
Concurrent Controller and Simulator
Neural Network Development in the

Evolutionary Robotics Process

Grant Warren Woodford

Submitted in fulfilment of the requirements for the degree of Magister Scientiae in

the Faculty of Science at the Nelson Mandela Metropolitan University

March 2016

Supervisors: Mathys C. du Plessis & Christiaan J.
Pretorius

DECLARATION

I, Grant Warren Woodford (205014224), hereby declare that the dissertation for the

degree of Magister Scientiae is my own work and that it has not previously been

submitted for assessment or completion of any postgraduate qualification to another

University or for another qualification.

Grant Warren Woodford

Acknowledgements

Over the course of my studies, I have received support and encouragement from

a great number of individuals. I would like to express my sincere gratitude to my

supervisors Mathys du Plessis and Christiaan Pretorius for their continuous support

for my studies and providing much feedback, motivation and immense knowledge. I

could not have imagined having a better pair of supervisors.

The research presented here would not have been possible without all the years

of preliminary research conducted by my supervisors. I would also like to sincerely

thank the NMMU Computing Sciences department for providing me an opportunity

to join the department as a student and for giving me access to the resources required

to successfully complete this research. I have also enjoyed my experiences lecturing

one of the modules in the department and providing technical assistance to some of

the students.

I thank my fellow students for providing a stimulating, supportive and fun en-

vironment that kept me productive over the last two years. In particular, I am

grateful to Michael Louwrens for providing the expert advice and technical exper-

tise required for this research to be possible. I would like to thank my family for

their support provided over the years.

The financial assistance of the National Research Foundation (NRF) towards

this research is hereby acknowledged (UID number: 89526). Opinions expressed

and conclusions arrived at, are those of the authors and are not necessarily to be

attributed to the NRF.

Abstract

Evolutionary Robotics (ER) is a field of study that has shown much promise in

automating the development of robotic controllers and morphologies. The use of

simulators as an alternative to real-world robots is often employed to reduce the

time required to develop effective controllers in the ER process. However, the devel-

opment of adequate simulators is often time-consuming, complex and may require

specialised knowledge. Simulators are usually developed before the ER process can

begin. Additionally, accurate simulators can be computationally expensive and still

be unable to account for all the peculiarities in the robotic system.

Simulators are either constructed from physics models and/or are based on em-

pirically collected data. The vast majority of simulation approaches are based on

physics models which can become complex and require special knowledge. Alter-

native approaches to robot simulation that simplify and automate the modelling of

real-world phenomena are therefore important. Some researchers have developed

non-traditional approaches to robot simulation, such as using Artificial Neural Net-

works (ANNs) to model real-world phenomena. Simulators that are constructed

from ANNs are called Simulator Neural Networks (SNNs) and are traditionally con-

structed before the ER process can begin and require the sampling of real-world

experimental data. SNNs have good noise tolerance, generalization ability, accu-

racy, efficiency and simplicity and can be automatically constructed with little spe-

cialised knowledge. There are, however, disadvantages to the traditional approach

to SNN construction, namely the simulator must be created before the ER process

can be initiated and a large amount of behavioural data must be collected in order

to accurately predict future behaviours.

Many of the current approaches for improving the simulator development process

use bi-directional approaches for simulator development. Bi-directional approaches

allow for the simulator to receive feedback from controllers run on real-world robots.

The feedback is used for simulator improvement which helps create better controllers

and ideally reduces the gap between the robot’s behaviours in simulation and reality.

The improvement of the simulator and controllers together reduces the number of

robot evaluations required to develop effective controllers. However, bi-directional

approaches have mainly been researched for physics-based simulators which have

their associated disadvantages.

Due to the advantages that SNNs and bi-directional approaches have both in-

dividually shown, and in order to address some of the identified challenges in tra-

ditional simulator construction, research presented here proposes and demonstrates

that SNNs and controllers can be developed concurrently in a bi-directional ap-

proach during the ER process. The proposed approach developed in this research

thus benefited from some of the advantages of both SNNs and bi-directional ap-

proaches.

In order to prove the viability of the proposed approach, prototypes were de-

veloped that successfully demonstrated that SNNs and controllers could be concur-

rently developed for real-world robots performing trajectory planning tasks. A sim-

ple wheeled robot and complex snake-like robot were selected for this work. These

robots continually evaluated controllers in the real-world and motion tracking tech-

niques were used to collect behavioural data which was used to train the SNNs.

The SNNs were continually trained and used during the ER process to evolve better

controllers that were subsequently evaluated on the real-world robots, generating

even more relevant behavioural data.

It was found that the approach developed in this research was successfully val-

idated by using the two robot prototypes. Robotic behaviours were adequately

simulated by using the developed SNNs which were used to evolve controllers for

trajectory planning tasks. This research also conducted a first-time investigation

into the viability of using SNNs to simulate a complex snake-like robot.

Influential factors, related to the success of the approach, were studied by inves-

tigating various parameter settings of the proposed algorithm. The success of the

proposed approach was benchmarked for various settings of the parameters, such

as the controller population size, mutation rate and the tournament selection sizes.

Lastly, the scalability, generality and limitations of the approach developed in this

research were also investigated.

Contents

1 RESEARCH CONTEXT 1

1.1 Introduction . 1

1.2 Background . 1

1.3 Hypothesis . 3

1.4 Research Objectives . 3

1.5 Methodology . 4

1.6 Dissertation Layout . 4

2 RELATED WORK 7

2.1 Introduction . 7

2.2 Artificial Neural Networks . 7

2.2.1 The Artificial Neuron . 8

2.2.2 Neural Networks . 11

2.2.3 ANN Training . 13

2.3 Evolutionary Computation . 14

2.3.1 Evolutionary Algorithms . 14

2.3.2 Evolutionary Robotics . 16

2.4 Simulators . 18

2.5 Simulator Neural Networks . 22

2.6 Concurrent Controller and Simulator

Development . 24

i

2.6.1 Anytime Learning Algorithm 26

2.6.2 Estimation-Exploration Algorithm 28

2.6.3 Transferability Approach . 30

2.6.4 Intelligent Trial-and-Error Learning 32

2.6.5 Back to Reality Algorithm . 33

2.6.6 Model-fitting based on Empirical Data 35

2.7 Conclusions . 36

3 PROPOSED APPROACH AND EXPERIMENTAL METHOD 38

3.1 Introduction . 38

3.2 Proposed Approach . 38

3.3 Motivations . 41

3.4 Experimental Method . 42

3.5 Conclusions . 43

4 KHEPERA PROTOTYPE 45

4.1 Introduction . 45

4.2 Experimental Procedure . 45

4.2.1 Hardware and Data Capture 46

4.2.2 Controllers . 46

4.2.3 The Simulator . 49

4.3 Prototype Experiments . 51

4.4 Prototype Results . 53

4.5 Parameter Comparisons . 56

4.6 Parameter Comparison Results . 60

4.6.1 Success Rate . 60

4.6.2 Diversity . 63

4.6.3 Best and Worst Performing Parameter Combinations 66

4.7 Conclusions . 71

5 SNAKE ROBOT PROTOTYPE 75

5.1 Introduction . 75

5.2 Snake Locomotion . 75

5.3 Experimental Procedure . 78

5.3.1 Hardware and Data Capturing 79

5.3.2 Controllers . 80

5.3.3 Simulator . 84

5.4 Pre-computed Snake Robot Simulator 85

5.4.1 Experimental Procedure for Pre-computed Simulator 86

5.4.2 Validation Experiments . 88

5.5 Pre-computed Snake Robot Simulator Results 89

5.5.1 Simulator Accuracy . 89

5.5.2 Trajectory Planning Results 93

5.5.3 Discussion . 97

5.6 BNS Prototype Experiments . 98

5.7 BNS Prototype Results . 99

5.8 Parameter Comparisons . 107

5.9 Parameter Comparison Results . 109

5.9.1 Success Rate of the BNS Approach 109

5.9.2 Diversity . 113

5.9.3 Best and Worst Performing Parameter Combinations 119

5.10 Conclusions . 121

6 CONCLUSIONS AND FUTURE WORK 126

6.1 Introduction . 126

6.2 Overview of Results and Outcomes of Research Objectives 126

6.3 Contributions . 130

6.4 Limitations . 131

6.5 Recommendations for Future Investigation 132

6.6 Summary . 133

Appendices

A IEEE (SSCI) 2015 Paper 142

B Robotics and Autonomous Systems 151

List of Figures

1.1 Structure diagram for the dissertation 6

2.1 Artificial Neuron . 8

2.2 Activation functions . 10

2.3 A Feed-Forward Neural Network (Engelbrecht, 2007) 12

2.4 The Evolutionary Robotics Process applied to the evolution of an

ANN-based controller . 17

2.5 Anytime Learning System . 27

2.6 Estimation-Exploration Algorithm process 29

3.1 Bootstrapped Neuro-Simulation . 40

4.1 Khepera III mobile robot (K-Team, 2014) 46

4.2 Khepera controller morphology . 47

4.3 Simulator Neural Networks of the Khepera robot 50

4.4 Task 1 prototype trial runs . 55

4.5 Task 2 prototype trial runs . 55

4.6 Task 3 prototype trial runs . 56

4.7 Success rate versus number substitute real-world evaluations for the

tested controller mutation rates . 61

4.8 Success rate versus number substitute real-world evaluations for the

tested controller population sizes . 62

v

4.9 Success rate versus number substitute real-world evaluations for the

tested controller evolution tournament sizes 64

4.10 Success rate versus number substitute real-world evaluations for the

tested real-world tournament sizes . 65

4.11 Average fitness error versus diversity after 100 substitute real-world

evaluations . 67

4.12 Success rate versus diversity after 100 substitute real-world evaluations 68

4.13 Diversity versus number of substitute real-world evaluations for Task 1 69

4.14 Diversity versus number of substitute real-world evaluations for Task 2 70

4.15 Diversity versus number of substitute real-world evaluations for Task 3 70

4.16 Potential success indicator versus number of substitute real-world

evaluations for the top 10 parameter combinations 72

4.17 Experimental run over time . 73

5.1 Lateral undulation of snake . 76

5.2 Side-winding locomotion of snake . 77

5.3 Snake Robot . 78

5.4 Robot Morphology . 80

5.5 Controller morphology . 83

5.6 Simulator Neural Networks of the snake robot 86

5.7 Predicted versus expected displacement in the x-direction for the yel-

low tracking marker . 90

5.8 Predicted versus expected displacement in the y-direction for the yel-

low tracking marker . 91

5.9 Predicted versus expected displacement in the x-direction for the

green tracking marker . 91

5.10 Predicted versus expected displacement in the y-direction for the

green tracking marker . 92

5.11 Experimental run, trial 1 . 95

5.12 Experimental run, trial 2 . 96

5.13 Experimental run, trial 3 . 96

5.14 Task 1 . 100

5.15 Task 2 . 100

5.16 Task 1, first trial run at the 19th real-world evaluation 102

5.17 Task 1, second trial run at the 23rd real-world evaluation 103

5.18 Task 1, third trial run at the 31st real-world evaluation 104

5.19 Task 2, first trial run at the 42nd real-world evaluation 105

5.20 Task 2, second trial run at the 53rd real-world evaluation 106

5.21 Task 2, third trial run at the 46th real-world evaluation 106

5.22 Success rate versus number substitute real-world evaluations for the

tested controller population sizes . 111

5.23 Success rate versus number substitute real-world evaluations for the

tested controller mutation rates . 112

5.24 Success rate versus number substitute real-world evaluations for the

tested controller evolution tournament sizes 114

5.25 Success rate versus number substitute real-world evaluations for the

tested real-world tournament sizes . 115

5.26 Average fitness error versus diversity after 100 substitute real-world

evaluations grouped by population size 116

5.27 Success rate versus diversity after 100 substitute real-world evalua-

tions grouped by mutation rate . 118

5.28 Success rate versus diversity after 100 substitute real-world evalua-

tions for a population size of 400 and grouped by mutation rate . . . 120

5.29 Diversity versus number of substitute real-world evaluations for Task 1122

5.30 Diversity versus number of substitute real-world evaluations for Task 2123

List of Tables

4.1 Parameters for controller evolution 51

4.2 Prototype run-times . 54

4.3 Parameter values used for comparisons 57

5.1 Parameters for controller evolution 88

5.2 Trial run details . 95

5.3 Parameters for controller evolution 98

5.4 Prototype run-times . 101

viii

List of Abbreviations

Abbreviation Term

ANN Artificial Neural Network

BNS Bootstrapped Neuro-Simulation

BTR Back to Reality Algorithm

EA Evolutionary Algorithm

EC Evolutionary Computing

EEA Estimation-Exploration Algorithm

ER Evolutionary Robotics

GA Genetic Algorithm

SNN Simulator Neural Network

Chapter 1

RESEARCH CONTEXT

1.1 Introduction

This research was concerned with the formulation of a new approach for the con-

current development of simulators and controllers using a non-standard simulation

approach. Prototypes were developed using the new approach and validated through

experimental work. The following section (Section 1.2) gives the background knowl-

edge related the hypothesis given in Section 1.3. The research objectives that fo-

cused this work are presented in Section 1.4. Section 1.5 describes the methodology

followed in this research and lastly, the dissertation layout is given (Section 1.6).

1.2 Background

Evolutionary Robotics (ER) is a field of study that deals with the automatic, arti-

ficial evolution and optimisation of particular traits of autonomous robotic systems

[Brooks, 1992; Miglino, Lund, and Nolfi, 1995]. ER is closely related to the field

of Evolutionary Computation (EC), as ER utilises many EC concepts. A controller

is used to manage the interactions between a robot and its environment [Floreano,

Husbands, and Nolfi, 2008]. The ER process requires the evaluation of large numbers

of controllers which can be impractical on real-world hardware. Robotic simulators

1

CHAPTER 1. RESEARCH CONTEXT 2

thus provide a way of speeding up the ER process [Zagal and Ruiz-del Solar, 2007].

A large number of controllers can be evaluated in simulation and thus can evolve to

better perform the desired behaviours before being validated on a real-world robot.

The development of a simulator is typically required before the ER process can be-

gin. Traditional simulators are often time-consuming and complex to create and can

suffer from large disparities between controller behaviour in simulation and reality

[Pretorius, 2010]. This can result in ineffective controllers being created by the ER

process. Commonly used simulation approaches often require specialised knowledge

and the automation of the simulator development process can be difficult.

Many researchers have made great strides in developing and improving tradi-

tional simulators for the ER process (Section 2.6). One general approach that

stands out is the simultaneous improvement of the simulator and controllers in a bi-

directional manner (Section 2.6). During the bi-directional process, controllers are

evaluated on a real-world robot and feedback on behaviour is collected to improve the

simulator. The simulator is used to evolve controllers for a particular purpose, such

as searching for uncertainties in the simulator search space [Bongard and Lipson,

2005] or for accomplishing a particular mission [Mouret, Koos, and Doncieux, 2012].

The improved controllers are periodically selected for real-world evaluations and be-

havioural data is collected, thus providing more targeted feedback on behaviour for

simulator improvement. This allows both the simulator and controllers to improve

together in a bi-directional way. This cyclical approach can automate much of the

improvement in the effectiveness of the simulator without requiring many real-world

controller evaluations. The effort needed to create a comprehensive simulator before

the ER process can begin is therefore reduced.

Bi-directional approaches have mainly been applied to physics-based simulators

(Section 2.6). However, alternative simulation approaches exist that are simpler to

construct and improve. Artificial Neural Networks (ANNs) can be used as an al-

ternative to a physics-based simulator to predict robot behaviours (Section 2.5), re-

ferred to as Simulator Neural Networks (SNNs). SNNs have the same disadvantages

CHAPTER 1. RESEARCH CONTEXT 3

as any empirically constructed simulator, such as the collection of large amounts of

experimental data or the loss of generality where small changes in the robotic system

may require the development of a completely new simulator [Pretorius, 2010]. No

known work has investigated the viability of combining a bi-directional and SNN

approach.

1.3 Hypothesis

This research hypothesises that viable controllers and simulators can be concurrently

created by using bi-directional principles and SNNs. Controllers are evolved for a

particular purpose using ER. In order to minimize the specialised knowledge and

human intervention required for the simulator development process, SNNs are used

for the simulation approach. It is proposed that a novel technique for the concurrent

development of controllers and SNNs is possible and such an approach would be

advantageous in that there would be no need to develop a simulator before the

ER process. Since the simulator is constructed during the ER process, potentially

fewer real-world evaluations would be required and disparities between reality and

simulation could be reduced.

1.4 Research Objectives

The following research objectives were identified:

• Develop a new approach for the concurrent creation of SNNs and controllers

in the ER process.

• Identify and test the various factors pertinent to the success of the proposed

approach.

• Consider the scalability and generality of the approach by assessing different

robot morphologies.

CHAPTER 1. RESEARCH CONTEXT 4

• Compare the effectiveness of the new approach for tasks of varying levels of

complexity.

• Consider the limitations of the approach and identify future potential.

1.5 Methodology

Research related to SNNs and bi-directional approaches is investigated in Chapter 2.

A review of related work will aid in the identification of what needs to be considered

for the proposal of a new approach to controller and simulator development. This

work proposes a real-time controller and simulator development procedure where

the chosen simulation approach uses SNNs (Chapter 3). Prototypes were developed

of the proposed approach and were validated using real-world robots (Chapters 4

and 5). The prototypes were validated by using two different robot morphologies

and by creating controllers for specific tasks in simulation and observing how well

behaviours developed in simulation transfer to the real-world robot. The validation

experiments also determined the influential factors and limitations of the approach

developed in this research by conducting a large number of experiments completely

in simulation for various parameter settings. Lastly, conclusions are drawn and the

future potential of this work are discussed (Chapter 6).

1.6 Dissertation Layout

The dissertation layout is illustrated in Figure 1.1. This diagram illustrates the

different chapters contained in this dissertation. Chapters 2 and 3 present the back-

ground to the problem statement, the proposed approach is introduced and motiva-

tions for the approach are discussed. The experimental method used to prove the

viability of the proposed approach is also presented. Chapters 4 and 5 then discuss

the experimental work conducted in order to validate the viability of the proposed

CHAPTER 1. RESEARCH CONTEXT 5

approach. Finally, conclusions are drawn in Chapter 6. The chapters will address

the following issues:

• Chapter 2: Related work that is applicable to this study is presented. The-

ory relating to the ER process is discussed and existing studies related to

robotic simulators are presented. Various bi-directional approaches that can

be applied to simulator development are reviewed. The use of SNNs as an

alternative to physics-based simulators is discussed.

• Chapter 3: Motivations for the need to develop a new approach for the

development of controllers and SNNs are discussed. The proposed approach

developed as part of this research is presented and the experimental method

used to prove the viability of this approach is discussed.

• Chapter 4: This chapter covers the experimental work performed on the first

experimental robot (a differentially-steered robot). The procedures used to

investigate the proposed approach are discussed and details of the experiments

are presented. Results of the experimental work are presented and discussed.

• Chapter 5: The experimental work related to the second experimental robot

(a snake-like robot) is presented. In order to prove the viability of the pro-

posed approach to scale to a more complex robot, experimental work was

conducted using the proposed approach on the snake-like robot. The results

of the experimental work are presented and discussed.

• Chapter 6: An overview of the experimental work is discussed and outcomes

of the research objectives are presented. The contributions of this work are

mentioned and limitations of the proposed approach are discussed. Lastly,

recommendations for future research are also proposed.

• Appendix A: The conference paper that was accepted and presented at

the 2015 IEEE Symposium Series on Computational Intelligence (IEEE SSCI

2015) is given.

CHAPTER 1. RESEARCH CONTEXT 6

• Appendix B: Presents the paper accepted and published in the Robotics

and Autonomous Systems (affiliated with the Intelligent Autonomous Systems

(IAS) Society) journal.

Chapter 2: Related Work

Chapter 3: Proposed

Approach and

Experimental Method

Chapter 4: Khepera

Robot Prototype

Chapter 5: Snake Robot

Prototype

Chapter 6: Conclusions

and Future Work

Background, motivations

and proposed approach

Experimental work to

determine the viability of

the proposed approach

Figure 1.1: Structure diagram for the dissertation

Chapter 2

RELATED WORK

2.1 Introduction

The following section discusses some of the important theory behind ANNs (Section

2.2). Evolutionary Computing (EC) techniques are presented and related to Evolu-

tionary Robotics (ER) in Section 2.3. The importance of simulators in robotics and

the ER process are discussed in Section 2.4, while SNNs are described in Section 2.5.

The existing work related to bi-directional approaches in ER is presented in Sec-

tion 2.6 which motivates why this work focuses on developing a new bi-directional

approach. Conclusions of this chapter are given in Section 2.7.

2.2 Artificial Neural Networks

The ability of the human brain to perform tasks such as perception and motor control

has prompted research into the algorithmic modelling of biological neural systems

which has resulted in the creation of ANNs [Engelbrecht, 2007]. ANNs have been

shown to outperform conventional technologies in areas such as pattern recognition,

certain types of data processing, data-mining, real-time adaptive control of robots

and the modelling of many complex phenomena [Maren, Harston, and Pap, 2014].

The following sections describe the creation and functioning of Artificial Neurons

7

CHAPTER 2. RELATED WORK 8

(Section 2.2.1) and how these neurons can be combined to form ANNs (Section

2.2.2). Lastly, methods for training ANNs are addressed in Section 2.2.3.

2.2.1 The Artificial Neuron

ANNs are composed of computational units called Artificial Neurons (ANs) (Figure

2.1) that are connected by directed links. A single AN takes as input a vector of

numeric signals (x1, x2, ..., xn) and returns a single numerical output y.

x2 w2 net f

Activation

function

y

Output

x1 w1

wn+1

−1

Bias

...

xn wn

Weights

Inputs

Figure 2.1: Artificial Neuron

For the AN illustrated in Figure 2.1, each weight wi is associated with an input

signal xi (for i = 1, 2, 3, ..., n). Each weight strengthens or weakens its associated

input. The net input of an AN is typically calculated as the weighted sum of all

input signals (Equation (2.1)) where n represents the number of input signals. Every

input xi and weight wi are real numbers. The input node xn+1 is called the bias

and typically has a value of -1 which allows for the more effective representation

of certain functions [Engelbrecht, 2007]. The inputs propagate through the neuron

connections towards the neuron. The strength of the propagation depends on the

given inputs and the associated weights of the connections.

CHAPTER 2. RELATED WORK 9

net =
n+1∑

i=1

xiwi (2.1)

The computed net signal of the AN is used as the input for the activation func-

tion. The resulting output of the activation function is returned as the output of the

AN. Activation functions are important for scaling and manipulating inputs and to

ensure that an entire network of unit nodes can model non-linear functions [Russell

and Norvig, 2010]. There are different types of activation functions that can be

employed and most are monotonically increasing such that the range of outputs is

either,

f : R→ [0, 1] (2.2)

or

f : R→ [−1, 1] (2.3)

An exception is the linear activation function which is monotonically increasing

on a range [−∞,∞]. The monotonically increasing property of activation functions

is required for certain types of ANN training algorithms. The linear, step, ramp and

sigmoid activation functions are described below and illustrated in Figure 2.2.

A commonly used function is the linear activation function (Figure 2.2a) and is

given by equation (2.4) where m is the slope and v is the computed net signal.

f(v) = mv (2.4)

The step function (Figure 2.2b) maps inputs to one of two scalar output values

which are commonly required for binary classification schemes. Commonly used

output values for the step function are -1 and 1. The step activation function is

given in equation (2.5).

CHAPTER 2. RELATED WORK 10

f(v) =

−1 if v < 0

1 otherwise

(2.5)

The ramp activation function makes use of a high and low threshold. This

function is illustrated in Figure 2.2c and given in equation (2.6). A fixed value is

returned for inputs above the high threshold and another value is returned for inputs

below the low threshold. The ramp function acts similarly to the linear function

between the high and low thresholds.

−10 −5 0 5 10
v

−10

−5

0

5

10

f(
v
)

(a) Linear function

−10 −5 0 5 10
v

−1.0

−0.5

0.0

0.5

1.0

f(
v
)

(b) Step function

−10 −5 0 5 10
v

−1.0

−0.5

0.0

0.5

1.0

f(
v
)

(c) Ramp function

−10 −5 0 5 10
v

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(
v
)

(d) Sigmoid function

Figure 2.2: Activation functions

CHAPTER 2. RELATED WORK 11

f(v) =

−1 if v ≤ −1

v if − 1 < v < 1

1 otherwise

(2.6)

Another commonly used activation function is the sigmoid function (Figure 2.2d)

which is given by equation (2.7), where λ is the steepness of the curve.

f(v) =
1

1 + e−λ(v)
(2.7)

The following section discusses how Artificial Neurons can be networked together

to form Artificial Neural Networks (ANNs).

2.2.2 Neural Networks

An ANN consists of one or more interconnected groups of ANs. There are various

multilayer ANN topologies that have been developed. Certain applications require

that different ANN topologies be used. The Feed-Forward Neural Network (FFNN)

is a common topology and is illustrated in Figure 2.3. Each circular dot represents

a single AN and the arrows represent connections between ANs. The ANs are

commonly grouped into different functional layers. A FFNN typically consists of

three layers, namely the input layer, hidden layer and the output layer. There is

typically only a single hidden layer, but the number of hidden layers can be zero

or more. The hidden layer enables the FFNN to more accurately model complex

functions [Engelbrecht, 2007].

The signals propagate through each layer from the input layer, through the

hidden layer and lastly to the output layer. FFNNs do not have any feedback

connections to previous layers. Neurons in the input layer take as input values

z1, ..., zi, ..., zI and the bias input zI+1. These input values are multiplied by their

associated weights and the results are used as the input values for the hidden layer

neurons y1, ..., yj, ..., yJ . The hidden layer neurons calculate their respective net

CHAPTER 2. RELATED WORK 12

Figure 2.3: A Feed-Forward Neural Network [Engelbrecht, 2007]

(Equation (2.1)) results and one of the activation functions mentioned in the previous

section is applied. The outputs from the hidden layer neurons are used as input

values for the output layer neurons o1, ..., ok, ..., oK . The net results of these inputs

are calculated for each output neuron and the activation functions are applied. The

results are returned as the final output of the FFNN.

Given a specific input, the output for neuron ok is calculated as shown in equation

(2.8) [Engelbrecht, 2007].

ok = fok(
J+1∑

j=1

wk,jfyj(
I+1∑

i=1

vj,izi)); 1 ≤ k ≤ K (2.8)

where fok and fyj are the activation functions of the neurons ok and yj, respectively.

I and J are the number of input and hidden neurons respectively.

CHAPTER 2. RELATED WORK 13

2.2.3 ANN Training

The output produced by an ANN is dependent on the inputs used and the strengths

of the weights connecting the neurons. Weights are optimised by using a training

process to allow the ANN to approximate a function based on the training data set.

The training set consists of input-output pairs. Each one of these input and ideal

output pairs is called a training pattern. Another set of data, referred to as the

validation set, is commonly used to test the generalization ability and accuracy of

the trained ANN. The validation set is not presented to the ANN during training.

Supervised learning algorithms can be used to optimize ANN weights by reducing

the errors between the ANN’s predicted outputs and the training data set’s ideal

outputs. The standard measure of the error between predicted and ideal outputs

is called the mean squared error (MSE) [Engelbrecht, 2007]. A common algorithm

for minimizing the MSE is called Backpropagation which makes use of Gradient

Descent optimization techniques [Russell and Norvig, 2010].

The MSE is calculated using equation (2.9) [Engelbrecht, 2007].

MSE =
1

N

N∑

p=1

K∑

k=1

(tk,p − ok,p)2 (2.9)

where N is the total number of patterns in the training set and K is the number of

neurons in the output layer. The terms tk,p and ok,p represent the ideal and predicted

outputs respectively for the kth output neuron and the pth training pattern in the

training set. Once training is complete, the ANN is able to approximate the outputs

of arbitrary inputs that were not presented during the training process.

A problem that can occur during the training process is called over-fitting [Russell

and Norvig, 2010]. Over-fitting occurs when the error between the ANN’s predicted

output and the training set’s ideal output is driven to a very low value, however,

patterns not presented during training have a large error. This is because the ANN

is over-trained to memorize the training set and is not trained to generalize for

predictions on unseen inputs. Over-fitting can be avoided by observing the errors

CHAPTER 2. RELATED WORK 14

of a validation set during the training process and by stopping before over-fitting

occurs.

2.3 Evolutionary Computation

Evolutionary Computation (EC) is a field within Computational Intelligence that

is well-suited to finding adequate solutions to continuous and discontinuous opti-

misation problems [Engelbrecht, 2007]. In EC, Evolutionary Algorithms (EA) are

inspired by natural evolution, whereby survival of the fittest is the main goal. Sur-

vival is achieved through reproduction. Individuals with weak characteristics die

off while fitter individuals are more likely to reproduce and hopefully pass on those

characteristics that aid in the survival of their offspring. The Evolutionary Robotics

(ER) process makes use of the Darwinian principle of survival of the fittest that

can be accomplished by using EAs for the automatic creation of robotic controllers

[Floreano et al., 2008].

2.3.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) represent a collection of EC paradigms that make use

of evolution to perform a stochastic search through the solution space to determine

the optimal solution to a specific problem [Engelbrecht, 2007]. The pseudo-code of

a generic EA is given in Algorithm 1 [Engelbrecht, 2007].

The EA initializes a population consisting of randomly generated, individual

solutions. Each solution consists of a number of genes which represent encoded

traits that determine behaviour. A fitness function is a performance measure of how

well an individual can perform a given task, relative to other individuals. If the

fitness function is not properly designed, the EA might not converge on a solution

at all or could converge on an inappropriate solution [Beasley, Martin, and Bull,

1993].

