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Abstract

The quantum mechanical formula for Mayer’s second cluster integral for the

gas of relativistic particles with hard-core interaction is derived. The proper

pion volume calculated with quantum mechanical formula is found to be an

order of magnitude larger than its classical evaluation.

The second cluster integral for the pion gas is calculated in quantum me-

chanical approach with account for both attractive and hard-core repulsive

interactions. It is shown that, in the second cluster approximation, the repul-

sive ππ-interactions as well as the finite width of resonances give important

but almost canceling contributions. In contrast, an appreciable deviation from

the ideal gas of pions and pion resonances is observed beyond the second clus-

ter approximation in the framework of the Van der Waals excluded-volume

model.

I. INTRODUCTION

Thermal models (”fireball”) have been popular for decades (see, e.g. [1]) to fit the data on
multiparticle production in high energy nucleus–nucleus collisions (see, e.g. [2] and references
therein). The ideal gas (IG) model of noninteracting hadrons and resonances which has
mostly been empoyed to extract temperature T , baryonic chemical potential µB, etc., from
fits to the data is however not adequate for this purpose. This is among other things because
of the following two reasons:

• The ideal gas model ignores the finite width of the resonances, while most of them
have a width comparable to or even larger than the typical temperatures of the hadron
gas 120÷ 180 MeV. This leads to underestimation of the attraction between hadrons.

• The IG model does not take into account nonresonance interaction between hadrons,
in particular the repulsion. As a result, in the description of the hadron yields data
for the AGS and SPS energies the IG model leads to artificially large particle number
densities, e.g. ρ ∼= 1.25 fm−3 at T = 185 MeV and µB = 270 MeV [3], which hardly
can be consistent with a picture of a gas of point-like, noninteracting hadrons.

The procedure of Ref. [4] introduces the Breit–Wigner mass spectrum of resonances.
However, this widely used procedure works for narrow resonances only. It was found that
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it is insufficient in the realistic case [5] as it does not take into account correlated particle
pairs appearing along with resonances in the hadron gas. Therefore, the standard procedure
underestimates tha attractive part of hadron interactions.

To solve the second problem the procedure, which allows to take into acount finite
particcle volume, was proposed by Hagedorn and Rafelski [6]. The excluded-volume Van der
Waals equation of state was derived in Ref. [7] and used by several authors (see, e.g. [2,3,8]
and references therein). Recently, this procedure was generalized to multicomponent [9] and
relativistic particle systems [10]. Still, the proper particle volume was so far calculated by
classical statistical mechanics formulae.

Our aim is to calculate Mayer’s cluster integrals (CIs) for the hadron gas from the
available data on the hadron scatterings using correct quantum formulae and use them for
fixing the parameters of the Van der Waals excluded volume model. In the present paper a
first step in this direction is made, namely we calculate the second cluster integral (CI) in
the case of a pure pion gas for a wide temperature range and consider the contribution of
the repulsive part of the ππ interactions into the CI as an excluded volume of the Van der
Waals model.

The article is organized as follows: in section II we derive the formula for the second
cluster integral taking into account relativistic effects as well as the isospin of the pion.
Section III is devoted to the hard-core repulsion at the quantum level. The domain of
applicability of the classical formulae is found. The resonance attraction will be considered
in section IV. The conditions which allow to use the narrow resonance approximation (NRA)
and the Bright–Wigner formula of Ref. [4] will be studied. In section V the CI for the
pion gas is calculated from the experimental data on the ππ-scattering. The results are
compared with various approximations. In section VI the interacting pion gas is studied
in the framework of the excluded-volume Van der Waals approach. The conclusions and a
discussion of the results are given in section VII.

II. GENERAL FORMULAE

Quantum mechanical formula for a calculation of Mayer’s second cluster integral b2 in
the case of nonrelativistic zero isospin I0 = 0 particles was considered in Ref. [11] (see also
[12]). The pions, however, have nonzero isospin I0 = 1 and the temperature of interest can
be comparable to or larger than the pion mass. Therefore, for an adequate description of
the pion gas a generalization of the formulae given in Refs. [11,12] for relativistic particles
carrying nonzero isospin is needed.

We start from the canonical partition function for N identical particles in the volume V
at the temperature T

Z(V, T, N) =
∫

d3Nr
∑

α

Ψ∗
α(r1, r2, . . . rN) exp

(

−H

T

)

Ψα(r1, r2, . . . rN), (1)

where H is the Hamiltonian operator and {Ψα} is a complete set of orthonormal wave
functions in co-ordinate representation. With the notations

WN(r1, r2, . . . rN) ≡ N !
∑

α

Ψ∗
α(r1, r2, . . . rN) exp

(

−H

T

)

Ψα(r1, r2, . . . rN) (2)
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one gets

Z(V, T, N) =
1

N !

