿(𝜈, 𝛲; �̂�) =∑ln𝑓𝜈,𝛲 (𝑔1
−1(�̂�𝑡,1), … , 𝑔𝑑

−1(�̂�𝑡,𝑑))

𝑛

𝑡=1

−∑∑ln𝑔𝑖 (𝑔𝑖
−1(�̂�𝑡,𝑖))

𝑑

𝑖=1

 ,

𝑛

𝑡=1

 

 

 

( 58 ) 



  

88 
 

copula rather than a meta-copula and the respective meta-copula simulated data obtained by 

appropriate quantile transforms on the standard copula-simulated probabilities (p. 31). The 

reasoning is as follows: 

1. Sklar’s theorem applied to 

a. standard copulas may be simplified as: 𝐶(𝑢1, 𝑢2) = 𝐶(𝐹(𝑥1), 𝐹(𝑥2)) = 𝐹(𝑥1, 𝑥2). 

b. meta-copulas (i.e., with arbitrary margins) as: 𝐶(𝑢1, 𝑢2) = 𝐶(𝐺1(𝑦1), 𝐺2(𝑦2)) =

𝐹(𝑦1, 𝑦2). 

2. In terms of simulation, sample data from a meta-copula can be generated by applying the 

quantile transforms of the meta-copula’s arbitrary margins to the probabilities 𝑢𝑖 simulated 

from a standard copula.89 

3. Fitting a standard t copula requires estimating parameters of a copula with identical Student 

t margins. The authors showed that non-parametric estimation of the margins by the empirical 

CDF (ECDF) imitates the “t-copula-t-margins” case. 

4. By applying each ECDF to its corresponding sample data vector, the resulting matrix 

“contains a set of identical probabilities, but with different ordering in the respective column” 

(p. 31). The effect is that the non-parametric ECDF matrix emulates drawings from a set of 

identical t marginals. 

5. The non-parametric pseudo-sample may be passed to a standard t copula fitting routine 

which solves for equation (57) and the df parameter and correlation parameters should 

provide appropriate standard t copula estimators. 

6. Simulated log return data from the corresponding meta-copula may be obtained from the 

simulated probabilities of the standard copula (with reference to point 2 in the reasoning, 

above) by applying the appropriate quantile transform for each marginal distribution. 

Similarly, it may be argued in this dissertation that the use of SPD estimation of the margins may 

serve a similar purpose to that of the use of ECDFs. 

The LLH for the standard t copula is:  

where 

                                                           
89 Let random variables 𝑋1~𝐹1 and 𝑌1~𝐺1, for 𝐹1, 𝐺1 continuous distribution functions, have 𝐶 copula function. For another 

pair of continuous distribution functions 𝐹2, 𝐺2, set 𝑋2 = 𝐹2
−1(𝐹1(𝑋1)) and 𝑌2 = 𝐺2

−1(𝐺1(𝑌1)). Then (a) 𝑋2~𝐹2 and 𝑌2~𝐺2 and 

(b) the copula of 𝑋2 and 𝑌2 is 𝐶 (Inanoglu & Ulman, 2009, pp. 30-31). In the framework of this dissertation, denote by 𝐹2, 𝐺2 
a pair described by the SPD functional form in equation (35). 

−{𝑑𝑛 ln [Γ (
𝜈 + 1

2
)] − 𝑑𝑛 ln [Γ (

𝜈

2
)] − (

𝜈 + 1

2
)∑∑ln(1 +

𝒛𝑖𝑡
′

𝜈
)

𝑑

𝑖=1

𝑛

𝑡=1

} , 

 

 

ln 𝐿𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑(𝜈, 𝛲; �̂�) = 𝑛 ln [Γ (
𝜈 + 𝑑

2
)] − 𝑛 ln [Γ (

𝜈

2
)] − 𝑛 ln [|𝛲|

1
2] − (

𝜈 + 𝑑

2
)∑ln(1 +

𝒛𝑡
′𝛲−1𝒛𝑡
𝜈

)

𝑛

𝑡=1

  

 

 ( 59 ) 
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The software routine90 used to calibrate the meta t copula in this study optimises the standard copula 

LLH in equation (59). The fitted t copula is used to construct the MV t distribution function, with the 

density given in equation (52). Simulated log returns from the standard copula-fitted MV t distribution 

are then: 

1. Transformed back to uniform (probability) data by the univariate Student t distribution. 

2. Transformed forward to quantile data (i.e., log returns) by the respective SPD transforms, 

hereby forming simulated returns from the meta t distribution. 

Equivalently, simulated probabilities from the fitted standard t copula (as opposed to the distribution) 

may directly be transformed to quantile data per step 6 above. 

Note that there is no guarantee of positive definiteness in the componentwise transformed (53) 

matrix of Kendall’s tau rank correlation coefficients91. Positive definiteness is a desired quality in 

practice, since it admits tractable matrix operations, such as inversions and decompositions (e.g., 

Cholesky decomposition).  If �̂� is not positive definite, there exist adjustment techniques to transform 

the matrix such that it is positive definite and close to the original matrix. The eigenvalue method is 

one such technique92. McNeil, et al. (2005, p. 231) suggested an algorithm to implement the 

eigenvalue method to obtain a positive definite matrix that is close to �̂� and which is implemented, if 

necessary, in the software routine. 

Algorithm 2 (Eigenvalue Method). Let 𝛲∗ be a so-called pseudo-correlation matrix (i.e., a symmetric 

matrix of pairwise correlation estimates with unit diagonal entries and off-diagonal entries in [−1, 1]) 

that is not positive semi-definite. 

1. Calculate the spectral decomposition 𝛲∗ = 𝐺𝐿𝐺′, where 𝐿 is the matrix of eigenvalues and 𝐺 

is an orthogonal matrix whose columns are eigenvectors of 𝛲∗. 

2. Replace all negative eigenvalues in 𝐿 by small values 𝛿 > 0 (for positive definiteness) or 

zeros (for positive semi-definiteness) to obtain �̃�. 

3. Calculate �̃� = 𝐺�̃�𝐺′, which will be symmetric and positive definite (or positive semi-definite), 

but not a correlation matrix, since its diagonals will not necessarily equal one. 

                                                           
90 The function chosen to fit the standard t copula is the fitCopula function from the copula package in R (Hofert, 

Kojadinovic, Maechler & Yan, 2014). 
91 A correlation matrix is a symmetric, positive definite matrix with unit diagonal entries and off-diagonal entries in [−1, 1]. 
A matrix 𝛲 is positive definite if 𝑥𝑡𝛲𝑥 > 0 ∀ 𝑥 ≠ 0 and positive semi-definite if 𝑥𝑡𝛲𝑥 ≥ 0 ∀ 𝑥 ≠ 0. 
92 For symmetric matrices, positive definiteness is equivalent to having all eigenvalues positive; positive semi-definiteness 
is equivalent to having all eigenvalues non-negative. 

𝒛 = (𝐹𝑡𝜈
−1(𝑢1),… , 𝐹𝑡𝜈

−1(𝑢𝑑))
′
 . 
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4. Return the correlation matrix 𝛲† = ℘(�̃�), where ℘ denotes the correlation matrix operator 

defined as: 

Finally, it may be noted that an “unstructured” dispersion structure is chosen to characterise the 

structure of the dispersion matrix in the copula model. Other options, considered inadmissible or too 

restrictive in the current setting, include: autoregressive of order 1 (diminishing correlation), 

exchangeable (correlation does not vary) and Toeplitz (correlations between a number of different 

variables are the same). The imposition of the “unstructured” structure admits unique correlation 

estimates for each pair of fitted variables. The four options, illustrated for dimension 𝑑 = 3, may be 

shown as follows: 

This chapter concludes with output in Table 3.11. The table displays CML estimates of the MV 

Student t copula fit to SPD-transformed uniform data. The degrees of freedom parameter estimate 

and dispersion matrix parameter estimates are given, with corresponding confidence levels 

highlighted. The degrees of freedom parameter �̂� = 49.0149 is estimated with a high degree of 

confidence. Although heavier joint tail dependence than Gaussian copula (where 𝜈 = ∞), the 

estimate is not very low. The two primary reasons suspected for this are: 

1. Generally lighter upper tails in each of the variables acts to lower the aggregate joint 

dependence estimate by way of the symmetric structure imposed on the data by the Student 

t copula (i.e., by design, aggregate light upper tail dependence acts to lighten, or mitigate, 

aggregate heavier lower tail dependence). 

2. Consistent with the philosophy of diversification, the degree of co-variation in a portfolio is 

expected to decrease as the number of assets in the portfolio increases. As a result, the 

degree of joint dependence may be expected to lighten as more assets and risk factors to 

the portfolio are added to the model. 

 

℘(�̃�𝑖𝑗) ∶=
�̃�𝑖𝑗

√�̃�𝑖𝑖�̃�𝑗𝑗

               𝑖, 𝑗 = 1,… , 𝑑. 