When every individual in the population has been assigned a fitness value, the

CHAPTER 2. RELATED WORK 15

Algorithm 1: The Evolutionary Algorithm

Let generation t = 0

Initialize a population, C(0), of n individuals

while stopping condition(s) not true do

Evaluate the fitness of each individual in C(t)

Create offspring through reproduction operators

Use selection operators to create a new population C(t+ 1)

Advance to the next generation: t = t+ 1

end

EA produces offspring through reproduction. Individuals of the next generation are

sourced either through cross-over operations between parents or directly from the

parents. The cross-over process between parents only takes place with a certain

probability, known as the cross-over rate [Engelbrecht, 2007]. Parents are chosen for

reproduction based on selection operators that are biased towards more fit individ-

uals.

Upon completion of the reproduction process, the offspring can undergo a muta-

tion process. Mutations introduce small, random changes to the genes of individuals

which increases the diversity of the population [Beasley et al., 1993]. To ensure that

fit individuals are not mutated to the point of distortion, mutations are usually

small and only take place with a certain probability, called the mutation rate [En-

gelbrecht, 2007]. Particular implementations, where mutations are large during the

early stages of the EA, but decrease exponentially as the fitness of individuals con-

verge, are known to improve convergence speed and accuracy [Engelbrecht, 2007].

The above process is iterated for many generations, ideally leading to a highly op-

timised solution.

Possible stopping conditions could be a limit on the number of generations exe-

cuted or could place a limit on the number of fitness evaluations. These limits should

be large enough to allow adequate exploration of the solution space [Engelbrecht,

CHAPTER 2. RELATED WORK 16

2007]. A convergence criterion that determines if the population has converged can

also be used together with other stopping conditions to determine when to termi-

nate the EA. Other examples of convergence criteria are: when no improvement is

observed over a certain number of generations, if there is little change to the in-

dividuals of a population over consecutive generations, or if an acceptable solution

has been found [Engelbrecht, 2007].

2.3.2 Evolutionary Robotics

Controllers manage the interactions between the robot and its environment. Sen-

sors and actuators of the robot provide input data to the controller, which in turn

produces appropriate output responses, such as motor movements [Miglino et al.,

1995]. Controllers have been developed by using techniques such as Genetic Algo-

rithms [Pratihar, 2003], Evolutionary Programming [Koza, 1992] and Evolutionary

Strategies [Schwefel, 1993].

The focus need not lie exclusively with the creation and evolution of controllers.

Robot morphologies and controllers can be evolved in a simulator, thus allowing

optimizations of both the controller and the morphology according to some desired

behaviour [Lund, 2003].

ER seeks to automate the development of robot controllers through the use

of EAs, as opposed to creating controllers manually. This is important because

as robots, environments and tasks become more complex, the manual creation of

controllers becomes less feasible [Sofge, Potter, Bugajska, and Schultz, 2003].

Figure 2.4 illustrates the ER process applied to an ANN-based controller. A pop-

ulation of individuals is initialized by randomly generating them. All subsequent

generations of individuals are created by using selection operators (A). Each indi-

vidual consists of a set of encoded characteristics which form an individual’s genes

(B). Each set of characteristics is actually a representation of an ANN-based con-

troller that can be used to manage a robot’s interaction with its environment (C).

CHAPTER 2. RELATED WORK 17

Figure 2.4: The Evolutionary Robotics Process applied to the evolution of an ANN-

based controller [Floreano et al., 2008; Pretorius, 2010]

The population of controllers is evaluated to determine how well each individual

performs a given task. The fitness evaluations are done by transferring controllers

to a real-world robotic system or an approximation is used by means of a computer

simulation (D). Once the population of controllers has been assigned fitness values,

the next step is the creation of a new population of controllers (a new generation) by

using the cross-over and mutation operators (E). The above process is repeated for

many generations until some stopping condition is met. An ANN-based controller

was used in the above mentioned ER process but, any type of controller could be

utilized.

CHAPTER 2. RELATED WORK 18

2.4 Simulators

Evaluating controllers on real-world robots is time-consuming and can damage hard-

ware through mechanical wear [Floreano and Mondada, 1994; Zagal and Ruiz-del

Solar, 2007]. The evaluation of poorly performing controllers can especially dam-

age robot hardware [Floreano et al., 2008], because of erratic robotic movements

during the early stages of evolution. Real-world controller evaluations may require

frequent manual interventions [Floreano et al., 2008], such as repositioning the robot

or restoring the initial environment conditions. Manual interventions may not be

feasible for the large number of evaluations required in the ER process. The time

taken to perform hardware evaluations increases with the complexity of the robotic

system, but there are often time constraints in performing these evaluations [Zagal

and Ruiz-del Solar, 2007].

Simulators provide a way to overcome the issues inherent in hardware evalua-

tions. Simulators allow controllers to explore the search space faster than would be

possible using real-world hardware, by reducing the number of physical evaluations

required [Lund and Miglino, 1996].

Much research in ER is concerned with overcoming the challenges in using sim-

ulators effectively [Bongard, 2013]. Challenges in simulator design are inaccuracies

and/or oversimplification in the modelling of certain phenomena. Oversimplified or

inaccurate simulators may result in controllers that rely too heavily on peculiarities

that exist only in simulation, but are not present when the controller is evaluated

in reality, commonly referred to as the reality-gap problem [Jakobi, Husbands, and

Harvey, 1995]. Oversimplification can be avoided by using highly accurate simula-

tors. However, even highly accurate simulators cannot model reality perfectly and

will inevitably contain inaccuracies [Floreano et al., 2008]. Highly accurate simu-

lators can also be computationally expensive [Miglino, Nafasi, and Taylor, 1994].

Scalability can become an issue where the time taken to evaluate controllers can

grow substantially with increased complexity in the robotic system [Bongard, 2013;

CHAPTER 2. RELATED WORK 19

Matarić and Cliff, 1996]. Thus, simulators ideally need to provide highly accurate

representations of reality whilst not being too computationally expensive to operate.

Simulators need to compromise between providing a highly accurate representation

of reality and computational efficiency to allow for the evaluation of many candidate

controllers [Pretorius, 2010].

Simulators can be broadly categorized into three classes, namely physics-based

simulators, empirical models and hybrid models [Pretorius, 2010]. Physics-based

simulators use physics models to describe the interaction between the robot and its

environment. Empirical models are simulators that are created from experimentally

collected data. Hybrid models are a combination of both physics and empirical

models.

Simulators can be categorized as either using a behaviour-based representation or

a knowledge-based representation, with various intervening levels in the modelling of

the underlying robotic system [De Nardi, 2010]. A knowledge-based representation

entails the principled formulation of the different components of the underlying

system, resulting in clearly defined structures and parameters that have physical

interpretations. An example of one of these components is the modelling of the

friction between the robot and the operating surface [Echeverria, Lassabe, Degroote,

and Lemaignan, 2011]. Behaviour-based representations are focused on modelling

the underlying behaviours of the robotic system based on experimentally collected

data [De Nardi, 2010]. For example, the behaviour representations are less interested

in modelling frictional properties that form part of the robot’s behaviour and more

interested in predicting the robot’s actual behaviours.

An advantage of simply aiming to model behaviours is that simulator creation

often requires little in-depth knowledge of the underlying system, however, the mod-

els usually do not provide meaningful real-world interpretations [De Nardi, 2010].

Certain implementations of behaviour-based models can provide meaningful physi-

cal structures such as Genetic Programming [De Nardi, 2010; Schmidt and Lipson,

2009].

CHAPTER 2. RELATED WORK 20

Knowledge-based representations have the advantage of providing a clear struc-

ture of the model. Models contain parameters that usually have real-world inter-

pretations which are useful for being able to understand and explain the underlying

systems. However, knowledge-based models may become complex due to a large

number of possible components of the system and the inability to accurately model

certain phenomena.

For any given simulation approach, the model taxonomy can also be described

based on the amount of prior knowledge built into the model [De Nardi, 2010].

The term white-box refers to models that are perfectly known and are constructed

entirely from prior knowledge and physical insight. Models that are based, in part,

on some form of specialised knowledge and empirical data are known as grey-box.

Models that do not make use of physical insights or prior knowledge of the underlying

system are black-box. An example of a black-box model is when ANNs are used to

model particular phenomena [De Nardi, 2010].

The Open Dynamics Engine (ODE) [Smith, 2007] is a popular simulator that

uses a physics-based engine. Physics-based simulators, like ODE, make use of rigid

body dynamics, Newtonian mechanics and collision detection algorithms to simulate

reality [Laue, Spiess, and Röfer, 2006]. It has been shown that physics-based simu-

lators are able to effectively evolve controllers that are able to retain their evolved

behaviour when transferred to reality [Bongard and Lipson, 2004; Jakobi et al., 1995;

Moeckel, Perov, Nguyen, Vespignani, Bonardi, Pouya, Sproewitz, van den Kieboom,

Wilhelm, and Ijspeert, 2013]. However, physics-based simulators cannot perfectly

simulate real-world systems [Bongard, 2013; Floreano and Mondada, 1994]. This

is because of the inherent difficulty in taking into account all the physical aspects

present, such as weight, friction and inertia. Highly accurate physics-based simula-

tors are however possible [Carpin, Stoyanov, Nevatia, Lewis, and Wang, 2006], but

the design of such systems may require specialised knowledge about complex physics

models and environments [Wittmeier, Jäntsch, Dalamagkidis, and Knoll, 2011]. The

development and use of accurate simulators can be financially costly, as additional

CHAPTER 2. RELATED WORK 21

expertise may need to be acquired or ER researchers will need to invest much of

their time acquiring such expertise [Floreano and Mondada, 1994].

A technique called minimal simulation has been shown to reduce the complexities

inherent in simulating real-world phenomena [Jakobi, 1998]. This approach only tries

to model those aspects in the robotic system that are relevant for developing the

required behaviours. All aspects that are not modelled are randomly varied such that

evolving controllers only exploit those phenomena that have been modelled. This

can result in computationally efficient simulators that can approximate complex

environments well enough to evolve controllers that exhibit the required behaviours

in reality [Floreano et al., 2008]. A potential disadvantage to minimal simulations

is that it may be difficult to identify which aspects of the system are relevant.

Specialised knowledge may be required to identify those parts of the system that

need to be simulated.

An alternative approach to the use of a complex simulator is the use of a sim-

plified model for controller evaluations. The developed behaviours will likely not

transfer well to reality, however, reinforcement learning or evolutionary techniques

can then be applied in the real-world. This approach has been effective in reducing

the number of real-world evaluations required to develop certain behaviours [Abbeel,

Quigley, and Ng, 2006].

The use of empirical models as simulators has been proposed [Lund and Miglino,

1996; Nolfi and Parisi, 1995]. Models are constructed from data sampled from real-

world experiments which can be used to simulate robotic sensors [Miglino et al.,

1995]. This results in the creation of black-box models where no prior knowledge

about the dynamics governing the robotic system is built into the models. Empirical

models can often be more effective than using physics models because empirical

models are better able to capture the fuzzy characteristics of real-world sensors

[Lund and Miglino, 1996].

Empirical models allow for the use of various data-mining methods to be used in

the simulator development process. For example, experimental data can be divided

CHAPTER 2. RELATED WORK 22

into several clusters and the data in each cluster can be modelled separately [Kamio

and Iba, 2004]. The use of multiple simulators to develop behaviours in simulation

can reduce the occurrence of solutions that exploit inaccuracies or peculiarities that

exist in simulation but are not present in reality [Togelius, De Nardi, Marques,

Newcombe, Lucas, and Holland, 2007].

Many methods of constructing empirical models use primitive data analysis tech-

niques, such as interpolation or lookup tables [Lund and Miglino, 1996]. Empiri-

cal models can, however, be created by using more advanced techniques, such as

NARMAX polynomials [Nehmzow, Kerr, and Billings, 2009] or Gaussian Processes

[Lizotte, Wang, Bowling, and Schuurmans, 2007]. Genetic Programming techniques

have been shown to be particularly effective in the automatic generation of symbolic

equations that explain real-world phenomena from experimental data [De Nardi and

Holland, 2008; Schmidt and Lipson, 2009]. The notion of using ANN-based simula-

tors (SNNs) to model real-world phenomena has also been proposed and successfully

applied by some researchers [Lee, Nehmzow, and Hubbold, 1998, 1999; Nakamura

and Hashimoto, 2007; Pretorius, du Plessis, and Cilliers, 2013; Togelius et al., 2007].

Empirical modelling techniques such as Genetic Programming and SNNs are able to

automate the construction of simulators without the need for specialised knowledge.

The following section discusses recent work related to SNNs.

2.5 Simulator Neural Networks

SNNs are trained by using data, experimentally collected, from real-world experi-

ments. SNNs have been utilized as simulators in the ER process to create controllers

for tasks such as path following, obstacle avoidance, light approaching behaviour and

inverted pendulum stabilisation [Pretorius et al., 2013]. SNNs have been used to

model the dynamics of miniature vehicles and rotorcraft [De Nardi, 2010]. Research

has also shown that SNNs can simulate the dynamics of the pendulum swing-up

problem [Nakamura, Saegusa, and Hashimoto, 2007].

CHAPTER 2. RELATED WORK 23

The conventional approach to creating SNNs and evolving controllers using the

ER process is as follows [Pretorius et al., 2013]:

1. Randomly generated commands are performed on a real-world robot. As a

result of these evaluations, the robot moves around the environment and data

is collected by using motion tracking and sensor logging techniques.

2. When sufficient data has been collected, it is used to train SNNs to predict

the real-world robot’s motor and sensor behaviour.

3. The trained SNNs are used to evaluate the fitness of candidate controllers

during controller evolution.

4. At the end of the evolutionary process, the best controller is transferred and

evaluated on the real-world robot.

Advantages of SNNs are that they possess good generalisation abilities, predic-

tion accuracy and can handle large quantities of noise [Pretorius et al., 2013]. The

construction of SNNs can be simpler than that of a physics-based simulator, because

no prior knowledge is required of the physics governing the robotic systems. It has

also been shown that SNNs can be computationally more efficient, more accurate

and can result in greater transferability to reality when compared to physics-based

models [Pretorius, du Plessis, and Gonsalves, 2014].

There are, however, certain disadvantages to developing simulators before the

ER process. The simulator must be created before the ER process can be initiated.

The simulator may be trained to simulate real-world behaviours that are often not

required for the successful evaluation of controllers for the goal task. Many time-

consuming real-world evaluations may be needed to create a simulator. These SNNs

remain static and thus are unable to take into account changes due to mechanical

wear or environmental factors. Once trained, the SNNs are only able to handle a

specific robot and environment. Any changes in the environment or robot can result

in the need to completely retrain the simulator. In light of all these disadvantages,

CHAPTER 2. RELATED WORK 24

research into alternative approaches to SNN creation could be of benefit to ER.

The following section discusses research related to bi-directional approaches for the

development of simulators and controllers.

2.6 Concurrent Controller and Simulator

Development

This section discusses bi-directional approaches to creating simulators and con-

trollers. Evolving controllers, in reality, is not always feasible (Section 2.4). This

leads to many ER experiments being conducted in simulation. Therefore, dealing

with the reality-gap problem is an important area of research and many approaches

can be taken. One obvious approach to eliminating the reality-gap problem is to

evolve controllers on real-world hardware only [Floreano and Mondada, 1994]. A

combined approach can also be taken where controllers are evolved in simulation

then transferred to a real-world robot and the ER process is continued in reality

[Pollack, Lipson, Ficici, Funes, Hornby, and Watson, 2000]. It may be more ef-

fective to evolve a simplified robot performing a simple task. Once an effective

controller has been found, additional layers of complexity are added incrementally

[Brooks, 1992].

Controllers are more likely to fail to cross the reality-gap if levels of noise in

a simulator are not sufficient [Jakobi et al., 1995]. This makes it necessary for

the simulator to use a high level of noise or make use of data sampled directly from

reality, however neither of these approaches scale well, as the complexity is increased

[Bongard, 2013]. The inclusion of the correct amount of noise in simulation often

requires many hardware evaluations and manual tuning of the simulator [Mouret

et al., 2012]. Approaches that require less experimentation and manual tuning would

therefore be advantageous.

The one-directional transference of a controller from simulation to reality can

CHAPTER 2. RELATED WORK 25

be replaced by a more bi-directional approach. Researchers have proposed bi-

directional approaches that allow the optimisation process to alternate between the

simulator and the real-world [Bongard, Zykov, and Lipson, 2006a; Cully, Clune,

Tarapore, and Mouret, 2015; De Nardi and Holland, 2008; Grefenstette and Ram-

sey, 2014; Mouret et al., 2012; Zagal and Ruiz-del Solar, 2007]. This allows for the

collection of empirical data from real-world controller evaluations that continually

improve the simulator. The improving simulator develops better controllers which,

in turn, are evaluated in reality, providing more relevant feedback for simulator

improvement.

It has been proposed that robots should be able to maintain internal models of

themselves that can be used to predict a robot’s own behaviour [Bongard, Zykov,

and Lipson, 2006b]. Research has shown that using internal model based evolution

can reduce the number of physical hardware evaluations needed to evaluate con-

trollers [Keymeulen, Iwata, Kuniyoshi, and Higuchi, 1998]. A population of internal

models can be maintained and evolved to better represent the real-world model,

thus allowing a robot to maintain an internal model of reality that can be used to

predict its own behaviour.

A physics model is a specific example of an internal model. The use of a physics-

based simulator requires the tuning of many physics-model parameters. As robots

and their environments become more complex, hand-tuning physics-based param-

eters becomes more difficult. To overcome this, research into bi-directional ap-

proaches for autonomously evolving the parameters of a physics-based simulator

has shown much success in producing controllers that perform tasks adequately on

real-world robots [Bongard and Lipson, 2004; Moeckel et al., 2013]. A disadvantage

of this approach is that a physics-based model still needs to be constructed from

prior knowledge and parameters optimised based on real-world observations.

Bi-directional approaches minimise the number of real-world evaluations required

to develop effective simulators [Bongard and Lipson, 2004]. There is also a reduc-

tion in the amount of manual intervention required to develop effective simulators

CHAPTER 2. RELATED WORK 26

since much of the process is automated. Bi-directional approaches can automate the

building of physics models. Inaccuracies can be identified by comparing robot be-

haviours in simulation and in reality. The observed inaccuracies are then eliminated

by changing the simulator to match the real-world behaviours.

The following sections are all examples of bi-directional processes. The Any-

time Learning Algorithm is discussed in Section 2.6.1. The Estimation-Exploration

Algorithm (EEA) is described in Section 2.6.2. The Transferability Approach is

described in Section 2.6.3. The Intelligent Trial-and-Error Learning approach maps

the performance of various behaviours, which is discussed in Section 2.6.4. The

Back to Reality Algorithm (BTR) is described in Section 2.6.5 and models based on

empirical data are discussed in Section 2.6.6.

2.6.1 Anytime Learning Algorithm

The Anytime Learning approach has been applied to a cat-and-mouse case study

[Grefenstette and Ramsey, 2014]. Tracker and target agents played the role of cat

and mouse, respectively. The target agent follows a random speed and course while

the tracker agent tries to keep within a certain distance of its target without getting

too close. If the tracker is too close to the target, it will be detected and fail the

task. Agents have a set of sensors, such as the bearing, heading, speed and range

to the target agent. The tracker must control its direction and speed and is initially

unaware of the target’s detection range or speeds.

Grefenstette and Ramsey [2014] proposed the Anytime Learning approach for

continuous learning in changing environments. The approach consists of a popula-

tion of models and a population of controllers. The approach consists of two com-

ponents (Figure 2.5): the execution system and the learning system. A controller

consists of a knowledge base and decision maker. The knowledge base consists of

sets of situation-response rules which affected the decision maker’s strategies. The

execution system makes use of a decision maker that controls robot behaviour in

CHAPTER 2. RELATED WORK 27

the real-world environment, depending on the current strategy. Similarly, the learn-

ing system makes use of decision makers and knowledge bases to evaluate strategy

performances in simulation.

The population of simulation model parameters is maintained and judged against

real-world data to determine their accuracy and are updated when necessary by

the monitor. The best model parameters are used by the simulator for controller

evolution. The population of strategies contained in the test knowledge base is

evolved in simulation by means of a Genetic Algorithm (GA). The learning system

experiments with different strategies using the simulator to attempt to find a better

strategy for controllers.

Figure 2.5: Anytime Learning System [Grefenstette and Ramsey, 2014]

Real-world robot evaluations are monitored and used to improve simulator mod-

els which, in turn, are used to learn improved strategies for the knowledge base.

The monitor focused on measuring the real-world robot’s speed which was used to

estimate the mean and standard deviation parameters of the speed distribution used

by the simulation model. Two types of updates occurred in the approach. Firstly,

the learning system could find a better strategy for the decision maker (controller).

Secondly, the monitor could update the parameters of the simulator model based on

CHAPTER 2. RELATED WORK 28

the real-world observations. Once the simulator model parameters were updated,

the learning system tried to find a better strategy for controllers.

The approach showed stable improvements of behaviours over time. Performance

relied heavily on the design of the controller and the updating of the simulator

based on real-world observations [Zagal and Ruiz-del Solar, 2007]. The researcher

may require specialised knowledge about the dynamics of the robotic system being

simulated to effectively update the simulator [Zagal and Ruiz-del Solar, 2007]. Any-

time Learning requires the measurement of various real-world parameters that relate

to the simulator but, these measurements could be difficult to relate to simulator

parameters, such as friction, mass and many others.

2.6.2 Estimation-Exploration Algorithm

Bongard and Lipson [2005] proposed the Estimation-Exploration Algorithm (EEA)

that integrates robotic self-modelling into the ER process (Figure 2.6). The EEA

is a hybrid co-evolutionary algorithm for maintaining populations of models (esti-

mates of what the robot morphology looks like) and populations of tests (controllers

used to explore the simulator search space). After an adequate model is identified,

controllers are evaluated by using this model for the purpose of accomplishing a

particular goal task.

The EEA has been validated by using a four-legged, real-world robot with eight

degrees of freedom (robot shown in Figure 2.6). The robot consisted of two tilt

angle sensors and eight joint angle sensors. The goal task of the robot was to

achieve forward locomotion.

The search space of possible models included a large number of arrangements of

the limbs. The algorithms were shown to be effective in the handling of damage,

such as the removal or shortening of limbs. If the robot was damaged, the damage

was detected and models were improved in order to find a model that is better able

to account for the damage.

CHAPTER 2. RELATED WORK 29

The EEA uses a traditional physics-based simulator that models real-world phe-

nomena. Models consist of a set of parameters for the various physical properties of

the robot or its environment, such as leg positions, width and length of the body,

weight distributions, inertia, gravity and so on.

Figure 2.6: Estimation-Exploration Algorithm [Bongard et al., 2006a]

The EEA has two phases, namely, the estimation phase and the exploration

phase. For Figure 2.6, the estimation phase tests controllers designed to explore

the search space on a real-world robot (A). The robot’s real-world behaviours are

compared to the simulated models and a population of models are optimised on

their ability to predict real-world behaviours (B).

CHAPTER 2. RELATED WORK 30

Next is the exploration phase. A population of test controllers are optimised

based on their ability to create disagreement between models (C). This is to explore

uncertainties in the population of models [Bongard and Lipson, 2005]. The test con-

trollers seek to improve the simulator’s ability to generalize and eliminate possible

uncertainties in the modelling of reality. For example, a test controller is chosen

because the controller’s simulated behaviours are the most inconsistent amongst

the population of simulator models. Once the test controller has been evaluated

on the real-world robot, the models are improved to account for the observed be-

haviours. The exploration phase tries to find the next test controller that maximizes

disagreement between models.

The algorithm cycles between the exploration and estimation phases until some

stopping condition is met. Once a viable model is found, it is used to evolve con-

trollers to achieve the desired behaviour (D) and the best controller in simulation

is evaluated on the real-world robot (E). The cycle may continue to step (B) to

improve models or to generate new behaviours (F).

A major advantage of the EEA approach is the ability to detect and adapt to

unforeseen damage [Bongard et al., 2006a]. The EEA was the first demonstration of

a physical system being able to discern a sufficiently accurate model of itself without

human intervention and with little prior knowledge [Bongard et al., 2006a].

2.6.3 Transferability Approach

The Transferability Approach does not attempt to improve the simulator in any way,

but rather attempts to complement it [Mouret et al., 2012]. Simulators often have

limitations in the modelling of certain phenomena in order to increase computational

performance [Mouret et al., 2012]. If the simulator’s limitations are known during

the ER process, controllers could avoid solutions that rely on dynamics that have

not been accurately simulated.

The validation experiments employed a quadruped robot which had eight degrees

CHAPTER 2. RELATED WORK 31

of freedom. The controller consisted of a sinusoidal equation that determined the

angular positions of motors. The type of behaviours achieved by the robot were

dependent on the parameter settings of the sinusoidal equation. The robot’s goal

task was to cover the largest possible distance in 10 seconds. The experiments

initially followed a typical ER approach and controllers were evolved in simulation

and the final solution was evaluated on a real-world robot. The observed results

of this traditional approach showed a clear reality-gap problem. The follow-up

validation experiments made use of the Transferability Approach and also compared

it to various other approaches, such as the traditional ER approach, direct evolution

on the robot and surrogate modelling of the fitness function. The results of the

experiments demonstrated that the Transferability Approach generally obtained the

fittest solutions in reality and resulted in the closest similarity between simulation

and reality.

The Transferability Approach proposes a multi-objective fitness function com-

posed of two parts. One part estimates how well a solution may transfer from

simulation to reality (called the transferability function) and another part estimates

how well the desired behaviour is achieved in simulation [Koos, Mouret, and Don-

cieux, 2013]. The transferability of solutions can be measured in various ways, such

as by comparing the trajectory of the centre of mass, angular positions of joints,

contact times of legs with the ground or the distances covered in simulation and

reality. The inputs for the transferability function can be the genotype of the con-

troller. Alternatively, the transferability function could take as input the behaviours

observed in simulation that do not match up to reality, such as the robot jumping

unrealistically when limbs hit the ground. The transferability function for the ex-

perimental work took as input the 3D-trajectory behaviour of the centre of mass of

the robot in simulation (calculated as the summed Euclidean distance between each

point’s position in reality and simulation along the robot’s trajectory).

It may be difficult to map the controller genotype space to the transferability

measurement because the relationship may be highly complex. Many genotypes

CHAPTER 2. RELATED WORK 32

would result in a large number of inputs, such as ANN controllers. Alternatively,

deciding on which particular behaviour to map for the transferability measure could

require knowledge of the weaknesses of the simulator. Effective transferability mea-

surements are highly dependent on the chosen task and on the simulator.

A physics-based simulation was used to estimate the distance covered by the

quadruped robot when evaluated. The transferability function was used to esti-

mate how well a controller’s behaviour transferred from simulation to reality. The

transferability function can be implemented by means of an ANN, Support Vector

Machine or any other regression/interpolation method which can be trained to pre-

dict the differences between the robot’s behaviour in simulation and reality through

some transferability measure [Mouret et al., 2012]. The experimental work used the

Inverse Distance Weighting method to model the transferability function [Mouret

et al., 2012]. The transferability function can be trained either continually or before

the ER process has begun. The continual training approach is the preferred method

because the controller candidates, used to generate training data, are closer to the

desired behaviour [Mouret et al., 2012].

2.6.4 Intelligent Trial-and-Error Learning

Cully, Clune, Tarapore, and Mouret [2015] have demonstrated an Intelligent Trial-

and-Error Learning algorithm that utilizes a pre-computed behaviour performance

map of a large number of behaviours. The behaviour performance map stores how

well the robot performs for a given behaviour. This approach is mainly designed

to allow a robot to compensate for unanticipated damage without a lengthy self-

diagnosis procedure or the need to update the simulation model. The Intelligent

Trial-and-Error approach was also successful in allowing the robot to adapt to chang-

ing environments.

The approach was validated by using a hexapod robot with 18 degrees of freedom.

The controller consisted of a gait with 36 parameters that described the movement of

CHAPTER 2. RELATED WORK 33

joints. Behavioural measures was a six-dimensional space that defined the duration

of contact each robot leg had with the surface for the particular controller and the

corresponding performance was the speed the robot. An optimization algorithm was

used to search for a large number of high performance controllers using a standard

physics-based simulator and a behavioural performance map was generated that

assigns fitnesses to the various behavioural measures.

When the behavioural performance map has been computed, the map can be

used to search for high performance solutions to be evaluated on a real-world robot.

Initially, the predicted performances stored in the map have a low confidence level

as the real-world performance is uncertain. Once a controller has been evaluated

in reality, the map can be updated with the real-world performance and given a

high confidence. During updates, similar nearby behaviours are also adjusted with

confidence values proportional to how close the behaviours are to the behaviour

evaluated in reality. For example, if the performance of a given behavioural mea-

surement was obtained by evaluating a controller on the real-world robot, then the

behavioural performance map was updated by using the real-world performance and

similar behaviours were also updated based on how close they were to the evaluated

behaviour.

Once the behavioural performance map had been computed, the robot was shown

to quickly develop effective controllers in less than 30 seconds for the undamaged

robot and just over a minute for the damaged robot. A disadvantage of this approach

is that it requires the evaluation of a large number of behaviours in simulation before

the behavioural performance map is generated and controllers can be evaluated in

reality. However, the performance map only needs to be generated once and it can

be saved for future use.