∫

d3NrWN(r1, r2, . . . rN) . (3)

The function W1(r1) can be calculated in the thermodynamical limit V → ∞

WN(r1) =
∑

p,tI

e−i(p,r1)

√
V

exp
(

−H

T

)

ei(p,r1)

√
V

(4)

= (2I0 + 1)
∫

d3p

(2π)3
exp

(

−
√

p2 + m2

T

)

= gφ(T ; m),

where I0 and m are, respectively, the particle isospin and mass (tI = −I0, ..., +I0 is the
isospin projection), g ≡ (2I0 + 1) is the isospin degeneration factor1 and φ(T ; m) can be
expressed via K2 modified Bessel function

φ(T ; m) =
1

2π2

∫ ∞

0
p2dp exp

(

−
√

p2 + m2

T

)

=
m2T

2π2
K2

(

m

T

)

. (5)

The asymptotics of φ(T ; m) in the nonrelativistic, m >> T , and ultra-relativistic, m << T ,
limits are

φ(T ; m) ≃



















(

mT
2π

)3/2
exp(−m/T ) , m >> T

T
π2

(

T 2 − m2

4

)

, m << T

(6)

Following Refs. [12,13] we introduce the functions Ul(r1, r2, . . . rl):

W1(r1) = U1(r1)

W2(r1, r2) = U1(r1)U1(r2) + U2(r1, r2) (7)

W3(r1, r2, r3) = U1(r1)U1(r2)U1(r3) + U1(r1)U2(r2, r3)

+U1(r2)U2(r3, r1) + U1(r3)U2(r1, r2) + U3(r1, r2, r3)

etc.

and define Mayer’s CIs2

bl(V, T ) =
1

l!V [gφ(T ; m)]l

∫

d3lr Ul(r1, r2, . . . rl). (8)

1 If not only the isospin but also the spin has a nonzero value, J0, the degeneration factor has the

form g ≡ (2I0 + 1)(2J0 + 1).

2 The normalizations of the CIs in Eq. (8) are different from that of Ref. [12] and correspond to

the definition used in [14]. The CIs (8) have dimensionality [volume]l−1, while in Ref. [12] CIs are

dimensionless.
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It is easy to see that

b1 ≡ 1 . (9)

Substituting the expression (7) for the function W2 into Eq. (3) one gets the two-particle
partition function expressed via the CIs

Z(V, T, 2) = g2
[

1

2
(b1(V, T )φ(T ; m)V )2 + b2(V, T )φ2(T ; m)V

]

. (10)

For arbitrary N the expression of the partition function via bl reads [12]

Z(V, T, N) =
∑

{ml}

N
∏

l=1

1

ml!
(bl(V, T ) [gφ(T ; m)]l V )ml , (11)

where the sum runs over all sets of nonnegative integer numbers {ml} satisfying the condition

N
∑

l=1

lml = N . (12)

Introducing the absolute activity [14], which in the relativistic case takes the form

z ≡ gφ(T ; m) exp
(

µ

T

)

, (13)

where µ is the chemical potential, the grand canonical partition function has the form

Z(V, T, µ) =
∞
∑

N=1

exp
(

µN

T

)

Z(V, T, N) = exp

(

V
∞
∑

l=1

bl(V, T )zl

)

. (14)

From Eq. (14) one can find the cluster expansion of the pressure and the particle density:

p(T, µ) = T lim
V →∞

logZ(V, T, µ)

V
= T

∞
∑

l=1

bl(T )zl , (15)

n(T, µ) = lim
V →∞

T

V

∂ logZ(V, T, µ)

∂µ
=

∞
∑

l=1

lbl(T )zl , (16)

where

bl(T ) ≡ lim
V →∞

bl(V, T ). (17)

Substituting the particle density (16) into the virial expansion3 for the pressure

3 Sometimes the term ’virial expansion’ is used in place of ’cluster expansion’ [21,22]. We prefer

to use the standard terminology [12,14,15]: ’cluster expansion’ for the expansion in powers of the

activity and ’virial expansion’ for that in powers of the particle density.
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p(T, n) = T
∞
∑

i=1

ain
i (18)

and equating the coefficient of each power of z with Eq.(15) one obtains the following
expressions for the virial coefficients [12] in terms of the CIs:

a1 = 1

a2 = −b2

a3 = 4b2
2 − 2b3 (19)

a4 = −20b3
2 + 18b2b3 − 3b4

. . .

Let us represent the CIs as a sum of two terms:

bl = b
(0)
l + b

(i)
l , l > 1, (20)

where b
(0)
l are the CIs for the IG and b

(i)
l appear due to the particle interaction. In the classical

(Boltzmann) gas one obtains b
(0)
l = 0 for all l > 1. In the quantum case, b

(0)
l are nonzero due

to Bose (Fermi) effects and can be easily found for arbitrary l. For noninteracting particles
the logarithm of the expression (14) should coincide with the well-known expression for the
logarithm of the ideal gas grand canonical partition function

logZ(0)(V, T, µ) = ± gV
∫

d3p

(2π)3
log

[

1 ± exp

(

µ −
√

p2 + m2

T

)]

(21)

(the upper (lower) sign corresponds to Fermi-Dirac (Bose-Einstein) statistics). One can
expand the logarithm in the integrand and perform the integration

logZ(0)(V, T, µ) = gV
∞
∑

l=1

(∓1)l+1

l

∫

d3p

(2π)3
exp





l
(

µ −
√

p2 + m2
)

T





= gV
∞
∑

l=1

(∓1)l+1

l
exp

(

lµ

T

)

φ(T/l; m) . (22)

Comparing the last expression with Eq. (14) gives

b
(0)
l =

(∓1)l+1

lgl−1

φ(T/l; m)

[φ(T ; m)]l
. (23)

In the nonrelativistic limit Eq.(23) is reduced to

b
(0)
l = (∓1)l+1l−5/2

[

λ3

g

]l−1

, (24)

where λ is the thermal wave length

λ =

√

2π

mT
. (25)
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The expression (24) coincides for I0 = 0 with the corresponding formulae of Ref. [12] (up to
the dimensional factor λ3(l−1), because of different normalization in Eq. (8)).