 

 

(
1 𝜌1 𝜌2
𝜌1 1 𝜌3
𝜌2 𝜌3 1

)

unstructured

, (

1 𝜌1 𝜌1
2

𝜌1 1 𝜌1
𝜌1
2 𝜌1 1

)

𝐴𝑅(1)

, (
1 𝜌1 𝜌1
𝜌1 1 𝜌1
𝜌1 𝜌1 1

)

exchangeable

and (
1 𝜌1 𝜌2
𝜌1 1 𝜌1
𝜌2 𝜌1 1

)

Toeplitz

. 
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Table 3.11: CML Estimates of the Fitted Student t Copula Degrees of Freedom Parameter and Dispersion Matrix Parameters 

The CML estimated standard t copula degrees of freedom parameter �̂� = 49.0149 (confidence level: 99.9%) 

�̂�standard 𝑡 𝑈1 𝑈2 𝑈3 𝑈4 𝑈5 𝑈6 𝑈7 𝑈8 𝑈9 𝑈10 𝑈11 𝑈12 𝑈13 𝑈14 𝑈15 𝑈16 𝑈17 𝑈18 

𝑈1 1 0.2156 0.4538 -0.1109 -0.0146 0.3594 -0.1752 0.1459 0.2533 0.2615 0.0780 0.3815 0.7180 0.5472 0.4072 -0.1824 -0.1874 -0.2173 

𝑈2 0.2156 1 -0.2047 0.0727 0.2509 0.4714 -0.4502 0.1429 -0.1330 -0.1602 0.0587 0.0615 0.2865 0.2367 0.4000 0.2466 -0.4656 -0.9694 

𝑈3 0.4538 -0.2047 1 -0.1241 -0.1344 -0.0066 0.4938 -0.0776 -0.0068 0.0571 -0.2213 0.1053 0.2331 0.5547 0.0980 -0.1756 0.1324 0.2242 

𝑈4 -0.1109 0.0727 -0.1241 1 0.0096 -0.1068 0.0346 -0.0270 -0.0706 -0.0414 -0.0680 -0.0762 -0.1222 -0.1190 -0.0413 0.1131 0.2354 -0.0263 

𝑈5 -0.0146 0.2509 -0.1344 0.0096 1 0.1869 -0.2762 0.7123 0.1214 0.1012 0.3885 0.2088 0.0821 0.0134 0.2808 0.6667 -0.0937 -0.2682 

𝑈6 0.3594 0.4714 -0.0066 -0.1068 0.1869 1 -0.3454 0.1726 0.0480 0.0384 0.1363 0.1503 0.3986 0.2736 0.3608 0.0752 -0.3655 -0.5153 

𝑈7 -0.1752 -0.4502 0.4938 0.0346 -0.2762 -0.3454 1 -0.4133 -0.2180 -0.1658 -0.1817 -0.1794 -0.5363 -0.3056 -0.4113 0.0234 0.2364 0.4952 

𝑈8 0.1459 0.1429 -0.0776 -0.0270 0.7123 0.1726 -0.4133 1 0.2761 0.2696 0.3742 0.3183 0.2397 0.1197 0.1552 0.1782 -0.0727 -0.1841 

𝑈9 0.2533 -0.1330 -0.0068 -0.0706 0.1214 0.0480 -0.2180 0.2761 1 0.7952 0.1793 0.3383 0.2478 0.0465 0.0820 -0.0998 -0.0383 0.1122 

𝑈10 0.2615 -0.1602 0.0571 -0.0414 0.1012 0.0384 -0.1658 0.2696 0.7952 1 0.1482 0.3179 0.2540 0.0913 0.0633 -0.1244 0.0468 0.1211 

𝑈11 0.0780 0.0587 -0.2213 -0.0680 0.3885 0.1363 -0.1817 0.3742 0.1793 0.1482 1 0.3961 0.1157 -0.1659 0.1336 0.1525 -0.1351 -0.0992 

𝑈12 0.3815 0.0615 0.1053 -0.0762 0.2088 0.1503 -0.1794 0.3183 0.3383 0.3179 0.3961 1 0.3763 0.1750 0.2085 -0.0611 -0.1901 -0.0667 

𝑈13 0.7180 0.2865 0.2331 -0.1222 0.0821 0.3986 -0.5363 0.2397 0.2478 0.2540 0.1157 0.3763 1 0.6585 0.6103 -0.1774 -0.1880 -0.3178 

𝑈14 0.5472 0.2367 0.5547 -0.1190 0.0134 0.2736 -0.3056 0.1197 0.0465 0.0913 -0.1659 0.1750 0.6585 1 0.4613 -0.1725 -0.0726 -0.2404 

𝑈15 0.4072 0.4000 0.0980 -0.0413 0.2808 0.3608 -0.4113 0.1552 0.0820 0.0633 0.1336 0.2085 0.6103 0.4613 1 0.2493 -0.1518 -0.4245 

𝑈16 -0.1824 0.2466 -0.1756 0.1131 0.6667 0.0752 0.0234 0.1782 -0.0998 -0.1244 0.1525 -0.0611 -0.1774 -0.1725 0.2493 1 -0.0878 -0.2424 

𝑈17 -0.1874 -0.4656 0.1324 0.2354 -0.0937 -0.3655 0.2364 -0.0727 -0.0383 0.0468 -0.1351 -0.1901 -0.1880 -0.0726 -0.1518 -0.0878 1 0.4254 

𝑈18 -0.2173 -0.9694 0.2242 -0.0263 -0.2682 -0.5153 0.4952 -0.1841 0.1122 0.1211 -0.0992 -0.0667 -0.3178 -0.2404 -0.4245 -0.2424 0.4254 1 

                   

 

Confidence levels 

   ~100%            

        99.9%            

     99%            

     95%            
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3.5.3 Simulation 

3.5.3.1 Simulation from the Meta Student t Distribution  

Recall the centred Student t distributed random vector 𝒀 = (𝑌1, … , 𝑌𝑑)
′. It is well known that the 

centred MV t distribution belongs to the class of multivariate normal variance mixture distributions 

and can be defined by the stochastic representation per equation (49), 𝒀 = 𝑅𝐴𝒁. From Sklar’s 

theorem, the distribution constructed in this study is characterised by: 

 Its marginal CDFs 𝑆𝑃𝐷1, … , 𝑆𝑃𝐷𝑑 per equation (35); 

 Its copula 𝑐𝜈,𝛲
meta−𝑡 per equation (51). 

Given the MV t stochastic (mixture) representation and Sklar’s characterisation, a simulation 

algorithm (one of a number of possible approaches) may be implemented to generate random 

samples 𝐛(1), 𝐛(2), … , 𝐛(𝑑) from a MV t distribution. Denote the dimension of this distribution by 𝑑 and 

by 𝑏𝑗
(𝑖)

 the 𝑗-th component of 𝐛(𝑖), for 𝑗 = 1,… , 𝑛 number of observations to be generated (Carmona, 

2014, p. 162). The implemented simulation algorithm follows from Cherubini, et al. (2004, p. 181), 

but is detailed to be consistent with the software implementation of the algorithm: 

1. Find the Cholesky factor 𝐴 ∈ ℝ𝑑×𝑑 of �̂�standard 𝑡, an upper triangular matrix such that 𝐴′𝐴 = �̂� 

(equivalently a lower triangular matrix 𝐿 ∈ ℝ𝑑×𝑑 such that 𝐿𝐿′ = �̂�). 

2. Simulate 𝑑 i.i.d. column vectors 𝐳 ∈ ℝ𝑛×𝑑 = (𝑧1, 𝑧2, … , 𝑧𝑑)
′ from a standard normal 𝑁(0,1) 

distribution. 

3. Simulate 𝑛 random variates 𝑆 from a 𝜒�̂�
2 distribution with copula estimated �̂�, independent of 

𝐳93. 

4. Set 𝑅 = √�̂� √𝑆⁄ . 

5. Set 𝑿(𝑛×𝑑) = 𝒁(𝑛×𝑑)𝐴(𝑑×𝑑). 

6. Set 𝒀 = 𝑅𝑿. 

7. Set 𝑢𝑖 = 𝑇�̂�(𝑦𝑖) for 𝑖 = 1,… , 𝑑, where 𝑇�̂� denotes the univariate Student t distribution function. 

8. 𝑼 = (𝑢1, … , 𝑢𝑑)
′ = (𝑇�̂�(𝑌1),… , 𝑇�̂�(𝑌𝑑))

′
. 

9. Set 𝑏𝑖 = 𝑡�̂�
−1(𝑢𝑖) for 𝑖 = 1,… , 𝑑, where 𝑡�̂�

−1 denotes the univariate Student t quantile function. 

                                                           
93 The standard procedure to generate a sequence of 𝜒2 distributed random variables uses the relationship between a 𝜒2 
and gamma distribution. If random variables 𝑋1, … , 𝑋𝑛~𝑁(0,1) and are independent, then 𝑌 = ∑ 𝑋𝑖

2𝑛
𝑖=1 ~𝜒𝑛

2, where 𝑋~𝑌 

denotes that random variables 𝑋 and 𝑌 have the same distribution. The PDF of the 𝜒2 distribution, 𝑓𝜒𝜈2(𝑥) =
1

2𝜈 2⁄ Γ(𝜈 2⁄ )
𝑥𝜈 2⁄ −1𝑒−𝑥 2⁄  for  𝑥 ≥ 0 (zero otherwise) and degrees of freedom parameter 𝜈 ≥ 0, is a special case of the gamma 

PDF Γ(𝛼, 𝛽), given by 𝑓Γ(𝛼,𝛽)(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒−𝑥 𝛽⁄  for shape 𝛼 > 0, scale 𝛽 > 0 and 𝑥 ≥ 0 (zero otherwise). The 

relationship 𝜒𝜈
2~Γ(𝜈 2⁄ , 2) is used to generate 𝜒𝜈

2 variables from the Γ(𝜈 2⁄ , 2) distribution. 
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10. Return a 𝑑-dimensional matrix of simulated standardised residuals 𝑩 = (𝑏1, … , 𝑏𝑑)
′. 

With reference to Inanoglu and Ulman (2009, p. 31), the following transformation backwards and 

forwards serves to introduce a degree of idiosyncrasy into the meta t distribution: 

11. Set 𝑼 = (𝑇�̂�(𝑏1),… , 𝑇�̂�(𝑏𝑑))
′
= (𝑢1, 𝑢2, … , 𝑢𝑑)

′ to retrieve the output from Step 8. 

12. Set �̌�𝑖 = 𝑓𝑆𝑃𝐷𝑖
−1 (𝑢𝑖) for 𝑖 = 1,… , 𝑑, where 𝑓𝑆𝑃𝐷𝑖

−1  denotes the univariate SPD quantile function. 

13. Return the desired 𝑑-dimensional matrix of simulated standardised residuals �̌� = (�̌�1, … , �̌�𝑑)
′. 

The Cholesky factor of the dispersion matrix (i.e., the dependence structure associated with the 

copula) induces row-wise rank correlation in the simulated variables matrix. This preserves the non-

linear MV co-variation, including that of joint tail events. The upshot is that simulated outcomes are 

independent in time (i.e., each column represents a univariate i.i.d. stochastic process when viewed 

in isolation), but are dependent at any point in time (i.e., each row shares the rank correlation induced 

by the copula). 