2.6.5 Back to Reality Algorithm

Zagal and Ruiz-del Solar [2007] proposed the Back to Reality (BTR) algorithm. The

CHAPTER 2. RELATED WORK 34

BTR algorithm co-evolves populations of controllers and simulators. The differences

between controllers evaluated in simulation and in reality are identified and used

as feedback for simulator improvement. A physics-based simulator and the Sony

AIBO four-legged robot were utilized for the validation experiments. The simulator

consisted of 12 parameters which defined the mass distributions, weights, frictional

properties, gravity and the model of the joint torque and model parameters. The

simulator optimization process tries to improve the parameters of the physics model.

Controllers consisted of a set of 20 or 25 parameters (depending on the given goal

task) that defined the robot’s gait. Controllers were optimised either for walking

speed or for kicking a ball.

The fitness function used to evolve simulators is the average difference between

a controller’s fitness in simulation versus reality [Zagal and Ruiz-del Solar, 2007].

The simulator optimization process tries to minimize 4fitness:

4fitness =
1

m

m∑

k=1

|fsk − frk| (2.10)

A GA selects the best m controllers and each is evaluated on a population of

simulators. For each simulator, the m robot controllers are evaluated and given

corresponding fitness values fsk (s: simulator; k=1,...,m). The controllers are also

evaluated in reality and have fitness values frk (r: reality; k=1,...,m). A GA is also

used to evolve a population of simulators by using equation (2.10) as the fitness

function.

BTR has been shown to require fewer real-world evaluations than many other

bi-directional approaches [Zagal and Ruiz-del Solar, 2007]. The BTR approach is

not reliant on any particular simulation approach. The BTR algorithm is simple

and requires only the 4fitness as a fitness function for optimizing the population

of simulators. This is in contrast with many existing methodologies which require

the explicit measurement and comparison of simulator related variables [Zagal and

Ruiz-del Solar, 2007].

CHAPTER 2. RELATED WORK 35

2.6.6 Model-fitting based on Empirical Data

Kamio and Iba [2004] and De Nardi and Holland [2008] propose that models can

be automatically constructed with little prior knowledge by collecting experimental

data during real-world controller evaluations. The experimental data is used to

autonomously build models that simulate robot behaviours. These models are used

to evolve future controllers for achieving specific behaviours.

st+1 = f(st, at) (2.11)

The real-world environment can be modelled by means of prediction models

(Equation (2.11), [Kamio and Iba, 2004]), which are expressed as a state of the

environment (st), an action (at) and the resultant state after an action is applied

(st+1). Prediction models are created by using reinforcement learning techniques

[Kamio and Iba, 2004] or evolutionary algorithms [De Nardi and Holland, 2008] and

data obtained from real-world controller evaluations.

De Nardi and Holland [2008] synthesized a set of non-linear differential equations

that represented the dynamic models of a miniature rotorcraft. The rotorcraft robot

consisted of four motors that were fitted with propellers. The linear and angular

accelerations for the body coordinates of the robot were derived by using Genetic

Programming techniques. This allowed for both the parameters and structure of the

acceleration models to be developed autonomously by using real-world data.

Kamio and Iba [2004] used GP or Cluster Approximation methods for developing

simulators that were able to predict behaviours of a humanoid robot whose goal

task was to move a box to a specific goal marker. Actions allowed by the humanoid

robot were basic movements such as sidestep left/right, move forwards six steps,

turn right/left and a few combinations of turning and sidestepping. The simulator

predicted the positions of the box and goal marker.

Two main processes are interleaved with each other. Models are evolved to pre-

dict real-world behaviours and test controllers are evolved for a particular purpose.

CHAPTER 2. RELATED WORK 36

The prediction models which represent the simulator can be implemented by using

Genetic Programming, Clustering Approximation or other model-fitting techniques

[De Nardi and Holland, 2008; Kamio and Iba, 2004].

Data is collected during real-world controller evaluations and can be continually

included in the simulator training process. Since training data containing real-world

noise is continually added, over-fitting is avoided [Kamio and Iba, 2004]. These

approaches require few physical assumptions and eliminate biases in the development

of simulators.

2.7 Conclusions

Evolving controllers purely on real-word robots is often not a feasible option. There-

fore, simulators are used to accelerate the ER process, but this results in much time

being devoted to the design, creation and manual tuning of simulators that allow

controllers to successfully cross the reality-gap. Much of the research on the bi-

directional approaches for improving simulators and controllers is focused on reduc-

ing the reality-gap problem, automatic damage recovery and automatic parameter

tuning of models. Little research has been conducted on the autonomous creation

of simulators with no prior knowledge during the ER process. Existing approaches

for the concurrent creation of controllers and simulators still require manual inter-

vention for the creation of the initial simulators, with the exception of empirical

methods. Specialised knowledge is usually required for the manual creation and

improvement of these simulators.

This research seeks to satisfy the need for the autonomous creation of simulators

by utilizing experimentally collected data with minimal human intervention or spe-

cialised knowledge. Traditional SNNs are simple to construct, are arguably easier

to automate than physics-based approaches and require no prior knowledge about

the dynamics of the robotic system. The bi-directional development of non-SNN

based simulators and controllers has been shown to be an important area of re-

CHAPTER 2. RELATED WORK 37

search in ER. However, no research has been conducted on evaluating the feasibility

of the concurrent creation of SNNs and controllers in the ER process. The following

chapter proposes an approach that combines SNNs with a bi-directional approach.

Chapter 3

PROPOSED APPROACH AND

EXPERIMENTAL METHOD

3.1 Introduction

Pre-computed SNNs have shown much potential as robotic simulators due to their

simple construction and minimal requirements of expert knowledge (Section 2.5).

Bi-directional approaches have shown much promise in automating and speeding up

the development of simulators (Section 2.6). The developed approach is discussed

in Section 3.2 and considerations that motivated the approach developed in this

research is described in Section 3.3. The experimental method used to validate the

viability of the proposed approach is addressed (Section 3.4). Lastly, conclusions

are drawn in Section 3.5.

3.2 Proposed Approach

The contribution of this research is the development of a novel approach to SNN and

controller development. The conventional approach to creating SNNs and evolving

controllers during the ER process requires a sequential two-stage process. The first

stage is the data collection process which requires the evaluation of many randomized

38

CHAPTER 3. PROPOSED APPROACH AND EXPERIMENTAL METHOD 39

controllers on the real-world robot and the collection of the observed behaviours.

Once enough data has been acquired, the SNNs are trained until they are sufficiently

accurate. The second stage uses the trained SNNs to simulate the robot’s behaviours

during the normal ER process. The approach developed in this research combines

the normal ER process and the data collection and training process (Figure 3.1).

The proposed approach developed in this research work will be referred to as

the Bootstrapped Neuro-Simulation (BNS) approach. The BNS approach involves a

bootstrapping process whereby controllers are continually evaluated on a real-world

robot, thereby generating training data for the improvement of the SNNs. As the

SNNs are improved, so too are the controllers. The improved controllers can then be

evaluated on the robot to provide further training data to the SNNs and the cycle

continues.

The BNS approach is illustrated in Figure 3.1 and consists of the following steps:

1. Controllers are selected for real-world evaluations from the population of con-

trollers. Behavioural data from real-world evaluations is collected and stored

in a training data buffer.

2. The training data stored in the training data buffer periodically integrates into

SNN training to better predict robot behaviours.

3. The training SNNs are periodically copied and used to replace the controller

evolution SNNs. The population of controllers is evolved using the controller

evolution SNNs to estimate controller fitness.

4. The process continually repeats by going back to step 1 or is terminated when

stopping conditions are met.

The BNS approach improves the SNNs and controllers concurrently so that con-

trollers, evaluated in reality, would ideally converge towards the target behaviours.

Consequently the SNNs are specialised to accurately model the target behaviours

and are less focused on modelling unnecessary behaviours. BNS can speed up the

CHAPTER 3. PROPOSED APPROACH AND EXPERIMENTAL METHOD 40

Figure 3.1: Bootstrapped Neuro-Simulation

ER process by eliminating the need to pre-compute SNNs before controllers are

evolved and may require fewer real-world evaluations than pre-computed SNNs.

If the robot morphology or environment changes in any significant way, there

would be no need to retain an existing simulator since the BNS approach automati-

cally creates a new simulator and accounts for any changes to the system. The BNS

approach could also be modified to potentially possess other useful properties such

as the ability to adapt to changing environments or automatic damage recovery.

The proposed approach does have a few disadvantages that will now be discussed.

The simulator developed with the BNS approach would be trained with specialised

behavioural data which could result in a lack of simulator generality compared to

CHAPTER 3. PROPOSED APPROACH AND EXPERIMENTAL METHOD 41

pre-computed SNNs. The developed SNNs could accurately predict the behaviours

required for the task chosen during data collection but could be unable to accurately

predict the behaviours of an unseen task. SNN approaches may not be a viable

option for certain robots, environments or tasks. The BNS approach could also

converge on a sub-optimal solution and be unable to find an appropriate solution.

3.3 Motivations

It is hypothesised that a simulator can be developed during the ER process and

little prior knowledge about the dynamics of the robotic system need be known. A

key consideration is that the ER researcher would not be required to have extensive

specialised knowledge of the dynamics involved in simulating the robotic system.

Therefore, the use of standard physics-based modelling approaches that make use

of prior knowledge is avoided. Hybrid models that combine empirical and physics-

based approaches will also be avoided.

The main concern in this research is the creation of task specific controllers,

so this study is less interested in the physical interpretations of underlying systems.

Therefore, simulation approaches that model all the various components of a system

using prior knowledge and structures that have real-world interpretations will be

deemed unnecessary. These knowledge-based representations can be replaced with

ones that are more behavioural-based in order to focus on the goal of developing

specific behaviours for robots. As previously mentioned (Section 2.4), behavioural-

based representations focus on modelling the behaviours of the underlying system

and are easier to construct since the models are based on real-world observations.

Therefore, a black-box modelling of robot behaviours should be used, such as SNNs.

The chosen simulation approach in this work uses SNNs due to the success achieved

in previous work.

The training of SNNs requires the sampling of real-world experimental data

which is accomplished by performing many randomized movements on a real-world

CHAPTER 3. PROPOSED APPROACH AND EXPERIMENTAL METHOD 42

robot. This sampling process is time-consuming and may damage the robot due to

wear. The simulator is also trained to simulate robot behaviours not required for

the development of the target robot behaviours. The simulator also needs to be

created before the ER process can begin.

The bi-directional approaches discussed in Section 2.6 mostly require the devel-

opment of an initial physics-based simulator. These bi-directional approaches can

be broadly classified according to the level of involvement in improving the effec-

tiveness of the simulator. Complementary approaches do not actually improve an

existing simulator but merely assist in its effectiveness, such as the Transferability

(Section 2.6.3) or Intelligent Trial-and-Error Learning (Section 2.6.4) approaches.

Optimisation approaches such as Anytime Learning (Section 2.6.1), EEA (Section

2.6.2) and Back to Reality (Section 2.6.5) are actively involved in the improvement

of simulator models. Lastly, a ground-up approach can be taken where the simulator

is created and improved without the use of prior knowledge (Section 2.6.6). The

BNS approach (Section 3.2) developed as a core part of this research falls into the

ground-up classification. The following section discusses the experimental method

used for demonstrating the viability of the BNS approach.

3.4 Experimental Method

This section discusses the experimental method used for demonstrating the viability

of the BNS approach. The experimental method used to identify influential factors

related to its success or failure is also discussed.

The viability of the BNS approach was validated by using a differentially-steered

mobile robot and a snake-like robot (Chapters 4 and 5, respectively). Each robot

performed different trajectory planning tasks of varying levels of complexity. ER

was used to evolve navigational controllers (Sections 4.2.2 and 5.3.2) in simulation

while, simultaneously, the simulator was optimised by using resilient backpropaga-

tion training (Sections 4.2.3 and 5.3.3). Controllers were periodically selected from

CHAPTER 3. PROPOSED APPROACH AND EXPERIMENTAL METHOD 43

the population of controllers and evaluated on a real-world robot. These evaluations

were tracked by using motion tracking techniques and the behavioural data gener-

ated was collected and used for training the simulator. The simulator used in the

controller evolution process would thus commence as untrained and would gradually

improve as more behavioural data was collected.

The performance of the BNS approach for various parameter settings was subse-

quently investigated. This experimental investigation required the testing of a large

number of parameter combinations which was made possible by using an already

trained simulator as a substitute for the real-world robot. A pre-computed simu-

lator from previous studies was used for the first prototype (Chapter 4), whereas

a pre-computed simulator was not available for the second prototype (Chapter 5)

and was developed as part of this research (Section 5.4). The substitute (simulated)

real-world robot expedited the process and made the parameter comparison experi-

ments viable. It was anticipated that the diversity of the controller population was

a key factor because it governed the controller search space explored during the ER

process and also influenced simulator training. The analysis was thus focused on

how the parameters affected diversity and how diversity, in turn, manifested into

the success of the controllers. The diversity in relation to the effectiveness of the

simulator to predict robot behaviour was also analysed. The investigation of param-

eter settings was successful in determining influential factors related to the success

or failure of the BNS approach. Sections 4.5 and 5.8 describe how parameters were

investigated while Sections 4.6 and 5.9 discuss the results.

3.5 Conclusions

The use of bi-directional approaches for improving simulators and controllers has

been shown to effectively resolve the reality-gap problem and help automate the

simulator development process. Many of the existing bi-directional approaches still

require much human intervention in the creation and design process of simulators.

CHAPTER 3. PROPOSED APPROACH AND EXPERIMENTAL METHOD 44

Specialised knowledge is usually required for the creation and improvement of these

simulators.

This research aims to automate the creation of simulators by utilising experi-

mentally collected data with minimal human intervention or specialised knowledge.

SNNs have shown much promise in being able to achieve these goals. The concur-

rent creation of non-SNN-based simulators and controllers has also shown promise

(Section 2.6). However, no known research has been conducted on evaluating the

feasibility of the concurrent development of SNNs and controllers in the ER process

which is proposed in this work. The BNS approach was developed to investigate the

viability of concurrently developing SNNs and controllers in the ER process. The

following two chapters are aimed at validating the feasibility of the BNS approach

by using two types of robot morphologies and determining the relevant influential

factors.

Chapter 4

KHEPERA PROTOTYPE

4.1 Introduction

This chapter covers the experimental work performed on a differentially-steered

mobile robot. The procedures used for investigating the proposed BNS approach

are discussed in Section 4.2 and details of the prototype experiments are discussed

in Section 4.3. The results of the experimental work are presented in Section 4.4.

The parameter comparison experiments are discussed in Section 4.5 and the results

are given in Section 4.6. Lastly, a discussion of the work in this chapter is given in

Section 4.7.

4.2 Experimental Procedure

This section covers the experimental work conducted on the Khepera robot. Section

4.2.1 discusses the hardware and data capturing techniques. Details of the controller

are discussed in Section 4.2.2 and the developed simulator is addressed in Section

4.2.3.

45

CHAPTER 4. KHEPERA PROTOTYPE 46

4.2.1 Hardware and Data Capture

The robot used for this experimental work is the Khepera III mobile robot (Fig-

ure 4.1). The reason why this robot was chosen is because of the frequent use of

the robot in ER [Floreano and Mondada, 1994; Floreano et al., 2008; Koos et al.,

2013; Miglino et al., 1995] and ease of use. The robot is differentially-steered and

movement is controlled by two separately driven wheels. The robot is controlled by

sending commands over a Bluetooth serial interface. Steering is accomplished by

varying the relative rate of rotation of the wheels. The environment upon which

the robot operated was a horizontal skid-proof surface. The Khepera was modified

by mounting three LED infra-red lights on top. A Nintendo Wii [Nintendo, 2014]

remote was positioned approximately 1.8 meters above the robot and software was

used to track the LEDs so that behavioural data could be captured [Lee, 2008].

Figure 4.1: Khepera III mobile robot [K-Team, 2014]

4.2.2 Controllers

The controllers developed for the Khepera opted for open-loop navigation. A con-

troller in this research is defined as a list of commands that, when executed on the

CHAPTER 4. KHEPERA PROTOTYPE 47

robot, would cause it to manoeuvre along a particular trajectory without feedback.

Open-loop navigation was chosen due to its simplicity. Controllers, therefore, did

not have access to the robot’s real-time position during evaluation. Controllers con-

sisted of a variable length, sequential list of commands, each consisting of the left

motor speed, right motor speed and the time duration for which the command must

be executed (Figure 4.2). This was a first-time study into the viability of the BNS

approach and in order to keep the investigation simple, motor speeds were restricted

to moving forwards only. The BNS approach began by creating a population of ran-

domly generated controllers. Between 4 and 13 commands were initially generated

for each controller in the initialised population, but subsequent generations could

create controllers that could contain an unlimited number of commands through

cross-overs. A controller was evaluated by executing the list of commands sequen-

tially on the robot. Collisions with the boundaries of the working surface were not

considered.

Left Motor Speed

Right Motor Speed

Duration of Command

First Command Second Command Third Command

...Left Motor Speed

Right Motor Speed

Duration of Command

Left Motor Speed

Right Motor Speed

Duration of Command

Figure 4.2: Khepera controller morphology

Controllers were developed for three different trajectory planning tasks. Figures

4.4 to 4.6 demonstrate the paths followed by the robot for each task. The robot’s

starting position was located centrally amongst the goal points and faced northward.

Each of the three tasks was described as a sequential list of goal points on the

operating surface. Success was accomplished when the robot traversed all these

points in the given order. The robot was judged to have reached a given goal point

if it moved within seven centimetres of the point. The seven centimetre leniency was

chosen to allow for more leeway in reaching goal points during controller evolution.

The first task, referred to as Task 1, was a circular path (Figure 4.4). The second

task, referred to as Task 2, was an infinity sign path (Figure 4.5). The third task,

CHAPTER 4. KHEPERA PROTOTYPE 48

referred to as Task 3, was a complex path (Figure 4.6).

The end result of a controller evaluation was a list of positions reached by the

robot at the end of each command. There was also a list of goal points the robot

needed to reach in the specified order. The pseudo-code for how controller fitness

was calculated is shown in Algorithm 2. This algorithm took as input the list of

positions and goal points. During the traversal of the positions’ list, the distance to

the first goal point was calculated. Once that goal point was reached, the distance

to the next goal point in the list was used and so on. For each of the positions in

the list, the distance to its goal point was calculated. These distances were summed

together and a penalty distance was added for each missed goal point. This total

distance would ideally be minimized during controller evolution and the fitness was

calculated as its inverse.

Algorithm 2: Controller fitness evaluation

Data:

positions← List of positions reached by robot

goalpoints← List of goal points

Result: Fitness of controller

penalty ← A large constant integer value

goalPointIndex← 0

sum← 0

for each position in positions do

if position reaches goalpoints[goalPointIndex] then
goalPointIndex← goalPointIndex+ 1

sum← sum + (distance to goalpoints[goalPointIndex])

sum← sum+ penalty * (number of goal points not reached)

fitness← 1/sum

return fitness

The fitness function was designed to minimize the number of commands used

to accomplish the task due to summing of the distances to the next goal point

CHAPTER 4. KHEPERA PROTOTYPE 49

previously mentioned, and fewer commands result in fewer summations. Controllers

were continually evolved throughout the process using a GA. Elitism was used,

and the best performing controller for each generation continued over to the next

generation.

4.2.3 The Simulator

The operating surface can be mathematically represented as an xy-plane of a Carte-

sian coordinate system, referred to here as the global coordinate system. The robot’s

movements were captured based on the global coordinate system. The robot had its

own local coordinate system where the origin was always the centre of the robot’s

wheel axis and the y-direction was aligned with the robot’s forward heading. The

simulator was trained to predict changes in the robot’s position according to the

local coordinate system.

The simulator was used to assign fitness values to the population of controllers. In

the beginning, the simulator was untrained, so fitness assignments would effectively

be random. However, the quality of the fitness assignments gradually improved as

more training data became available from real-world controller evaluations. Training

patterns consisted of the previous left motor speed, previous right motor speed,

current left motor speed, current right motor speed, time duration of execution, the

robot’s local x-displacement, the robot’s local y-displacement and the change in the

robot’s orientation angle, which was added to the training data set or verification

data set of the simulator. There was a 75% probability of data being added to

the training data set and a 25% probability of data being added to the validation

set. The validation set was not utilized during simulator training, but was used to

analyse potential issues in over-fitting and accuracy. It was found that over-fitting

did not occur during training.

The simulator consisted of three separate SNNs, each consisting of a single Feed-

Forward Neural Network (FFNN) (Figure 4.3). The FFNN setup was chosen based

CHAPTER 4. KHEPERA PROTOTYPE 50

...

previous left

motor speed

previous right

motor speed

current left

motor speed

current right

motor speed

time

duration

H1

Hn

∆x or ∆y or ∆θ

Input

layer

Hidden

layer

Ouput

layer

Figure 4.3: Simulator Neural Networks of the Khepera robot

on previous investigations. The simulator was separated across multiple FFNNs

to produce more accurate results [Pretorius, du Plessis, and Cilliers, 2009]. Each

FFNN had 5 input neurons, 20 hidden neurons and 1 output neuron. An indication

of the optimal number of hidden neurons was determined experimentally during

previous studies [Pretorius, 2010]. The input and output neurons made use of a

linear activation function while the hidden neurons made use of a sigmoid activation

function.

All FFNNs took as input the previous left motor speed, previous right motor

speed, current left motor speed, current right motor speed and the time duration

of the current command. The outputs of each of the separate FFNNs were the

x-displacement (∆x), y-displacement (∆y) and change in angle (∆θ).

SNNs were implemented using an open source machine learning library called

Encog [Heaton Research, 2014] and were trained using the Resilient Backpropaga-

tion algorithm [Riedmiller and Braun, 1993]. There were two types of SNNs, the

training SNNs and the controller evolution SNNs. A copy of the training SNNs

CHAPTER 4. KHEPERA PROTOTYPE 51

was periodically made and used for the controller fitness assessments (referred to

as the controller evolution SNNs). The training SNNs were periodically trained for

1000 iterations by using Resilient Backpropagation, after which new training data

was added (if available) from the training data buffer and training iterations were

continued. Noise was not added to the controller evolution SNNs for any of the

experiments presented in this investigation, because it was observed that controllers

were able to transfer well to reality without the addition of noise.

4.3 Prototype Experiments

The BNS approach was validated through an experimental prototype that made use

of the real-world hardware mentioned in Section 4.2.1. Experiments proceeded until

the robot was visually perceived to have consistently traversed all the goal points

accurately. Each of the three trajectory planning tasks was completed by using the

BNS approach over three trials.

The parameters used for controller evolution are given in Table 4.1. Optimal pa-

rameter values were determined experimentally based on the parameter comparison

experiments described in Section 4.5.

Controller Population Size 400

Initialization Random from a uniform distribution

Selection Tournament (Tournament size 50%)

Cross-over Method Two parent

Mutation Rate 10%

Mutation Method Random Component Perturbation

Table 4.1: Parameters for controller evolution

CHAPTER 4. KHEPERA PROTOTYPE 52

The controller population size parameter (Table 4.1) was the size of the popula-

tion of controllers used for controller evolution. The initial population of controllers

was created such that each controller contained a random number of between 4 and

13 commands, each command being generated randomly from a uniform distribu-

tion. The range of motor speeds was based on the operational limits of the robot and

was between 3000 and 30000 units (scale used by the software) and the duration of

each command was between 400 and 3000 milliseconds. Durations below the lower

limit would be difficult to measure and predict accurately while durations above the

upper limit could result in rotation angles that were larger than 180 degrees.

The selection operator used for controller cross-over was tournament selection

[Engelbrecht, 2007]. A tournament selection size of 50% of the controller population

was chosen and a two-parent cross-over method was used for controller evolution.

Two-parent cross-over involved two parent controllers, for which the command se-

quence sizes of both parents may be of differing lengths. A random cross-over point

was chosen for each parent which resulted in each parent forming two segments of

commands. The child controllers were created by interchanging the first segments of

each parent. There was an 80% probability that the cross-over points of two parents

were identical and a 20% probability that they could be different. This cross-over

method was chosen to allow for the number of commands to be optimised while

not unnecessarily distorting existing good solutions. The mutation rate was the

probability that the left motor speed, right motor speed or duration of a command

might change by a random amount. Ranges for the mutations were between -2000

and 2000 for the motor speeds and the time durations were changed by -400 or 400

milliseconds. The mutation rate chosen for controller evolution was 10%.

An additional parameter which was specific to the BNS approach was the real-

world selection parameter. At the end of every real-world controller evaluation a new

controller was selected for the next real-world evaluation. This new controller was

selected from the population of controllers by using tournament selection and the

tournament size was specified by the real-world selection parameter. A real-world

CHAPTER 4. KHEPERA PROTOTYPE 53

selection size of 70% of the controller population was chosen for the experimental

work that is presented in the following section.

4.4 Prototype Results

The real-world prototype experiments were able to demonstrate that the BNS ap-

proach is indeed viable. The developed SNNs made sufficiently accurate predictions

of robot behaviour. This allowed controllers to successfully evolve and demonstrate

the required behaviours.

The three trajectory planning tasks are presented in Figures 4.4 to 4.6. These fig-

ures represent the final controllers found for each trial run using the BNS approach.

Real-world evaluations represent the number of controllers that were evaluated on

the real-world robot. Each experiment was run until the robot was visually perceived

to have successfully and consistently performed the goal task, which was why the

total number of real-world evaluations for the trials differ. In each figure, the solid

line represents the real-world path followed by the robot when the fittest controller

was evaluated. The dotted line represents the developed simulator’s perception of

how the robot would behave when the same controller was evaluated in reality. The

circled grey regions are the goal points with a radius of 7cm. The order in which

the goal regions must be traversed by the robot are annotated with circled numbers.

The total run-time and number of real-world evaluations for each trial is given in

Table 4.2. It can easily be seen that the prototype run-times do not seem to be

consistent and do vary considerably which may indicate that the BNS approach has

room for improvement.

As previously mentioned, controllers were developed for open-loop navigation.

Controllers were not aware of the position of the robot during evaluations which

could result in an accumulation of errors. The robot’s starting position was located

centrally amongst the goal regions facing northwards. The prototype experiments

showed that the trained SNNs were able to predict robot behaviour with enough

CHAPTER 4. KHEPERA PROTOTYPE 54

Goal task Trial number Experiment

run-time

Real-world

evaluations

Trial 1 25 minutes 45

Task 1 Trial 2 12 minutes 20

Trial 3 9 minutes 15

Trial 1 25 minutes 40

Task 2 Trial 2 19 minutes 30

Trial 3 12 minutes 20

Trial 1 40 minutes 55

Task 3 Trial 2 50 minutes 60

Trial 3 30 minutes 45

Table 4.2: Prototype run-times

accuracy to develop viable controllers.

Task 1 (Figure 4.4) had four goal points positioned 40cm apart from each other

in a square formation. The first and second trial runs for Task 1 (Figures 4.4a and

4.4b) had similar solutions, where the robot made an initial right turn and produced

a spiral shape. The third trial made use of an alternative strategy which differed

from the first two trials by initially turning left instead.

Task 2 (Figure 4.5) had five uniquely positioned goal points where the centre

point had to be reached twice by the robot. All solutions to the second task made

use of the same strategy. The robot started at the centre position and traversed

the goal regions in the annotated order. The real-world paths for the first two trials

closely matched the simulator’s perception of reality (Figures 4.5a and 4.5b). The

third trial run successfully performed the task in reality, however, the simulator’s

perception of reality was less accurate (Figure 4.5c).

CHAPTER 4. KHEPERA PROTOTYPE 55

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(a) First trial run at the 45th

real-world evaluation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(b) Second trial run at the 20th

real-world evaluation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(c) Third trial run at the 15th

real-world evaluation

1

5

2 3

4 1

2

5

3

4
1

5

2 3

4

Figure 4.4: Task 1 prototype trial runs

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(a) First trial run at the 40th

real-world evaluation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(b) Second trial run at the 30th

real-world evaluation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(c) Third trial run at the 20th

real-world evaluation

5

4
1

2 5

7
4 1

2 5

4 7 1

2

6363

7

63

Figure 4.5: Task 2 prototype trial runs

Task 3 (Figure 4.6) contained six independent goal points and good solutions

were needed to perform many sharp and quick turns. Each trial solved Task 3 by

using a different strategy. The first trial contained no loops while the second and

third trials contained two and one loops, respectively. The second and third trials

contained a loop around the bottom left goal point. The second trial produced a

loop around the top centre goal point. The developed simulator accurately predicted

the robot’s behaviours. The first and third trials were the most accurate and the

second trial was the least accurate.

CHAPTER 4. KHEPERA PROTOTYPE 56

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(a) First trial run at the 55th

real-world evaluation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(b) Second trial run at the 60th

real-world evaluation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(c) Third trial run at the 45th

real-world evaluation

1
7

2 4

5 1

7

2 4

5 1

7

2 4

5

3
6

3
6

3
6

Figure 4.6: Task 3 prototype trial runs

During the BNS approach, controllers evaluated in reality would converge to-

wards the desired behaviour. However, there were instances where this convergence

was lost, but gradually improved towards the desired behaviour again. This sudden

loss of successful controllers was possibly because the simulator periodically changed.

Controllers that barely reached certain goal points could fail to reach them when

the simulator was updated.

4.5 Parameter Comparisons

In order to investigate important factors that contribute to the success or failure of

the BNS approach, the influence that various parameter settings had on success was

investigated. The parameters tested are listed in Table 4.3. Due to the stochastic

nature of the experiments, every possible combination of the parameter settings was

independently run for 30 trials for each task.