Using Eqs. (10) and (20) one can express b
(i)
2 via differences of the two-particle partition

functions for real and ideal gases:

b
(i)
2 =

Z(V, T, 2) − Z(0)(V, T, 2)

V [gφ(T ; m)]2
(26)

Let us calculate Z(V, T, 2). A complete set of the orthonormal state vectors in the two
particle system can be constructed from the following wave functions

|α〉 ≡ |P, α̃〉 =
ei(P,R)

√
V

|α̃〉 , (27)

where P is the total momentum of the system, R is the radius-vector of its center of mass,
and |α̃〉 form a complete set of orthonormal state vectors of the system in the center of mass
frame (c.m.f.) satisfying the Schrödinger equation

H |α̃〉 = εα̃ |α̃〉 (28)

with the normalization condition

〈α̃′|α̃〉 = δα̃′α̃ . (29)

The wave function (27) thus satisfies the following equations

H |P, α̃〉 =
√

P2 + ε2
α̃ |P, α̃〉 , (30)

〈P′, α̃′| ˜P, α〉 = δα̃′α̃δP′P . (31)

The expression for Z(V, T, 2) in terms of the introduced wave functions has the form

Z(V, T, 2) =
∑

P,α̃

〈P, α̃| exp
(

−H

T

)

|P, α̃〉 =
∑

P,α̃

exp



−
√

P2 + ε2
α̃

T



 . (32)

In the thermodynamical limit V → ∞ the summation over P can be replaced by the
integration and one finds

Z(V, T, 2) =
∑

α̃

V
∫

d3P

(2π)3
exp



−
√

P2 + ε2
α̃

T



 = V
∑

α̃

φ(T ; εα̃) . (33)

The states of two spinless particles in their c.m.f. can be enumerated by the following
quantum numbers: the radial momentum q (or, alternatively, the energy in c.m.f. ε(q) =√

q2 + m2), the orbital angular momentum L, its projection mL, the total isospin I and its
projection tI , e.g. α̃ = (q, L, mL, I, tI). Eq.(33) can be rewritten explicitly 4

4We assume that the particles do not form bound states with energy ε < 2m.
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Z(V, T, 2) = V
2I0
∑

I=0

I
∑

tI=−I

∑

L

′
L
∑

mL=−L

∫ ∞

0
dqgLmLItI (q)φ(T ; ε(q)) , (34)

where gLmLItI (q) is the density of states with the given set of quantum numbers. The sum
∑′ extends over only those values of L that satisfy the symmetry properties of the wave
function. For spinless bosons it takes even value if the isospin part of the wave function is
symmetric and odd values if it is antisymmetric. In the case of integer isospin particles like
pions this means 5

L =

{

0, 2, 4, 6, . . . for even I
1, 3, 5, 7, . . . for odd I

, (35)

Substituting Eq.(34) into (26) one gets the following expression for the second CI

b
(i)
2 =

1

[gφ(T ; m)]2

2I0
∑

I=0

I
∑

tI=−I

∑

L

′
L
∑

mL=−L

∫ ∞

0
dq(gLmLItI (q) − g

(0)
LmLItI

(q))φ(T ; ε(q)) , (36)

where g
(0)
LmLItI

is the state density for the IG. The difference gLmLItI (q) − g
(0)
LmLItI

(q) in the
thermodynamical limit can be expressed via phase shifts of two-particle scattering δLmLItI (q)
[11,12]:

gLmLItI (q) − g
(0)
LmLItI

(q) =
1

π

dδLmLItI (q)

dq
. (37)

Using the expression for φ(T ; m) one gets

b
(i)
2 =

2π

m4T [gK2(m/T )]2

2I0
∑

I=0

I
∑

tI=−I

∑

L

′
L
∑

mL=−L

∫ ∞

0
dqε2(q)

dδLmLItI (q)

dq
K2(ε(q)/T ) . (38)

In the case of hadron gas the phase shift does not depend on the angular momentum pro-
jection mL (no external fields) and the isospin projection tI (if only strong interactions are
taken into account). This simplifies the last formula:

b
(i)
2 =

2π

m4T [gK2(m/T )]2

2I0
∑

I=0

∑

L

′
(2I + 1)(2L + 1)

∫ ∞

0
dqε2(q)

dδLI(q)

dq
K2

(

ε(q)

T

)

. (39)

Performing a partial integration and taking into account the properties of the Bessel func-
tions, one gets

b
(i)
2 =

2π

m4T 2[gK2(m/T )]2

2I0
∑

I=0

∑

L

′
(2I + 1)(2L + 1)

∫ ∞

2mπ

dεε2δL,I(ε)K1

(

ε

T

)

. (40)

In the nonrelativistic limit the formula (39) is reduced to

b
(i)
2 =

2
√

2

πg2
λ3

2I0
∑

I=0

∑

L

′
(2I + 1)(2L + 1)

∫ ∞

0
dq

dδLI(q)

dq
exp

(

− q2

mT

)

, (41)

which again at I0 = 0 coincides with the corresponding formulae of Refs. [11,12], up to the
factor λ3.