The left panel of Figure 3.23 plots simulated standardised residuals extracted from the first column 

(i.e., the column corresponding to the ALSI variable) of two different distributions, the MV standard t 

distribution and the MV meta t distribution: 𝐛(1) ⊂ 𝑩 (black dots) and �̌�(1) ⊂ �̌� (blue dots), 

respectively.  The MV standard t distribution is constructed with a standard t copula and standard t 

margins. The MV meta t distribution is constructed with a standard t copula and SPD margins. There 

is a large degree of overlap between the two simulations in the interior portion of the distributions 

(between the two standard deviation bands). As one moves into the tails, a marked difference is 

observed. Above the upper 2�̂� threshold, there appears to be a commensurate, or only slightly 

different, amount of density allocated by each MV distribution. Below the 2�̂� threshold, however, a 

significant degree of asymmetry materialises: the 𝑆𝑃𝐷1 extrapolates further into the lower tail than 

does the 𝑡𝜈 distribution. The right panel of Figure 3.23 plots the first 242 (i.e., the sample set size) 

simulated standardised residuals from the meta t distribution �̌�(1) ⊂ �̌� (blue dots) over the “empirical” 

ALSI GARCH-fit standardised residuals (red dots). A high degree of cohesiveness between the data 

points is observed. This cohesiveness, or consistency, is embodied all through the data points 

simulated from the meta t distribution. 
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Figure 3.23. Comparison of Standardised Residuals Simulated from Standard and Meta t Distributions 

Each variable’s SPD quantile function 𝑓𝑆𝑃𝐷𝑖
−1  transforms the respective copula-simulated uniform 

vector to a vector of standardised residuals consistent with those standardised residuals obtained 

from the ARMA-GARCH filtering process of Chapter 3.3. The resulting simulated i.i.d. noise process 

defines a customised sample density used as input to the univariate simulation model when 

reintroducing the autocorrelation and heteroskedasticity characteristics observed in each variable’s 

original returns. 

3.5.3.2 Simulation from the Univariate ARMA-GARCH Models 

Univariate, idiosyncratic autocorrelation and heteroskedasticity is reintroduced to each variable 

through a final round of simulation. The 𝑓𝑆𝑃𝐷𝑖
−1  transformed vector �̌�(𝑖) ⊂ �̌� of copula-dependent 

innovations forms an innovation density sample which is input to the 𝑖-th fitted GARCH model (𝑖 =

1,… , 𝑑). The innovation density mimics the corresponding conditional density fitted in the GARCH 

model94, while preserving the correlation induced by the copula. An 𝑛 number of monthly log return 

data is then simulated, where 𝑛univariate = 𝑛multivariate = 1,200,000. 

Typically, a Monte Carlo simulation involves generating independent, random draws from a fitted 

probabilistic model. For time series models, the random draw is represented by a realisation of a 

sample path of defined length 𝑛, which may be generated any number of times 𝑚. In this section, 𝑚 

is set to one so that the corresponding copula-simulated innovations may be used. 

                                                           
94 This assumption was confirmed by fitting each copula-simulated vector (i.e., each simulated variable) with the distribution 
corresponding to that variable’s GARCH-model, conditional distribution (i.e., those from column 7 in Table 3.8). Shape and 
skewness estimates across all variables confirmed that the copula-simulated innovation densities do indeed mimic their 
corresponding conditional densities in the GARCH models (i.e., copula-simulated innovation shape and skewness 
estimates were close matches to their GARCH-fitted counterparts from columns 16, 17 and 18 in Table 3.8). 
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Consider the typical GARCH process used in this dissertation in terms of simulating for the period 

ahead:  

where 

and 

 

The models are fit on information up to time 𝑡. The simulation uses the model parameter estimates 

to simulate 𝑡 + 1. The subsequent conditional variance �̂�𝑡+1
2  is generated recursively, using the fitted 

conditional variance model. A starting value for the 휀𝑡
2 term in equation (63) is set to the model’s last 

known estimated value 휀�̂�
2 at time 𝑡. Similarly, the last observation in the dataset is used as the initial 

value for 𝑦𝑡 in equation (60). The starting value �̂�𝑡
2 is output from the fitted model and model 

estimates at 𝑡 − 1 by �̂� + �̂�1휀�̂�−1
2 + �̂�1�̂�𝑡−1

2 . This initialising step obtains �̂�𝑡+1
2 . At time 𝑡 + 2, however, 

a value for 휀𝑡+1
2  cannot be derived from the estimated model (which stops at time 𝑡). At this point, 

instead of simulating a random draw 𝑧𝑡+1 from the model’s 𝑖𝑖𝑑 𝒟𝜗(0,1) distribution (as is typically 

done), the 𝑧𝑡+1 value is replaced with the associated �̌�𝑡+1 value from the copula-simulated innovation 

series. An estimate 휀�̂�+2
2  is obtained, per equation (61), by multiplying the copula-simulated value 

�̌�𝑡+1 by the estimated �̂�𝑡+1 derived in the initialising step. In this manner and from this point forward 

in the simulation, all subsequent realisations of the GARCH process95 are recursively generated by:  

for 𝑖 = 3,… , 𝑛 evaluated in lockstep with 𝑗 = 2,… , 𝑛 − 1. At each step, the estimated 휀�̂�+𝑖 value feeds 

through to equation (60), producing a full 𝑛-length simulated return series. 

The matrix of simulated monthly log returns is obtained and aggregated (in this case annualised) for 

use in conditioning on anticipated economic scenarios. The forecast horizon is set to yearly, given 

the granularity of the data. Higher-frequency data will, naturally, lend itself better to shorter forecast 

horizons. The gain from this current section of work is that non-linear co-variation relationships have 

been preserved among the variables in the resulting simulated matrix and the matrix is ready for 

conditioning on scenarios and portfolio optimisation. 

 

                                                           
95 Monte Carlo simulations from other GARCH-family models are implemented similarly, using the model’s corresponding 
conditional variance equation and copula-simulated standardised residuals. 

𝑦𝑡+1 = 𝜇 + 휀𝑡+1 , ( 60 ) 

휀𝑡+1 = 𝜎𝑡+1𝑧𝑡+1 , ( 61 ) 

𝑧∀𝑡~𝑖𝑖𝑑 𝒟𝜗(0,1) , ( 62 ) 

𝜎𝑡+1
2 = 𝜔 + 𝛼1휀𝑡

2 + 𝛽1𝜎𝑡
2 . ( 63 ) 

�̂�𝑡+𝑖
2 = �̂� + �̂�1휀�̂�+𝑗

2 + �̂�1�̂�𝑡+𝑗
2  , ( 64 ) 
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3.6 Portfolio Optimisation 

Malevergne and Sornette (2006, p. 275) noted: “The process of decision-making under conditions 

of deep uncertainty requires first to consider ensembles of scenarios, then to seek robust and 

adaptive strategies, and finally to combine machine and human capabilities interactively. 

Outstanding questions involve the compromise between near-term objectives and long-term 

sustainability, and the characterisation of irreducible risks and of ‘surprises’.” 

The Monte Carlo simulation engine of Chapter 3.5.3 enables practitioners to comprehensively 

“consider ensembles of scenarios”, after each of which the portfolio may be optimised, response 

plans crafted and/or specific risks hedged. 

3.6.1 Scenario Generation  

Ensembles of scenarios may be constructed using subjective views and/or expert forecasts for next-

period returns on any set of modelled variables. For example, Table 3.12 demonstrates the use of 

range forecasts for key variables believed to be highly relevant to the portfolio over the forecast 

horizon. Range forecasts are more realistic than point forecasts in the sense that they admit an 

aggregate view of the future. Expert opinions may be aggregated and may span a realistic range of 

anticipated returns for a number of important variables. For example, a portfolio or risk manager may 

value the opinions of several oil market experts, each of which have different return expectations for 

the oil price over the forecast period. These opinions may be aggregated to form a range of returns 

on the variable and, combined with ranges of returns on other key variables, may be used to define 

a future economic scenario. In the case of Table 3.12, point returns on select variables were 

extracted from actual (but out-of-sample) returns experienced over the period 30 April 2014 to 30 

April 2015. A range encapsulating each variable’s point return was constructed and used, as if one 

had perfect foresight for the variables. Furthermore, any number of scenarios may be defined, 

including hypothetical scenarios not contained in the history of the data. The modelling process 

admits extrapolation into the tails both individually and jointly and, thereby, admits the evaluation of 

extreme moves in any variable of choice (or combinations of extreme moves in different variables). 

Worth noting is that wider range forecasts are preferred, in that they yield more possible joint 

scenarios when evaluating multiple variables. 

Although the model in this dissertation is constructed using asset classes and return drivers, it may 

be built on or extended laterally to include, for example, relative valuation measures derived from 

financial statements96 or technical indicators derived from generic price, volume or open interest 

                                                           
96 Fundamental business measures, such as the degree of operating leverage (% change in EBIT/% change in Sales), 
price-to-cash flow, price-to-book and price-to-earnings ratios. 
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activity97. 

Table 3.12: Risk Factor Range Forecasts for Out-of-Sample Year-Ahead Horizon 

 

Under the assumption of perfect foresight, the next step evaluates the joint effect of the forward-

looking scenario on asset classes in the portfolio. Table 3.13 illustrates the 2014-to-2015 out-of-

sample joint scenario (corresponding to that in Table 3.12) to which a hypothetical portfolio of asset 

classes will be optimised. A basic, domestic, diversified portfolio (i.e., the output) is optimised, given 

the pre-specified backdrop scenario (i.e., the input). 

Table 3.13: Risk Factor Variables Describing a Forward-Looking Scenario and Portfolio Variables to be 
Optimised 

 

                                                           
97 Technical measures, such as the accumulation/distribution ratio, on-balance volume measure and relative strength 
index.  