The investigation of such a large number of parameter combinations on a real-

world robot would take infeasibly long due to the time required to run them. A

pre-computed simulator based on previous studies, referred to as the static simula-

tor, was thus used as a substitute for the real-world robot [Pretorius, 2010]. Training

CHAPTER 4. KHEPERA PROTOTYPE 57

Controller Population Sizes 50, 100, 200, 400

Tournament Selection Sizes 10%, 20%, 30%, 40%, 50%

Mutation Probability Rates 10%, 30%, 50%, 70%, 90%

Real-world Selection Sizes 10%, 30%, 50%, 70%, 90%

Table 4.3: Parameter values used for comparisons

data generated from the real-world robot would inevitably contain errors due to in-

consistencies in motor function and sensor readings [Pretorius, 2010]. To accurately

simulate reality, noise was thus added to the static simulator in order to realistically

replicate noise that would be present. The noise distribution was assumed to be

Gaussian with mean zero because the real-world noise data had a mean close to

zero and with variances based on the difference between the static simulator and

real-world data. The static simulator with noise which acted as a substitute for the

real-world robot will be referred to simply as the substitute real-world.

The substitute real-world also simulated the actual time required to evaluate con-

trollers in reality. This artificial slowing down of the substitute real-world was done

to allow for the SNN training and controller evolution to progress with durations

similar to reality. Each experimental run continued until the hundredth controller

was evaluated in the substitute real-world. Achieving the desired behaviour beyond

the hundredth evaluation was considered impractical for real-world experiments.

A controller successfully completed a given task if during evaluation the robot

passed through all goal points in the assigned order. Goal points were defined as

points in the xy-plane forming a circled region with a radius of seven centimetres.

Success was defined as a trial run which developed a controller that completed the

goal task in the substitute simulator. Success rates over time were calculated for

varying goal sizes for every combination of parameter settings. The varying goal

CHAPTER 4. KHEPERA PROTOTYPE 58

point sizes had a radius of either twenty, fourteen, ten or seven centimetres. These

various levels of success rate were used to identify how close the substitute real-world

robot was able to achieve the desired behaviour.

The best fitness value during controller evolution was periodically recorded and

the average fitness of each parameter combination over the 30 trial runs was calcu-

lated. The success rate for a given parameter combination was its success ratio out

of the 30 trial runs. The success rates for the various goal point sizes, along with the

average fitness of controllers evaluated for each parameter combination were used

to rank how well they performed overall.

Ranking of how well the various parameter combinations performed was done by

ranking the success rates according to the seven centimetre goal point radius, then

ten, fourteen, twenty and lastly on the average fitness. The top ten best and worst

ten parameter combinations could thus be identified through this ranking method.

The reason for not simply using average fitnesses for ranking was because the BNS

approach could sometimes fail if controller evolution converged towards sub-optimal

solutions. Experiments that resulted in a sub-optimal solution would thus result in

poor fitness values. These poor fitness values often varied greatly in value and could

unfairly skew the average fitness of a parameter combination. A ranking based on

ordering parameter combinations according to how well the desired behaviour was

achieved was thus chosen.

The diversity of the controller population during controller evolution was mea-

sured. The relationship between the diversity and various other properties such as

parameter settings, controller success rates and how well the developed simulator

was able to predict the substitute real-world fitnesses were also studied. The diver-

sity D for a given controller population was calculated using equation (4.1). The

motor speeds and time durations for all controllers were normalized to ensure that

there was equal weighting of importance. The normalized left motor speed, right

motor speed and time duration of the jth command for the ith controller in the pop-

ulation of controllers are denoted by Lij, Rij and Tij respectively. The controller

CHAPTER 4. KHEPERA PROTOTYPE 59

population size is denoted by n and the total number of commands for the ith con-

troller is denoted by ri. The average normalized left motor speed, right motor speed

and time duration for the jth command over all controllers is denoted by Lj, Rj,

and T j respectively.

The diversity provided an indication of the balance between exploration and

exploitation of the controller evolution process. A high diversity indicates a large

level of exploration where controllers continually explore the search space in order

to find new solutions. A low diversity indicates a high level of exploitation where

controllers try to improve upon the already explored parts of the search space.

D =
1

n

n∑

i=1

(

ri∑

j=1

|Lij − Lj|+ |Rij −Rj|+ |Tij − T j|) (4.1)

An obvious requirement for the BNS approach to perform well was the need

for controller fitness estimates in simulation to be fairly close to the substitute

reality. A fitness error was calculated by computing the absolute difference between

a controller’s fitness in simulation versus the substitute real-world (in other words

a measure of how well the developed SNNs simulated the substitute real-world). At

the end of each substitute real-world evaluation, data was collected regarding the

controller population diversity, differences between the fitness in simulation and the

substitute real-world (referred to as the fitness error) and the success at varying

levels of accuracy.

In order to determine how well controllers perform over the lifetime of an exper-

imental run, the relationship between the developing simulator’s perceived fitnesses

and the substitute real-world fitnesses, over time, were studied. A single experimen-

tal run of the BNS approach was conducted using the substitute real-world robot.

The parameter settings chosen for the experiment were identical to the real-world

validation experiments (Section 4.3). During the ER process, the best controller’s

fitness in simulation was recorded for every generation. The best controller’s corre-

sponding, substitute real-world fitness was also calculated for every generation. The

CHAPTER 4. KHEPERA PROTOTYPE 60

change between subsequent simulators used for the controller evolution process was

also studied.

4.6 Parameter Comparison Results

The results of the parameter combination experiments described in the previous sec-

tion are discussed in this section. Section 4.6.1 discusses success rate results related

to all the parameter combination experiments and Section 4.6.2 relates success to

the diversity. Section 4.6.3 discusses results related to the best and worst performing

parameter combinations.

4.6.1 Success Rate

The success rate, over time, for each of the parameter values listed in Table 4.3

over all other parameters is discussed in this section. These success rates were used

to determine which parameters were most influential in the success of the BNS

approach.

The success rates of the tested controller mutation rates over all experiments are

shown in Figure 4.7. The observed success rates demonstrated that the controller

mutation rate was the most influential parameter tested. The largest difference

between the mutation success rates was approximately 45% for Task 1, 66% for

Task 2 and 17% for Task 3. Lower mutation rates generally performed better.

Tasks 1 and 2 mostly performed better with a 30% mutation rate, closely followed

by 10% whereas Task 3 performed best with a 10% mutation rate.

The success rates over time for the tested controller population sizes over all

experiments are shown in Figure 4.8. The controller population size was the second

most influential parameter tested. The largest difference between the population

size success rates was approximately 15% for Task 1, 7% for Task 2 and 4% for Task

3. It was found that larger controller population sizes performed better. During

controller evolution, good solutions may be lost due to a changing simulator or a

CHAPTER 4. KHEPERA PROTOTYPE 61

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(b) Task 2

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(c) Task 3

Figure 4.7: Success rate versus number substitute real-world evaluations for the

tested controller mutation rates

CHAPTER 4. KHEPERA PROTOTYPE 62

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(b) Task 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(c) Task 3

Figure 4.8: Success rate versus number substitute real-world evaluations for the

tested controller population sizes

CHAPTER 4. KHEPERA PROTOTYPE 63

high controller mutation rate. However, a higher population size may contribute

towards reducing these issues.

Success rates for the controller and real-world tournament selection sizes are

given in Figures 4.9 and 4.10, respectively. The overall result showed that the

controller tournament selection size was the third most influential parameter tested

and generally performed better for larger values. The largest difference between

controller tournament selection size success rates was 6.3% for Task 1, 6.7% for

Task 2 and 1% for Task 3. The least influential parameter tested was the real-world

tournament selection size which did not appear to have any discernible trend across

the different tasks. The largest difference between the success rates of the real-world

tournament sizes were 3% for Task 1, 2.5% for Task 2 and 1.7% for Task 3.

4.6.2 Diversity

To determine how accurately simulators performed in relation to the controller pop-

ulation diversity, a metric called the fitness error was measured. This measures

the difference between a controller’s fitness in the developed simulator and in the

substitute real-world. The average fitness error versus population diversity for each

parameter combination after the one hundredth substitute real-world evaluation can

be seen in Figure 4.11. The success rate versus diversity of the tested parameter

combinations were also investigated. The success rates versus diversity for each

parameter combination is shown in Figure 4.12.

Figures 4.11 and 4.12 indicate that a low diversity had a wider range of fitness

errors and success rates. A low diversity could indicate a high level of exploita-

tion where controllers prematurely converged towards sub-optimal solutions. This

convergence to sub-optimal solutions allowed the simulator to accurately model the

behaviour, however, tasks were often not successfully completed. A very high diver-

sity may indicate that controllers were continually exploring the search space and

this resulted in controllers being unable to exploit good solutions.

CHAPTER 4. KHEPERA PROTOTYPE 64

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

20%

30%

40%

50%

Tournament size

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

20%

30%

40%

50%

Tournament size

(b) Task 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

20%

30%

40%

50%

Tournament size

(c) Task 3

Figure 4.9: Success rate versus number substitute real-world evaluations for the

tested controller evolution tournament sizes

CHAPTER 4. KHEPERA PROTOTYPE 65

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Tournament size

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Tournament size

(b) Task 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100

S
u
c
c
e
s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Tournament size

(c) Task 3

Figure 4.10: Success rate versus number substitute real-world evaluations for the

tested real-world tournament sizes

CHAPTER 4. KHEPERA PROTOTYPE 66

Figure 4.11 shows that the average fitness error generally increased after the

diversity passed a certain point. The increase in the fitness error may have been a

result of controllers, evaluated in the substitute real-world, not converging towards

the desired behaviour. The controllers would thus be less specialised and the training

data for the simulator would be less targeted towards the desired behaviour which

made simulator training more challenging.

There appeared to be an optimum region of diversity that needed to be main-

tained to optimise the success of the BNS approach. The optimum diversity regions

for Tasks 1 and 2 appeared to be similar (approximately between 0.5 to 0.7), whereas

for Task 3 the optimum diversity was approximately between 0.4 to 0.6. These op-

timum diversity ranges appeared to correspond to where the fitness errors were

consistently lower. An obvious reason for this would be that the simulator needed

to be sufficiently accurate to evolve better controllers.

The Task 3 diversity versus success rate (Figure 4.12c) does not appear to have

the pattern seen in Figures 4.12a and 4.12b. A possible reason may be the low

success rates obtained for Task 3. The Task 3 success rate versus diversity figure

was recalculated as shown in Figure 4.12d, with the goal point radius being slightly

larger. This made it clear that all success versus diversity plots had a similar pattern.

The best performing parameter combination for Task 1 (Figure 4.12a) had a success

rate of about 76% and Task 2 (Figure 4.12b) had a success rate of about 90%. Task

3 had a poor success rate for the 7cm goal point radius, where success rates were

below 37% (Figure 4.12c). If the goal point radius was relaxed to be 10cm, the best

success rate improved to be roughly 79% (Figure 4.12d).

4.6.3 Best and Worst Performing Parameter Combinations

The best and worst performing parameter combinations were compared with each

other in order to identify differences, thereby identifying the influential factors. The

diversity over time for the top 10 best and worst performing parameter combina-

CHAPTER 4. KHEPERA PROTOTYPE 67

0

1000

2000

3000

4000

5000

6000

7000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
it
n

e
s
s
 E

rr
o

r

Diversity

(a) Task 1

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
it
n

e
s
s
 E

rr
o

r

Diversity

(b) Task 2

0

2000

4000

6000

8000

10000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
it
n

e
s
s
 E

rr
o

r

Diversity

(c) Task 3

Figure 4.11: Average fitness error versus diversity after 100 substitute real-world

evaluations

CHAPTER 4. KHEPERA PROTOTYPE 68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u

c
c
e

s
s
 R

a
te

Diversity

(a) Task 1 (using 7cm goal point radius)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u

c
c
e

s
s
 R

a
te

Diversity

(b) Task 2 (using 7cm goal point radius)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u

c
c
e

s
s
 R

a
te

Diversity

(c) Task 3 (using 7cm goal point radius)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u

c
c
e

s
s
 R

a
te

Diversity

(d) Task 3 (using 10cm goal point radius)

Figure 4.12: Success rate versus diversity after 100 substitute real-world evaluations

tions for all tasks can be seen in Figures 4.13 to 4.15. The diversity for the first

few substitute real-world evaluations of the BNS approach was usually the high-

est. However, there was little point in analysing how the diversity behaved before

the fifth substitute real-world evaluation, as controller evaluations were almost ran-

dom. For this reason, figures do not present the diversity before the fifth substitute

real-world evaluation.

The top 10 best performing parameter combinations had a lower diversity when

compared to the worst performers for each task. A higher diversity may have been

due to controllers having a higher mutation rate which could have resulted in con-

troller evolution being unable to exploit good solutions. Controllers that are mutated

CHAPTER 4. KHEPERA PROTOTYPE 69

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(a) Top 10 parameter combinations

0.75

0.8

0.85

0.9

0.95

1

1.05

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(b) Worst 10 parameter combinations

Figure 4.13: Diversity versus number of substitute real-world evaluations for Task 1

too much, together with the issue of the SNNs continually changing may have con-

tributed to higher diversities performing poorly. Most of the 10 worst performers

had mutation rates that were 70% or above for all tasks. The vast majority of the

10 best performers had mutation rates of 30% or less.

In the previous section, the optimum diversity range was an estimation based

on success rates and fitness errors. Six of the ten for Task 2 and eight out of

ten for Tasks 1 and 3 were within their estimated optimum diversity ranges. The

diversities of the best performers were fairly constant after the twentieth substitute

real-world evaluation for the first two tasks and after the fortieth substitute real-

world evaluation for the third task (Figures 4.13a to 4.15b). The diversity of the

worst performers tended to increase over time for all tasks.

An interesting observation emerged where the first two tasks had a larger range

of diversities for the best parameter combinations when compared with the worst

performers. The reverse was seen for Task 3, where the worst performers had a larger

range of diversity. All the worst performers for Task 3 had a 0% success rate for all

levels of success. The ranking, therefore, had to be based on greatly varying fitness

estimates which resulted in a wider diversity range. The higher diversities for worst

performers indicated that a saturation point was reached where the diversity could

CHAPTER 4. KHEPERA PROTOTYPE 70

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(a) Top 10 parameter combinations

0.9

0.95

1

1.05

1.1

1.15

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(b) Worst 10 parameter combinations

Figure 4.14: Diversity versus number of substitute real-world evaluations for Task 2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(a) Top 10 parameter combinations

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(b) Worst 10 parameter combinations

Figure 4.15: Diversity versus number of substitute real-world evaluations for Task 3

not become much higher. These saturation ranges were confirmed by comparing

them with the maximum diversities obtained in Figures 4.11 and 4.12.

A metric was chosen that indicated how rapidly the BNS approach converged

towards the desired behaviour. This potential success indicator was the success

rate for a given task with the goal point radius size being redefined to be twenty

centimetres (for example, in Task 1, the robot would at least be moving through the

correct quadrants of the xy-plane). The convergence towards the target behaviour

CHAPTER 4. KHEPERA PROTOTYPE 71

over substitute real-world evaluations for the top 10 best performing parameter

combinations can be observed in Figure 4.16. Task 2 generally converged towards the

desired behaviour the soonest, Task 1 converged more slowly and Task 3 converged

much later. Task 3 clearly struggled to converge towards the desired behaviour

which could indicate that solutions often converged to sub-optimal solutions or good

solutions were frequently lost or evolution may have been stopped too early.

Figure 4.17a illustrates the substitute real-world’s observed fitnesses and the

simulator’s assigned fitnesses over the duration of a single experimental run of Task 2.

The experiment terminated after thirty substitute, real-world controller evaluations.

The initial fitness assignments were volatile and inaccurate, but, over time, stabilized

as the simulator became more accurate. The substitute real-world fitness was mostly

found to be less than the simulator’s perceived fitness. A small drop in fitness was

occasionally observed which corresponded to changes to the simulator.

A set of ten randomly generated controllers was created before the experimental

run and each controller contained five commands that were generated from a uni-

form distribution. These controllers were evaluated periodically over time and the

final positions reached were noted. Figure 4.17b represents how close these final po-

sitions were in simulation to the substitute real-world. The position difference varied

significantly during the early stages of the experiment and later stabilized. Each dot

in Figure 4.17c represents the total difference between the final positions of the gen-

erated controllers for two successive generations of the developing simulator. This

demonstrated that there were large changes between successive simulators which

gradually stabilized to become less severe. The time taken to perform successive

iterations increases as more training data is added.

4.7 Conclusions

A vital goal in ER worth exploring has been shown to be the automatic, real-time cre-

ation of controllers and simulators with minimal human intervention or specialised

CHAPTER 4. KHEPERA PROTOTYPE 72

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
o

te
n

ti
a

l
s
u

c
c
e

s
s
 i
n

d
ic

a
to

r

Substitute Real-world Evaluations

(a) Task 1

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
o

te
n

ti
a

l
s
u

c
c
e

s
s
 i
n

d
ic

a
to

r

Substitute Real-world Evaluations

(b) Task 2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
o

te
n

ti
a

l
s
u

c
c
e

s
s
 i
n

d
ic

a
to

r

Substitute Real-world Evaluations

(c) Task 3

Figure 4.16: Potential success indicator versus number of substitute real-world eval-

uations for the top 10 parameter combinations

CHAPTER 4. KHEPERA PROTOTYPE 73

0 5 10 15 20
Time (minutes)

10-6

10-5

10-4

Fi
tn
es

s

substitute real-world
simulator

(a) Fitness over time

0 5 10 15 20
Time (minutes)

0

50

100

150

200

Av
er
ag

e
po

si
tio

n
di
ffe

re
nc

e
fro

m
 id

ea
l (
cm

)

(b) Position difference over time

0 5 10 15 20
Time (minutes)

10-1

100

101

102

103

Av
er
ag

e
po

si
tio

n
di
ffe

re
nc

e
 b
et
w
ee

n
si
m
ul
at
or
s
(c
m
)

(c) Change in position displacement over time

Figure 4.17: Experimental run over time

CHAPTER 4. KHEPERA PROTOTYPE 74

knowledge. SNNs have been shown to provide a viable alternative to traditional

simulators for this goal. Many traditional approaches to simulator development are

complex and require specialised knowledge while SNNs are relatively simple to de-

velop. Bi-directional approaches to controller and simulator development have also

shown much promise in automating simulator development.

The BNS approach demonstrated accurate modelling of robot behaviour and

also produced successful controllers for performing trajectory planning tasks using a

robot. This research focuses on developing simulators that are specialised according

to the required behaviour. The specialisation was due to the evaluation of task

specific controllers for behavioural data, as opposed to the development of a more

general simulator. The use of task specific controllers attempted to reduce the

number of controller evaluations needed to train the simulator, thereby speeding up

the ER process.

The controller population size and controller mutation rate were shown to be

the most influential parameters in controlling the success of the BNS approach.

However, there was no guarantee of a successful solution. Controller evolution may

converge to sub-optimal solutions or good solutions may be lost due to a changing

simulator. Higher population sizes can result in fewer instances where good solutions

were lost due to a changing simulator. Lower mutation rates were shown to perform

better than those with higher values which could be because higher values did not

allow controllers to exploit important features.

The first prototype developed in this work demonstrated that a bi-directional

approach to controller and SNN development during the ER process is indeed viable.

In order to validate that the BNS approach is scalable to more complex robots, the

next chapter demonstrates the BNS approach on a snake-like robot.

Chapter 5

SNAKE ROBOT PROTOTYPE

5.1 Introduction

This chapter describes the experimental work performed on a snake-like robot. The

background relating to snake locomotion is discussed in Section 5.2. The procedures

used for investigating the BNS approach are discussed in Section 5.3. Due to a lack

of previous work done on SNNs for snake-like robots, an initial investigation was

conducted into the use of pre-computed SNNs for a snake-like robot (Section 5.4)

and results relating to the experimental work are discussed (Section 5.5). After

the viability of pre-computed SNNs was demonstrated, work was conducted for

validating the BNS approach on a real-world, snake-like robot (Section 5.6) and the

results of the experimental work are presented (Section 5.7). Parameter comparison

experiments were conducted and the related results are discussed in Sections 5.8 and

5.9, respectively. Finally, conclusions are drawn based on the results of this chapter

(Section 5.10).

5.2 Snake Locomotion

Biologically inspired snake-locomotion modes can be broadly classified into lateral

undulation, slide-pushing, rectilinear motion, concertina, side-winding and various

75

CHAPTER 5. SNAKE ROBOT PROTOTYPE 76

other forms [Dowling, 1996]. Lateral undulation (Figure 5.1) is the most common

form where all parts of the snake body move in a wave-like pattern [Dowling, 1996].

Lateral undulation is not suited to smooth, low friction surfaces [Shmakov, 2006].

Figure 5.1: Lateral undulation of snake [Dowling, 1996]

Friction is a very important factor in snake locomotion. Biological snakes have

directional friction where the snake’s body has less friction moving forwards when

compared to moving backwards due to the direction of the overlapping scales [Hu,

Nirody, Scott, and Shelley, 2009]. Many snake-like robots use wheels to achieve

similar frictional properties.

Side-winding locomotion (Figure 5.2) has a sine-like wave while maintaining only

two static points of contact with the ground at any time. Side-winding is more suited

to low friction surfaces [Shmakov, 2006]. There are also non-biologically inspired

locomotion modes, namely rolling, where the snake rolls side over side and flapping

motions where the robot flaps both of its ends across the ground [Dowling, 1996].

Snake-like robots are constructed by chaining together several independent ac-

CHAPTER 5. SNAKE ROBOT PROTOTYPE 77

Figure 5.2: Side-winding locomotion of snake [Dowling, 1996]

tuators, where each actuator commonly has one degree of freedom [Kamimura,

Kurokawa, Yoshida, Murata, Tomita, and Kokaji, 2005; Melo, Hernandez, and Gon-

zalez, 2012a; Melo, Paez, and Parra, 2012b]. These snake robots are capable of both

biological and non-biologically inspired locomotion modes.

Snake robots typically consist of many active joints, providing much redundancy

and versatility. These robots are capable of operating over various surfaces unsuit-

able for wheeled motion, such as strafing laterally, swimming, climbing inside and

outside of pipes, climbing stairs and various others [Melo et al., 2012a].

Parametrized equations can be used to generate the above mentioned locomotion

modes which generate the appropriate joint angles on the robot. Melo et al. [2012a]

made use of parametrized equations (5.1) and (5.2) which are based on sinusoidal

motion on two axes. These equations define φ(n, t) as the angle of the nth joint

at discrete time step t. Snake joints were numbered, starting at zero from front to

back, with the evenly numbered joints moving the snake laterally and the odd ones

moving the snake vertically (Figure 5.3).

CHAPTER 5. SNAKE ROBOT PROTOTYPE 78

φ(n, t) =

Olateral + Alateral · sin(θ + α), n is even

Overtical + Avertical · sin(θ), otherwise
(5.1)

θ = ωn+ γt (5.2)

If the snake rolled on its side, then the evenly numbered joints moved vertically

and oddly numbered joints moved laterally which similarly switched the angles used

by equation (5.1). The terms Olateral and Overtical are the offsets of the lateral

and vertical joints respectively and define the central angle value of their respective

waves. Terms Alateral and Avertical refer to the wave amplitudes of the lateral and

vertical joint angles, respectively. The parameters ω and γ are respectively the

spatial and temporal components of the sine wave moving through the robot. The

α term is the phase offset between the lateral and vertical sine waves.

Figure 5.3: Snake Robot

5.3 Experimental Procedure

The snake prototype developed in this work is a first-time investigation into the use

of SNNs on a complex robot with a high number of degrees of freedom. Therefore

controllers and SNNs were designed with a few simplifying assumptions. The fol-

lowing sections provide details regarding the experimental work and procedures that

CHAPTER 5. SNAKE ROBOT PROTOTYPE 79

were followed. Section 5.3.1 discusses the hardware and data capturing techniques.

Details of the controller used are discussed in Section 5.3.2 and the developed sim-

ulator is described in Section 5.3.3.

5.3.1 Hardware and Data Capturing

A custom designed, snake-like robot was developed for the experimental work. Sim-

ilarly constructed snake-like robots have also been used by other researchers [Melo

et al., 2012b; Murata and Kurokawa, 2007]. This robot was chosen due to its simple

construction and relatively low cost. The morphology of the robot used for exper-

imental work is shown in Figure 5.4. The robot consisted of an array of twelve

Dynamixel AX-12 servo motors joined together with links. Evenly numbered joints

moved the robot laterally while the odd joints moved the robot vertically. The

length of the snake robot is 114cm and its width and height are 5cm. The servos are

controlled by an Arduino Mega micro-controller which received joint angles from a

computer using serial communication.

The servos are powered by using a tethered connection to the robot. A tethered

approach was chosen due to the extra weight batteries would add and to eliminate

the need for monitoring battery-power levels. Near each end of the robot was a

yellow or green tracking marker which is used for camera-based tracking.

No snake-like skins or mechanisms such as wheels were used to allow for the

directional friction required for forward locomotion seen in many biological snakes

(Section 5.2). The robot consequently had difficulty with forward locomotion and

had to either side-wind, strafe laterally, perform helix-like rolling or flapping mo-

tions. The robot was not fitted with any sensors.

A roof-mounted camera was used to track robot behaviours, namely the change in

position of the tracked markers on the robot for a given behaviour. A camera-based

tracking approach was chosen over manual data acquisition methods in order to

speed up the process and eliminate human error. An open source, computer vision

CHAPTER 5. SNAKE ROBOT PROTOTYPE 80

Figure 5.4: Robot Morphology

library called OpenCV [OpenCV, 2015] was used for the camera-based tracking

software.

Images from the tracking camera were used to locate the pixel coordinates of

the tracked markers. The centre of each marker was determined and converted into

real-world coordinates. Calibration techniques were employed and distortions were

removed from the captured images before use. The automated tracking process was

not used to identify if the robot tipped over, rolled, collided with itself or if the

torque limits were reached, therefore these behaviours were manually noted during

data acquisition.

5.3.2 Controllers

Because this investigation was an initial proof-of-concept prototype, the trajectory

planning tasks were deliberately chosen to be simple in order to investigate the

CHAPTER 5. SNAKE ROBOT PROTOTYPE 81

viability of the approach. The robot had to visit square goal regions in a specific

order. The required navigational behaviour is shown in Figures 5.11 to 5.13 and

Figures 5.16 to 5.21. Square regions were 40cm wide and were placed in two or

three quadrants of the operating surface and placed 20cm apart from each other.

The robot was placed with the yellow marker on the origin and facing eastwards.

The task was considered completed when the robot traversed all the blocks in a

specific order. During the ER process, controllers were evaluated in simulation

which generated a list of points that represented the simulated path. The fitness

values assigned to each controller were determined by using Algorithm 3. This

algorithm took as input the simulated path and the list of goal regions. The fitness

was calculated based on the number of goal regions reached in their specified order.

The robot was judged to have reached a given goal region if the midpoint of the

tracked markers moved within the goal region. A controller’s fitness was penalized

for containing positions outside the bounds of the working surface. A cycle was

defined to be unstable if any of the robot’s motors reached a torque limit, or if the

robot collided with itself or the robot did not remain upright during the cycle. If a

position was reached from an unstable cycle, fitness was also penalized. Fitness was

further penalized for each goal region not reached.

A set of twelve joint angles represented a single command. When a command

was sent to the robot, all of the robot’s joints simultaneously positioned themselves

to the assigned angles. A cycle consisted of thirteen sequential commands which,

when evaluated, started and ended on the same joint angle set. During the evalu-

ation of a cycle, commands were sent sequentially to the robot and upon reaching

all the assigned joint angles of the given command, the robot moved on to the

next command. The controllers developed for the snake robot were for open-loop

navigation. A controller consisted of a sequential list of ten different cycle param-

eter settings for equations (5.1) and (5.2) (Figure 5.5). Each cycle in the list was

evaluated sequentially and could be repeated up to four times when evaluated.

Controllers were evaluated on the real-world robot according to the cycles re-

CHAPTER 5. SNAKE ROBOT PROTOTYPE 82

Algorithm 3: Snake Controller fitness evaluation

Data:

positions← Simulated path list

goalpoints← List of goal regions

Result: Fitness of controller

sum← 0

curGP ← 0 . Current goal point

penalty ← a large constant

for each position in positions do

if position out of bounds then
sum← sum+ penalty

if position reached goalpoints[curGP] then
curGP ← curGP + 1

if all goals reached then
break

if position reached from failed cycle then
sum← sum+ penalty

missedGoalpoints← length(goalpoints)− curGP − 1

sum← sum + distance to goalpoints[curGP]

sum← sum+ penalty ×missedGoalpoints
fitness← 1/sum

return fitness

CHAPTER 5. SNAKE ROBOT PROTOTYPE 83

Figure 5.5: Controller morphology

quired to complete the goal task in simulation and excess cycles were ignored during

real-world evaluations. The most successful controllers require far fewer than ten

unique cycles to complete the tasks given in this work. Cycles were generated by

using equations (5.1) and (5.2). The γ term determined the number of commands

contained in a given cycle. The set of joint angles for all cycles had to begin and end

on the same set of angles which is exactly one period of the sine wave. The time-

steps of t for every cycle went from zero to the number of commands per cycle plus

one. The commands per cycle were fixed at thirteen which required that the γ term

remained constant at 2π/12. The offsets Olateral and Overtical determined the central

angle value for the wave which was assumed to remain constant at zero. Non-zero

offsets typically help to steer the robot in a particular direction. Amplitudes Alateral

and Avertical had a range of between 0 and π/2. The α and ω parameter values

ranged between 0 to 2π. These ranges were chosen based on experimental work.