5In the case of half-odd isospin scalar bosons we would have the opposite rule: even L for odd I

and odd L for even I.
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III. HARD CORE REPULSION

The hard core repulsion plays an important role in the phenomenological description
of the ππ-scattering: the phase shift data for the isospin state I = 2 can be successfully
described assuming hard core repulsion between two particles [16]. The best fit of the phase
shift in S0-state (I = L = 0) can be obtained by assuming hard core repulsion in addition
to resonance attraction [17,18]. Hence we start our analysis from applying Eqs.(39–41) to
hard sphere model.6

The radial part of the wave function in the c.m.f. of two particles interacting by hard core
potential in the state with orbital momentum L and radial momentum q can be represented
in the following way

φ(r) =

{

0 for r ≤ r0

C(cos δL jL(qr) + sin δL yL(qr)) for r > r0
, (42)

where r is the distance between particle centers, r0 is the minimal admitted value for r
(that is the doubled radius of the particle considered as a hard sphere), jn(z) and yn(z) are
spherical Bessel functions, C is the normalization constant and δL is fixed by the condition

cos δL jL(qr0) + sin δL yL(qr0) = 0 . (43)

Using asymptotic properties of the spherical Bessel functions, it is easy to see that δL has a
meaning of the phase shift describing scattering of two hard spheres:

φ(r) ≃
sin

(

qr − lπ
2

+ δL

)

qr
, r → ∞ . (44)

The derivative of the phase shift is found to be

dδL

dq
=

d

dq
arctan

(

jL(qr0)

yL(qr0)

)

= − r0

(qr0)2[j2
L(qr0) + y2

L(qr0)]
, (45)

where the formula for the Wronskian [19]

W (jL(z), yL(z)) = z−2 (46)

has been used.
Let us introduce the functions

κ±(z) =
∑

L

′ 1

z2[j2
L(z) + y2

L(z)]
, (47)

where the sum
∑

L
′ runs over either even (superscript ‘+’) or odd (superscript ‘−’) nonneg-

ative numbers.

6 Relativistic consideration of a hard sphere model by no means can be consistent. Still, as far as

this model describes experimental data on low energy ππ-scattering, we find it phenomenologically

satisfactory.
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Expanding κ± around zero, one gets

κ+(z) ≃ 1 +
5

9
z4 + O(z6) , (48)

κ−(z) ≃ 3z2 − 3z4 +
682

225
z6 + O(z8) . (49)

It has been checked numerically that the asymptotic behavior of κ±(z) at large z with a
high accuracy can be presented by the formula

κ±(z) ≃ 1

3
z2 +

π

4
z +

1

3
+ O(z−1) . (50)

The CI (39) for the case of hard sphere model can be represented in the form7

b
(i)
2 =

1

g2

2I0
∑

I=0

(2I + 1)b±2 (r0, T, m) , (51)

where superscript ‘+’(‘−’) corresponds to even (odd) values8 of I and b±2 (r0) is expressed
via the function κ±(z)

b±2 = − 2πr0

m4T [K2(m/T )]2

∫ ∞

0
dq[ε(q)]2κ±(qr0)K2

(

ε(q)

T

)

. (52)

In the nonrelativistic approximation the expression for b±2 (r0) is reduced to

b±2 (r0, T, m) = −2
√

2

π
λ3r0

∫ ∞

0
dqκ±(qr0) exp

(

− q2

mT

)

. (53)

Substituting Eq. (48) into the last formula one gets the nonrelativistic expression for
b±2 (r0, T, m) at small r0 (r0 << λ)

b+
2 (r0, T, m) ≃ −2λ2r0

(

1 +
5

3
π2(r0/λ)4 + O

[

(r0/λ)6
]

)

, (54)

b−2 (r0, T, m) ≃ −6πr3
0

(

1 − 3π(r0/λ)2 +
682

45
π2(r0/λ)4 + O

[

(r0/λ)6
]

)

, (55)

in the opposite case r0 >> λ the nonrelativistic expression for b±2 (r0, T, m) can be obtained
using Eq.(50):

b±2 (r0, T, m) = −2

3
πr3

0



1 +
3
√

2

4

λ

r0

+
3

2π

λ2

r2
0

+ O





(

λ

r0

)3






 (56)

7 In the simplest version of the hard sphere model when the core radius r0 does not depend on

I, the formula (51) could be reduced to b
(i)
2 = b±2 (r0, T,m). However, in the case of realistic ππ

interaction every isospin state has its own r0(I) [17,16,18].

8Again, for the case of half-odd isospin particles the opposite rule would be valid.
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The pion thermal wave length at the temperature T = 50 ÷ 200 MeV ranges between
3 ÷ 6 fm. From Eq. (56) one sees that the classical formula [15]

b±2 (r0, T, m) ≈ −2

3
πr3

0 (57)

(the particle volume multiplied by 4) would give a reasonable approximation only at unreal-
istically large hard core radius r0 ≥ 50 fm. The hard core radii found from the ππ-scattering
are much smaller: r0 = 0.60 fm in the S0 state [18] and r0 = 0.17 fm at I = 2 [16]. (No
evidence of hard core repulsion was found in P1-state (I=L=1)). In this case the value of
b+
2 (r0, T, m) can be estimated from formula (54). The results are presented in Fig.1. It is

seen that in contrast to the classical case the quantum treatment leads to a rather strong
dependence of the second CI on the temperature (approximately proportional to 1/T ) even
in the nonrelativistic approximation. Numerical calculations show that relativistic effects
make this dependence even stronger and essentially reduce at high temperature the CI with
respect to its nonrelativistic value (see Fig. 1). Both relativistic and nonrelativistic quan-
tum formulae give a much (1÷ 2 orders of magnitude) larger value than those given by the
classical formula (57): 0.45 fm3 and 0.01 fm3 for r0 = 0.60 fm r0 = 0.17 fm, respectively.