INPUT VARIABLES (i.e., Return Drivers)

These are predetermined risk factors expected 
to play a key role over the forecast horizon

USDZAR

EURUSD

Domestic 10-yr Govt Bond

Oil Price

GSCI (commodities basket)

Gold

Platinum

Emerging Market Equities

Developed Market Equities

EXPECTED SCENARIOS (i.e., Range Forecasts)

These are subjective or expert views that provide a 
range basis for returns over the forecast horizon

Rand depreciates between +10% to +15%

Dollar strengthens between -15% to -30%

SA govt bond yields decrease 0% to -10%

Oil price falls -35% to -55%

Global commodities prices fall -30% to -50%

Gold price falls 0% to -20%

Platinum price falls -15% to -30%

EM equities remain stable -5% to +15%

S&P 500 advances +5% to +15%

INPUT VARIABLES (i.e., Return Drivers)

Range forecasts over subsequent period

Rand depreciates (+10% to +15%)

Dollar strengthens (-15% to -30%)

SA10-yr yields fall (0% to -10%)

Oil price falls (-35% to -55%)

Commodities prices fall (-30% to -50%)

Gold price falls (0% to -20%)

Platinum price falls (-15% to -30%)

EM equities stable (-5% to +15%)

S&P 500 advances (+5% to +15%)

OUTPUT VARIABLES (i.e., Asset Classes)

Asset classes to be conditioned and optimised

FTSE/JSE All Share Index

FTSE/JSE All Bond Index

MSCI World Equity Index

Domestic Money-market Cash Index
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The matrix of simulated returns in Chapter 3.5.3.2 is filtered, row-wise and jointly, through the 

forecast ranges describing the anticipated scenario. For each iteration where the input variables’ 

range forecasts are collectively met, the corresponding set of portfolio asset class returns is 

extracted. Out of the matrix of 100,000 simulated annual returns, 138 yearly observations jointly 

corresponded to the input scenario and were extracted (refer to Figure 2.13). This process builds a 

conditioned matrix of returns, with each resulting output variable expected to exhibit different 

distributional characteristics to the respective variable’s historical profile. Figure 3.24 highlights an 

example of the distributional differences. The left panel plots a fitted JSU distribution to empirical 

ALSI (annualised) data over a JSU distribution fit to annualised ALSI conditioned data from the 2014-

2015 scenario. In this instance, the left tail (resp. right tail) of the historical data is fatter (resp. thinner) 

than that of the conditioned data. The right panel plots a fitted JSU distribution to annualised 

empirical JSE Listed Property data over the conditioned variable’s annualised JSU-fitted data. In this 

instance, the converse is true: the right tail (resp. left tail) of the historical data is fatter (resp. thinner) 

than that of the conditioned data. The graphs illustrate the differences in not only the bulk and 

skewness of the returns, but also in the upper and lower tails. Similarly, in the multivariate case, the 

conditioned matrix of returns reflects a new co-dependence pattern. These new characteristics lead 

to portfolios that generate a different efficient frontier than those arising when optimising purely on 

historical data. 

In practice, the models used up to this point would be refit on a regular basis so as to include new 

information contained in recent data. Doing so may materially benefit investors since, for example, 

GARCH models are designed to account for changes in volatility levels as the changes occur. 

 

Figure 3.24: Annualised Historical and Scenario-Conditioned ALSI and Listed Property Data 

3.6.2 Portfolio Optimisation  

Markowitz (1952) established the (implicitly Gaussian) framework and fundamental principles on 

which portfolio optimisation is based: risk, return and correlation. Combined, these principles 
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singularly unlock the key proposition that is diversification, itself arguably the most important tenet 

in portfolio theory. This section compares Markowitz’s historical mean-variance optimisation results 

to the simulation-based results from the previous section optimised using mean-CVaR. 

3.6.2.1 Mean-Variance Optimisation 

This section references Fabozzi, et al. (2007, pp. 24-26) and Merton (1972). 

The objective of the portfolio optimisation problem in the MVO approach is formulated as follows: 

given a set of financial assets, characterised by their expected return and their covariances, find the 

optimal weight of each asset such that, combined, the resulting portfolio reflects the lowest 

covariance risk per given target return. What emerges as a solution to the problem is an “efficient 

frontier”, which is the set of all feasible portfolios that offers the highest rate of portfolio return across 

given levels of portfolio risk. The emergence of a frontier implies that, for each level of risk, there is 

exactly one achievable combination of asset weights offering the highest rate of return. 

A portfolio is an amount of wealth invested in a set of 𝑁 weights 𝑤𝑖 corresponding to a group of 

assets 𝐴𝑖, for 𝑖 = 1,2,… ,𝑁. Weights represent percentages98 in an 𝑁-vector 𝒘 = (𝑤1, … , 𝑤𝑁)
′, where: 

implying that the portfolio is fully invested. 

Define the return on 𝐴𝑖 by 𝑅𝑖. Portfolio investments may be described by: 

In practice, the portfolio is characterised by expected returns:  

where �̂�𝑖 = 𝐸(𝑅𝑖) is the expected return value of 𝐴𝑖. Written compactly, �̂�𝑃 = 𝒘
′�̂�, for �̂� =

(�̂�1, … , �̂�𝑁)
′. 

An estimate �̂� of the covariance matrix of the portfolio is given by:  

where �̂�𝑖𝑗 = �̂�𝑗𝑖 denotes the covariance between returns on assets 𝐴𝑖 and 𝐴𝑗 such that �̂�𝑖𝑖 = �̂�𝑖
2, �̂�𝑖𝑗 =

                                                           
98 Implying the 𝑁 assets are infinitely divisible. 

∑ 𝑤𝑖
𝑁

𝑖=1
= 1 , ( 65 ) 

∑ 𝑤𝑖𝑅𝑖  
𝑁

𝑖=1
= 𝑅 . ( 66 ) 

�̂�𝑃 = 𝐸(𝑅) = 𝐸 (∑ 𝑤𝑖𝑅𝑖  
𝑁

𝑖=1
) =∑ 𝑤𝑖�̂�𝑖 

𝑁

𝑖=1
 , ( 67 ) 

 �̂� = (
�̂�11 ⋯ �̂�1𝑁
⋮ ⋱ ⋮
�̂�𝑁1 ⋯ �̂�𝑁𝑁

) , ( 68 ) 
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�̂�𝑖𝑗�̂�𝑖�̂�𝑗 and �̂�𝑖𝑗 is the coefficient of Pearson’s linear correlation between returns on assets 𝐴𝑖 and 𝐴𝑗. 

The variance-covariance risk of the portfolio is given by:  

The problem of portfolio selection is a constrained minimisation problem, formulated as follows: 

subject to constraints: 

where �̅� is the portfolio target return and 𝟏 = (1,1,… ,1)′. 

The problem of minimising the variance-covariance risk �̂�𝑃
2 for a given target return �̅� and fully 

invested portfolio 𝒘′𝟏 = 1 is a quadratic programming problem with linear constraints99. 

For a given target return, the weight vector in equation (70) has a unique solution: 

where 

with 

The corresponding standard deviation �̂�𝑃 for the optimal portfolio with weights 𝒘∗ is calculated as:  

where  

                                                           
99 There is an alternative formulation, where return is maximised for given levels of risk. In the latter case, the problem 
becomes one of optimising a linear objective function with quadratic constraints and requires a different class of solver, 
with more complexity in the algorithm. 

�̂�𝑃
2 = 𝐸(|𝑅 − �̂�𝑃|

2) =∑ ∑ 𝑤𝑖𝑤𝑗�̂�𝑖𝑗
𝑁

𝑗=1

𝑁

𝑖=1
= 𝒘′�̂�𝒘 . ( 69 ) 

𝒘 = arg min
𝒘

𝒘′�̂�𝒘 , ( 70 ) 

𝒘′�̂� = �̅� 

𝒘′𝟏 = 1 , 

𝒘∗ = �̅�𝒘0
∗ +𝒘1

∗  , ( 71 ) 

𝒘0
∗ =

1

𝑎𝑏 − 𝑐2
(𝑏�̂�−1�̂� − 𝑐�̂�−1𝟏) , 

𝒘1
∗ =

1

𝑎𝑏 − 𝑐2
(𝑐�̂�−1�̂� − 𝑎�̂�−1𝟏) , 

𝑎 = �̂�′�̂�−1�̂� , 

𝑏 = 𝟏′�̂�−1𝟏 , 

𝑐 = 𝟏′�̂�−1�̂� . 

�̂�𝑃 = √
1

𝑎𝑏 − 𝑐2
(𝑏�̅�2 − 2𝑐�̅� + 𝑎) , ( 72 ) 
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Equations (72) and (73) are used to construct a hyperbola with a locus of points in the (�̂�𝑃 , �̅�)-space. 

The efficient frontier (or “efficient set”) is the set of portfolios along the border of the hyperbola. The 

“feasible set” is that set of mean-variance portfolios inside the hyperbola (i.e., sub-optimal portfolios). 

At the one end of the efficient set is the portfolio of minimum variance; at the other end is the portfolio 

of maximum expected return. Figure 3.25 displays an efficient frontier and feasible set constructed 

using the MVO method. At the left end of the efficient set is the portfolio of minimum variance; at the 

right end is the portfolio of maximum target return. 

 

Figure 3.25: Efficient Frontier and Feasible Set 

3.6.2.1 Mean-CVaR Optimisation 

This section references Rockafellar and Uryasev (2000) and Krokhmal, Palmquist and Uryasev 

(2002). 

The mean-CVaR optimisation problem is formulated using CVaR as the proxy for risk instead of the 

variance of returns. 

Consider a portfolio of assets with random returns. Denote by 𝒘 the portfolio decision vector of 

weights, with 𝑾 ∈ ℝ the set of available portfolios, and by 𝒓, a random events vector in ℝ. For each 

𝒘, the loss 𝑓(𝒘, 𝒓) is a random variable with distribution in ℝ induced by the distribution of 𝒓.100 The 

random vector 𝒓 is assumed to have a probability density function, denoted by 𝑝(𝒓). The probability 

of 𝑓(𝒘, 𝒓) not exceeding a threshold value 𝛼 is then given by:  

                                                           
100 Note that a negative value for the loss 𝑓(𝒘, 𝒓) constitutes a gain. 

( 73 ) �̅� = (𝒘∗)′�̂� . 
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As a function of 𝛼 and fixed decision vector 𝒘, Ψ(𝒘,𝛼) is the CDF for the loss associated with 𝒘. 

The function Ψ(𝒘,𝛼) is non-decreasing with respect to 𝛼 and is assumed to be everywhere 

continuous with respect to 𝛼. 

Then, for a given confidence level 𝛽 ∈ (0,1),101 the 𝛽-VaR for the loss random variable associated 

with portfolio 𝒘 over the specified holding period is defined as: 

Similarly, the 𝛽-CVaR associated with portfolio 𝒘 is defined as:  

 

Equation (75) defines 𝛽-VaR as the percentile 𝛼 of the loss distribution, where the 𝛽-VaR of a 

portfolio is the lowest amount 𝛼 such that, with probability 𝛽, the loss 𝑓(𝒘, 𝒓) is less than or equal to 

𝛼. Equation (76) defines 𝛽-CVaR as the conditional expectation of the loss associated with 𝒘, given 

that the loss is greater than or equal to the VaR percentile 𝛼𝛽(𝒘) (i.e., the probability of 𝑓(𝒘, 𝒓) ≥

𝛼𝛽(𝒘) is equal to 1 − 𝛽). In this setting, it is difficult to optimise equation (76). 

The key to optimisation problems with CVaR constraints is to re-characterise 𝛼𝛽(𝒘) and 𝜙𝛽(𝒘) in 

terms of a function 𝐹𝛽 on 𝑾×ℝ, defined as follows:  

where [𝑡]+ = max(𝑡, 0). 