The reason why the number of commands per cycle, the offsets and γ terms were

chosen to remain constant was to reduce the controller search space which in turn

reduced the amount of training data the simulator required to perform adequately.

The vertical amplitude Avertical was chosen so that it was less than the lateral

amplitude Alateral in order to reduce the number of cycles that failed to remain

upright. Even with this restriction in place, many parameter sets could result in the

robot’s tipping over or rolling. Ensuring that the robot always remained upright

and stable during evaluations was important for the simulator predictions. The

simulator was trained to predict only the behaviours of stable cycles.

The angular velocity of the robot’s joint movements was kept constant. The

CHAPTER 5. SNAKE ROBOT PROTOTYPE 84

angular velocity was experimentally chosen to reduce slippage on the smooth op-

erating surface. Depending on the locomotion mode, the degree of slippage varied

greatly. Due to the flexibility of equation (5.1), many different locomotion modes

were possible, even modes that resulted in collision or caused joint torque limits to

be reached.

5.3.3 Simulator

Equation (5.1) was used to generate a sequence of commands that perform cyclical

behaviours when evaluated on the robot. The robot’s change in position after the

evaluation of a given cycle depends on the parameter values used by equations

(5.1) and (5.2). The developed SNNs took as input those parameter settings and

subsequently predicted the change in the robot’s position on the planar operating

surface at the end of the given cycle. The simulator also simulated whether cycles

would fail and cause the robot to tip over, roll, reach torque limits or collide with

itself.

Because this research was a first-time investigation into the viability of using

SNNs to simulate a complex, snake-like robot and, in order to keep complexity to

a minimum, a few simplifications were applied. The simulator predicted the change

in the robot’s position for a given cycle, however, the change in the position of the

robot when transitioning between different cycles was ignored. The change in the

robot’s position between cycles was usually small enough to ignore. The distance

between tracked markers for each cycle was not predicted. The distance between

the tracked markers was assumed initially to be 65cm at the start of every controller

evaluation. Distances between tracked markers could increase or decrease based on

simulator predictions and the distance between markers could become unrealistically

large or small during a controller evaluation.

SNNs were trained to predict the change in the position of the tracked markers

on the robot for any given cycle. The robot had two local coordinate systems with

CHAPTER 5. SNAKE ROBOT PROTOTYPE 85

the origins located at the centre of each tracked marker and y-directions taken from

the yellow to green tracked markers. The change in the x and y-coordinates for the

yellow tracked marker for a given cycle was represented by ∆x1 and ∆y1, respec-

tively. Similarly, the changes in the x and y-coordinates for the green marker were

represented by ∆x2 and ∆y2, respectively. The simulator also predicted whether or

not cycles remained stable.

The simulator developed in this study consisted of five separate Feed-Forward

Neural Networks (FFNNs) (Figure 5.6), one for each of the x-and y-directions for

each tracked marker and another to predict failed cycles. A previous study deter-

mined that separate FFNNs could produce more accurate results than a single FFNN

[Pretorius et al., 2009]. Each FFNN took as input the values of Alateral, Avertical,

ω and α that were used by equation (5.1) to generate the cycle. The offset and γ

terms were kept constant and not used as inputs. Sigmoid activation functions were

used for all FFNN neurons and each FFNN had a single hidden layer of 100 neu-

rons. The optimal number of hidden neurons was determined experimentally. The

sigmoid function was chosen because it was experimentally determined to improve

training efficiency. In order to evolve robust controllers that were able to cross the

reality-gap, noise was injected into the ER process during controller evaluations.

5.4 Pre-computed Snake Robot Simulator

The previous parameter comparison experiments (Section 4.5) that were conducted

on the Khepera robot were only possible due to the development of a pre-computed

simulator from previous research. This was a first-time investigation into the use of

SNNs on a snake-like robot. No pre-computed snake simulator was available for con-

ducting the parameter comparison investigations for the snake robot. Additionally,

an initial investigation into the viability of simulating snake-like robot locomotion

by using SNNs needed to be conducted. Pre-computed SNNs for a snake-like robot

were developed and validated before the BNS approach was attempted. Section

CHAPTER 5. SNAKE ROBOT PROTOTYPE 86

...

Avertical

Alateral

ω

α

H1

Hn

∆x1 or ∆y1 or

∆x2 or ∆y2 or

Stable cycle?

Input

layer

Hidden

layer

Ouput

layer

Figure 5.6: Simulator Neural Networks of the snake robot

5.4.1 describes the experimental procedure followed to acquire and use behavioural

data to train the pre-computed simulator and produce controllers. The resulting

controllers were validated by performing trajectory planning tasks on the real-world

robot (Section 5.4.2).

5.4.1 Experimental Procedure for Pre-computed Simulator

Equation (5.1) was used to generate a sequence of commands that perform cyclical

behaviours when evaluated on the robot. The robot’s change in position after the

evaluation of a given cycle depended on the parameter settings used by equations

(5.1) and (5.2). The creation of SNNs and controllers using the ER process was

achieved as follows:

1. Parameter settings for equations (5.1) and (5.2) are randomly generated using

a uniform distribution and are used to generate cycles that are performed on

the real-world robot. As a result of these commands, the robot moves around

the environment and data is collected by using motion tracking techniques.

CHAPTER 5. SNAKE ROBOT PROTOTYPE 87

2. When sufficient data has been collected, it is used to train SNNs to predict the

real-world robot’s behaviours. Data collection is concluded when the trained

SNNs are able to evolve adequately transferable controllers that complete the

goal task.

3. The trained SNNs are used to determine the fitness of candidate controllers

during controller evolution.

4. At the end of the ER process, the fittest controller in simulation is validated

by using the real-world robot.

Training data was experimentally acquired from 400 randomly generated cycles.

This training data was used to train an initial simulator and the worst 20 training

data cycles that had the largest difference between their expected versus simulated

displacements were subsequently selected for each of the SNNs. These poor per-

formers were re-evaluated and each one was used to generate three additional cycles

with noise, and generated 400 additional training data cycles. The SNNs were then

re-trained by utilizing all training data. These SNNs were used to evolve controllers

during the ER process and twenty of the worst performing cycles from these con-

trollers were taken and used to generate a further 100 training data patterns. The

final SNNs were then trained by using all available training data generated.

SNNs were trained using Resilient Backpropagation for 12000 iterations or just

before over-fitting occurred. The sizes of the training data set and verification data

of the cycles that remained stable were 720 and 76, respectively. The sizes of the

training data and verification data sets that included unstable cycles were 818 and

82, respectively. The data for the stable cycles was used to train the SNNs to predict

the changes in the x and y position of both tracked markers for a given cycle. The

data for the stable and unstable cycles was used to train another SNN to predict

whether a given cycle would be stable or unstable.

In order to evolve robust controllers that were able to cross the reality-gap, noise

was injected into the ER process during controller evaluations. Controllers were

CHAPTER 5. SNAKE ROBOT PROTOTYPE 88

evaluated ten times in simulation and the average fitness was used. The distribution

used for noise injection was Gaussian with a mean of zero and standard deviations

of 10cm and 5cm for the ∆x1, ∆x2 and ∆y1, ∆y2 displacements respectively. These

standard deviations were based on the observed training data errors.

A controller consisted of a sequential list of four different parameter settings that

were used to generate cycles using equations (5.1) and (5.2). Each cycle in the list

was repeated up to four iterations when evaluated. A single controller could thus

consist of between four to sixteen cycles.

5.4.2 Validation Experiments

Controllers consisted of encoded parameters for the variable terms in equations (5.1)

and (5.2). The controller evolution settings are given in Table 5.1.

Table 5.1: Parameters for controller evolution

Population Size 400

Initialization Random from a uniform distribution

Selection Tournament (size 20)

Cross-over Method Uniform

Mutation Probability 10%

Mutation Method Random Component Perturbation

An initial population of 400 controllers was generated randomly from a uniform

distribution. During uniform cross-over operations, two parents were selected by

using tournament selection (using a tournament size of 20 parents). Child controllers

consisted of approximately 20% genetic material from one parent and 80% from the

other. A 80/20 split in the genetic material was assumed to help reduce the loss of

CHAPTER 5. SNAKE ROBOT PROTOTYPE 89

known, good solutions during the cross-over process, but later experimental work

indicated that there was little difference compared to a 50% split. There was a 10%

probability that controller parameter values were mutated by an amount that was

uniformly chosen in the range [-0.2, 0.2] for the α and ω terms and in the range of

[-20, 20] for the amplitudes. These settings were based on the results of the Khepera

parameter combination experiments and prior experimental work. The ER process

proceeded until the fittest controller was sufficiently able to complete the task in

simulation. Upon completion, the fittest controller was evaluated on the real-world

robot.

The accuracy and viability of using SNNs for the snake-like robot was demon-

strated through a set of experiments. Controllers were developed to allow the robot

to navigate through three square goal regions. The robot was placed just below the

first goal region and had to traverse all the blocks in a specific order. The following

section covers the results of the experimental work.

5.5 Pre-computed Snake Robot Simulator Results

The accuracy of the pre-computed simulator is investigated in Section 5.5.1. Con-

trollers were evolved using the pre-computed simulator and validated on a real-world

robot (Section 5.5.2). Lastly, these results are discussed in Section 5.5.3.

5.5.1 Simulator Accuracy

Figures 5.7 to 5.10 demonstrate the predicted versus expected change in the position

of the tracked markers for the verification data set. The predicted change in position

was determined by the simulator and the expected change in position was obtained

through real-world evaluations. Every dot represents the simulated versus real-world

change in position of the robot for the specific coordinate axis and for the given

verification pattern. The verification data set was not presented to the simulator

during training and was therefore used to determine the accuracy and generalisation

CHAPTER 5. SNAKE ROBOT PROTOTYPE 90

abilities of the trained simulator.

Figure 5.7: Predicted versus expected displacement in the x-direction for the yellow

tracking marker

For Figures 5.7 to 5.10, linear regression lines were fitted. All the y-intercepts

of the regression lines were close to zero. The R-squared values for Figures 5.7

and 5.9 were 0.84 and 0.75, respectively. This indicated that the simulator could

adequately model movement along the x-direction of the robot. The regression line

slopes were 0.85 and 0.9 for Figures 5.7 and 5.9 respectively and both y-intercepts

close to zero, which indicated that the simulator modelled the real-world fairly well.

The R-squared values, 0.17 and 0.05 for Figures 5.8 and 5.10 respectively, indicted

that the simulator could not adequately model movement along the y-direction of

the robot. The slopes for Figures 5.8 and 5.10 were 0.28 and 0.25 respectively,

which indicated that the simulator and real-world did not closely relate for those

movements. The sum of squares of errors for the x-direction for the yellow and

green tracked markers were 3548 and 15912 respectively which indicated that the

simulator could more accurately predict the movement of the yellow tracked marker.

The simulator was trained to predict the success or failure of any given cycle.

CHAPTER 5. SNAKE ROBOT PROTOTYPE 91

Figure 5.8: Predicted versus expected displacement in the y-direction for the yellow

tracking marker

Figure 5.9: Predicted versus expected displacement in the x-direction for the green

tracking marker

CHAPTER 5. SNAKE ROBOT PROTOTYPE 92

Figure 5.10: Predicted versus expected displacement in the y-direction for the green

tracking marker

The patterns used to verify the success or failure of a cycle contained 19 failed cycles

and 63 successful cycles. The percentage of verification patterns that the simulator

correctly predicted to succeed or fail was 85%. The simulator relied greatly on

only predicting behaviours of successful cycles which meant that fitness estimations

were inaccurate for controllers that contained any failed cycles. Out of the 63

successful cycles in the verification set, the simulator correctly predicted that 94%

were successful. For the verification set’s 19 failed cycles, the simulator correctly

predicted 58% would fail. This meant that the simulator could consistently identify

successful cycles but was less capable of identifying failed cycles.

Predictions for the robot’s movement in the y-direction (Figures 5.8 and 5.10)

were a great deal less accurate than those along the robot’s x-direction (Figures

5.7 and 5.9). The expected values for the robot’s y-direction as shown in Figures

5.8 and 5.10 tended to be close to zero and the range of predicted values were also

closer to zero compared to the x-direction (Figures 5.7 and 5.9). This was possibly

due to the smooth operating surface and lack of directional friction properties seen

CHAPTER 5. SNAKE ROBOT PROTOTYPE 93

in biological snakes or snake-like robots using wheels. These results can potentially

be explained by assuming that much of the movement in the y-direction was close

to random and that the main strategy used by the robot for locomotion was in the

x-direction.

The results provided a reliable indication as to the accuracy of the developed

simulator and whether enough training patterns had been collected. Predicting the

robot’s change in positions is indeed possible, which is significant, considering the

complexity of the robotic system.

5.5.2 Trajectory Planning Results

The ideal paths obtained by validation controllers in simulation were compared to

their real-world paths. These results are shown in Figures 5.11 to 5.13. The initial

position of the robot was on the x-axis and the starting position was calculated as

the midpoint of the tracked markers which was located at coordinates (30,0) for

all tasks. The yellow and green tracked markers are represented by the � and B

annotations, respectively. The order in which goal regions needed to be traversed are

represented by the numbered circles. The dashed lines represent the simulated path

of the validation controller and the solid lines represent the real-world paths followed

by the robot. The paths in simulation or reality were calculated as the path followed

by the midpoint between the tracked markers. For each validation controller, three

real-world evaluations were performed. The simulated paths presented in these

figures do not include any noise.

There were twelve independently evolved controllers using the pre-computed

SNNs, of which only the best three are shown in this work. Three trials were

excluded as the robot moved out of the bounds of the operating surface. Another

three trials were excluded as the robot rolled during transitions between cycles. One

trial contained a failed cycle and two trials were left out due to poor transference to

the real-world robot. The high number of trials required to find viable controllers in-

CHAPTER 5. SNAKE ROBOT PROTOTYPE 94

dicated that there was a reality-gap problem. The differences in behaviours observed

in simulation and reality were not significant enough that they made it impossible

to develop viable controllers.

Evaluated cycles exhibited many types of locomotion modes, such as lateral

strafing, side-winding, helical movements, rolling, flapping and many others. Certain

behaviours, such as flapping, were observed to be unable to transfer well to reality

whereas other behaviours such as side-winding showed better transference to reality.

Transitions between different cycles could also cause stability and accuracy problems.

The same sequence of commands could generate varying behaviours on the real-

world robot due to a lack of repeatability in the movements and this could affect

the accuracy of the results.

The controller search space was large and often contained regions where small

changes to a controller could result in large changes in behaviour. For each trial, the

number of cycles used, percentage of goal regions reached, average displacement be-

tween the final positions in simulation and reality and lastly the number of controller

evolution generations of the validation controllers are given in Table 5.2.

Inaccuracies between the simulator and real-world could be due to many factors,

such as path divergence over time due to an accumulation of errors. The simulator

was simplified and did not predict changes in position due to transitions between

cycles. The tracked marker positions in simulation could also drift too far or too

close to each other during controller evaluations, resulting in unrealistic behaviours

in simulation.

The first cycle in trial 1 (Figure 5.11) moved the robot into the initial goal region.

The second cycle reversed the robot’s direction towards the origin of the working

space. The slight shift eastwards around the origin was the result of the robot’s shift

in position due to switching to the third cycle. The third cycle was repeated three

times and showed poor transference to reality which was possibly due to the lack of

training data patterns near that region of the cycle search space. The last distinct

cycle was repeated three times and brought the robot towards the last goal region.

CHAPTER 5. SNAKE ROBOT PROTOTYPE 95

Table 5.2: Trial run details

Trial

number

Cycles Goal regions reached

by real-world runs

Final dis-

placement

error

Controller

generations

Trial 1 8 89% 21cm 200

Trial 2 6 78% 16cm 100

Trial 3 8 100% 53cm 100

−90 −70 −50 −30 −10 10 30 50 70 90
x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90

y
po

si
tio

n
(c

m
)

simulated
real-world run 1
real-world run 2
real-world run 3

� B

1

2

3

Figure 5.11: Experimental run, trial 1

The first cycle in trial 2 (Figure 5.12) moved the robot into the initial goal region

and overshot towards the right when compared to the predicted path. The next two

cycles moved the robot towards, and mostly into the second goal region. Only one

of the real-world runs missed this goal region. The fourth cycle was supposed to

move the robot westward. However, it resulted in the real-world robot holding the

CHAPTER 5. SNAKE ROBOT PROTOTYPE 96

−90 −70 −50 −30 −10 10 30 50 70 90
x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90
y

po
si

tio
n

(c
m

)

simulated
real-world run 1
real-world run 2
real-world run 3

� B

1

2

3

Figure 5.12: Experimental run, trial 2

−90 −70 −50 −30 −10 10 30 50 70 90
x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90

y
po

si
tio

n
(c

m
)

simulated
real-world run 1
real-world run 2
real-world run 3

� B

1

2

3

Figure 5.13: Experimental run, trial 3

CHAPTER 5. SNAKE ROBOT PROTOTYPE 97

same position. The last two cycles formed a curved path towards the third goal

region which closely matched the predicted behaviour.

The first cycle in trial 3 (Figure 5.13) moved the robot over the first goal region

and overshot it slightly towards the left. The next three identical cycles brought

the robot towards and just below the second goal region. The fifth cycle moved the

robot slightly closer towards the second goal region and the last three cycles moved

the robot over the second and third goal regions.

5.5.3 Discussion

From the results shown in Section 5.5.1, it was observed that changes in position

of the yellow marker could be modelled more accurately than those of the green

marker. This could be due to the increased friction caused by the added weight

of the Arduino and the tether on one end of the robot (Figure 5.4). The increased

friction could cause the robot to exhibit less slippage. An environment or robot with

different frictional properties could possibly yield better results.

The trajectory planning experiments (Section 5.5.2) demonstrated the viability

of using SNNs to simulate snake robot behaviours and evolve effective trajectory

planning controllers. Many independent trial runs of the ER process were required

in order to identify effective controllers. The development of a simulator without

inconsistencies between behaviours observed in simulation and reality was shown to

be difficult due to the complexity of the behavioural search space. Future work may

be able to identify ways of reducing the reality-gaps without too many real-world

evaluations. Independent trial runs of the ER approach using the pre-computed

SNNs resulted in controllers with very different behaviours, and certain behaviours

transferred well to reality and others transferred poorly. Once the viability of using

SNNs to simulate snake-like robot behaviours had been demonstrated, the experi-

ments in the following section were used to determine the viability of concurrently

developing SNNs and controllers by using the BNS approach.

CHAPTER 5. SNAKE ROBOT PROTOTYPE 98

5.6 BNS Prototype Experiments

The BNS approach was performed on the real-world snake-like robot (Section 5.3.1).

Experiments proceeded until the robot was visually perceived to have traversed all

the goal points or controller evolution had converged towards a consistent wrong so-

lution. Each of the trajectory planning tasks was completed using the BNS approach

over three trials.

Controllers consisted of encoded parameters for the variable terms in equations

(5.1) and (5.2). The controller evolution settings are given in Table 5.3. Optimal pa-

rameter values were determined experimentally, based on the parameter comparison

experiments described in Section 5.8.

Population Size 400

Initialization Random from a uniform distribution

Selection Tournament (size 200)

Cross-over Method Uniform

Mutation Probability 10%

Mutation Method Random Component Perturbation

Table 5.3: Parameters for controller evolution

An initial population of 400 controllers was generated randomly from a uniform

distribution. Each controller consisted of ten unique cycles and each cycle could be

repeated four times. During uniform cross-over operations, two parents were selected

by using tournament selection (using a tournament size of 50%). Child controllers

consisted of approximately 50% genetic material from one parent and 50% from the

other. The probability that controller parameter values were mutated by a random

amount was 10%. Elitism was used, with the best performing controller for each

generation carrying over to the next.

An additional parameter which was specific to the BNS approach was the Real-

CHAPTER 5. SNAKE ROBOT PROTOTYPE 99

world Selection parameter. At the end of every real-world controller evaluation, a

new controller was selected for the next real-world evaluation. This new controller

was selected from the population of controllers by using tournament selection and the

tournament size was specified by the Real-world Selection parameter. A Real-world

Selection Size of 70% of the controller population was chosen for the experimen-

tal work. The following section presents the results of the prototype experiments

performed on the real-world snake robot.

5.7 BNS Prototype Results

The real-world snake prototype experiments were able to demonstrate that the BNS

approach is indeed viable on a complex, snake-like robot. The developed SNNs

made sufficiently accurate predictions and controllers were successfully evolved to

exhibit the required behaviours on a real-world robot. Controllers were developed

for two types of trajectory planning tasks. For Task 1 (Figure 5.14), the robot was

initially situated between two goal regions. Task 2 (Figure 5.15) had three goal

regions positioned around the origin of the operating surface and were spaced 20cm

apart. The robot was initially placed along the x-axis and the starting position was

the midpoint of the tracked markers, located at coordinates (30,0) for both tasks.

The yellow and green tracked markers are represented by the � and B annotations,

respectively. The order in which goal regions needed to be traversed are represented

by the numbered circles.

The total run-times and number of real-world evaluations for each trial is given

in Table 5.4. The run-times do vary considerably and are highly dependent on the

developed behaviours. The Task 2 run-times were more than double the Task 1

run-times which can be ascribed to the greater complexity of Task 2 which required

the exploration of more robot behaviours. The addition of an extra goal region

did not appear to increase the complexity of the task linearly, based on the run-

times and the number of real-world evaluations. It was observed in Task 2 that the

CHAPTER 5. SNAKE ROBOT PROTOTYPE 100

−20 0 20 40 60 80
x position (cm)

−60

−40

−20

0

20

40

60
y

po
si

tio
n

(c
m

)

� B

1

2

Figure 5.14: Task 1

−60 −40 −20 0 20 40 60
x position (cm)

−60

−40

−20

0

20

40

60

y
po

si
tio

n
(c

m
)

� B

1

2

3

Figure 5.15: Task 2

CHAPTER 5. SNAKE ROBOT PROTOTYPE 101

BNS approach could find solutions that allowed the robot to traverse the first two

goal regions with run-times similar to Task 1, but the third goal region increased

the difficulty more than expected. In each figure (Figures 5.16 to 5.21), the solid

lines represent the average real-world paths of the midpoint of the tracked markers

followed by the evaluated controller. Each controller was evaluated three times on

the real-world robot in order to gauge the repeatability of results. The dotted line

represents the developed simulator’s simulated path followed by the best identified

solution of the ER process.

The real-world paths demonstrated in Figure 5.16 closely matched the simulator’s

perceived path with little difference between the real-world runs. The robot moved

upwards which was followed by a downward motion forming an arc as one end of

the robot moved further than the other. The controller consisted of two distinct

cycles, one cycle moved the robot upward and the next cycle was repeated twice

and moved the robot downwards. The simulator accurately predicted the real-world

behaviours and the goal task was successfully completed by the developed controller

when transferred to the real-world robot.

Goal task Trial number Experiment

run-times

Real-world

evaluations

Trial 1 68 minutes 19

Task 1 Trial 2 96 minutes 23

Trial 3 102 minutes 31

Trial 1 200 minutes 42

Task 2 Trial 2 245 minutes 53

Trial 3 210 minutes 46

Table 5.4: Prototype run-times

The solution demonstrated in Figure 5.17 contained the largest number of cycles

CHAPTER 5. SNAKE ROBOT PROTOTYPE 102

−40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90

x position (cm)

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

60
y
 p

o
s
it
io

n
 (
c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

� B

1

2

Figure 5.16: Task 1, first trial run at the 19th real-world evaluation

out of the three trials for Task 1. The robot used two cycles to move upwards into

the first goal region and closely matched the predicted paths. The next cycle was

perceived by the simulator to move the robot to the left, but in reality the robot

remained in place. The fourth cycle was supposed to move the robot downwards

whilst within the goal region, however, the robot was observed to move upward

which was mainly due to the shift in position when transitioning between the third

and fourth cycles. The fifth cycle was repeated twice and was responsible for moving

the robot out of the first goal region and into the second goal region.

The third trial run for Task 1 (Figure 5.18) was able to accomplish the task

and the predictions transferred reasonably well to reality. The first cycle brought

the robot into the first goal region which corresponded well to the predicted path,

however, the transition to the next cycle was observed to result in a minor shift

towards the right in the real-world runs. The second cycle was repeated twice with

the predicted distance covered by the robot being slightly underestimated by the

CHAPTER 5. SNAKE ROBOT PROTOTYPE 103

−40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90

x position (cm)

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

60
y
 p

o
s
it
io

n
 (
c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

Transition between

cycles 3 and 4� B

1

2

Figure 5.17: Task 1, second trial run at the 23rd real-world evaluation

simulator, but it still accurately simulated the general behaviour. The simulated

path appeared to overshoot the second goal region which was due to the addition of

noise. If the end of the last cycle missed the second goal region, then the goal would

be reached by the second last cycle and if the second last cycle missed the second

goal region, then the goal would be reached by the last cycle.

The first trial run of Task 2 is shown in Figure 5.19. The robot started along

the x-axis below the top right goal region. The first cycle moved the robot barely

into the first goal region which closely matched reality. The simulator estimated

that the second cycle would end near the top left corner of the first goal region,

but the real-world runs did not transfer this predicted behaviour. The transition

from the second to the third cycle was observed to result in the robot slipping which

explained differences between real-world runs. The next cycle was repeated three

times and was predicted to bring the robot into the second goal region which closely

matched the real-world behaviour. The next cycle shifted the robot in position and

CHAPTER 5. SNAKE ROBOT PROTOTYPE 104

−30 −20 −10 0 10 20 30 40 50 60 70 80 90

x position (cm)

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

y
 p

o
s
it
io

n
 (
c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

� B

1

2

Figure 5.18: Task 1, third trial run at the 31st real-world evaluation

the last three cycles which were predicted to bring the robot out of the second goal

region and into the final goal region accurately matched the real-world behaviour.

The real-world runs often did not reach the second goal region due to the poor

transference of the second cycle and the slippage observed between the second to

third cycles.

Figure 5.20 demonstrates the second trial of Task 2 which appeared to mostly

reach the first two goal regions, but transferred poorly for the last goal region. The

trial run converged towards the behaviour shown in Figure 5.20 and did not improve

much after the fifty-third real-world evaluation even though the trial was run up to

the eightieth real-world evaluation. The first cycle moved the robot upward and

closely matched the simulated behaviour, but there was slipping when transitioning

to the second cycle. The simulator over-predicted the distance that was covered by

the second cycle. The second cycle was repeated twice and was supposed to carry

the robot into the second goal region, however, most of the real-world runs moved

CHAPTER 5. SNAKE ROBOT PROTOTYPE 105

−60 −40 −20 0 20 40 60

x position (cm)

−60

−40

−20

0

20

40

60
y
 p

o
s
it
io

n
 (
c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

Slipping

� B

1

2

3

Figure 5.19: Task 2, first trial run at the 42nd real-world evaluation

the robot into the second goal region at the end of the third cycle. The fourth cycle

was predicted to move the robot slightly to the left within the goal region, however,

in the real-world very little change in the robot’s position resulted. The last cycle

was repeated four times and was supposed to allow the robot to reach the final goal

region but the curvature of the real-world paths was not as acute as simulated. The

lack of curvature may have been because the tracked markers drifted unrealistically

too close towards each other during simulator evaluations.

In Figure 5.21, the robot was able to perform the goal task even though there

was a high degree of slipping. The first cycle transferred well to reality and brought

the robot barely into the first goal region and the next cycle was repeated twice and

brought the robot barely within the second goal region. The fourth cycle moved the

robot leftwards and further into the second goal region. The last cycle was repeated

three times and was observed to cause a high degree of slipping, but moved the

robot into the third goal region.

CHAPTER 5. SNAKE ROBOT PROTOTYPE 106

−60 −40 −20 0 20 40 60 80

x position (cm)

−60

−40

−20

0

20

40

60

80

y
 p

o
s
it
io

n
 (
c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

� B

1

2

3

Figure 5.20: Task 2, second trial run at the 53rd real-world evaluation

−100 −80 −60 −40 −20 0 20 40 60

x position (cm)

−50

−30

−10

10

30

50

70

90

y
 p

o
s
it
io

n
 (
c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

� B

1

2

3

Figure 5.21: Task 2, third trial run at the 46th real-world evaluation

CHAPTER 5. SNAKE ROBOT PROTOTYPE 107

Task 1 required relatively few real-world evaluations and the developed simulator

made sufficiently accurate predictions of reality. Task 2 was more complex and

required nearly double the number of real-world evaluations compared to Task 1.

For Task 2, the most difficult part of the task was moving the robot from the second

to the third goal region. The orientation of the robot at the second goal region could

vary from one solution to the next, requiring the exploration of a much larger set of

behaviours to account for the changes in orientations.

The BNS approach does not guarantee that a successful solution can be found

for every independent run. Controllers could converge on a solution that did not

transfer well to reality, such as the second trial of Task 2 where controllers con-

verged on a solution that was unable to reach the third goal task even though a

large number of real-world evaluations was conducted. The BNS approach could

fail to find successful controllers due to many reasons, such as poorly transferred,

constantly slipping or unstable cycles. There could be a large change in the position

of the robot when transitioning between cycles. The distance between the tracked

markers may increase or decrease unrealistically during a controller’s evaluation in

simulation which could result in inaccuracies.

5.8 Parameter Comparisons

In order to investigate important factors that contribute to the success or failure of

the BNS approach on the snake robot, the influence that various parameter settings

had on success was investigated. The parameter settings tested are identical to the

Khepera parameter comparison experiments (Section 4.5) and are listed in Table

4.3. Due to the stochastic nature of the experiments, every possible combination of

the parameter settings was independently run for 30 trials for each task.

