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Abstract

Conventional cluster and virial expansions are generalized to momentum dependent inter-
particle potentials. The model with Lorentz contracted hard core potentials is considered, e.g.
as hadron gas model. A Van der Waals-type model with a temperature dependent excluded
volume is derived. Lorentz contraction effects at given temperature are stronger for light
particles and make their effective excluded volume smaller than that of heavy ones.
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The Van der Waals (VdW) excluded volume model has been used to describe hadron
yields in relativistic nucleus–nucleus collisions (see e.g. [1, 2] and references therein). This
model treats the hadrons as hard-core spheres and, therefore, takes into account the hadron
repulsion at short distances. In a relativistic situation one should, however, include the Lorentz
contraction of the hard core-hadrons. This problem was discussed in the literature (see e.g.
Ref. [3, 4]). In this paper the cluster and virial expansions are generalized to velocity dependent
inter-particle potentials. This extension is used to construct the VdW model for Lorentz
contracted rigid spheres which may be used to simulate hadrons.

The canonical partition function for the gas of N classical (Boltzmann) particles takes the
form

ZN(V, T ) =
1

N !

∫ N
∏

i=1

[

g dridki

(2π)3
exp

(

−
ωi

T

)

]

exp
(

−
U

T

)

, (1)

where V and T are the system volume and temperature, g is the number of internal degrees
of freedom (degeneracy factor) of the particles, ωi = (m2 + k2

i )
1/2 is the dispersion relation of

free particles with masses m. The particle interactions described by the function U in Eq. (1)
are given by the sum over pair potentials:

U =
∑

1≤i<j≤N

uij . (2)

In contrast to the usual statistical mechanic treatment of the pair potentials, the uij are
assumed to be both coordinate and momentum dependent uij ≡ u(ri,ki; rj ,kj). This gen-
eralization is necessary, if Lorentz contraction effects of hard spheres are to be taken into
account. Introducing the Mayer functions

fij =
[

exp
(

−
uij

T

)

− 1
]

, (3)

Eq. (1) can be presented as

ZN(V, T ) =
1

N !

∫

dx1...dxN exp
(

−
ω1 + ... + ωN

T

)

∏

1≤i<j≤N

(1 + fij) , (4)

with the short notation dxi ≡ gdridki/(2π)3. Similarly to the standard procedure one can
introduce the cluster integrals [5]

b1 =
1

V

∫

dx1 exp
(

−
ω1

T

)

=
g T 3

2π2
K2

(

m

T

)

≡ φ(T ) , (5)

b2 =
1

2!V

∫

dx1dx2 exp
(

−
ω1 + ω2

T

)

f12 , (6)

b3 =
1

3!V

∫

dx1dx2dx3 exp
(

−
ω1 + ω2 + ω3

T

)

(f12f13 (7)

+ f12f23 + f13f23 + f12f23f13) ,

...

and present the canonical partition function in the familiar form

ZN(V, T ) =
′

∑

{ml}

N
∏

l=1

(V bl)
ml

ml!
, (8)



where the summation in Eq. (8) is taken over all sets of non-negative integer numbers {ml}
satisfying the condition

N
∑

l=1

lml = N . (9)

Note, however, that the cluster integrals defined above are different from those used in standard
statistical mechanics [5] as here nontrivial momentum integrations are included. Condition
(9) makes the calculation of ZN (8) rather complicated. This problem can be avoided in the
grand canonical ensemble: the grand canonical partition function can be calculated explicitly
(z ≡ exp(µ/T )):

Z(V, T, µ) ≡
∞
∑

N=0

exp
(

µN

T

)

ZN(V, T ) = exp

(

V
∞
∑

l=1

blz
l

)

. (10)

In the thermodynamical limit the pressure p and particle number density n are calculated in
the grand canonical ensemble in terms of the asymptotic values of the cluster integrals:

p = T lim
V →∞

lnZ

V
= T

∞
∑

l=1

blz
l , (11)

n = lim
V →∞

1

V

∂ lnZ

∂z
=

∞
∑

l=1

lblz
l . (12)

The virial expansion represents the pressure in terms of a series of particle number density
and takes the form

p = T
∞
∑

l=1

aln
l . (13)