The function 𝐹𝛽(𝒘, 𝛼) has the following important properties that make it computationally tractable: 

1. 𝐹𝛽(𝒘, 𝛼) is convex and continuously differentiable with respect to 𝛼, making the function easy 

to minimise numerically. 

2. 𝛽-VaR is a minimum point of function 𝐹𝛽(𝒘, 𝛼) with respect to 𝛼, implying that 𝛽-CVaR can 

be calculated without having to first calculate 𝛽-VaR (on which the 𝛽-CVaR definition 

depends), thus simplifying the optimisation routine. 

                                                           
101 Typical values are 𝛽 ∈ {0.9, 0.95, 0.99}. This dissertation uses 𝛽 set to 0.95 (i.e., 95%). 

Ψ(𝒘,𝛼) = ∫ 𝑝(𝒓)
𝑓(𝒘,𝒓)≤𝛼

𝑑𝒓 . ( 74 ) 

𝛼𝛽(𝒘) = min{𝛼 ∈ ℝ ∶ Ψ(𝒘,𝛼) ≥ 𝛽} . ( 75 ) 

𝜙𝛽(𝒘) =
1

1 − 𝛽
∫ 𝑓(𝒘, 𝒓)
𝑓(𝒘,𝒓)≥𝛼𝛽(𝒘)

𝑝(𝒓) 𝑑𝒓 . ( 76 ) 

𝐹𝛽(𝒘, 𝛼) = 𝛼 +
1

1 − 𝛽
∫ [𝑓(𝒘, 𝒓) − 𝛼]+

𝒓∈ℝ

𝑝(𝒓) 𝑑𝒓 , ( 77 ) 
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3. The minimum value of the function 𝐹𝛽(𝒘, 𝛼) is the 𝛽-CVaR value 𝜙𝛽(𝒘), in the sense that 

min
𝒘∈𝑾

𝜙𝛽(𝒘) = min
(𝒘,𝛼)∈𝑾×ℝ

𝐹𝛽(𝒘, 𝛼). 

As a consequence, the vector 𝒘 that yields the minimum 𝛽-CVaR can be determined by optimising 

𝐹𝛽(𝒘, 𝛼) with respect to the weights 𝒘 and 𝛼. 

In order to reduce complexity in the optimisation routine, the integral in 𝐹𝛽(𝒘, 𝛼) may be 

approximated by sampling the probability distribution of 𝒓 according to its density 𝑝(𝒓). If the 

sampling generates a collection of vectors, say 𝒓1, 𝒓2, … , 𝒓𝑆, which may represent some historical 

returns or Monte Carlo returns, then a corresponding approximation to equation (77) may be 

formulated as: 

The discretised function �̃�𝛽(𝒘, 𝛼) is convex and piecewise linear with respect to 𝛼 and, although no 

longer differentiable with respect to 𝛼 in the approximation form, it can readily be minimised. 

Typically, the loss function 𝑓(𝒘, 𝒓) is convex with respect to 𝒘, producing convexity in the 

approximation expression �̃�𝛽(𝒘, 𝛼).
102 The problem of minimising �̃�𝛽(𝒘, 𝛼) over 𝑾 ∈ ℝ, therefore, is 

one of convex programming. However, �̃�𝛽(𝒘, 𝛼) may be linearised and the resulting linear expression 

(subject to a set of linear constraints) may be solved by linear programming algorithms. Replace 

[𝑓(𝒘, 𝒓𝑠) − 𝛼]
+ in �̃�𝛽(𝒘, 𝛼) by artificial real variables 𝑧𝑠 for 𝑠 = 1,… , 𝑆 to obtain the linear function:  

subject to constraints: 

The mean-CVaR portfolio selection problem may be solved by minimising 𝛽-CVaR in its linearised 

form with respect to portfolio 𝒘, and is formulated as follows: 

subject to constraints: 

                                                           
102 As well as convexity in 𝐹𝛽(𝒘, 𝛼) with respect to (𝒘, 𝛼) and convexity in 𝜙𝛽(𝒘) with respect to 𝒘. 

�̃�𝛽(𝒘, 𝛼) = 𝛼 +
1

𝑆(1 − 𝛽)
∑[𝑓(𝒘, 𝒓𝑠) − 𝛼]

+

𝑆

𝑠=1

 . ( 78 ) 

𝛼 +
1

𝑆(1 − 𝛽)
∑𝑧𝑠

𝑆

𝑠=1

 , ( 79 ) 

𝑧𝑠 ≥  𝑓(𝒘, 𝒓𝑠) − 𝛼 

𝑧𝑠 ≥  0 . 

𝒘 = arg min
𝒘

CVaR𝛽(𝒘) , 

𝒘′�̂� = �̅� 

𝒘′𝟏 = 1 . 

( 80 ) 



  

104 
 

The loss 𝑓(𝒘, 𝒓) does not depend on 𝒓 having a Gaussian distribution, as is implied by the use of 

estimate �̂� in the formulation (70). The formulation in (80), by strictly focussing on mean tail losses, 

fully admits non-normal distributions into the framework. Worth noting, however, is that for elliptically 

distributed asset returns, optimising the mean-CVaR problem will yield the same set of asset weights 

as for the mean-variance Markowitz portfolio. 

3.6.3 Optimisation Results 

This section uses the fPortfolio package in R (Wuertz, Setz & Chalabi, 2014). The aim is to 

compare the mean-variance and mean-CVaR methods. The simulated, conditioned set of returns 

from Chapter 3.6.1 are optimised to obtain an efficient frontier using the mean-CVaR procedure 

explained above. In order to compare the historical and scenario-based methods, an efficient frontier 

is constructed using Markowitz’s MVO on the historical data. Two other constraints, in addition to 

those of (65) and (67) are input to the optimisation routines. The first is that, simply, all portfolios are 

“long only”, where assets comprising portfolios may only be purchased (i.e., no borrowing of assets 

to sell short is considered). This constraint characterises the majority of global investment mandates. 

The second is that offshore investments are constrained to a maximum of 25% of the portfolio. This 

reflects the fact that South African investors are restricted to allocating no more than 25% of their 

investments beyond the borders of South Africa. 

Figure 3.26 displays the efficient frontier plots of optimal mean-variance portfolios optimised using 

20 years of historical returns (red) and optimal mean-CVaR portfolios optimised on the 138 years of 

simulated returns conditioned on the 2014-2015 input scenario (blue). Both routines assume a risk-

free rate of 5.75% (i.e., the 3-month Treasury bill rate at the beginning of the forecast horizon) from 

which the “tangency portfolio” of each frontier is calculated. The tangency portfolio yields the optimal 

risky portfolio among the efficient set in terms of maximising the Sharpe ratio for a given risk-free 

rate. It is the point on the frontier that maximises the quantity: 

subject to constraints 𝒘′�̂� = �̅� and 𝒘′𝟏 = 1. Note: for ease of comparison, instead of plotting CVaR 

as the 𝑥-axis risk measure, the portfolio volatility levels associated with the mean-CVaR frontier 

returns were extracted and the locus points plotted in the (�̂�𝑃 , �̅�)-space. 

The tangency portfolios in Figure 3.26 are used as a reference to describe some evident differences 

between the two frontiers. For example, investing in the tangency portfolio constructed using 

historical MVO, an investor may target an annual return of 10.8% by choosing to accept a 

corresponding expected volatility of returns of 2.9%. Constructing the tangency portfolio using the 

scenario-based simulation and mean-CVaR optimisation, an investor may expect an annual return 

arg max
𝒘

𝑔(𝒘) =
𝒘′�̂� − 𝑟𝑓

√𝒘′�̂�𝒘
 , ( 81 ) 
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of 14.5% for assuming a commensurate 2.9% level of volatility risk. Alternatively, an investor in the 

tangency portfolio on the simulation-based frontier may expect an annual return of 13.2% with a 

volatility level of 2.1%, whereas the composition of the MVO-constructed portfolio targeting the same 

13.2% return would reflect a much greater level of expected volatility, at 9.4%. 

Figures 3.27 and 3.28 display the compositional differences between portfolios along the historical 

MVO and the simulated, conditional mean-CVaR frontiers. Optimal allocation weights, showing 

explicitly how to construct a portfolio on the frontier, are given below each figure for increasing levels 

of target risk (top line of 𝑥-axis) or target return (bottom line of 𝑥-axis). The effect of the 25% offshore 

constraint is apparent in Figure 3.28: beyond the target return level of 14.67%, portfolio weight 

allocated to the MSCI World Equity Index is capped at 25%. This cap is accompanied by a rapid 

increase in allocation to the domestic equity All Share Index to compensate for higher levels of 

targeted returns. 

Below each figure is a table reflecting target returns, volatility levels and CVaR levels corresponding 

to 10 equidistant optimal portfolios. For each portfolio, the associated weight allocations used to 

construct the portfolio are given. The vertical red (resp. gold) lines represent the location of the 

minimum variance (resp. CVaR) portfolios. Note that all output (returns, volatility levels, CVaR levels 

and weights) is in percentage format. 

 

Figure 3.26: Efficient Frontiers of Historical MVO and Simulation-Based Mean-CVaR Optimisation 
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Figure 3.27: Optimal MVO Portfolios Optimised on 
Historical Returns 

 

Figure 3.28: Optimal Mean-CVaR Portfolios 
Optimised on Forward-Looking Simulated Returns 

 

Portfolio 1 2 3 4 5 6 7 8 9 10 

           
�̅� 10.2 10.8 11.1 11.5 12 12.5 12.9 13.4 13.8 14.3 

�̂�𝑷 3.6 2.9 3.1 4 5.1 6.3 8.2 11.2 14.6 18.3 

CVaR -5.2 -5.6 -6.4 -5.6 -3.9 -1.7 3.5 12.2 20.8 29.5 

    Weights     

ALSI 0 10 14.1 18.3 22.4 26.6 43 62 81 100 

ALBI 0 2.8 19.5 36.3 53 69.8 57 38 19 0 

MSCI 0 0 0 0 0 0 0 0 0 0 

CASH 100 87.3 66.3 45.4 24.5 3.6 0 0 0 0 
 

Portfolio 1 2 3 4 5 6 7 8 9 10 

           
�̅� 7.6 8.7 9.9 11 12.2 13.3 14.4 15.6 16.7 17.9 

�̂�𝑷 2.7 2.3 2 1.9 1.9 2.2 2.8 4.6 7.3 10.2 

CVaR -5.6 -6.8 -7.6 -8.4 -8.9 -9.4 -9.7 -7.9 -4.7 -0.7 

    Weights     

ALSI 0 1.2 2.8 4 5.4 5.7 10 24.9 47.6 70.4 

ALBI 0 14 27.4 41.9 57.8 73.7 71.7 50.1 27.4 4.6 

MSCI 0 2.5 4.9 7.2 8.7 11.1 18.3 25 25 25 

CASH 100 82.3 64.8 46.9 28.2 9.5 0 0 0 0 
 

 

In order to evaluate mean-variance and mean-CVaR optimisations comparatively, both methods are 

applied to the same set of 138 conditioned 2014-2015 input scenario observations. The resulting 

efficient frontiers are plotted in Figure 3.29 in the (�̂�𝑃 , �̅�)-space and Figure 3.30 in the (CVaR𝛽=0.95, �̅�)-

space. Note that negative CVaR values on the 𝑥-axis express negative losses (i.e., positive returns). 