The investigation of such a large number of parameter combinations on a real-

world robot would take infeasibly long due to the time required to run them. A

pre-computed simulator was developed specifically for the snake robot and was used

CHAPTER 5. SNAKE ROBOT PROTOTYPE 108

as a substitute for the real-world robot, referred to as the static simulator (Section

5.4). Training data generated from the real-world robot would inevitably contain

errors due to inconsistencies in motor function [Pretorius, 2010]. To accurately

simulate reality, noise was thus added to the static simulator in order to realistically

replicate noise that would be present in the real-world. The noise distribution was

assumed to be Gaussian with mean zero because the real-world noise data had a

mean close to zero and had a variance of 8cm for all ANNs of the simulator. The

noise was based on the difference between the static simulator and real-world data.

The variance was chosen to be higher than the observed training differences in order

to improve the robustness of solutions. The static simulator with noise which acted

as a substitute for the real-world robot will be referred to simply as the substitute

real-world. Each experimental run was progressed until the one hundredth controller

was evaluated in the substitute real-world.

The best fitness value during controller evolution was periodically recorded and

the average final fitness of each parameter combination over the 30 trial runs was

calculated. The success rate for a given parameter combination was the number of

trial runs that successfully completed the goal task in the substitute real-world over

the total number of trials (30). The success rates, along with the average fitness of

controllers evaluated for each parameter combination were used to rank how well

each combination performed overall.

The relationship between the diversity and various other properties, such as

parameter settings, controller success rates and how well the developed simulator was

able to predict the substitute real-world fitnesses, were also studied. The diversity

D for a given controller population was calculated using equation (5.3).

The parameter settings for all controllers were normalized to ensure that there

was equal weighting of importance. The normalized Alateral, Avertical, ω, α and cycle

repeats of the jth cycle for the ith controller in the population of controllers are

denoted by Alij , Avij , ωij, αij and Cij respectively. The controller population size

is denoted by n and the number of cycles needed to complete the given task in

CHAPTER 5. SNAKE ROBOT PROTOTYPE 109

simulation for the ith controller is denoted by ri. The average normalized Alateral,

Avertical, ω, α and number of cycle repeats for the jth cycle over all controllers is

denoted by Alj , Avj , ωj, αj and Cj respectively.

D =
1

n

n∑

i=1

ri∑

j=1

(|Alij − Alj |+ |Avij − Avj |+ |ωij − ωj|+ |αij − αj|+ |Cij − Cj|)

(5.3)

The fitness error was calculated by computing the absolute difference between a

controller’s fitness in simulation versus the substitute real-world. At the end of each

substitute real-world evaluation, data was collected regarding the controller popula-

tion diversity, along with the fitness error and success of the fittest controller. The

diversity provided an indication of the balance between exploration and exploitation

of the controller evolution process. A high diversity indicates a large level of explo-

ration where controllers continually explore the search space in order to find new

solutions. A low diversity indicates a high level of exploitation where controllers try

to improve upon existing solutions.

5.9 Parameter Comparison Results

The results of the parameter combination experiments described in the previous

section are now presented. The experiments were conducted completely in simula-

tion, based on the pre-computed simulator developed in Section 5.4. Section 5.9.1

discusses the results that relate to the success rates of the parameter combination

experiments and Section 5.9.2 relates success to the diversity. Section 5.9.3 discusses

results related to the best and worst performing parameter combinations.

5.9.1 Success Rate of the BNS Approach

The success rate versus the number of real-world evaluations for each of the pa-

rameter values listed in Table 4.3 was determined over all other parameters. These

CHAPTER 5. SNAKE ROBOT PROTOTYPE 110

success rates were used to determine which parameters were most influential.

The success rates of the various controller population sizes, over all experiments,

are shown in Figure 5.22. The results presented here demonstrate that the most

influential parameter tested for influencing success rates was the controller popula-

tion size. It was observed that larger controller population sizes generally performed

better overall. The largest difference between the population size success rates was

approximately 12.6% at the fortieth substitute real-world evaluation for Task 1 and

20.3% at the one hundredth real-world evaluation for Task 2. The success rates

appeared to almost reach saturation levels between 80%-90% for Task 1 and the

success rates for Task 2 were seen to increase linearly approximately between the

twentieth and one hundredth substitute real-world evaluations.

The success rates of the various controller mutation rates over all experiments is

shown in Figure 5.23. The success rates demonstrated that the controller mutation

rate was the second most influential parameter tested. The widest gap between suc-

cess rates for Task 1 occurred around the twentieth substitute real-world evaluation

which had the largest difference between success rates at approximately 14%. The

largest difference between the mutation success rates for the one hundredth substi-

tute real-world evaluation was 1.2% for Task 1 and 14.2% for Task 2. The small

gap in mutation success rates for Task 1 could be because the success rates reached

a saturation point which was approximately between 80-90%. For Task 1 the 10%

mutation rate performed the best over the lifetime of the experiments, followed by

a 30% mutation rate. For Task 2 the best mutation rate was also 10% followed by

30% and the last three, worst mutation rates performed similarly well (within 2%

of each other).

The success rates over time for the controller and real-world tournament selection

sizes are given in Figures 5.24 and 5.25, respectively. The results showed that the

controller and real-world tournament selection sizes performed almost equally well

with no more than a 3% difference between the success rates for both tasks. The

largest difference between the controller tournament selection size success rates were

CHAPTER 5. SNAKE ROBOT PROTOTYPE 111

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(a) Task 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(b) Task 2

Figure 5.22: Success rate versus number substitute real-world evaluations for the

tested controller population sizes

CHAPTER 5. SNAKE ROBOT PROTOTYPE 112

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(a) Task 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(b) Task 2

Figure 5.23: Success rate versus number substitute real-world evaluations for the

tested controller mutation rates

CHAPTER 5. SNAKE ROBOT PROTOTYPE 113

3% for Task 1 and 2.3% for Task 2. The largest difference between the real-world

tournament selection size success rates were 2.6% for Task 1 and 2.5% for Task 2.

5.9.2 Diversity

In order to determine how accurately the simulators performed in relation to di-

versity, the fitness error was measured. The average fitness error versus population

diversity for each parameter combination after the one hundredth substitute real-

world evaluation can be seen in Figure 5.26. The plotted parameter combinations

were colour-coded according to the controller population size. A low fitness error in-

dicated that the developed simulator’s predicted fitness of the final controller closely

matched its substitute real-world fitness. The success rate versus diversity for each

parameter combination is shown in Figure 5.27 which is colour-coded according to

the controller mutation rate.

Parameter combinations with a greater population size were observed to gener-

ally have a lower corresponding fitness error for both tasks (Figure 5.26). Controllers

selected for real-world evaluations in the larger populations may have been more

likely to be closer to the fittest controller in the population which could account for

the lower fitness errors. A greater population size may have improved the retention

of high fitness solutions and reduced the chance that good solutions could be lost due

to a changing simulator which would result in more stable controller populations.

The fitness error versus diversity for Task 1 (Figure 5.26a) had two main clusters

centred around a diversity of 2 or 3.4. For each cluster, a greater population size

tended to have a larger diversity which could be due to larger population sizes

containing a wider variety of solutions and perhaps converging slower than smaller

population sizes.

The fitness error versus diversity for Task 2 (Figure 5.26b) was not observed to

form two separate clusters, as was seen in Task 1, however, the parameter combi-

nations appeared to cluster together based on their population sizes. As in Task

CHAPTER 5. SNAKE ROBOT PROTOTYPE 114

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Tournament size

(a) Task 1

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Tournament size

(b) Task 2

Figure 5.24: Success rate versus number substitute real-world evaluations for the

tested controller evolution tournament sizes

CHAPTER 5. SNAKE ROBOT PROTOTYPE 115

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Tournament size

(a) Task 1

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Tournament size

(b) Task 2

Figure 5.25: Success rate versus number substitute real-world evaluations for the

tested real-world tournament sizes

CHAPTER 5. SNAKE ROBOT PROTOTYPE 116

0

5000

10000

15000

20000

1.5 2 2.5 3 3.5 4 4.5

F
it
n
e
s
s
 E

rr
o
r

Diversity

50
100
200
400

Population size

(a) Task 1

0

10000

20000

30000

40000

50000

60000

2 2.5 3 3.5 4 4.5

F
it
n
e
s
s
 E

rr
o
r

Diversity

50
100
200
400

Population size

(b) Task 2

Figure 5.26: Average fitness error versus diversity after 100 substitute real-world

evaluations grouped by population size

CHAPTER 5. SNAKE ROBOT PROTOTYPE 117

1, larger population sizes tended to have a greater diversity. The range of fitness

errors was much larger for Task 2 which may be due to the greater complexity of

Task 2 compared to Task 1. The fitness errors for poorly predicted behaviours could

vary greatly for independent trials and the fitness errors for poorly predicted trial

runs could unfairly distort the average fitnesses, resulting in a wider range of fitness

errors.

The Task 1 and 2 success rates versus diversity for the various mutation rate

groupings are shown in Figure 5.27. For both tasks, the mutation rate for all the

parameter combinations in the lower cluster consisted of a 10% mutation rate and

the higher diversity cluster contained mutation rates of 30% and above. The opti-

mum success rates were achieved for each mutation rate grouping through a balance

between the exploitation and exploration of controller populations. The parameter

combinations with a lower population size tended to have a lower success rate and

a lower diversity which was demonstrated when Figure 5.27 was redrawn (Figure

5.28) for only those parameter combinations with a population size of 400.

A lower diversity may have resulted in a lower success rate due to the exploitation

of sub-optimal solutions and a high diversity may have resulted in the exploration

of newer behaviours before existing solutions could be refined. The optimum bal-

ance between exploration and exploitation for achieving the best success rates for

each mutation rate grouping was clearly skewed towards greater exploration (higher

diversity), but the success rates tended to drop for the highest diversities. This

demonstrated that the exploitation of sub-optimal solutions was the greatest prob-

lem related to the BNS approach. A larger population size helped to increase the

degree of exploration and reduced the likelihood of the evolution process converging

on sub-optimal solutions. Low mutation rates were more likely to have a high suc-

cess rate which may have been due to it facilitating the exploitation of the diverse

set of solutions guaranteed by the large population size.

For Tasks 1 and 2, the success rate versus diversity results (Figure 5.27) did not

demonstrate the same trends observed in the Khepera success rate versus diversity

CHAPTER 5. SNAKE ROBOT PROTOTYPE 118

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.5 2 2.5 3 3.5 4 4.5 5

S
u

c
c
e

s
s
 R

a
te

Diversity

10%
30%
50%
70%
90%

Mutation rate

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 2.5 3 3.5 4 4.5

S
u

c
c
e

s
s
 R

a
te

Diversity

10%
30%
50%
70%
90%

Mutation rate

(b) Task 2

Figure 5.27: Success rate versus diversity after 100 substitute real-world evaluations

grouped by mutation rate

CHAPTER 5. SNAKE ROBOT PROTOTYPE 119

results (Figure 4.12). The trend observed for Khepera experiments (Section 4.6.2)

demonstrated that a very high or low diversity resulted in a poor success rate and a

medium-low optimum diversity range performed the best with few poor performers

around this optimum region. The entire diversity spectrum for the snake robot

contained many poorly performing solutions. There were good and bad solutions

within the optimum diversity range for the snake robot. This was due to the greater

influence that the controller population sizes had on the success rate for the snake

robot. As previously explained, a lower population size significantly decreased the

likelihood of developing successful solutions. Figure 5.27 was redrawn (Figure 5.28)

for only those parameter combinations with a population size of 400 which resulted

in the majority of the badly performing solutions in the optimum diversity range

disappearing. The controller search space for the snake robot was not as smooth

as the Khepera’s because of the difference in complexity in the behaviours. For the

snake robot, changes to the simulator or controllers may be more likely to distort

known good solutions and this was counteracted by a larger population size.

5.9.3 Best and Worst Performing Parameter Combinations

The best and worst performing parameter combinations were compared with each

other in order to identify influential factors. The diversity versus the number of sub-

stitute real-world evaluations for the top 10 best and worst performing parameter

combinations for Tasks 1 and 2 are shown in Figures 5.29 and 5.30, respectively.

There was little point in analysing how the diversity behaved before the fifth substi-

tute real-world evaluation, as controller evaluations were almost random. For this

reason, the figures do not present the diversity before the fifth substitute real-world

evaluation.

The top 10 best performing parameter combinations had a decreasing diversity

over time for Task 1 and an increasing diversity for Task 2. For Task 1, the top

performing diversities were possibly larger during the earlier stages of the ER process

CHAPTER 5. SNAKE ROBOT PROTOTYPE 120

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.5 2 2.5 3 3.5 4 4.5 5

S
u
c
c
e
s
s
 R

a
te

Diversity

10%
30%
50%
70%
90%

Mutation rate

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2.5 3 3.5 4 4.5

S
u
c
c
e
s
s
 R

a
te

Diversity

10%
30%
50%
70%
90%

Mutation rate

(b) Task 2

Figure 5.28: Success rate versus diversity after 100 substitute real-world evaluations

for a population size of 400 and grouped by mutation rate

CHAPTER 5. SNAKE ROBOT PROTOTYPE 121

due to the exploration of the controller search space and the non-convergence of

controllers due to large changes in the simulator during the early stages of the BNS

approach. Task 1 was a simple task and controller populations were quickly able

to converge towards particular solutions which could account for the decrease in

the diversities over time. For Task 2, the diversity increase was possibly due to

the greater complexity of the task where there was a larger search space for the

controller evolution process to explore. The controller populations for Task 2 may

converge slowly towards a full solution, but potentially converge towards partial

solutions during the earlier stages of the BNS approach. Controller populations

could converge on a solution that traversed two of the three goal regions, but the

last goal region was more challenging to reach.

The worst performing diversities were fairly unstable and did not steadily in-

crease or decrease over time (Figures 5.29b and 5.30b). For the worst performers,

the continual increases and decreases in diversity throughout the lifetime of the

process could indicate that controller evolution may be periodically losing good

solutions. A steady decrease in the diversities may indicate that the controller pop-

ulations converged towards solutions and a steady increase may indicate that the

controller population contains an increasing number of possibly different solutions.

This may require that the simulator needs to learn new behaviours that can further

slow down the controller evolution process.

5.10 Conclusions

The difficulty in developing adequate simulators increases as the complexity of the

robots, environments and tasks increase. SNNs provide a simple, automatic way for

researchers to construct models of reality and avoid too many costly real-world eval-

uations needed for many empirical simulation techniques. This chapter has demon-

strated that SNNs are indeed viable for evolving behaviours for complex snake-like

robots during the ER process.

CHAPTER 5. SNAKE ROBOT PROTOTYPE 122

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(a) Top 10 parameter combinations

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(b) Worst 10 parameter combinations

Figure 5.29: Diversity versus number of substitute real-world evaluations for Task 1

CHAPTER 5. SNAKE ROBOT PROTOTYPE 123

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(a) Top 10 parameter combinations

2

2.5

3

3.5

4

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(b) Worst 10 parameter combinations

Figure 5.30: Diversity versus number of substitute real-world evaluations for Task 2

CHAPTER 5. SNAKE ROBOT PROTOTYPE 124

The developed simulator was able to predict the general behaviour of the robot.

It was also significant that behaviours could be evolved for a complex robot to nav-

igate blindly in its environment with no feedback. This was noteworthy considering

the many sources of errors and simplifications assumed by the simulator. Possible

sources of errors included inaccuracies in motion tracking, inconsistencies in motor

function, slippage on the operating surface and errors due to the simplifying assump-

tions of the simulator. Poor transference could also be due to insufficient training

patterns around certain portions of the cycle search space. Much work needs to be

done in devising better training data sampling strategies.

The complexities in the search space were significant, where small changes in

cycle parameter settings could result in significant differences in behaviour. Cy-

cles that did not transfer well to reality were noted and similar training data was

generated which tended to improve transferability overall.

The collection of sufficient behavioural data was a time-consuming process and

it was not feasible to get complete coverage of the search space. The BNS approach

showed great potential in being able to develop solutions using less behavioural

data compared with the precomputed approach, however, the BNS approach does

not guarantee a successful solution and should be investigated further in order to

develop improvements. SNNs require large amounts of behavioural data, but the

development and tuning of a physics-based engine could become equally, if not more,

time-consuming and would require specialised knowledge about the dynamics of the

robotic system. SNNs and bi-directional approaches have been demonstrated in this

research to be able to provide an alternative to traditional approaches.

Factors related to the success of the BNS approach were successfully identified.

The real-world and controller evolution tournament selection sizes were the least

influential parameters tested and no clearly discernible trends were identified. The

controller mutation rate and population size parameters were observed to be the

most influential parameters tested. A low controller mutation rate and a high con-

troller population size was found to be the optimum choice. There needed to be a

CHAPTER 5. SNAKE ROBOT PROTOTYPE 125

balance between the exploration and exploitation of the controller search space. A

low controller mutation rate allowed the evolution process to better exploit known

good solutions, while a high population size allowed for a greater exploration of the

controller search space.

Chapter 6

CONCLUSIONS AND FUTURE

WORK

6.1 Introduction

This research developed and validated the BNS approach for the modelling of robot

behaviours which was used to produce controllers for performing trajectory planning

tasks using two robot morphologies. The outcomes for the research objectives are

discussed in Section 6.2. The major significance of this research is detailed in Section

6.3 and the identified limitations are addressed in Section 6.4. The future potential

of this research is discussed in Section 6.5 and finally an overall summary of this

work is given in Section 6.6.

6.2 Overview of Results and Outcomes of Research

Objectives

Research objectives were used to focus the scope of this study (Section 1.4). Each

of the research objectives is now discussed.

126

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 127

Develop a new approach for the concurrent creation of SNNs and con-

trollers in the ER process.

It was hypothesised that many of the disadvantages inherent in traditional simulator

development could potentially be addressed by combining a bi-directional approach

with an ANN-based simulator. Bi-directional approaches have been shown to re-

duce the number of real-world evaluations required to develop effective simulators

whilst automating much of the simulator tuning process. SNNs have also been

shown to reduce the amount of specialised knowledge required for the development

of effective simulators. This research involved the creation and validation of a novel

process for the concurrent development of SNNs and controllers in the ER process,

called the Bootstrapped Neuro-Simulation approach. Potential advantages of such

an approach may be a reduction in the number of real-world evaluations, although

this was not explicitly investigated in this study. Changes to the robot’s morphol-

ogy and/or environment are automatically accounted for by this approach because

a new simulator is developed for every experiment. The viability of this new ap-

proach was successfully validated through the development of real-world prototypes.

Identify and test the various factors pertinent to the success of the pro-

posed approach.

A thorough study of the BNS approach was conducted in order to identify the

conditions required to optimize success. The parameter comparison experiments

identified factors pertinent to success and observed that certain parameters are

more important than others for the specific case studies conducted in this work.

The identification of significant parameter settings is a major contribution of this

research (Sections 4.6.1 and 5.9.1). It was observed that the BNS approach required

a balance between exploring new solutions in the search space, in order to find im-

provements, and the exploitation of existing solutions that may converge towards

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 128

the desired behaviours (Sections 4.6.2 and 5.9.2).

The identified parameter values and balance between the exploitation and explo-

ration of the search space could potentially be applied to other robots and tasks not

investigated in this research which is an important contribution for future research.

In addition to these experiments, weaknesses of the BNS approach were identified

that could be eliminated in future work.

Consider the scalability and generality of the approach by assessing dif-

ferent robot morphologies.

The Khepera robot was chosen due to its simple morphology and the initial via-

bility of this research had yet to be demonstrated. The BNS approach was shown

to successfully scale by choosing a second experimental robot of greater complexity

and developing effective controllers. Real-world evaluations for the snake robot took

much longer than that of the Khepera robot due to slower evaluation times. The

potential generality of the developed approach was demonstrated by the success of

this research to handle two very different robots morphologies. The snake robot has

a high number of degrees of freedom and is relatively difficult to control compared to

the Khepera robot. This research demonstrated that effective controllers could be

developed for a snake-like robot which may indicate that the BNS approach could

generalize well to many different types of robot morphologies.

Compare the effectiveness of the new approach for tasks of varying levels

of complexity.

The Khepera (Chapter 4) and snake (Chapter 5) robot experiments consisted of

three and two trajectory planning tasks, respectively. The complexity of trajec-

tory planning tasks was varied in order to judge how well the BNS approach scaled

to more complex tasks. It was observed that more difficult tasks required more

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 129

data and increased the number of real-world evaluations. The number of real-world

evaluations required for evolving successful solutions was observed to be inconsis-

tent. Greater task complexity appeared to more than linearly increase the amount

of empirical data required for completing the given task. The BNS approach was,

however, successfully able to develop viable controllers for the complex tasks.

Consider the limitations of the approach and identify future potential.

Previous research has shown that pre-computed SNNs are trained from the be-

havioural data of randomly generated controllers which allows the simulator to pre-

dict behaviours required for many different tasks. The BNS approach proposed in

this research developed specialised SNNs that focused on predicting the behaviours

of targeted controllers. Concurrently developed SNNs are therefore at a disadvan-

tage to predict behaviours for controllers that are not part of the SNN development

process. The BNS approach is thus more suited for developing behaviours for a

single task.

The BNS approach did exhibit issues related to task scalability and consistency

in the number of real-world evaluations required to develop effective solutions. The

number of real-world evaluations required for the BNS approach to develop effective

controllers for the same task varied significantly. The scalability of the BNS approach

was observed to be an issue where a large number of real-world evaluations was

required for complex tasks compared to simpler ones which indicated that the BNS

approach could be researched further in order to improve scalability.

Little research has been conducted on furthering knowledge related to SNNs

and no known research beyond this study has investigated bi-directional SNN ap-

proaches. It would be beneficial to study variations in the BNS approach for various

tasks and robot morphologies not covered in this research. A more detailed discus-

sion on the limitations and future potential of the BNS approach is given in Sections

6.4 and 6.5, respectively.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 130

6.3 Contributions

Physics-based simulators require a significant amount of knowledge of the physics

involved for the development of a simulator (Section 2.4). SNNs require little

knowledge of the physics governing the robotic system and serve as an alterna-

tive to physics-based approaches to simulation. SNNs need to be pre-computed

which is time-consuming and requires a large number of controller evaluations. The

BNS approach developed in this research allowed for the concurrent development

of controllers and SNNs during the ER process and thus eliminated the need for

pre-computing SNNs. This research did not attempt to directly compare the pre-

computed and BNS approach to SNN development, however, the results observed in

this work indicated that in certain situations, the BNS approach could potentially

speed up the SNN development process and reduce the number of real-world con-

troller evaluations. The developed simulators are also more targeted towards the

required behaviours.

Real-world robot prototypes of the BNS approach were developed and used to

demonstrate the effectiveness of the proposed approach for two significantly different

robot morphologies. The viability of using SNNs to simulate the behaviours of a

snake-like robot was initially unknown. Pre-computed SNNs were developed in this

research in order to demonstrate the viability of using SNNs to simulate snake-

like robot behaviours (Sections 5.4 and 5.5). Using SNNs for a snake-like robot is

significant as the approach requires little specialised knowledge of the dynamics of

the complex robotic system.

The parameter comparison experiments identified the most influential param-

eters in the success of the approach and were able to indicate which parameter

values increase the likelihood of success. It was demonstrated that there needs to

be a balance between the exploration of the controller search space in order to find

new solutions and the exploitation of existing solutions. The BNS approach on the

given problems performed optimally with a low controller mutation rate and a high

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 131

controller population size.

A low mutation rate allows for a high level of exploitation of existing solutions

while a high population size results in a greater exploration of the solution search

space. Lower controller mutation rates tended to perform better, because higher val-

ues likely resulted in the controller evolution process performing a more exploratory

search of the solution space and/or cause known good solutions to be distorted.

A higher population size increases the degree of exploration performed during the

controller evolution process and reduces the likelihood that known good solutions

are lost.

The controller mutation rate was found to be the most influential parameter

for the Khepera robot and was the second most influential parameter for the snake

robot. The population size was the most influential parameter for the success of

the snake robot. A low controller population size greatly reduced the likelihood

of finding a successful solution for the snake robot, whereas this parameter was

not as critical to the success of the Khepera robot. This could be due to the con-

troller solution space of the snake robot being much more complex than that of the

Khepera robot. This indicates that a more complex solution space may increase

the importance of the controller population size in the success of the approach. A

low mutation rate helps controllers to exploit known good solutions which in turn

speeds up the simulator development process because of the targeted training data

generated by these controllers. A large population size helps the controller evolution

process to explore a more diverse set of solutions at a time.

6.4 Limitations

Developing SNNs may require the evaluation of many controllers on a real-world

robot. Exploring the entire simulator search space may not be feasible for complex

robots and there is no guarantee of finding successful solutions. During the controller

evolution process, good solutions may be lost due to a changing simulator. The BNS

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 132

approach may result in a continual exploration of the behavioural search space and

may be unable to focus on a particular strategy or the BNS approach may converge

on a sub-optimal solution for the controller.

The BNS approach develops a specialised simulator that is targeted towards

simulating certain task behaviours and is less able to simulate the behaviours of an

unknown task. A concurrently developed simulator is therefore less able to simulate

random behaviours than a pre-computed simulator. For multiple tasks, the BNS

approach needs to be repeated for each task. SNNs are trained to simulate the

behaviours of a particular robot in a certain environment and may not adapt easily

to changes during the BNS approach.

6.5 Recommendations for Future Investigation

The BNS approach developed and studied in this research was kept simple in order

to serve as a basis for future variations and improvements in the approach. Many

other aspects of the approach, such as simulator training, controller evolution or

real-world evaluations could be investigated further and methods varied in order to

identify possible improvements. The current approach attempts to evolve controllers

for an entire task at once but an alternative approach could evolve controllers to

solve a portion of the task and build up the controller to solve the complete task.

It is unknown how well the BNS approach adapts to changes to the robot or

environment during the ER process. The approach could be adapted to detect and

account for any changes to the robot or environment during the ER process.

This study was limited to robots without sensors. Controllers and robots making

use of sensors would be of particular interest in future research. The viability of

the approach developed in this research was investigated on two different robot

morphologies for specific tasks and controllers. Future work could establish the

viability of the approach for various other morphologies, tasks or controllers. The

ability of SNNs, and in particular the BNS approach, to scale up to complex robots

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 133

such as bipedal or quadruped robots is unknown.

Hybrid simulation approaches could be constructed where certain parts of the

robotic system are simulated by using a physics-based approach and other parts are

predicted using SNNs. Evaluating controllers on multiple types of simulators during

the ER process could be investigated. During the early stages of the ER process,

controllers could be evaluated on a physics-based simulator and behavioural data,

collected during real-world evaluations, could simultaneously be used to develop

SNNs that eventually replace or complement the physics-based simulator.

6.6 Summary

An important goal in ER that was explored in this research is the automatic, real-

time creation of controllers and simulators with minimal human intervention or

specialised knowledge. Few ER researchers have proposed effective solutions to

this goal, because most simulation approaches used in ER require a great deal of

specialised and manual intervention. Traditional SNNs have been shown to provide

a viable alternative to traditional simulators for reducing the need for specialised

knowledge or human interventions, and bi-directional approaches to controller and

simulator creation have shown much promise in automating the development of

physics-based simulators.

The prototypes developed in this research demonstrated that the concurrent

development of controllers and SNNs during the ER process is indeed viable. Con-

trollers were successfully developed for two very different robot morphologies. The

Khepera prototype served as an initial proof-of-concept and the snake robot was

used investigate the scalability of the new approach. This research demonstrated

that pre-computed SNNs can be used to simulate snake-like locomotion and later

also demonstrated that controllers and SNNs could be developed concurrently for

the snake robot during the ER process. Intuitively it is difficult to develop a physics

model for the snake robot that could adequately simulate snake locomotion well

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 134

enough to develop viable controllers. Developing a simulator without the need for

any specialised knowledge or lengthy simulator development process was therefore

a significant contribution.

The BNS approach was shown to successfully scale well from a simple differentially-

steered robot to a complex snake-like robot with many degrees of freedom. These

are encouraging results, because they indicate that SNNs and in particular, the

BNS approach could scale well for more complex robots. The extensive parameter

comparison study conducted as part of this research was able to identify that the

controller mutation rate and population size were the most influential parameters

tested. The BNS approach favoured a low mutation rate for the exploitation of

known good solutions which helped the simulator focus on learning only those re-

quired behaviours, while a high population size increased the diversity of solutions

during any given generation which helped to alleviate any issue related to a changing

simulator.

Bibliography

P. Abbeel, M. Quigley, and A. Ng. Using inaccurate models in reinforcement learn-

ing. In Proceedings of the 23rd international conference on Machine Learning,

pages 1–8. ACM, 2006.

D. Beasley, R. Martin, and D. Bull. An overview of Genetic Algorithms: Part 1.

Fundamentals. University Computing, 15(2):58–69, 1993.

J. Bongard. Evolutionary robotics. Communications of the ACM, 56(8):74–83, 2013.

J. Bongard and H. Lipson. Automated damage diagnosis and recovery for remote

robotics. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE

International Conference on, volume 4, pages 3545–3550. IEEE, 2004.

J Bongard and H. Lipson. Nonlinear system identification using coevolution of

models and tests. Evolutionary Computation, IEEE Transactions on, 9(4):361–

384, 2005.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous self-

modeling. Science, 314(5802):1118–1121, December 2006a.