As can be seen from Fig.1, the relativistic effects cannot be ignored even at relatively
low temperatures. Therefore, only the relativistic formula (52) is used in the following
calculations.

IV. RESONANCE ATTRACTION

The phase shifts of ππ elastic scattering can be approximately described by assuming
that the attractive parts of the interaction appear due to the propagation of resonances in
the s-channel of the reaction (see [16–18,20] and references therein).

The distinctive feature of the resonance interaction is the rapid growth of the phase shift
by π radian in the vicinity of the pion momentum qr, which is related to the resonance mass
Mr:

Mr = 2
√

q2
r + m2 . (58)

In the limit Γr → 0 (Γr is the resonance width) the derivative of the phase shift can be
approximated by the Dirac delta-function:

dδL,I(q)

dq
≈ πδ(q − qr) . (59)

In this approximation, which we will call the ’narrow resonance approximation’ (NRA), the

expression (39) for b
(i)
2 yields:

b
(i)
2 ≈ 1

g2

∑

r

(2Ir + 1)(2Lr + 1)
φ(T ; Mr)

[φ(T ; m)]2
, (60)

where Ir, Lr and Mr are, respectively, the resonance’s isospin, spin and mass, with the index
r running over all resonances in the two-pion system.
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Eq.(60) allows to rewrite the expression for the grand canonical partition function (14)
in the following form

Z(V, T, µ) = exp

[

V

(

∞
∑

l=1

b
(0)
l zl +

∑

r

zr

)]

, (61)

where

zr = φ(T ; Mr) exp
(

2µ

T

)

(62)

is the absolute activity of the resonance r with degeneration factor gr = (2Ir + 1)(2Lr + 1).
The expression (61) is nothing else than the partition function for a mixture of ideal gases
of pions and two-pion resonances9. This recovers the well known result of Ref. [21] that
narrow resonances contribute to the partition function as an ideal gas of stable particles.
The quantitative criterion for an applicability of the NRA was found to be [21]

Γr << T . (63)

The resonances appearing in ππ-scattering do not satisfy this criterion: most of them (ρ(770),
f0(980), f2(1270) , ρ3(1690)) have widths comparable with a typical temperature of the
hadron gas and the width of f0(400 − 1200) (known also as the σ) is a few times larger
then the temperature. Therefore, it is necessary to take into account the finite width of the
resonances.

The scalar-isoscalar resonances contribution to the ππ-phase shift in the S0 state can be
parametrized in the following way [17]:

tan δr(q) =
q

qr

M2
r

ε(q)

Γr

M2
r − ε2(q)

, r = σ, f0(980) . (64)

For parametrization of nonzero (iso-)spin resonances we shall use the following formula [20]

tan δr(q) =

(

q

qr

)2Lr+1
MrxrΓr

M2
r − ε2(q)

DLr
(qrRr)

DLr
(qRr)

, r = ρ(770), f2(1270), ρ3(1690), (65)

where xr is the inelasticity, i.e. the decay fraction of the resonance into two pions, Rr is the
so-called interaction radius and the functions DL(z) are given by the formulae

D1(z) = 1 + z2

D2(z) = 9 + 3z2 + z4 (66)

D3(z) = 225 + 45z2 + 6z4 + z6 .

The resonance parameters are given in the Table I.

9 The fact that the resonance gases are classical is an artifact of the second cluster approximation.

The quantum correction would appear from the 4-th and higher cluster integrals for the interacting

pions.
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It is easy to see that if a resonance lies far from the threshold:

Mr − 2m >> Γr (67)

both formulae are reduced to

tan δr(q) ≈
Γr/2

Mr − ε
(68)

In this case the activity of the resonance can be represented in the form

∑

r

zr =
2I0
∑

I=0

∑

L

′
∫ ∞

2m
dεζ(ε)(2I + 1)(2L + 1)φ(T ; ε) exp

(

2µ

T

)

, (69)

where the resonance profile function is given by the Breit-Wigner formula:

ζ(ε) =
1

2π

Γr

(ε − Mr)2 + (Γr/2)2
(70)

From this we conclude that the procedure of Ref. [4] where the profile function was postulated
to be

ζ(ε) =
ξΓr

(ε − Mr)2 + (Γr/2)2
(71)

with normalization constant ξ fixed by the condition

∫ ∞

2m
dε

ξΓr

(ε − Mr)2 + (Γr/2)2
= 1 (72)

becomes valid in the limit (67). The σ-resonance obviously does not satisfy this condition,
even for the ρ(770) the difference Mr − 2m is only about 3 times larger then the width. We
have calculated the contributions of these two resonances into the second cluster integral
b
(i)
2 using the parametrizations (64) and (65) and compare them with the corresponding

approximate values found in the framework of the procedure of Ref. [4]:

b
(i)
2 =

1

m4T [gK2(m/T )]2
∑

r

∫ ∞

0
dqε2(q)

ξΓr

(ε − Mr)2 + (Γr/2)2

dδLI(q)

dq
K2

(

ε(q)

T

)