For example, in the latter figure, CVaR0.95 = -9.8% translates to the average annual return of the ±7 

worst scenarios (5% x 138 years) being equal to +9.8%. Figure 3.29 shows that, in the target return 

region of 8%-14%, the optimal MVO portfolios have slightly lower return volatilities �̂�𝑃 than do the 

optimal mean-CVaR portfolios. In Figure 3.30, over the same target return region of 8%-14%, the 

optimal mean-CVaR portfolios reflect slightly lower downside risks (CVaR) than do the optimal MVO 

portfolios. The potential risk advantages (either downside risk or symmetric risk) conferred by either 

technique dissipate beyond a target return of +14%. 
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Figure 3.29: Optimal Mean-Variance and Mean-CVaR 
Portfolios Plotted in the (�̂�𝑃, �̅�)-Space 

 

Figure 3.30: Optimal Mean-Variance and Mean-CVaR 

Portfolios Plotted in the (CVaR𝛽=0.95, �̅�)-Space 

 

Figures 3.31 and 3.32 display, respectively, the corresponding optimal MVO and mean-CVaR 

portfolio asset weights, with statistics tables listed below each figure. Again, all output is in 

percentage format. Optimal mean-CVaR portfolios 2 – 7 in Figure 3.32 have slightly higher return 

volatilities �̂�𝑃 than do the corresponding optimal MVO portfolios in Figure 3.31. In exchange, 

however, the optimal mean-CVaR portfolios have lower downside risks (CVaR). It appears that what 

the mean-CVaR portfolios sacrifice in higher volatility, they gain in lower risk of tail losses. In the 

words of Wang and Zheng (2010, p. 20): “the cost of protecting against downside risk [through mean-

CVaR portfolio optimisation] is only slightly higher variance in the portfolio’s returns”. The red 

highlighted column in Figure 3.31 reflects the asset allocation weights corresponding to the minimum 

variance portfolio. The minimum CVaR portfolio weights are highlighted in the gold column of Figure 

3.32. The composition and risk-return profile of each risk-minimising portfolio is very different, 

illustrating the importance in choice of risk measure by risk-averse investors. The optimal mean-

CVaR portfolio allocates greater weights to domestic asset classes ALSI and ALBI, as well as to 

offshore equities, than the optimal mean-variance portfolio. On the other hand, there is no cash 

reserve in the mean-CVaR portfolio, versus a 39.4% cash allocation in the mean-variance portfolio. 

A preferred minimum cash allocation constraint, however, may be fed into the optimisation routine 

and optimal portfolios re-evaluated. Such a constraint will leave a consistent amount of cash in the 

portfolio. 
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Figure 3.31: Weights of Optimal MVO Portfolios 
Optimised on Forward-Looking Simulated Returns 

 

Figure 3.32: Weights of Optimal Mean-CVaR Portfolios 
Optimised on Forward-Looking Simulated Returns 

 

Portfolio 1 2 3 4 5 6 7 8 9 10 

           
�̅� 7.6 8.7 9.9 11 12.2 13.3 14.4 15.6 16.7 17.9 

�̂�𝑷 2.7 2.2 1.8 1.7 1.8 2.1 2.7 4.6 7.3 10.2 

CVaR -5.6 -6.6 -7.2 -8.1 -8.8 -9.3 -9.4 -7.9 -4.7 -0.7 

    Weights     
           

ALSI 0 0 0 0.4 1.3 2.1 3.6 24.9 47.6 70.4 

ALBI 0 21.7 43.4 56.6 68.5 80.4 72.7 50.1 27.4 4.6 

MSCI 0 0 0 3.6 7.4 11.2 23.7 25 25 25 

CASH 100 78.3 56.6 39.4 22.8 6.2 0 0 0 0 
           

 

Portfolio 1 2 3 4 5 6 7 8 9 10 

           
�̅� 7.6 8.7 9.9 11 12.2 13.3 14.4 15.6 16.7 17.9 

�̂�𝑷 2.7 2.3 2 1.9 1.9 2.2 2.8 4.6 7.3 10.2 

CVaR -5.6 -6.8 -7.6 -8.4 -8.9 -9.4 -9.7 -7.9 -4.7 -0.7 

    Weights     
           

ALSI 0 1.2 2.8 4 5.4 5.7 10 24.9 47.6 70.4 

ALBI 0 14 27.4 41.9 57.8 73.7 71.7 50.1 27.4 4.6 

MSCI 0 2.5 4.9 7.2 8.7 11.1 18.3 25 25 25 

CASH 100 82.3 64.8 46.9 28.2 9.5 0 0 0 0 
           

 

 

Figures 3.33 and 3.34 display the sources of individual contributors to (target) aggregate portfolio 

returns. Figures 3.35 and 3.36 display the sources of individual contributors to (target) aggregate 

portfolio volatility (covariance risk). In both mean-variance and mean-CVaR optimisation routines, 

the quantities of individual contributors to portfolio returns and portfolio risks may be constrained. 

For example, the contribution of volatility or CVaR risk to the portfolio from any one asset may be 

capped at 5%, a new efficient set of portfolios calibrated and the associated allocation weights 

obtained to construct the portfolio, or serve as a guide in portfolio adjustment decisions. 

To improve insight into the characteristics of individual contributors to portfolio risks and returns, a 

layer of statistical traits at the conditioned asset level may be evaluated. The initial simulation 

generated 100,000 likely annual observations per variable (with the idiosyncratic and cross-asset 

characteristics maintained). The output that is conditioned on an anticipated input scenario requires 

all input ranges be simultaneously matched before retrieving the corresponding output (portfolio 

variable) values. After a complete matching set is extracted, each variable comprising the set will 

have a new and unique statistical profile, which can be evaluated. 
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Figure 3.33: Individual Contributors to Returns in the 
Optimal MVO Portfolios 

 

Figure 3.34: Individual Contributors to Returns in the 
Optimal Mean-CVaR Portfolios 

 

 

Figure 3.35: Individual Contributors to Covariance 
Risk in the Optimal MVO Portfolios 

 

Figure 3.36: Individual Contributors to Covariance 
Risk in the Optimal Mean-CVaR Portfolios 

 

The graphs in Figure 3.37 illustrate the basic statistical profiles of each of the 2014-to-2015 

conditioned variables. Noticeable in each of the graphs is that the expected (and median) returns 

are all greater than the actual returns over the out-of-sample period. This may possibly be an artefact 

of the symmetric structure of the multivariate t distribution being unable to induce sufficient tail 

asymmetry into the simulations. A box-and-whisker plot (boxplot) is superimposed on each of the 

graphs, showing the median, interquartile range, maximum and minimum and outlier zones of the 

expected returns103. The histograms provide a visual display of the empirical or, in this case, 

expected range of returns and likelihoods of occurrence along the range of returns. 

                                                           
103 The boxplot (see Appendix) provides a concise visual summary of essential data characteristics (viz., the median, 
interquartile range, skewness and presence or absence of outliers). The line splitting the rectangular box corresponds to 
the median return value of the range of returns. 
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Figure 3.37: Comparison of Expected Returns versus Actual Returns in the Out-of-Sample Scenario 

In the mean-variance and mean-CVaR methods discussed, a risk-averse investor is assumed to use 

either variance or CVaR, respectively, as the preferred risk measure. To conclude this chapter, 

actual results from the optimal variance-preference portfolio (#4 in Figure 3.31) and optimal CVaR-

preference portfolio (#7 in Figure 3.32) are given in Table 3.14. Both methods overestimated the 

portfolio’s expected annual returns. At the yearly scale, ex ante expected returns, volatility and 

absolute CVaR values are all greater in portfolio 7 than portfolio 4. These characteristics are 

preserved out-of-sample at the monthly scale. 
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Table 3.14: Comparison of Actual and Expected Portfolio Statistics 

  Method MVO Mean-CVaR 

  Portfolio # 4 7 
 

 
   

     

  Actual  𝒓 9.2% 12.3% 

  Expected  �̅� 11.0% 14.4% 
     

Yearly  

   

   

     

  Expected  �̂�𝑷 1.7% 2.8% 

  Expected  CVaR -8.1% -9.7% 
     

  

   

   

     

  Actual  𝒓 0.8% 1.0% 

Monthly  Actual  𝝈𝑷 1.4% 1.7% 

  Actual  CVaR -1.5% -1.7% 
     

     

  ALSI 0.4% 10% 

  ALBI 56.6% 71.7% 

  MSCI 3.6% 18.3% 

  CASH 39.4% 0% 
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Chapter 4 

Conclusion 

This chapter summarises the entire dissertation and offers suggestions for future research. 

4.1 Concluding Remarks 

We acknowledge that global financial markets are trending towards unification, strengthening 

volatility linkages and quickening volatility transmissions through present-day financial networks. As 

it relates to South African fund managers, domestic portfolios are net recipients of returns and 

volatility shocks from major world markets. Financial crises continue to highlight the damaging effects 

of deep-tail, extreme events on portfolios. Therefore, this dissertation proposes a methodology to 

improve risk management systems in funds by building an asset allocation framework that offers 

practitioners an opportunity to explicitly model combinations of hypothesised global risks and the 

effects on their investments. The goal is to improve fund performances, particularly during periods 

of market stress. 