J. Bongard, V. Zykov, and H. Lipson. Automated synthesis of body schema using

multiple sensor modalities. In Proceedings of the International Conference on the

Simulation and Synthesis of Living Systems (ALIFEX), 2006b.

R. Brooks. Artificial life in real robots. Artificial Intelligence, 48:3–10, 1992.

135

BIBLIOGRAPHY 136

S. Carpin, T. Stoyanov, Y. Nevatia, M. Lewis, and J. Wang. Quantitative as-

sessments of usarsim accuracy. In In Proceedings of Performance Metrics for

Intelligent Systems (PerMIS) Workshop, 2006.

A. Cully, J. Clune, D. Tarapore, and J. Mouret. Robots that can adapt like animals.

Nature, 521(7553):503–507, 2015.

R. De Nardi. Automatic Design of Controllers for Miniature Vehicles through Au-

tomatic Modelling. PhD thesis, University of Essex, 2010.

R. De Nardi and O. Holland. Coevolutionary modelling of a miniature rotorcraft. In

10th International Conference on Intelligent Autonomous Systems (IAS10), pages

364–373, 2008.

K. Dowling. Limbless locomotion: Learning to crawl with a snake robot. PhD thesis,

NASA, 1996.

G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan. Modular open robots

simulation engine: Morse. In Robotics and Automation (ICRA), 2011 IEEE In-

ternational Conference on, pages 46–51. IEEE, 2011.

A. Engelbrecht. Computational intelligence: An introduction. John Wiley & Sons,

2007.

D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Genetic

evolution of a neural-network driven robot. From animals to animats, pages 421–

430, 1994.

D. Floreano, P. Husbands, and S. Nolfi. Evolutionary robotics. Springer handbook

of robotics, pages 1423–1451, 2008.

J. Grefenstette and C. Ramsey. An approach to anytime learning. In Machine

Learning: Proceedings of the Ninth International Conference, pages 189–195, 2014.

BIBLIOGRAPHY 137

Heaton Research. Official Encog Site. http://www.heatonresearch.com/encog,

2014. Accessed: December 2014.

D. Hu, J. Nirody, T. Scott, and M. Shelley. The mechanics of slithering locomotion.

Proceedings of the National Academy of Sciences, 106(25):10081–10085, 2009.

N. Jakobi. Minimal simulations for Evolutionary Robotics. PhD thesis, University

of Sussex, 1998.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of

simulation in Evolutionary Robotics. In Advances in artificial life, pages 704–720.

Springer, 1995.

K-Team. Khepera III. http://www.k-team.com/mobile-robotics-products/khe

pera-iii, 2014. Accessed: November 2014.

A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and S. Kokaji. Au-

tomatic locomotion design and experiments for a modular robotic system. Mecha-

tronics, IEEE/ASME Transactions on, 10(3):314–325, 2005.

S. Kamio and H. Iba. Evolutionary construction of a simulator for real robots. In

Evolutionary Computation, 2004. CEC2004. Congress on, volume 2, pages 2202–

2209. IEEE, 2004.

D. Keymeulen, M. Iwata, Y. Kuniyoshi, and T. Higuchi. Online evolution for a

self-adapting robotic navigation system using evolvable hardware. Artificial Life,

4(4):359–393, 1998.

S. Koos, J. Mouret, and S. Doncieux. The transferability approach: Crossing the re-

ality gap in evolutionary robotics. Evolutionary Computation, IEEE Transactions

on, 17(1):122–145, 2013.

J. Koza. Genetic programming: on the programming of computers by means of

natural selection, volume 1. MIT press, 1992.

BIBLIOGRAPHY 138

T. Laue, K. Spiess, and T. Röfer. SimRobota general physical robot simulator and

its application in robocup. In RoboCup 2005: Robot Soccer World Cup IX, pages

173–183. Springer, 2006.

J. Lee. Hacking the Nintendo Wii remote. Pervasive Computing, IEEE, 7(3):39–45,

2008.

T. Lee, U. Nehmzow, and R. Hubbold. Mobile Robot Simulation by Means of

Acquired Neural Network Models. In ESM, pages 465–469, 1998.

T. Lee, U. Nehmzow, and R. Hubbold. Computer simulation of learning experiments

with autonomous mobile robots. Proceedings of TIMR, 99, 1999.

D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic Gait Optimization

with Gaussian Process Regression. In IJCAI, volume 7, pages 944–949, 2007.

H. Lund. Co-evolving control and morphology with LEGO Robots. In Morpho-

functional Machines: The New Species, pages 59–79. Springer, 2003.

H. Lund and O. Miglino. From simulated to real robots. In Evolutionary Compu-

tation, 1996., Proceedings of IEEE International Conference on, pages 362–365.

IEEE, 1996.

A. Maren, C. Harston, and R. Pap. Handbook of neural computing applications.

Academic Press, 2014.

M. Matarić and D. Cliff. Challenges in evolving controllers for physical robots.

Robotics and autonomous systems, 19(1):67–83, 1996.

K. Melo, M. Hernandez, and D. Gonzalez. Parameterized space conditions for

the definition of locomotion modes in modular snake robots. In Robotics and

Biomimetics (ROBIO), 2012 IEEE International Conference on, pages 2032–

2038. IEEE, 2012a.

BIBLIOGRAPHY 139

K. Melo, L. Paez, and C. Parra. Indoor and outdoor parametrized gait execution

with modular snake robots. In 2012 IEEE International Conference on Robotics

and Automation, 2012b.

O. Miglino, K. Nafasi, and C. Taylor. Selection for wandering behavior in a small

robot. Artificial Life, 2(1):101–116, 1994.

O. Miglino, H. Lund, and S. Nolfi. Evolving mobile robots in simulated and real

environments. Artificial life, 2(4):417–434, 1995.

R. Moeckel, Y. Perov, A. Nguyen, M. Vespignani, S. Bonardi, S. Pouya, A. Sproe-

witz, J. van den Kieboom, F. Wilhelm, and A. Ijspeert. Gait optimization for

roombots modular robots - matching simulation and reality. In Intelligent Robots

and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 3265–

3272. Ieee, 2013.

J. Mouret, S. Koos, and S. Doncieux. Crossing the reality gap: a short introduc-

tion to the transferability approach. In In Proceedings of the ALIFE workshop

”evolution in physical systems”, 2012.

S. Murata and H. Kurokawa. Self-reconfigurable robots. Robotics & Automation

Magazine, IEEE, 14(1):71–78, 2007.

S. Nakamura and S. Hashimoto. Hybrid learning strategy to solve pendulum swing-

up problem for real hardware. In Robotics and Biomimetics, 2007. ROBIO 2007.

IEEE International Conference on, pages 1972–1977. IEEE, 2007.

S. Nakamura, R. Saegusa, and S. Hashimoto. A hybrid learning strategy for real

hardware of swing-up pendulum. Journal of Advanced Computational Intelligence

& Intelligent Informatics (JACIII), 11(8), 2007.

U. Nehmzow, D. Kerr, and S. Billings. Accurate robot simulation. Technical Report

ACSE Research Report no. 992, University of Sheffield, 2009.

BIBLIOGRAPHY 140

Nintendo. Wii Official Site at Nintendo. http://wii.com, 2014. Accessed: Novem-

ber 2014.

S. Nolfi and D. Parisi. Evolving non-trivial behaviors on real robots: an autonomous

robot that picks up objects. In Topics in Artificial Intelligence, pages 243–254.

Springer, 1995.

OpenCV. Official OpenCV Site. http://opencv.org, 2015. Accessed: July 2015.

J. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby, and R. Watson. Evolutionary

techniques in physical robotics. In Evolvable Systems: from biology to hardware,

pages 175–186. Springer, 2000.

D. Pratihar. Evolutionary robotics - A review. Sadhana, 28(6):999–1009, 2003.

C. Pretorius. Artificial Neural Networks as simulators for behavioural evolution in

Evolutionary Robotics. Masters thesis, Nelson Mandela Metropolitan University,

2010.

C. Pretorius, M. du Plessis, and C. Cilliers. Towards an Artificial Neural Network-

based simulator for behavioural evolution in Evolutionary Robotics. In Proceed-

ings of the 2009 Annual Research Conference of the South African Institute of

Computer Scientists and Information Technologists, pages 170–178. ACM, 2009.

C. Pretorius, M. du Plessis, and C. Cilliers. Simulating robots without conventional

physics: A neural network approach. Journal of Intelligent & Robotic Systems,

71(3-4):319–348, 2013.

C. Pretorius, M. du Plessis, and J. Gonsalves. A comparison of Neural Networks and

physics models as motion simulators for simple robotic evolution. In Evolutionary

Computation (CEC), 2014 IEEE Congress on, pages 2793–2800. IEEE, 2014.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation

BIBLIOGRAPHY 141

learning: The RPROP algorithm. In Neural Networks, 1993., IEEE International

Conference on, pages 586–591. IEEE, 1993.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

2010.

M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.

Science, 324(5923):81–85, 2009.

H. Schwefel. Evolution and optimum seeking: the sixth generation. John Wiley &

Sons, Inc., 1993.

O. Shmakov. Snakelike robots locomotions control. Mechatronics–Foundations and

Applications, 2006.

R. Smith. Open Dynamics Engine, 2007. URL http://www.ode.org. Accessed:

November 2015.

D. Sofge, M. Potter, M. Bugajska, and A. Schultz. Challenges and opportunities of

evolutionary robotics. In Proceedings of the Second International Conference on

Computational Intelligence. Robotics and Autonomous Systems, 2003.

J. Togelius, R. De Nardi, H. Marques, R. Newcombe, S. Lucas, and O. Holland. Non-

linear dynamics modelling for controller evolution. In Proceedings of the 9th annual

conference on Genetic and evolutionary computation, pages 324–333. ACM, 2007.

S. Wittmeier, M. Jäntsch, K. Dalamagkidis, and A. Knoll. Physics-based modeling

of an anthropomimetic robot. In Intelligent Robots and Systems (IROS), 2011

IEEE/RSJ International Conference on, pages 4148–4153. IEEE, 2011.

J. Zagal and J. Ruiz-del Solar. Combining simulation and reality in Evolutionary

Robotics. Journal of Intelligent and Robotic Systems, 50(1):19–39, March 2007.

ISSN 0921-0296.

Appendix A

IEEE (SSCI) 2015 Paper

The pilot study for investigating the viability of using SNNs for a complex snake-like

robot was conducted and presented. An initial snake robot prototype was developed

and behavioural data was collected. This behavioural data was subsequently used

to train a set of SNNs that were used to evaluate controller fitnesses during an ER

process. Accuracy of the SNNs was assessed and the transferability of controllers

validated on a real-world robot.

This study was presented in a conference paper that was accepted for presen-

tation at the 2015 IEEE Symposium Series on Computational Intelligence (IEEE

SSCI 2015). The paper follows.

142

Evolving Snake Robot Controllers using Artificial
Neural Networks as an Alternative to a

Physics-Based Simulator
Grant W. Woodford

Department of Computing Sciences
Nelson Mandela Metropolitan University

Port Elizabeth, South Africa
Email: grant.woodford@nmmu.ac.za

Mathys C. du Plessis
Department of Computing Sciences

Nelson Mandela Metropolitan University
Port Elizabeth, South Africa

Email: mc.duplessis@nmmu.ac.za

Christiaan J. Pretorius
Department of Mathematics and

Applied Mathematics
Nelson Mandela Metropolitan University

Port Elizabeth, South Africa
Email: cpretorius@nmmu.ac.za

Abstract—Traditional simulators can be complex, time-
consuming and require specialized knowledge to develop while
still being unable to adequately model reality. Artificial Neural
Networks (ANNs) can be trained to simulate real-world robots
and therefore serve as an alternative to traditional approaches of
robot simulation during the Evolutionary Robotics (ER) process.
ANN-based simulators require little specialized knowledge and
can automatically incorporate many real-world peculiarities. This
paper reports a simulator that consisted of ANNs which were
trained to predict changes in the position of a real-world snake-
like robot. Navigational behaviours were evolved in simulation
and subsequently verified on the real-world robot. This paper
demonstrated that ANNs are a viable alternative to traditional
simulators for evolving controllers for snake-like robots.

I. INTRODUCTION

The field of Evolutionary Robotics (ER) seeks to automate
the development of intelligent control structures for robotic
systems using Evolutionary Computing approaches [1]. The
manual development of robot controllers becomes infeasible
as robots, environments and tasks increase in complexity
[2]. ER has been shown to automatically evolve many robot
behaviours, such as path following, inverted pendulum stabi-
lization, light following and obstacle avoidance [3], [4].

In ER, many controllers are evaluated and their relative per-
formances quantified in order to evolve better controllers. The
evaluation of many controllers on a real-world robot is time-
consuming and can damage hardware [5]. These issues can be
overcome through the use of simulators as an alternative to
real-world evaluations [2]. Traditional simulators are physics-
based or modelled on empirically collected data [3]. These
simulators can be time-consuming and complicated to develop
because it may require the use of complex physics-based
models and/or the gathering of large amounts of experimental
data.

It has been shown that alternatively, simulators can be
constructed using ANNs that are trained to predict robot
behaviours using experimentally collected data [3], [4], [6],
[7]. In this paper, ANN-based simulators will simply be
referred to as Simulator Neural Networks (SNNs). The use

of SNNs have shown much promise as an alternative to
traditional approaches to simulation during the ER process [4].
SNNs have been shown to be computationally efficient, require
little specialized knowledge, possess good prediction accuracy,
noise-tolerance and generalization abilities in modelling of cer-
tain robot phenomena [7]. Previous work has mainly focused
on simple robots, therefore this paper aims to investigate the
use of SNNs during the ER process on a complex robot.

This paper is structured as follows: Section II-A describes
the ER process while Section II-B addresses the use of
simulators during the ER process. Related work on snake-like
robots is discussed (Section II-C) while the experimental robot
used in this paper is considered (Section III). The simulator
developed in this paper is proposed in Section III-A1. The
robotic controller and method of behavioural tracking used
in this paper are discussed in Sections III-B and III-C re-
spectively. The experimental procedure followed for simulator
training and the subsequent validation of the proposed sim-
ulator are addressed in Sections IV-A and IV-B. The results
determined that the proposed simulator is indeed viable, with
the simulator’s accuracy and real-world validation experiments
presented in Sections V-A and V-B respectively. These results
are discussed in Section VI and finally conclusions are drawn
and possible future work is discussed (Section VII).

II. BACKGROUND
A. Evolutionary Robotics

In ER, robotic controllers are evolved to develop behaviours
using Genetic Algorithms (GA) [1]. To develop the appropriate
behaviours, a population of encoded candidate controllers is
created. Each controller’s fitness relative to each other is
determined based on how well the controller exhibits the target
behaviour on the experimental robot or in simulation, after
which a new generation of controllers is created to replace the
previous generation. The new generation is generated using
reproduction operators (crossover and mutation) between the
controllers of the previous generation.

Controllers with a higher fitness have a greater probability
of being chosen to produce offspring for the new generation.978-1-4799-7560-0/15/$31 c©2015 IEEE

APPENDIX A. IEEE (SSCI) 2015 PAPER 143

During the crossover process, genetic material between parent
controllers are combined and passed onto the new generation.
The mutation operator can then be applied, causing small
random perturbations in controllers which allows for a more
diverse controller population. This process is repeated for a
large number of generations and controllers ideally converge
towards the target behaviour. The end result of the ER process
is an optimized controller that is validated on a real-world
robot.

A major issue during the ER process is the evaluation
of a large number of controllers for fitness determinations
(Section I). Determining the fitnesses of many controllers on
a real-world robot would be time-consuming and financially
costly. Controller fitness evaluations can therefore be done in
simulation to speed up the process.

B. Evolution in Simulation

Simulators are able to overcome issues inherent in real-
world fitness evaluations. Controller evolution can explore the
search space more rapidly in simulation than it would be
possible in reality [15]. However, as previously mentioned,
the design and construction of traditional physics-based simu-
lators can become time-consuming and complicated [7]. Much
research in ER is concerned with overcoming the difficulties
inherent in utilizing simulators effectively [16]. Challenges in
simulator design can be inaccuracies and/or over-simplification
in the modelling of reality [7].

Over-simplification or inaccuracies in simulations may re-
sult in controllers relying on peculiarities that exist only
in simulation but are non-existent in reality which results
in behaviours evolved in simulation not transferring well to
reality, commonly referred to as the reality gap problem [17].
Over-simplification can be avoided through the use of highly
accurate simulators. However, even highly accurate simulators
cannot perfectly model reality and will inevitably contain
inaccuracies [18]. Additionally, highly accurate simulators are
often computationally expensive [19]. Simulators ideally need
to provide highly accurate representations of reality whilst not
being too computationally expensive to use.

There are currently few alternatives to physics-based simu-
lators in use by ER researchers. The notion of using SNNs as
an alternative to traditional simulators has been investigated by
few researchers [6], [20]. As previously mentioned (Section I),
SNNs are computationally efficient, accurate, relatively simple
to construct and potentially provide an effective alternative
to physics-based approaches. The training of SNNs requires
the evaluation of many randomized behaviours on a real-
world robot and the collection of this behavioural data. This
behavioural data is then used to train SNNs to predict robot
behaviours.

SNNs have been effectively used during the ER process
for tasks such as path following, obstacle avoidance, light
approaching behaviour and inverted pendulum stabilization
[3], [4], [6], [7]. Researchers have also shown that SNNs
can simulate the dynamics of the pendulum swing-up problem
[20].

C. Snake Robots

The ER process for snake-like robots is mostly carried
out in simulation using physics-based approaches to estimate
controller fitness [8]–[11]. A physics-based simulator and GA
approach has been used for shape transformation planning to
achieve stable, smooth transitions between snake locomotion
modes [12]. Additionally, modular robotics research has been
conducted using snake-like configurations and a GA to evolve
controllers in a physics-based simulator [13], [14].

Snake-like robots are constructed by chaining together sev-
eral independent actuators, each actuator commonly having
one degree of freedom [13], [21], [22]. These snake robots
are capable of both biological and non-biologically inspired
locomotion modes.

Biologically inspired snake locomotion modes can be
broadly classified into lateral undulation, slide-pushing, rec-
tilinear motion, concertina, side-winding and various other
forms [23]. Lateral undulation is the most common form
where all parts of the body move in a wave-like pattern
[23]. However, lateral undulation is not suited to smooth, low
friction surfaces [24]. Side-winding locomotion has a sine-like
wave while maintaining only two static points of contact with
the ground at any time. Side-winding is more suited for low
friction surfaces [24]. There are also non-biologically inspired
locomotion modes, namely rolling where the snake rolls side
over side and flapping motions where the robot flaps both of
its ends across the ground [23].

One method of generating the above mentioned locomotion
modes is the use of parametrized equations which generate
the appropriate joint angles on the robot. Melo et al. [21]
have made use of parametrized Equations (1) and (2) which
are based on sinusoidal motion on two axes. These equations
define φ(n, t) as the angle of the nth joint at discrete time
steps t. Snake joints were numbered, starting at zero from
front to back, with evenly numbered joints moving the snake
laterally and odd ones moving the snake vertically. If the snake
rolled on its side, then the evenly numbered joints moved
vertically and oddly numbered joints moved laterally which
similarly switched the angles used by Equation (1). The terms
Olateral and Overtical are the offsets of the lateral and vertical
joints respectively. The offset terms define the central angle
value of their respective waves. Terms Alateral and Avertical

refer to the wave amplitudes of the lateral and vertical joint
angles respectively. The parameters ω and γ are respectively
the spatial and temporal components of the sine wave moving
through the robot. The α term is the phase offset between the
lateral and vertical sine waves.

φ(n, t) =

{
Olateral +Alateral · sin(θ + α), n = even
Overtical +Avertical · sin(θ), n = otherwise

(1)

θ = ωn+ γt (2)

APPENDIX A. IEEE (SSCI) 2015 PAPER 144

Fig. 1. Robot Morphology

III. EXPERIMENTAL ROBOT

A custom designed snake-like robot was developed for the
experimental work. Similarly constructed snake-like robots
have also been used by other researchers [14], [22].

This robot was chosen due to its simple construction and
relatively low cost. The morphology of the robot used for
experimental work is shown in Figure 1. An array of twelve
Dynamixel AX-12 servo motors joined together with links
formed the robot’s body. Evenly numbered joints moved the
robot laterally while the odd joints moved the robot vertically.
The length of the robot was 114cm and its width and height
were 5cm. The servos were controlled by an Arduino Mega
micro-controller which received joint angles from a computer
using serial communication.

The servos were powered using a tethered connection to the
robot. A tethered approach was chosen due to the extra weight
batteries would add and to eliminate the need for monitoring
battery power levels. Near each end of the robot was a yellow
or green tracking marker which was used for camera based
tracking.

No snake-like skins or mechanisms such as wheels were
used to allow for the directional friction required for forward
locomotion seen in many biological snakes. This resulted in
the robot having difficulty with forward locomotion and having
to either side-wind, strafe laterally, perform helix-like rolling
or flapping motions. The robot was not fitted with any sensors.

A. IMPLEMENTATION DETAILS OF SIMULATOR AND EX-
PERIMENTAL SETUP

The design and construction of the developed simulator is
addressed in Section III-A1. Details of the controller used and
method of behavioural tracking are discussed in Sections III-B
and III-C respectively.

1) Proposed Approach for using Simulator Neural Net-
works: A set of twelve joint angles represented a single
command. When a command was sent to the robot, all of the
robot’s joints simultaneously positioned to the assigned angles.
A cycle consisted of thirteen sequential commands which
when evaluated, started and ended on the same joint angle

set. During the evaluation of a cycle, commands were sent
sequentially to the robot and upon reaching all the assigned
joint angles of the given command, the robot moved onto the
next command.

Equation (1) is used to generate a sequence of commands
that perform cyclical behaviours when evaluated on a robot.
The robot’s change in position after the evaluation of a given
cycle depends on the parameter settings used by Equations
(1) and (2). SNNs take as input those parameter settings and
subsequently predict the change in the robot’s position on the
planar operating surface at the end of the given cycle. The
simulator also predicts whether cycles will fail and cause the
robot to tip over, roll, reach torque limits or collide with itself.

The creation of SNNs and controllers using the ER process
is achieved as follows:

1) Parameter settings for Equations (1) and (2) are ran-
domly generated using a uniform distribution and used
to generate cycles that are performed on the real-world
robot. As a result of these commands, the robot moves
around the environment and data is collected using
motion tracking techniques.

2) When sufficient data has been collected, it is used to
train SNNs to predict the real-world robot’s behaviours.
Data collection is concluded when the trained SNNs are
able to evolve adequately transferable controllers that
complete the goal task.

3) The trained SNNs are used to determine the fitness of
candidate controllers during controller evolution.

4) At the end of the ER process, the fittest controller in
simulation is validated using the real-world robot.

SNNs were trained to predict the change in the position of
the tracked markers on the robot for a given cycle. The robot
had two local coordinate systems with the origins located at
the centre of each tracked marker and y directions taken from
the yellow to green tracked markers. The change in the x and
y-coordinates for the yellow tracked marker for a given cycle
was represented by ∆x1 and ∆y1 respectively. Similarly, the
changes in the x and y-coordinates for the green marker were
represented by ∆x2 and ∆y2 respectively. The simulator also
predicted whether or not the robot remained upright and did
not collide with itself or reach any torque limits during a given
cycle.

The simulator developed in this study consisted of five
separate Feed Forward Neural Networks (FFNNs) (Figure
2), one for each of the x and y directions for each tracked
marker and another to predict failed cycles. A previous study
determined that separate FFNNs could produce more accurate
results than a single FFNN [6]. Each FFNN took as input
the values of Alateral, Avertical, α and ω that were used
by Equation 1 to generate the cycle. The offset and γ terms
were kept constant and not used as inputs. Sigmoid activation
functions were used for all FFNN neurons and each FFNN
had a single hidden layer of 100 neurons.

In order to evolve robust controllers that were able to cross
the reality gap (Section II-B), noise was injected into the
ER process during controller evaluations. Controllers were

APPENDIX A. IEEE (SSCI) 2015 PAPER 145

Avertical

Alateral

ω

α

∆x1 or
∆y1 or
∆x2 or
∆y2 or
success

Hidden
layer

Input
layer

Output
layer

Fig. 2. Simulator Neural Networks

evaluated ten times in simulation and the average fitness was
used. The distribution used for noise injection was Gaussian
with a mean of zero and standard deviations of 10cm and 5cm
for the ∆x1,2 and ∆y1,2 displacements respectively. These
standard deviations were based on the observed training data
errors.

B. Robot Controller

A controller consisted of a sequential list of four different
parameters settings that were used to generate cycles using
Equations (1) and (2). Each cycle in the list was repeated
up to four iterations when evaluated. It was observed through
manual experimentation that the chosen controller morphology
is more than sufficient to accomplish the required behaviours.
A single controller could consist of between four to sixteen
cycles.

The γ term determined the number of commands contained
in a given cycle. The set of joint angles for all cycles had to
begin and end on the same set of angles which is exactly one
period of the sine wave. The time-steps of t for every cycle
went from zero to the number of commands per cycle plus
one. The commands per cycle were fixed at thirteen which
required that the γ term remained constant at 2π/12. The
offsets Olateral and Overtical determined the central angle
value for the wave which was assumed to remain constant
at zero. Non-zero offsets typically help steer the robot in a
particular direction. Amplitudes Alateral and Avertical had a
range of between 0 and π/2. The α and ω parameters were
within the sine function, therefore their values ranged from 0 to
2π. The reason the number of commands per cycle, the offsets
and γ terms were chosen to remain constant was to reduce the
controller search space which in turn reduced the amount of
training data the simulator required to perform adequately.

The vertical amplitude Avertical was chosen so that it was
less than the lateral amplitude Alateral in order to reduce the
number of cycles that failed to remain upright. Even with this
restriction in place, many parameter sets could result in the
robot tipping over or rolling. Ensuring that the robot always
remained upright and stable during evaluations was important

for the simulator predictions. The simulator was trained to
only predict behaviours of upright cycles.

The angular velocity of the robot’s joint movements was
kept constant. The angular velocity was experimentally chosen
to reduce slippage on the smooth operating surface. Depending
on the locomotion mode, the degree of slippage varied greatly.
Due to the flexibility of Equation 1, many different locomotion
modes were possible, even modes that resulted in collisions
with the robot itself or caused joint torque limits to be reached.

C. Motion Tracking

A roof-mounted camera was used to track robot behaviours,
namely the change in position of the tracked markers on the
robot for a given cycle. A camera based tracking approach
was chosen over manual data acquisition methods in order
to speed up the process and eliminate human error. An open
source computer vision library called OpenCV [25] was used
for the camera based tracking software.

Images from the tracking camera were used to locate the
pixel coordinates of the tracked markers. The centre of each
marker was determined and converted into real-world coordi-
nates. Calibration techniques were employed and distortions
were removed from the captured images before use. The
automated tracking process was not used to identify if the
robot tipped over, rolled, collided with itself or if the torque
limits were reached, therefore these behaviours were manually
noted during data acquisition.

IV. EXPERIMENTAL PROCEDURE FOR
VALIDATING SIMULATOR

Experimental data from the real-world robot was acquired
and used to train the simulator (Section IV-A). Once trained,
the simulator was used to evolve robotic controllers to perform
a navigational task on the real-world robot (Section IV-B).

A. Simulator Training

To obtain sufficient data for SNN training, randomly gen-
erated cycles were evaluated on the real-world robot and
behavioural data was collected. The change in position for
each cycle was recorded by the roof-mounted camera. The
robot operated on a working surface of dimensions 2.7m by
1.85m.

Training data was experimentally acquired from 400 ran-
domly generated cycles. This training data was used to train
an initial simulator and the worst twenty training data cycles
that had the largest difference between their expected versus
simulated displacements were subsequently selected for each
of the SNNs. These poor performers were re-evaluated and
each one used to generate four additional cycles with noise,
generating 400 additional training data cycles. The SNNs
were then re-trained utilizing all training data. A bidirectional
approach was taken to assist the simulator predictions to
become more accurate and stable. These SNNs were used
to evolve controllers during the ER process and twenty of
the worst performing cycles from these controllers were taken
and used to generate a further 100 training data patterns. The

APPENDIX A. IEEE (SSCI) 2015 PAPER 146

final SNNs were then trained using all available training data
generated.

The SNNs were implemented using an open source machine
learning library called Encog [26]. SNNs were trained using
Resilient Backpropagation for 12000 iterations or just before
over-fitting occurred. The sizes of the training data set and
verification data of the stable cycles were 720 and 76 respec-
tively. The sizes of the training data set and verification data
set of both the stable and unstable cycles were 820 and 80
respectively. The data for the stable cycles were used to train
the SNNs to predict the changes in the x and y direction of
both tracked markers for a given cycle. The data for the stable
and unstable cycles were used to train another SNN to predict
whether a given cycle would be stable or unstable.

B. Validation Experiment

Due to this investigation being an initial proof-of-concept
prototype, the navigational task was deliberately chosen to be
simple in order to investigate the viability of the approach.
The required navigational behaviour is shown in Figures 7
to 9. Three squares, each 40cm wide were placed in three
quadrants of the operating surface and placed 20cm apart
from each other. The robot was placed with the yellow marker
on the origin and facing eastwards. The task was considered
completed when the robot traversed all the blocks in a specific
order (top right, bottom left, top left).

During the ER process, controllers were evaluated in sim-
ulation, generating a list of points which represented the
simulated path. The fitness values assigned to each controller
were determined using Algorithm 1. This algorithm took as
input, the simulated path and the list of goal regions. The
fitness was calculated based on the number of the goal regions
reached in their specified order. A controller’s fitness was
penalized for containing positions outside the bounds of the
working surface. If a position was reached from an unstable
cycle, the fitness was also penalized. The fitness was further
penalized for each goal region not reached.