Substituting p (11) and n (12) into Eq. (13) and equating the coefficients of each power of z,
one finds the virial coefficients al in terms of the cluster integrals

a1 = 1 , a2 = −
b2

b2
1

, a3 =
4b2

2

b4
1

−
2b3

b3
1

, ... (14)

Let us recall, first, the derivation of the standard VdW excluded volume model. Then it
is extended by adding the Lorentz contraction of the moving particles. Keeping the first two
terms of the virial expansion (13) the following result is obtained:

p(T, n) = Tn (1 + a2n) . (15)

It is valid for small particle densities (i.e. n << 1/a2). The usual (momentum independent)
hard core potential for spherical particles with radius ro is uij = u(|ri−rj|). Here the function
u(r) equals to 0 for r > 2ro and ∞ for r < 2ro. The second cluster integral (6) can easily be
calculated in this case:

b2 = − φ2(T )
16π

3
r3

o
. (16)

Therefore a2 = 4 vo, where vo = 4πr3

o
/3 is the particle hard core volume. The VdW excluded

volume model is obtained as the extrapolation of Eq. (15) to large particle densities in the
form

p(T, n) =
Tn

1 − a2n
. (17)



For practical use the pressure is given as a function of T and µ independent variables, i.e.
in the grand canonical ensemble. This is done by substituting n = (∂p/∂µ)T into Eq. (17),
which then turns into a partial differential equation for the function p(T, µ). For the VdW
model (17) the solution of this partial differential equation can be presented in the form of a
transcendental equation

p(T, µ) = Tφ(T )eµ/T exp
(

−
a2p

T

)

≡ pid(T, µ − a2p) . (18)

Eq. (18) was first obtained in Ref. [6] using the Laplas transform technique. With p(T, µ)
(the solution of Eq. (18)) the particle number density, entropy density and energy density are
calculated as (ν = µ − a2 p(T, µ), a2 = 4 vo):

n(T, µ) ≡

(

∂p(T, µ)

∂µ

)

T

=
nid(T, ν)

1 + a2nid(T, ν)
, (19)

s(T, µ) ≡

(

∂p(T, µ)

∂T

)

µ

=
sid(T, ν)

1 + a2nid(T, ν)
, (20)

ǫ(T, µ) ≡ Ts − p + µn =
ǫid(T, ν)

1 + a2nid(T, ν)
. (21)

Here the superscripts id in the thermodynamical functions (18–21) indicate those of the ideal
gas.

The excluded volume effect accounts for the blocked volume of two spheres when they
touch each other. If hard-sphere particles move with relativistic velocities it is necessary to
include their Lorentz contraction in the rest frame of the fluid. The model suggested in Ref.
[4] is not satisfactory: the parameter a2 = 4 vo of the VdW excluded volume model is confused
there with the proper volume of an individual particle – the contraction effect is introduced
for the proper volume of each particle. In order to get the correct result it is necessary to
account for the excluded volume of two Lorentz contracted spheres.

Let ri and rj be the coordinates of the i-th and j-th particle, respectively, and ki and
kj be their momenta, r̂ij denotes the unit vector r̂ij = rij/|rij| (rij = |ri − rj|). Then for
a given set of vectors (r̂ij,ki,kj) for the Lorentz contracted rigid spheres of radius ro there
exists the minimum distance between their centers rij(r̂ij;ki,kj) = min|rij|. The dependence
of the potentials uij on the coordinates ri, rj and momenta ki,kj can be given in terms of the
minimal distance as follows

u(ri,ki; rj,kj) =











0 , |ri − rj| > rij (r̂ij;ki,kj) ,

∞ , |ri − rj | ≤ rij (r̂ij;ki,kj) .
(22)

The general approach to the cluster- and virial expansions described above is valid for this
momentum dependent potential, and it leads to Eqs. (17,18) with

a2(T ) =
1

2φ2(T )

∫

dk1dk2

(2π)6
exp

(

−
ω1 + ω2

T

)

× (23)

×
∫

dr12 Θ (r12(r̂12;k1,k2) − |r12|) .

The new feature is the temperature dependence of the excluded volume a2 (23) which is due
to the Lorentz contraction of the rigid spheres. The pressure and particle number density are



still given by Eqs. (18,19), but with temperature dependent a2(T ) (23). However, Eqs. (20,
21) are now modified, e.g.