. (73)

and in the NRA (60). The results are shown in Figs. 2 and 3. As can be seen from Fig.2,
for σ-resonance the both approximations essentially underestimate the CI. It is interesting
to mention that at T > 150 MeV the formula of Ref. [4] gives slightly worse result than even
that of the NRA. In the case of the ρ-resonance this formula systematically overestimates
the CI in contrast to the σ case. The role of the resonance width becomes small at high
temperatures and all three formulae give comparable results in both (σ and ρ) cases.
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V. INTERACTING PION GAS

Both type of interaction: hard core repulsion and resonance attraction are present in
the pion gas. The phase shift for ππ-scattering in the S0 state at the center of mass energy
below 1 GeV can be represented as a sum of three terms [16–18]:

δ00(q) = δσ(q) + δf0
(q) + δBG(q) . (74)

The background term δBG is related to the hard core repulsion

δBG(q) = −r0q , r0 = 3.03 GeV−1 (75)

and two first terms describe attraction due to the resonances σ and f0 and are parametrized
by the formula (64). The contributions of the S0 state to the CI are shown in Fig.4. The
attractive part is larger in absolute value than the repulsive part, so that total contribution
of the S0 state is positive.

The interaction in the S2 state has a purely repulsive nature (no exotic resonances with
isospin I = 2 have been found). The phase shift can be successfully fitted by the hard core
formula:

δ02(q) = −r0q , r0 = 0.87 GeV−1 . (76)

As it is seen from Fig.4 the absolute value of the negative contribution of S2 state into the
CI is slightly larger than that of the positive contribution of the S0 state, so that these two
quantities almost cancel each other. The resulting contribution of the S-state into CI is
negative and a few times smaller than those of the S0- and S2-states separately. Due to the
small value of the total S-state contribution into CI the P1 state becomes important already
at relatively low temperature.

The phase shifts of ππ-scattering in P1, D2 and F1 states can be parametrized by the
formula (65) [20]10. The results are presented in Fig.5. At small temperatures T < 80 MeV
both the S- and P -wave give comparable contributions to the CI. At higher temperatures, the
P -wave dominates. The D- and F -waves add small corrections to the CI at T > 140 MeV.
The contribution of higher waves is assumed to be negligible.

It should be mentioned that at very low temperatures, T < 30 MeV, the total CI becomes
negative, in agreement with the results of Ref. [23] for the isotopically symmetric pion gas,
while at high temperatures attraction dominates over repulsion.

The exact CI is also compared in Fig.6 to various approximations widely used for the
hadron gas analysis. It is seen that ignoring repulsion between pions overestimates the CI
by more than 35%. On the other hand, the NRA underestimates the CI by at least 20%.
At low temperatures T < 120 MeV both approximations become completely unreasonable.
If one ignores both the finite resonance width and the repulsion (it corresponds to the ideal
gas of pions and resonances) these two errors partially cancel each other. The simplest

10The background and higher pole terms which are present in the formulae of Ref. [20] were found

to give a negligible contribution to the CI and are dropped in the present consideration.
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approximation, surprisingly enough, appears to give better results than the both more com-
plicated ones. (There remains, however, discrepancy up to about 15% at high temperatures).
This means that both effects, the repulsion and the finite resonance width, should be taken
into account simultaneously. Including either of these effects without another one increases
rather than decreases the numerical errors with respect to the simplest IG model of pion
and two-pion resonances.

Comparing the CI b
(i)
2 with the ideal gas CI b

(0)
2 (see Fig. 8) one observes that the

interactions give essential contribution to the CI already at T = 70 MeV. At T > 150 MeV
the interaction part b

(i)
2 clearly dominates over Bose effects related to b

(0)
2 .

To estimate the influence of the second CI on the thermodynamical properties of the
pion gas we have calculated the particle density in the second cluster approximation

n = n0 + 2b
(i)
2 z2, (77)

where

n0 =
∞
∑

l=1

lb
(0)
l zl =

g

2π2

∫ ∞

0
dp p2 1

exp
(√

p2+m2−µ

T

)

− 1
(78)

is the density of the ideal pion gas (without resonances). The calculations were done assum-
ing that the chemical equilibrium, µ = 0, is reached.

The temperature dependence of the ratio n/n0 is shown in Fig.7. It can be seen that all
approximations give consistent results up to 5÷ 15%. A rather small errors is explained by
the fact that at low temperatures (T < 120 MeV), where ignoring either the finite resonance
width or the repulsion between pions leads to huge errors in the value of cluster integral, the
activity of the equilibrium pion gas is small and the contribution of the second term of the
cluster expansion into the value of particle density is not important. On the other hand, at
large temperatures, where the second term becomes comparable with the first one, the both
approximation provide more exact value of the cluster integral. Again, the ideal gas model
provides the best approximation at all temperatures, except very large ones T > 180 MeV.

This conclussion is close to that of Ref. [8], where it was pointed out that the interacting
pion gas in the second cluster approximation only slightly differs from the ideal gas of pions
and ρ-mesons due to the nearly exact cancellation of the contributions from S-wave attractive
and repulsive channels. That is the repulsive interactions and the contribution of the broad
σ-resonans can be dropped simultaneously. The aim of our further consideration is to
take properly into account the hard-core repulsive interactions. In this case the σ-meson
contribution must be retained.

It is seen from Fig.7 that the contribution of the second term of cluster expansion to the
particle density is comparable to that of the ideal gas. There is no reason to expect that
the higher terms are negligible. The purpose of the next section is to go beyond the second
cluster approximation.