Opportunity for improvement comes from pooling expert opinions on key near-term portfolio risk 

drivers. Aggregated opinions on key variables give rise to range forecasts used in a framework where 

any number of important variables can be combined to construct forward-looking scenarios, or 

anticipated states of the world. The scenario-building option offers practitioners and investors a 

pivotal mechanism through which many different effects on fund holdings can be scrutinised. The 

mechanism fits top-down, macro views onto a flexible, bottom-up, quantitative model. This 

dissertation brought together new technologies available to jointly model portfolio assets and their 

risk factor threats and elaborated on the requisite theoretical background. At the centre of the model 

is a dualistic simulation engine constructed to represent the multivariate and univariate data 

generating processes as accurately as possible. 

Estimation of expected returns was not the focus of the research. It is widely accepted that accurate 

forecasts of returns are, at best, tentative (Campbell & Thompson, 2008; Goyal & Welch, 2008). 

Therefore, an ARMA structure was suggested for returns and a GARCH-family structure for the 

ARMA model errors. GARCH models have emerged to address the stylised facts characterising 

univariate financial data, such as leptokurtosis, asymmetry, autocorrelation and heteroskedasticity. 

To enhance capability in better representing the stylised facts of the data, GARCH models are paired 

with a range of conditional distributions designed with optionalities to absorb excess heavy-

tailedness and skewness. Even so (and particularly in weekly or higher frequency data), there is 

typically a set of extreme observations in the tails of each variable that remains unrepresented by 

the model. Extreme Value Theory has been suggested to parametrically model the tail densities of 
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such extrema. This paper incorporated the theory to separately model upper and lower tails with 

generalised Pareto distributions, which, additionally, admit extrapolation beyond the limits set in the 

historical data. The high-density interiors were modelled with non-parametric Gaussian kernel 

smoothers. The tails and interior are spliced together to form a semi-parametric distribution, which 

not only admits asymmetry through separate modelling of the tails, but also represents (i) a 

cumulative distribution function used to create pseudo-copula data and (ii) a quantile function to 

transform copula-simulated data back to the domain of standardised residuals. 

Modern Portfolio Theory relies on a Gaussian dependence structure based on Pearson’s linear 

correlation. These structures provide a reliable framework for building diversified portfolios in normal 

markets, but they break down during stress periods. Volatile markets generate non-linear co-

variation in multivariate financial data and copula theory is gaining momentum as the theory of choice 

for capturing these co-variation patterns, particularly those of observed tail dependencies. Although 

copulas are not a panacea for asset allocation problems, they admit a methodology that has been 

shown to materially improve the portfolio modelling framework when compared to the MPT 

frameworks currently employed by the majority of fund managers. They are most useful in modelling 

assets with less common or uncommon characteristics (such as those found in macro asset 

allocation problems), but their usefulness diminishes as variety among portfolio assets diminishes 

(such as in sector-concentrated funds comprising highly correlated assets). 

The capstone of this study is portfolio optimisation. The effectiveness of portfolio optimisation is 

jointly influenced by the assumptions on asset return distributions, dependence structure and choice 

of risk measure. To obtain portfolios to optimise, we built a dualistic simulation engine. Univariate 

marginal semi-parametric distributions were modelled with a combination of heavy-tailed ARMA-

GARCH structures and the EVT peaks-over-threshold approach. On the multivariate side, a meta 

Student t distribution was used to model joint portfolio asset and risk factor returns. The meta t 

distribution was constructed using the separation method admitted by Sklar’s theorem. We used a 

static Student t copula to represent the multivariate (non-linear) dependence structure between 

variables and semi-parametric distributions to represent marginal variables. Multivariate simulations 

were generated from the meta t distribution thus characterised and the simulated output used as 

input to generate simulations from the ARMA-GARCH structures. The simulations resulted in 

financial data that was then filtered through a forward-looking scenario and what remained was 

portfolio data to be optimised. 

Two asset allocation strategies were investigated: the classical Markowitz mean-variance strategy 

and a contemporary mean-CVaR strategy. The former uses a symmetric risk measure (standard 

deviation) to optimise portfolios; the latter, an asymmetric, downside risk measure (in this case, 

CVaR). Portfolios were constrained to “long-only” and a maximum of 25% invested offshore. The 
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forward-looking scenario was set to the year-ahead, out-of-sample period from 30 April 2014 to 30 

April 2015. This scenario assumes perfect foresight in that the range for each risk factor variable 

was set to encapsulate the actual returns over the forecast horizon. Mean-CVaR optimisation was 

performed on the resulting conditioned asset class returns and compared to mean-variance 

optimisation performed on the entire historical data set. The optimisation on conditioned asset class 

returns showed a clear advantage to using the methodology proposed in this dissertation, however, 

subject to the caveat of being able to encapsulate ex ante risk factor returns in forward-looking range 

forecasts. The area of forecasting is where pooled expert opinion would be expected to contribute 

meaningfully to the model. Mean-variance and mean-CVaR optimisations were then performed on 

the conditioned returns. The risk-minimising portfolio from each strategy was selected as being 

optimal and the portfolios were compared out-of-sample. The optimal mean-CVaR portfolio returned 

more money than the optimal mean-variance portfolio, while enjoying lower monthly downside risk, 

but exhibited higher monthly volatility risk. Finally, a repeat of the 2008 financial crisis was input as 

a forward-looking scenario and expected versus actual returns compared. Scenarios were generated 

using actual returns on key variables from 31 December 2007 to 31 December 2008. As we 

considered this an in-sample evaluation, results were placed in the Appendix. 

We concluded that the proposed asset allocation framework incorporating stylised facts of univariate 

and multivariate financial data, as well as contemporary portfolio optimisation techniques, leads to 

material risk-return gains for the risk-averse investor. In addition, the simulation component of the 

framework offers practitioners meaningful opportunity for improving resilience in portfolios against 

volatility threats. 

4.2 Further Research  

In this final section of the dissertation we list a number of recommendations for future research. 

The model was fit and tested on low frequency data (monthly returns), leaving open an immediate 

extension to higher frequency data, such as daily data.  Ng and Lam (2006) recommended sample 

sizes starting at 1000 observations for estimating the univariate conventional GARCH model, in order 

to avoid possible wrong optimal solutions. Since GARCH-processes are data hungry, satisfying the 

data requirements at the univariate level would likely feed through to improved parameter estimates 

at the multivariate level. Therefore, investigating multivariate parameter stability across larger and 

varying sample sizes (e.g., sizes 𝑛 = 2000, 3000, 5000, etc.) combined with higher and varying 

model dimensions (e.g., dimensions 𝑑 = 15, 20, 30, etc.) would be a logical next step for future 

research. As well, the research would benefit from evaluating the fitted copula and overall 

multivariate model with statistical robustness checks. 
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More interesting, however, would be to extend the study to admit both asymmetric and time-varying 

dependence in the copula structure. Correlations strengthen as asset classes synchronously absorb 

shocks to the financial system. Otherwise lower correlations that may ordinarily exist among assets 

in normal market environments trend quickly to high correlation levels during market downturns. This 

causes a dynamic and asymmetric dependence phenomenon, with adverse implications to portfolio 

diversification and hedging effectiveness. Furthermore, being quick to be able to recognise 

meaningful changes (as a function of time) in a dependence structure (whether symmetric or 

asymmetric) would be a valuable skill in portfolio risk management. To this end, extending the 

skewed t copula (Christoffersen, et al., 2012; Demarta & McNeil, 2005) and generalised hyperbolic 

skewed t copula (Allen & Satchell, 2014; Cerrato, Crosby, Kim & Zhao, 2015) to admit time-varying, 

or conditional, dependence are logical directions for future research. In terms of parsimony and 

manageable computational complexity, however, an alternative to the aforementioned would be to 

investigate the effects of varying the degrees of freedom parameter in the static meta t copula in the 

multivariate simulation stage. An exogenous metric (or metrics) may be determined and used to 

decide when and to what degree the tail dependence parameter should be varied (e.g., lowered to 

induce more tail dependence). Research in this direction would be similar to that of a regime-

switching framework. More directly practical, however, and in terms of incorporating dynamic, 

conditional correlation into the (symmetric) static meta t copula framework, the DCC model of Engle 

(2002) and the Asymmetric Generalised DCC (AGDCC) model of Cappiello, Engle and Sheppard 

(2006) offer practitioners a promising opportunity to replace the static dispersion matrix 𝛲 in 

equations (50) and (52) with a conditional, time-varying correlation matrix 𝛲𝑡 (derived from the 

decomposition of the DCC or AGDCC model’s conditional covariance matrix 𝐻𝑡 = 𝐷𝑡𝑃𝑡𝐷𝑡). Recent 

and relevant time variation in asset and risk factor dynamics may, hereby, directly be incorporated 

into the multivariate framework proposed in this dissertation. Ghalanos (2012) and Le (2012) found 

significant advantages to constructing a model in this way. Although it may necessitate a trade-off in 

static, non-linear dependence for dynamic, conditional correlation, it would be interesting to 

investigate this step further. 

In terms of programming, a natural extension for this and future, more complex, modelling 

frameworks would be to address the computational burden in model fitting. The resource burden is 

not only apparent in fitting and simulating in the dependence section, but is also apparent in the 

mean-CVaR portfolio optimisation section. The time it takes to calibrate high-dimensional models 

could be markedly reduced by rewriting the R code in C/C++, as well as by implementing parallel 

and grid computing techniques. Additionally, in the portfolio optimisation section, computational 

efficiencies can be gained by deploying smoothing algorithms (Alexander, Coleman & Li, 2006; Zhu, 

Coleman & Li, 2009) instead of the linear programming algorithm for the CVaR optimisation problem. 
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Appendices 

Appendix A: Box-and-Whisker Plot  

 

Figure A.1: Box-and-Whisker Plot 

The box-and-whisker plot (boxplot) is a rectangular shaped box defined by the upper and lower 

quartiles of the data (i.e., 50% of the data falls inside the box) and is split by a median line (i.e., the 

50th percentile). The difference between the upper and lower quartile is called the interquartile range 

(IQR). There are two dashed lines, or whiskers. The whisker extending to the upper value 

(“maximum”) marks the value of the largest observation that is less than or equal to the upper quartile 

plus 1.5 times the length of the IQR. Similarly, the whisker extending to the lower value (“minimum”) 

marks the value of the smallest observation that is greater than or equal to the lower quartile less 

1.5 times the length of the IQR. Outliers are observations that fall outside the lower or upper values. 