ǫ(T, µ) =
ǫid(T, ν) − p2 da2(T )/dT

1 + a2nid(T, ν)
. (24)

In contrast to Eq. (21) the energy density (24) contains the extra term which appears also in
the entropy density. The excluded volume a2(T ) (23) is always smaller than 4 vo. It has been
proven rigorously that a2(T ) is a monotonously decreasing function of T and, therefore, the
additional term in Eq. (24) is always positive. Let us introduce the notation

a2(T ) = 4 vo f(T ) . (25)

The function f(T ) depends on the T/m ratio. It can be calculated numerically and its behavior
is shown in Fig. 1. The simple analytical formula

f(T ) = c + (1 − c)
ρs(T )

φ(T )
(26)

with

c =
(

1 +
74

9π

)−1

, ρs =
g

(2π)3

∫

dk
m

ω
exp

(

−
ω

T

)

,

is found to be valid with an accuracy of a few percents for all temperatures. The asymptotic
behavior of f(T ) is the following: 1 − O(T/m) at T << m and c + O(m/T ) at T >> m.

If one assumes that all types of hadrons have at rest the same hard core radius then the
Lorentz contraction effect leads to different VdW excluded volumes for moving particles with
different masses: for light particles (e.g. pions) the excluded volume (at given T ) is smaller
than that for heavy ones. Fig. 1 shows that at T ∼= 150 MeV the value of a2 in the nucleon
gas (m ∼= 939 MeV) decreases by 10% in comparison to its nonrelativistic value 4 vo, whereas
for pions (m ∼= 140 MeV) a2 shrinks at the same T by almost a factor 2. This is simply
because light particles are more relativistic than heavy ones at given temperature typical for
high energy nuclear collisions, T = 120 ÷ 170 MeV.

As an example, Fig. 2 shows the particle number density of the pion gas (µ = 0, g = 3)
with ro = 0.5 fm. The particle number density is calculated according to Eq. (19) for three
different models: the ideal pion gas (a2 = 0), the VdW model with constant excluded volume
(a2 = 4vo) and the VdW model with Lorentz contraction (a2(T ) is given by Eq. (23)). It can
be seen from Fig. 2 that at low T the pion density is small and excluded volume corrections are
unimportant. Therefore, all three models are similar. The situation changes with increasing
T : the suppression due to the excluded volume effects are large and different for a2 = 4vo and
a2(T ) (23). The ratios of particle number densities and energy densities of the pion gas for
two versions of the VdW model (a2 = 4vo and a2(T ) (23)) are shown in Fig. 3 as functions
of the temperature. From Fig. 3 one can observe the deviations between these two models.
These deviations increase with temperature. They are larger for the energy density due to the
additional positive term in Eq. (24).

In conclusion, the traditional cluster and virial expansions can be consistently generalized
to momentum dependent pair potentials. Hard-core potentials with Lorentz contraction effects
lead to a VdW model with a temperature dependent excluded volume a2(T ) (23). For light
particles the effect of Lorentz contraction is, evidently, stronger than for heavy ones. Note
that smaller values of the pion hard core radius rπ were introduced in Refs. [7, 8] within the



standard VdW excluded volume model to fit hadron yield data better. The smaller value of
the pion excluded volume appears as a consequence of stronger Lorentz contraction for light
particles.
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Fig. 1. f(T ) as the function of the temperature-to-mass ratio. For heavy particles (e.g.,
nucleons m >> T ) the volume reduction is just a few per cents, whereas for pions (m ≈ T ) it
is about 50%.
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Fig. 2. The particle number density for three models of the pion gas (µ = 0, g = 3): the
solid line corresponds to the VdW model of the Lorentz contracted spheres (ro = 0.5 fm), the
dashed one corresponds to the ideal gas of point-like particles, and the dotted one corresponds
to the VdW model without Lorentz contraction for the spheres of a constant radius 0.5 fm.
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Fig. 3. The dashed line shows the ratio of the particle number densities of the pion gas
(g = 3, µ = 0, ro = 0.5 fm): the VdW model with Lorentz contraction divided by the VdW
model without Lorentz contraction. The solid line shows a similar ratio for the energy densities.