VI. VAN DER WAALS EQUATION

Taking into account the attractive parts of higher cluster terms is straightforward: as-
suming that the attractive interaction of three and more pions is dominated by resonance
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interaction (as it was in the two pion case) we just add the activities of all the lightest pion
resonances to the grand canonical partition function logarithm:

logZ(V, T, µ) = logZ(0)(V, T, µ) + V
∑

r

zr, (79)

where the first term in the right hand side is the partition function of the ideal pion gas and
the sum in the second term runs over not only the two pion resonances (Table I), but also
includes the resonances decaying into three and more pions (Table II). For the activity of
each resonance species we use the following expression

zr =
∫ ∞

Nrm
dεζ(ε)grφ(T ; ε) exp

(

µr

T

)

. (80)

The chemical potential µr of a resonance decaying into Nr pions is proportional to the pion
chemical potential:

µr = Nrµ (81)

In our calculations we assume chemical equilibrium: µr = µ = 0. For the two-pion reso-
nances from Table I we put

ζ(ε) =
1

π

dδ

dε
(82)

and use the parametrization (64) and (65), so that the contribution of two pion resonances

is reduced to the b
(a)
2 z2, where the b

(a)
2 is an attractive part of the CI b

(i)
2 shown in Fig. 8.

For the resonances from Table II we use the Breit-Wigner profile function (71) with the
normalization (72) 11. In the NRA the expression (80) is reduced to Eq. (62).

It follows from Eq. (79) that the pressure and the pion density are calculated from
the ideal gas model for pion and pion resonances with finite width (that is the repulsive
interactions are ignored):

p(T, µ) = p0(T, µ) + T
∑

r

zr = p0(T, µ) +
∑

r

pr(T, µr) (83)

n(T, µ) = n0(T, µ) +
∑

r

Nrzr = n0(T, µ) +
∑

r

Nrnr(T, µr), (84)

where the ideal pion gas pressure p0 is given by the formula

p0(T, µ) = −gT
∫

d3p

(2π)3
log

[

1 − exp

(

µ −
√

p2 + m2

T

)]

, (85)

11The formula of Ref. [4] does not lead to large error because of the dominating contribution

comes from the narrow resonance ω(782), for which both creteria (63) and (67) are fulfilled. On

the other hand, lack of detailed experimental information on the phase shifts in the vicinity on

the broad πρ- and πσ-resonances as well as large uncertainties in their masses, width and decay

fractions make impossible and useless the application of the more exact formula.
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with the particle density of the ideal pion gas given by Eq. (78).
To take into account the hard core repulsion between pions and resonances we use the

excluded volume Van der Waals model [24]. In the framework of this model the pressure
pV dW (T, µ) of one-component gas of particles with the excluded-volume parameter v0 can
be found from the transcendental equation

pV dW (T, µ) = pid
(

T, µ − v0p
V dW (T, µ)

)

, (86)

where pid(T, µ) is the pressure of corresponding ideal gas. The particle density nV dW (T, µ)
is related to that of ideal gas by the expression

nV dW (T, µ) =
nid

(

T, µ − v0p
V dW (T, µ)

)

1 + v0nid (T, µ − v0pV dW (T, µ))
, (87)

The above model can be straightforwardly generalized to a multi-component gas, if one
assumes that all particle species have the same excluded-volume parameter. In our calcula-
tions we put it to be the same for the pions and pion resonances. The standard procedure of
derivation of the Van der Waals equation in the statistical physics shows that the excluded-
volume parameter is equal to the absolute value of the repulsive part of the second virial
coefficient [15]. Therefore, the excluded-volume parameter for the pions can be identified

with the repulsive part of the CI b
(i)
2 (See Fig. 8):

v0 =
∣

∣

∣b
(r)
2

∣

∣

∣ . (88)

Hence, to find the pressure of the interacting pion gas in the framework of the Van der Waals
excluded volume model we solve the transcendental equation

pV dW (T, µ) = p0(T, µ̃) +
∑

r

pr(T, µ̃r) (89)

µ̃ = µ − v0p
V dW (T, µ) ,

µ̃r = µr − v0p
V dW (T, µ) .

The particle density of the pions is found from

nV dW (T, µ) =
n0(T, µ̃) +

∑

r Nrnr(T, µ̃r)

1 + v0 [n0(T, µ̃) +
∑

r nr(T, µ̃r)]
(90)

The result of the calculation is shown in Fig. 9. It is seen that essential deviation
from the second order cluster expansion take place at the temperatures T >∼ 140 MeV. A
comparison with the ideal gas model of pions and pion resonances shows that the effects of
the hard-core repulsion are not cancelled by the effects of the finite resonance width. This
leads to an essential (up to 30%) suppression of the pion density with respect to the ideal
gas of pions and pion resonances.

VII. CONCLUSION

A quantum mechanical formula for the second cluster integral for the gas of relativistic
particles with hard-core interaction was derived and analyzed. In the nonrelativistic classical
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limit, this formula is reduced to the expression used in Refs. [2,3]. In the quantum case,
however, the value of the cluster integral appears to be much larger in magnitude than
the corresponding classical value and, in contrast to the classical case, depends on the
temperature even in the nonrelativistic limit. It has been demonstrated that the second
cluster integral for the pion gas all reasonable temperatures is far away from the classical
limit. Its repulsive part, which can be interpreted as proper particle volume, is an order
of magnitude larger than it could be expected from the classical evaluation. It should be
mentioned that not only quantum effects but also relativistic ones are important in the case
of pion gas. Surprisingly, they essentially modify the proper pion volume even at relatively
low temperatures T ∼ 30 MeV.