The boxplot gives a good indication of the shape of a distribution, including skewness and presence 

of outliers. For data from a normal distribution, outlier values occur fewer than once in every 100 

observations. 
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Appendix B: In-Sample 2008 Financial Crisis Comparison 

 

Figure B.1: Comparison of Expected Returns versus Actual Returns for the 2008 Financial Crisis Period 

Table B.1: Risk Factor Range Forecasts for the 2008 Financial Crisis Period 

Input Variables Output Variables 

Return Drivers Range Forecasts Actual Asset Classes to be Optimised 

USDZAR +10% to +40%  +33.5%  FTSE/JSE All Share Index 
EURUSD -20% to +10%  -4.1%  FTSE/JSE All Bond Index 
SA 10-Yr Bond Yield 0% to -30%  -13.1%  MSCI World Equity Index 
Brent Crude -20% to -99%  -93.3%  Domestic Cash Index 
Commodities Index -10% to -80%  -65.2%   
Gold Index 0% to +30%  +2.0%   

Platinum Index -10% to -60%  -49.9%   

MSCI EM Index -10% to -90%  -78.7%   

S&P 500 Index -10% to -70%  -48.6%   

Range forecasts for key variables assume fairly accurate forecasts ahead of a repeat of the 2008 crash period. 
Actual returns for the period are included around which the range forecasts were built. 
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Appendix C: Ljung-Box and Lagrange Multiplier Test Results 

Table C.1: p-Values from Ljung-Box Tests on Monthly Returns 

Lag ALSI ALBI MSCI.WRLD.ZAR CASH GLOUS J253T USDZAR EURUSD BRSPOT GSCI GLFX PLAT MSCI.EM$ FSPI JPEMBI USALCI RBAS JAYC10 

1 0.568 0.606 0.510 0.000 0.089 0.209 0.713 0.754 0.652 0.453 0.084 0.013 0.011 0.146 0.833 0.155 0.000 0.620 

2 0.846 0.852 0.607 0.000 0.109 0.361 0.719 0.692 0.885 0.484 0.130 0.034 0.017 0.331 0.554 0.028 0.000 0.878 

3 0.512 0.895 0.439 0.000 0.203 0.563 0.864 0.252 0.796 0.571 0.165 0.048 0.022 0.178 0.599 0.026 0.000 0.967 

4 0.549 0.368 0.350 0.000 0.258 0.465 0.942 0.179 0.799 0.657 0.124 0.065 0.042 0.197 0.740 0.045 0.000 0.389 

5 0.226 0.412 0.486 0.000 0.115 0.403 0.799 0.277 0.887 0.617 0.202 0.058 0.062 0.264 0.846 0.016 0.000 0.426 

6 0.303 0.136 0.551 0.000 0.171 0.294 0.632 0.344 0.943 0.736 0.266 0.098 0.029 0.284 0.879 0.005 0.000 0.106 

7 0.331 0.184 0.338 0.000 0.026 0.396 0.675 0.261 0.221 0.293 0.319 0.106 0.043 0.352 0.933 0.010 0.000 0.118 

8 0.407 0.225 0.327 0.000 0.031 0.362 0.413 0.352 0.174 0.131 0.418 0.009 0.061 0.341 0.963 0.019 0.000 0.159 

9 0.313 0.304 0.304 0.000 0.019 0.402 0.444 0.426 0.229 0.186 0.507 0.010 0.093 0.423 0.976 0.029 0.000 0.212 

10 0.352 0.230 0.259 0.000 0.024 0.450 0.522 0.435 0.292 0.210 0.589 0.014 0.130 0.514 0.959 0.015 0.000 0.205 

11 0.437 0.271 0.160 0.000 0.006 0.533 0.481 0.524 0.015 0.067 0.086 0.022 0.137 0.581 0.912 0.019 0.000 0.222 

12 0.520 0.281 0.203 0.000 0.005 0.510 0.564 0.513 0.014 0.032 0.119 0.012 0.182 0.501 0.906 0.028 0.000 0.235 
 

At the 95% (or 90%) significance level, a p-value less than 𝛼 = 𝟎. 𝟎𝟓 (or 𝛼 = 𝟎. 𝟏𝟎) leads to the rejection of the null of no autocorrelation present in the time series (i.e. there 

is autocorrelation in the series). For a given lag length, 𝑚, a p-value near zero indicates that a time series has 𝑚 jointly significant autocorrelations. The colour differentiation 

in the tables indicate where and at which significance level there is significant autocorrelation present. 
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Table C.2: p-Values from Ljung-Box Tests on Absolute Monthly Returns 

Lag ALSI ALBI MSCI.WRLD.ZAR CASH GLOUS J253T USDZAR EURUSD BRSPOT GSCI GLFX PLAT MSCI.EM$ FSPI JPEMBI USALCI RBAS JAYC10 

1 0.368 0.000 0.008 0.000 0.022 0.039 0.000 0.725 0.000 0.149 0.003 0.000 0.058 0.004 0.001 0.070 0.000 0.000 

2 0.001 0.000 0.003 0.000 0.074 0.028 0.000 0.119 0.000 0.015 0.005 0.000 0.010 0.000 0.000 0.138 0.000 0.000 

3 0.002 0.000 0.005 0.000 0.146 0.001 0.001 0.205 0.000 0.032 0.007 0.000 0.011 0.000 0.001 0.166 0.000 0.000 

4 0.002 0.000 0.007 0.000 0.160 0.000 0.001 0.212 0.000 0.064 0.000 0.000 0.009 0.000 0.001 0.167 0.000 0.000 

5 0.001 0.000 0.000 0.000 0.251 0.000 0.000 0.027 0.000 0.012 0.000 0.000 0.017 0.000 0.003 0.262 0.000 0.000 

6 0.001 0.000 0.000 0.000 0.196 0.000 0.000 0.036 0.000 0.013 0.000 0.000 0.005 0.000 0.006 0.216 0.000 0.001 

7 0.000 0.000 0.001 0.000 0.255 0.000 0.000 0.056 0.000 0.014 0.000 0.000 0.001 0.000 0.006 0.287 0.000 0.002 

8 0.000 0.000 0.001 0.000 0.261 0.000 0.000 0.089 0.000 0.025 0.000 0.000 0.001 0.000 0.002 0.299 0.000 0.003 

9 0.000 0.000 0.002 0.000 0.128 0.000 0.000 0.105 0.000 0.041 0.000 0.000 0.001 0.000 0.001 0.310 0.000 0.005 

10 0.000 0.000 0.003 0.000 0.177 0.000 0.000 0.117 0.000 0.053 0.000 0.000 0.000 0.000 0.000 0.374 0.000 0.006 

11 0.000 0.000 0.005 0.000 0.057 0.000 0.000 0.158 0.000 0.079 0.000 0.000 0.001 0.000 0.000 0.423 0.000 0.004 

12 0.000 0.000 0.004 0.000 0.056 0.000 0.000 0.197 0.000 0.028 0.000 0.000 0.001 0.000 0.000 0.057 0.000 0.001 

At the 95% (or 90%) significance level, a p-value less than 𝛼 = 𝟎. 𝟎𝟓 (or 𝛼 = 𝟎. 𝟏𝟎) leads to the rejection of the null of no autocorrelation present in the time series (i.e. there 

is autocorrelation in the series). For a given lag length, 𝑚, a p-value near zero indicates that a time series has 𝑚 jointly significant autocorrelations. The colour differentiation 

in the tables indicate where and at which significance level there is significant autocorrelation present. 
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Table C.3: p-Values from LM Tests for ARCH Effects in the Square of Demeaned Monthly Returns 

Lag ALSI ALBI MSCI.WRLD.ZAR CASH GLOUS J253T USDZAR EURUSD BRSPOT GSCI GLFX PLAT MSCI.EM$ FSPI JPEMBI USALCI RBAS JAYC10 

1 0.877 0.000 0.039 0.000 0.060 0.012 0.033 0.569 0.007 0.092 0.008 0.000 0.057 0.000 0.450 0.041 0.009 0.000 

2 0.023 0.000 0.039 0.000 0.164 0.001 0.103 0.000 0.001 0.003 0.018 0.000 0.079 0.001 0.714 0.033 0.012 0.001 

3 0.052 0.000 0.043 0.000 0.308 0.001 0.133 0.000 0.003 0.009 0.044 0.000 0.125 0.000 0.876 0.078 0.017 0.003 

4 0.104 0.000 0.072 0.000 0.442 0.001 0.242 0.000 0.004 0.018 0.006 0.000 0.222 0.000 0.951 0.151 0.035 0.006 

5 0.168 0.000 0.000 0.000 0.570 0.002 0.239 0.000 0.006 0.017 0.011 0.000 0.324 0.000 0.982 0.249 0.065 0.012 

6 0.255 0.000 0.001 0.000 0.568 0.002 0.025 0.000 0.012 0.033 0.023 0.000 0.319 0.000 0.992 0.347 0.094 0.021 

7 0.343 0.000 0.001 0.000 0.517 0.004 0.047 0.000 0.019 0.020 0.043 0.000 0.191 0.000 0.997 0.330 0.147 0.031 

8 0.297 0.000 0.001 0.000 0.629 0.007 0.078 0.001 0.028 0.035 0.043 0.000 0.265 0.001 0.999 0.418 0.214 0.052 

9 0.380 0.000 0.002 0.000 0.599 0.010 0.122 0.001 0.048 0.034 0.070 0.000 0.347 0.002 0.999 0.514 0.292 0.079 

10 0.337 0.000 0.004 0.000 0.694 0.014 0.093 0.002 0.074 0.055 0.109 0.000 0.235 0.003 0.942 0.619 0.380 0.118 

11 0.384 0.000 0.008 0.000 0.031 0.023 0.120 0.003 0.086 0.085 0.158 0.000 0.262 0.005 0.966 0.500 0.459 0.147 

12 0.413 0.001 0.008 0.000 0.022 0.033 0.090 0.003 0.115 0.098 0.184 0.000 0.292 0.008 0.979 0.265 0.544 0.168 
 

At the 95% (or 90%) significance level, a p-value less than 𝛼 = 𝟎. 𝟎𝟓 (or 𝛼 = 𝟎. 𝟏𝟎) leads to the rejection of the null of no ARCH effect present in the time series (i.e. there is 

conditional heteroskedasticity in the series). For a given lag length, 𝑚, a p-value near zero indicates that a time series has 𝑚 jointly significant autocorrelations in the square 

of the demeaned data. The colour differentiation in the tables indicate where and at which significance level there is significant ARCH effect present. Note that the R function 

ArchTest from the FinTS package (Graves, 2015) squares the demeaned data before performing the linear regression. 

 

 

 

 

 