The role of finite resonance width in the second cluster integral was studied. It was estab-
lished that the widely used add hoc formula [4] with the normalized Breit-Wigner resonance
profile is unsuitable for broad resonances lying close to the threshold, the parametrization
of the experimental phase shifts should be used instead. The most striking example of this
kind is the σ-resonance. Our analysis shows that in the case of σ-resonance the calculations
with the normalized Breit-Wigner profile can give even worse result than simple zero-width
approximation.

At the second order of cluster expansion, due to the presence of broad resonances in
the ππ-system, the negative contribution of the hard core repulsion into the cluster inte-
gral almost canceled by positive contributions of finite resonance widths in a rather broad
temperature range. Because of this fact, the thermodynamical properties of the interacting
pion gas in the second cluster approximation appear to be quite similar to those of the ideal
gas of pions and two-pion resonances: the error in the value of the particle density does
not exceed a few percents. Surprisingly, the account for finite resonance widths without
account for the hard core repulsion as well as consideration of the hard core repulsion when
the resonance widths are neglected worsen rather than improve a simple ideal gas model of
pions and zero-width pion resonances. Both effects should be either neglected or taken into
account simultaneously.

This does not mean, however, that we can restrict ourselves to the simple ideal gas picture
of pions and zero-width pion resonances at all temperatures. As it has been demonstrated,
when the temperature is sufficiently high (T >∼ 140 MeV), the pion density becomes so
large that the cluster expansion cannot be truncated at the second order. In contrast to the
second cluster approximation, an appreciable deviation from the ideal gas model is observed,
when the higher order terms are taken into account. In the framework of Van der Waals
excluded-volume model, the pion density appears to be up to 30% lower than that of the
ideal pion-resonance gas. Hence, at high particle densities the correct model of the pion gas
must include all pion resonances and the resonance width as well as the repulsive interactions
between the particles must be taken into account.

It should be emphasized that, if the model takes properly into account the hard core
repulsion, there is no reason to drop the σ-resonance. It must be included into the model
along with other resonances.

The developed in the present paper approach will be used for calculation of excluded
volumes of other hadrons. This will allow us to study the influence of hard core repulsion
on the properties of realistic hadron gas including (anti-)nucleons and strange particles by
means of multicomponent Van der Waals equation [9]. We expect essentially larger excluded

17



volume effects for nucleons: preliminary calculations show that the proper volume of the
nucleon is essentially (by the factor 2÷2.5) larger than that of the pion. Thus the hard core
repulsion may essentially modify the particle number ratios in comparison to widely used
ideal resonance gas model.
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TABLES

TABLE I. Parameters for the lightest resonances in ππ-system.

Resonance Isospin Spin Mass Width Elasticity Interaction

Ir Lr Mr (MeV) Γr (MeV) xr radius Rr (GeV−1)

σ 0 0 585 385 — —

f0(980) 0 0 993.2 54.32 — —

ρ(770) 1 1 777 155 1 3.09

f2(1270) 0 2 1281 205 0.84 4.94

ρ3(1690) 1 3 1713 228 0.26 6.38

TABLE II. Parameters for the lightest resonances decaying into 3 and more pions.

Resonance Degeneration Mass Width Elasticity Number of pions in

factor gr Mr (MeV) Γr (MeV) xr the final state Nr

ω(782) 3 782 8.41 0.888 3

φ(1020) 3 1019 4.43 0.155 3

h1(1170) 3 1170 360 ∼ 0.5 3

b1(1235) 9 1230 142 ∼ 1 4

a1(1260) 9 1230 425 ∼ 1 3

f1(1285) 3 1282 24 0.35 4

π(1300) 3 1300 400 ∼ 1 3

a2(1320) 15 1318 107 0.70 3
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FIG. 1. The dependence of the CI b+
2 (r0, T,m) on the temperature in the hard sphere model.

The formula (52) is used for the relativistic calculations. The results are compared to the nonrel-

ativistic approximation (53).
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FIG. 2. The contribution of σ-resonance to b
(i)
2 (T ). The exact value is compared to those

calculated in narrow resonance approximation (NRA) and using normalized Breit-Wigner (BW)

profile of the resonance (73).
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FIG. 3. The contribution of ρ(770) to b
(i)
2 (T ). The exact value is compared to those calculated

in narrow resonance approximation (NRA) and using normalized Breit-Wigner (BW) profile of the

resonance (73).
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FIG. 5. The partial ππ-wave contribution into the second CI b
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FIG. 6. The exact value of the CI b
(i)
2 compared to various approximations: ”No repulsion” —

the repulsive part of the ππ-interaction is dropped out; ”NRA” — narrow resonance approximation;

”NRA no repulsion” — both repulsion and final resonance width are ignored.
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FIG. 7. The ratio of the particle density of the pion gas calculated in the second order cluster

expansion to the particle density of the ideal pion gas. Various approximations are shown: ”No

repulsion” — the repulsive part of the ππ-interaction is dropped out; ”NRA” — narrow resonance

approximation; ”NRA no repulsion” — both repulsion and final resonance width are ignored.
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FIG. 9. The pion density in the Van der Waals excluded volume model compared to the ideal

gas of pions and broad pion resonances (no repulsion), to the ideal gas of pions and zero width pion

resonances (NRA no repulsion) and to the pion gas in the second order cluster approximation.
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