Controllers consisted of encoded parameters for the variable
terms in Equations (1) and (2). The controller evolution
settings are given in Table I. An initial population of 400
controllers was generated randomly from a uniform distri-
bution. During uniform cross-over operations, two parents
were selected using tournament selection (using a tournament
size of 20 parents). Child controllers were comprised of
approximately 20% genetic material from one parent and 80%
from the other. The probability that controller parameter values
were mutated by a random amount was 10%. The ER process
proceeded until the fittest controller was sufficiently able to
complete the task in simulation. Upon completion, the final
controller was evaluated on the real-world robot.

V. RESULTS

Section V-A discusses the accuracy of the simulator devel-
oped in Section IV by analysing the predicted versus expected
change in the robot’s position using the verification data set.
Section V-B presents the results of the optimized controllers

Algorithm 1: Controller fitness evaluation
Data:
positions← Simulated path list
goalpoints← List of goal regions
Result: Fitness of controller
sum← 0
curGP ← 0 . Current goal point
penalty ← a large constant
for each position in positions do

if position out of bounds then
sum← sum+ penalty

end
if position reached goalpoints[curGP] then

curGP ← curGP + 1
end
if position reached from failed cycle then

sum← sum+ penalty
end

end
missedGoalpoints← length(goalpoints)− curGP − 1
sum← sum+ penalty ×missedGoalpoints
fitness← 1/sum
return fitness

TABLE I
PARAMETERS FOR CONTROLLER EVOLUTION

Population Size 400

Initialization Random from a uniform distribution

Selection Tournament (size 20)

Crossover Method Uniform

Mutation Probability 10%

Mutation Method Random Component Perturbation

run on a real-world robot and compares the behaviours to
simulation.

A. Simulator Accuracy

Figures 3 to 6 demonstrate the predicted versus expected
change in position of the tracked markers for the verification
data set. Every dot represents the simulated versus real-world
change in position of the robot for the specific coordinate axis
and for the given verification cycle. The verification data set
was not presented to the simulator during training and was
therefore used to determine the accuracy and generalization
abilities of the trained simulator.

For Figures 3 to 6, linear regression lines were fitted. All
the y-intercepts of the regression lines were close to zero.
The R-squared values for Figures 3 and 5 were 0.84 and 0.75
respectively. This indicted that the simulator could adequately
model movement along the x direction of the robot. The
regression line slopes were 0.85 and 0.9 for Figures 3 and
5 respectively and both y-intercepts close to zero, which
indicated that the simulator modelled the real-world fairly
well. The R-squared values, 0.17 and 0.05 for Figures 4 and
6 respectively indicted that the simulator could not adequately
model movement along the y direction of the robot. The slopes
for Figures 4 and 6 were 0.28 and 0.25 respectively, which
indicated that the simulator and real-world did not closely
relate for those movements.

APPENDIX A. IEEE (SSCI) 2015 PAPER 147

Fig. 3. Yellow tracking point’s predicted versus expected displacement in the
x-direction

Fig. 4. Yellow tracking point’s predicted versus expected displacement in the
y-direction

Fig. 5. Green tracking point’s predicted versus expected displacement in the
x-direction

Fig. 6. Green tracking point’s predicted versus expected displacement in the
y-direction

The simulator was trained to predict the success or failure
of any given cycle. The patterns used to verify the success
or failure of a cycle contained 19 failed cycles and 63
successful cycles. The percentage of verification patterns that
the simulator correctly predicted to succeed or fail was 85%.
The simulator relied greatly on only predicting behaviours of
successful cycles which meant that fitness estimations were
inaccurate for controllers that contained any failed cycles. The
percentage of verification patterns that the simulator correctly
predicted to fail was 58% and the percentage of cycles that
were correctly predicted to succeed was 94%.

Predictions for the robot’s movement in the y direction
were a great deal less accurate than that along the robot’s
x direction. The expected values for the robot’s y directions
tended to be close to zero. This was possibly due to the smooth
operating surface and lack of directional friction properties
seen in biological snakes or snake-like robots using wheels.
These results possibly indicate that much of the movement in
the y direction were close to random and that the main strategy
used by the robot for locomotion was in the x direction.

The results provided a reliable indication as to the accu-
racy of the developed simulator and whether enough training
patterns had been collected. Predicting the robot’s change in
positions is indeed possible which is significant considering
the complexity of the robotic system.

B. Validation Results

The ideal paths obtained by validation controllers in simu-
lation were compared to their real-world paths. These results
are shown in Figures 7 to 9. The dashed lines represent the
simulated path of the validation controller and the solid lines
represent the real-world paths followed by the robot. The
location of the robot was determined to be midway between
the tracked markers. For each validation controller, three real-
world evaluations were performed.

There were twelve independent trial runs, of which only
the best three were presented in this paper. Three trials were
excluded due to the robot moving out of bounds of the
operating surface. Another three trials were excluded due to
the robot rolling during transitions between cycles. One trial
contained a failed cycle and two trials were left out due to
poor transference to the real-world robot.

Evaluated cycles exhibited many types of locomotion
modes, such as lateral strafing, side-winding, helical move-
ments, rolling, flapping and many others. Certain behaviours,
such as flapping were observed to be unable to transfer well to
reality whereas other behaviours such as side-winding showed
better transference to reality. Transitions between different
cycles could also cause stability and accuracy problems.

The controller search space was large and often contained
regions where small changes to a controller could result in
large changes in behaviour. For each trial, the number of cycles
used, percentage of goal regions reached, average displace-
ment between the final positions in simulation and reality
and lastly the number of controller evolution generations of
the validation controllers are given in Table II. Even though

APPENDIX A. IEEE (SSCI) 2015 PAPER 148

−90 −70 −50 −30 −10 10 30 50 70 90
x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90

y
po

si
tio

n
(c

m
)

simulated
real-world run 1
real-world run 2
real-world run 3

Start

Fig. 7. Experimental run, trial 1

−90 −70 −50 −30 −10 10 30 50 70 90
x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90

y
po

si
tio

n
(c

m
)

simulated
real-world run 1
real-world run 2
real-world run 3

Start

Fig. 8. Experimental run, trial 2

the navigational task was relatively simple, controllers needed
many cycles to complete the task.

TABLE II
TRIAL RUN DETAILS

Trial number Cycles Goal regions reached Final displacement Controller generations

Trial 1 8 89% 21cm 200

Trial 2 6 78% 16cm 100

Trial 3 8 100% 53cm 100

The simulated and real-world controller behaviours were
similar for the three trials (Figures 7 to 9). Inaccuracies
between the simulator and real-world could be due to many
reasons, such as path divergence over time due to an accu-
mulation of errors. The simulator was simplified and did not
predict changes in position due to transitions between cycles.

The first cycle in trial 1 (Figure 7) moved the robot into
the initial goal region. The second cycle reversed the robot’s
direction towards origin of the working space. The slight shift
eastwards around the origin was the result of the robot’s shift
in position due to switching to the third cycle. The third cycle
was repeated three times and showed poor transference to
reality which was possibly due to the lack of training data

−90 −70 −50 −30 −10 10 30 50 70 90
x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90

y
po

si
tio

n
(c

m
)

simulated
real-world run 1
real-world run 2
real-world run 3

Start

Fig. 9. Experimental run, trial 3

patterns near that region of the cycle search space. The last
distinct cycle was repeated three times and brought the robot
up towards the last goal region.

The first cycle in trial 2 (Figure 8) moved the robot into
the initial goal region and overshot towards the right when
compared to the predicted path. The next two cycles moved the
robot towards and mostly into the second goal region, only one
of the real-world runs missed this goal region. The fourth cycle
which was supposed to move the robot westward however
resulted in the real-world robot shifting position in place. The
last two cycles formed a curved path towards the third goal
region which closely matched the predicted behaviour.

The first cycle in trial 3 (Figure 9) moved the robot over
the first goal region and overshot it slightly towards the left.
The next three identical cycles brought the robot towards and
just below the second goal region. The fifth cycle moved the
robot slightly closer towards the second goal region and the
last three cycles moved the robot over the second and third
goal regions.

VI. DISCUSSION

The use of SNNs to estimate controller fitness during the
ER process is indeed feasible. It was possible to use SNNs
to evolve robot behaviours for a complex robot performing
a simple navigational task. A direct comparison between
the effectiveness of SNNs and physics-based approaches was
infeasible for this limited investigation.

From the results shown in Section V-A, it was observed that
changes in position of the yellow marker could be modelled
more accurately than that of the green marker. This could be
due to the increased friction caused by the added weight of
the Arduino and tether. The increased friction could cause
the robot to exhibit less slippage. An environment or robot
with different frictional properties could possibly yield better
results.

The developed simulator was able to predict the general
behaviour of the robot. It was also significant that behaviours
could be evolved for a complex robot to navigate blindly
in its environment with no feedback. This was noteworthy

APPENDIX A. IEEE (SSCI) 2015 PAPER 149

considering the many sources of errors. Possible sources of
errors included inaccuracies in motion tracking, inconsisten-
cies in motor function, slippage on the operating surface and
errors due to the simplifying assumptions of the simulator.
Poor transference could also be due to insufficient training
patterns around certain portions of the cycle search space.
Much work needs to be done devising better training data
sampling strategies.

The complexities in the search space were significant,
where small changes in cycle parameter settings could result
in significant differences in behaviour. Cycles that did not
transfer well to reality were noted and similar training data
was generated which tended to improve transferability overall.

The collection of sufficient behavioural data was a time-
consuming process and it was infeasible to get complete
coverage of the search space. However, the development
and tuning of a physics-based engine could become equally,
if not more, time-consuming and would require specialized
knowledge about the dynamics of the robotic system.

VII. CONCLUSIONS AND FUTURE WORK

For simple robots, SNNs have been shown to perform well
as an alternative to physics-based approaches during the ER
process. Research into using SNNs during the ER process for
more complex robots is largely unexplored. The difficulty in
developing adequate simulators increases as the complexity
of the robots, environments and tasks increase. The SNN
approach provides a simple way for researchers to construct
models of reality that can be used to evolve behaviours that
would be too costly to develop through real-world evaluations.

This paper demonstrated that SNNs are indeed viable for
evolving behaviours for snake-like robots during the ER
process. It was observed that certain locomotion modes were
more stable and transferable than others. It is significant that
this research was able to develop navigational controllers in
simulation using a GA without the need for developing a
physics-based simulation.

Future work could include, training separate SNNs for each
locomotion mode could provide more accurate results. Future
research could also include investigating the performance of
various ANN morphologies, alternative training data sampling
strategies and exploring a wider variety of tasks and robots.

ACKNOWLEDGMENT

The financial assistance of the National Research Foun-
dation (NRF) towards this research is hereby acknowledged
(UID number: 89526). Opinions expressed and conclusions
arrived at, are those of the authors and are not necessarily to
be attributed to the NRF.

REFERENCES

[1] D. K. Pratihar, “Evolutionary robotics - A review,” Sadhana, vol. 28,
no. 6, pp. 999–1009, 2003.

[2] I. Harvey, P. Husbands, D. Cliff, and Others, Issues in evolutionary
robotics. School of Cognitive and Computing Sciences, University of
Sussex, 1992.

[3] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers, “Simulating robots
without conventional physics: A neural network approach,” Journal of
Intelligent & Robotic Systems, vol. 71, no. 3-4, pp. 319–348, 2013.

[4] C. J. Pretorius, M. C. du Plessis, and J. W. Gonsalves, “A comparison
of neural networks and physics models as motion simulators for simple
robotic evolution,” in Evolutionary Computation (CEC), 2014 IEEE
Congress on. IEEE, 2014, pp. 2793–2800.

[5] J. C. Zagal and J. Ruiz-Del-Solar, “Combining simulation and reality
in evolutionary robotics,” Journal of Intelligent and Robotic Systems,
vol. 50, no. 1, pp. 19–39, Mar. 2007.

[6] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers, “Towards an
artificial neural network-based simulator for behavioural evolution in
evolutionary robotics,” in Proceedings of the 2009 Annual Research
Conference of the South African Institute of Computer Scientists and
Information Technologists. ACM, 2009, pp. 170–178.

[7] C. J. Pretorius, “Artificial Neural Networks as simulators for behavioural
evolution in evolutionary robotics,” Masters thesis, Nelson Mandela
Metropolitan University, 2010.

[8] S. Hasanzadeh and A. Akbarzadeh, “Development of a new spinning
gait for a planar snake robot using central pattern generators,” Intelligent
Service Robotics, vol. 6, no. 2, pp. 109–120, 2013.

[9] S. Hasanzadeh and A. A. Tootoonchi, “Ground adaptive and optimized
locomotion of snake robot moving with a novel gait,” Autonomous
Robots, vol. 28, no. 4, pp. 457–470, 2010.

[10] K. Inoue, S. Ma, and C. Jin, “Optimizationof CPG-network for de-
centralized control of a snake-like robot,” in Robotics and Biomimetics
(ROBIO). 2005 IEEE International Conference on. IEEE, 2005, pp.
730–735.

[11] J.-K. Ryu, N. Y. Chong, B. J. You, and H. I. Christensen, “Locomotion
of snake-like robots using adaptive neural oscillators,” Intelligent Service
Robotics, vol. 3, no. 1, pp. 1–10, 2010.

[12] T. Kamegawa, F. Matsuno, and R. Chatterjee, “Proposition of twisting
mode of locomotion and ga based motion planning for transition of
locomotion modes of 3-dimensional snake-like robot,” in Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International Confer-
ence on, vol. 2. IEEE, 2002, pp. 1507–1512.

[13] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and
S. Kokaji, “Automatic locomotion design and experiments for a modular
robotic system,” Mechatronics, IEEE/ASME Transactions on, vol. 10,
no. 3, pp. 314–325, 2005.

[14] S. Murata and H. Kurokawa, “Self-reconfigurable robots,” Robotics &
Automation Magazine, IEEE, vol. 14, no. 1, pp. 71–78, 2007.

[15] H. H. Lund and O. Miglino, “From simulated to real robots,” in Evo-
lutionary Computation, Proceedings of IEEE International Conference.
IEEE, 1996, pp. 362–365.

[16] J. C. Bongard, Evolutionary robotics. ACM, 2013, vol. 56, no. 8.
[17] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The

use of simulation in evolutionary robotics,” in Advances in artificial life.
Springer, 1995, pp. 704–720.

[18] D. Floreano, P. Husbands, and S. Nolfi, “Evolutionary robotics,”
Springer handbook of robotics, pp. 1423–1451, 2008.

[19] O. Miglino, K. Nafasi, and C. Taylor, “Selection for wandering behavior
in a small robot,” Artificial Life, vol. 2, no. 1, pp. 101–116, 1994.

[20] S. Nakamura, R. Saegusa, and S. Hashimoto, “A hybrid learning
strategy for real hardware of swing-up pendulum,” Journal of Advanced
Computational Intelligence & Intelligent Informatics (JACIII), vol. 11,
no. 8, 2007.

[21] K. Melo, M. Hernandez, and D. Gonzalez, “Parameterized space
conditions for the definition of locomotion modes in modular snake
robots,” in Robotics and Biomimetics (ROBIO), 2012 IEEE International
Conference on. IEEE, 2012, pp. 2032–2038.

[22] K. Melo, L. Paez, and C. Parra, “Indoor and outdoor parametrized
gait execution with modular snake robots,” in 2012 IEEE International
Conference on Robotics and Automation.

[23] K. J. Dowling, “Limbless locomotion: learning to crawl with a snake
robot,” Ph.D. dissertation, NASA, 1996.

[24] O. Shmakov, “Snakelike robots locomotions control,” Mechatronics–
Foundations and Applications, 2006.

[25] Itseez, “Official OpenCV Site,” http://opencv.org, accessed: July 2015.
[26] Heaton Research, “Official Encog Site,”

http://www.heatonresearch.com/encog, accessed: July 2015.

APPENDIX A. IEEE (SSCI) 2015 PAPER 150

Appendix B

Robotics and Autonomous

Systems

An initial prototype of the proposed BNS approach was developed and investigated

for the Khepera robot in this study. The viability of the BNS approach was suc-

cessfully validated by concurrently developing SNNs and controllers for a real-world

Khepera robot. Controllers were developed for trajectory planning tasks. An exten-

sive parameter comparison study of the proposed approach was conducted in order

to identify and study influential factors.

This study was accepted and published in the Robotics and Autonomous Systems

(affiliated with the Intelligent Autonomous Systems (IAS) Society) journal. The

paper follows.

151

Concurrent Controller and Simulator Neural Network

Development for a Differentially-Steered Robot in

Evolutionary Robotics

Grant W. Woodforda, Christiaan J. Pretoriusb, Mathys C. du Plessisa

aDepartment of Computing Sciences, Nelson Mandela Metropolitan University (NMMU),
Port Elizabeth, South Africa

bDepartment of Mathematics and Applied Mathematics, Nelson Mandela Metropolitan
University (NMMU), Port Elizabeth, South Africa

Abstract

Evolutionary Robotics (ER) strives for the automatic creation of robotic
controllers and morphologies. The ER process is normally performed in
simulation in order to reduce the time required and robot wear. Simulator
development is a time consuming process which requires expert knowledge
and must traditionally be completed before the ER process can commence.
Traditional simulators have limited accuracy, can be computationally expen-
sive and typically do not account for minor operational differences between
physical robots.

This research proposes the automatic creation of simulators concurrently
with the normal ER process. The simulator is derived from an Artificial
Neural Network (ANN) to remove the need for formulating an analytical
model for the robot. The ANN simulator is improved concurrently with
the ER process through real-world controller evaluations which continuously
generate behavioural data. Simultaneously, the ER process is informed by
the improving simulator to evolve better controllers which are periodically
evaluated in the real-world. Hence, the concurrent processes provide further
targeted behavioural data for simulator improvement.

The concurrent and real-time creation of both controllers and ANN-based
simulators is successfully demonstrated for a differentially-steered mobile

Email addresses: grant.woodford@nmmu.ac.za (Grant W. Woodford),
cpretorius@nmmu.ac.za (Christiaan J. Pretorius), mc.duplessis@nmmu.ac.za (Mathys
C. du Plessis)

Preprint submitted to Robotics and Autonomous Systems October 12, 2015

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 152

robot. Various parameter settings in the proposed algorithm are investigated
to determine factors pertinent to the success of the proposed approach.

Keywords:
Evolutionary Robotics, Coevolution, Simulator, Artificial Neural Networks,
Differentially-Steered, Mobile Robotics

1. INTRODUCTION

Evolutionary Robotics (ER) is a field of study that involves the auto-
matic artificial evolution and optimization of particular traits of autonomous
robotic systems [1]. ER seeks to automate the development of robot con-
trollers and morphologies through the use of Evolutionary Computation as
an alternative to their manual creation. As robots, environments and tasks
become more complex, the manual creation of controllers becomes more in-
feasible [2]. ER can be used to evolve robot behaviours such at path fol-
lowing, inverted pendulum stabilization, light following, obstacle avoidance
and many others [3, 4]. In ER, controllers need to be evaluated to quantify
the relative performance of each controller at performing a given task. ER
requires the evaluation of a large number of controllers in order to evolve bet-
ter ones. However, evaluating a large number of controllers on a real-world
robot is unrealistically time-consuming and can damage hardware through
mechanical wear [5]. To overcome these issues, simulators serve as an al-
ternative to reality for evaluating controller performance in the ER process
[5].

There are many different types of simulators. Simulators can be broadly
classified into three categories, namely physics based simulators, empirical
models (based on experimentally collected data) and hybrids which are a
combination of both physics and empirical models [3]. Traditional methods
for creating simulators are often time-consuming and complicated because it
may require the construction and tuning of complex physics based models or
the collection of large amounts of real-world data or both.

Much research in ER is concerned with overcoming the challenges in us-
ing simulators effectively [1]. Challenges in simulator design are inaccuracies
and/or over-simplification in the modelling of certain phenomena. Oversim-
plified or inaccurate simulators may result in controllers that rely too heavily
on peculiarities that exist only in simulation but are not present when the
controller is evaluated in reality, commonly referred to as the reality gap

2

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 153

problem [6]. Oversimplification can be avoided by using highly accurate
simulators. However, even highly accurate simulators cannot model reality
perfectly and will inevitably contain inaccuracies [7]. Highly accurate simu-
lators can also be computationally expensive [8]. Scalability can become an
issue where the time taken to evaluate controllers can grow substantially with
increased complexity in the robotic system [1, 9]. Thus, simulators ideally
need to provide highly accurate representations of reality whilst not being
too computationally expensive to operate.

Pretorius, du Plessis and Cilliers [10] have shown that Artificial Neural
Networks (ANN) can be utilized as simulators in the ER process. A simula-
tor created using ANNs shall be referred to as a Simulator Neural Network
(SNN). SNNs have been shown to possess good prediction accuracy, noise-
tolerance and generalization abilities in the modelling of certain robot be-
haviours [3]. SNNs are computationally efficient and can be created without
the need for specialized knowledge about the dynamics of the robotic system.
It has also been shown that SNNs can aid in the successful transference of
controller behaviour from simulation to reality [3].

Previous approaches to SNN construction required the gathering of large
quantities of data from real-world robot behaviour which can be used to
train SNNs before the ER process begins. This development of simulators
before controllers are evolved is time-consuming. The robot generates the
behavioural data by evaluating randomly generated commands. However, if
only certain behaviours need to be modelled then much of this behavioural
data is unnecessary. A simulator could specialize in accurately modelling
only the behaviour required to perform a given task and thus require mostly
behavioural data specific to the desired behaviour.

As an alternative to the traditional approach to SNN creation, the current
work aims to investigate the concurrent creation of SNNs and controllers in
the ER process. This approach could potentially speed up the process by
eliminating the need to pre-compute SNNs. The SNNs would be specialized
to accurately model only behaviours required for a given task and therefore
require less empirical data for their development than the previous approach.
There could also potentially be further advantages warranting investigation
such as the ability to adapt to changing environments and robots. Automatic
damage recovery capabilities could also be possible since the simulator is no
longer static.

The related work (Section 2) gives an outline of some of the work previ-
ously done in this area. The proposed approach of concurrent simulator and

3

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 154

controller development is outlined in Section 3. The evaluation methodology
and experimental procedure used for investigating the proposed approach are
then discussed in Sections 4 and 5, respectively. The results of the experi-
mental work are presented (Section 6) and finally conclusions are drawn and
future work is suggested (Section 7).

2. RELATED WORK

This section reviews important approaches in the development of simu-
lators and controllers for the ER process. Section 2.1 discusses related work
with regards to concurrent controller and simulator development. Section
2.2 discusses the development and use of SNNs in ER.

2.1. Concurrent Controller and Simulator Development

One approach to dealing with the reality gap problem described in Section
1 is to evolve controllers on real-world hardware only [11]. On the other hand,
a combined approach can be taken where controllers are evolved in simulation
then transferred to a real-world robot where the ER process continues in
reality [12].

The one directional transference of a controller from simulation to reality
can also be replaced by a more bidirectional approach [1]. There have been
many proposals for bidirectional approaches that allows the optimization
process to alternate between the simulator and real-world [5, 13–15].

A robot’s behaviour is affected not only by its controller but also by
the robot’s morphology. A coevolutionary approach can be taken where
controllers and robot morphologies are improved together [16, 17]. Evolving
a robot’s morphology usually necessitates changing the model of what the
robot looks like and evolving the physics model parameters of the simulator
[14, 18]. If a robot’s model is fixed, then only the physics model parameters of
the simulator could be evolved. Work related to coevolutionary approaches
to controller and simulator development are thus important.

One example of the coevolution of simulator model parameters and con-
trollers is the Anytime Learning Algorithm [13]. Anytime learning proposes
a population of model parameters and a population of controllers. These
populations are evolved by means of a Genetic Algorithm (GA). A popula-
tion of model parameters are maintained and judged against real-world data
to determine their accuracy. The most accurate model parameters are used
for controller evolution.

4

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 155

Bongard, Zykov and Lipson [14] proposed the Estimation-Exploration
Algorithm (EEA) that integrates robotic self modelling into the ER process.
The EEA is a hybrid coevolutionary algorithm for maintaining populations
of models of the robot system and a population of test controllers used to
explore the model search space. Once a sufficiently accurate model has been
found, it is used to evolve controllers to achieve the required behaviour.

The Transferability Approach has also been proposed [15]. This method
does not attempt to evolve the simulator but rather attempts to complement
it. Simulators often have limitations in the accurate modelling of certain
phenomena in order to increase computational performance [15]. If these
limitations are known during the ER process, controllers could avoid relying
on dynamics that have not been accurately simulated. The Transferability
Approach proposes a multi-objective fitness function of two parts. One part
estimates how well a solution may transfer from simulation to reality (called
the transferability function) and another estimates how well the desired be-
haviour is achieved in simulation [15]. The transferability function can be
implemented as an ANN or Support Vector Machine and may be trained dur-
ing the ER process. Controllers evaluated on a real-world robot generate data
that is utilized in the training of the transferability function. Behavioural
features that can be measured in simulation and reality are identified and
the transferability function is trained to estimate how well these behaviours
are simulated.

The Back to Reality (BTR) Algorithm concurrently evolves controllers
and simulators [5]. The BTR Algorithm collects the fitness of controllers
evaluated in simulation and reality. The fitness function for evolving simula-
tors is taken as the average difference between controller fitness in simulation
and reality. The optimization process tries to minimize this value. The BTR
Algorithm has shown success evolving behaviour using a realistic dynamics
simulator [5, 19].

A Genetic Programming (GP) approach has shown success for the cre-
ation and tuning of a physics based simulator for modelling the dynamics of
a rotorcraft [20]. A non-linear model was developed using GP and real-world
data generated from test controllers, after which the final model was used to
develop controllers for specific tasks.

Many of these bidirectional approaches require the initial development
of a simulator before controllers can be evolved. The initial construction
of these simulators may require much human intervention after which only
certain aspects of the simulator are improved using bidirectional approaches.

5

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 156

The approach proposed in this paper (Section 3) used simple SNNs with
zero knowledge about the dynamics of the robotic system and autonomously
developed the simulator and controllers during the ER process.

2.2. Simulator Neural Networks

Researchers have proposed SNNs as an alternative to traditional simula-
tors [10, 21, 22]. SNNs have been utilized as simulators in the ER process
to create controllers for tasks such as obstacle avoidance, light approaching
behaviour and inverted pendulum stabilization [3]. Research has also shown
that SNNs can simulate the dynamics of the pendulum swing-up problem
[21].

SNNs are trained using data experimentally collected from a real-world
robotic system. The SNNs can then be used to determine the fitness of
candidate controllers instead of running controllers on real-world hardware.

The conventional approach to creating a SNN and evolving controllers
using the ER process is as follows [3]:

1. Randomly generated commands are performed on a real-world robot.
As a result of these evaluations, the robot moves around the environ-
ment and data is collected using motion tracking and sensor logging
techniques.

2. When sufficient data has been collected, it is used to train SNNs to
predict the real-world robot’s motor and sensor behaviour.

3. The trained SNNs are used to evaluate the fitness of candidate con-
trollers during controller evolution.

4. At the end of the evolutionary process, the best controller is transferred
and evaluated using the real-world robot.

Some advantages of SNNs are that they possess good generalization abilities,
prediction accuracy and can handle large quantities of noise [3]. Physics
models require explicit mathematical models whereas SNNs do not. The
construction of a SNN can be simpler than that of a physics based simulator
because no prior knowledge is required of the physics governing the robotic
systems. It has also been shown that SNNs can be computationally more
efficient, more accurate and result in greater transferability to reality when
compared to physics-based models [4].

As was previously mentioned, there are disadvantages to developing sim-
ulators before controllers. The simulator must be created before the ER

6

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 157

process can be initiated. The simulator may also be trained to simulate real-
world behaviours that are often not required for the successful evaluation of
controllers for the goal task. As a consequence to these disadvantages, many
time consuming real-world evaluations may be needed to create a simulator.
These SNNs remain static and thus are unable to take into account changes
due to mechanical wear or environmental factors. Motor speeds may be heav-
ily influenced by the battery level of the robot [10]. If the robot’s battery
level fluctuates, static SNNs are unable to take into account battery levels,
unless specifically trained to.

3. PROPOSED APPROACH

Bidirectional approaches to simulator development have shown much promise
(Section 2.1). Pre-computed SNNs have also shown much potential as robotic
simulators (Section 2.2). This paper thus proposes a bidirectional approach
to SNN and controller development. The approach involves a bootstrapping
process whereby controllers are continually evaluated on a real-world robot,
thereby generating training data for the improvement of the SNNs. The
improved SNNs are used to evolve better controllers and these controllers
can then be evaluated on the robot to provide further training data to the
SNNs. This process improves the SNNs and controllers concurrently so that
controllers evaluated in reality would ideally converge towards the desired be-
haviour. Consequently the SNNs would more accurately model the desired
behaviour and be less able to model unnecessary behaviour. Such an ap-
proach can speed up the ER process by eliminating the need to pre-compute
SNNs before controllers are evolved and may require fewer real-world evalu-
ations than pre-computed SNNs.

The proposed approach is illustrated in Figure 1 and consists of the fol-
lowing steps:

1. Controllers are selected for real-world evaluations from the population
of controllers. Behavioural data from the real-world evaluations are
collected and stored in a training data buffer.

2. The training data stored in the training data buffer periodically inte-
grates into SNN training to better predict robot behaviours.

3. The training SNNs are periodically copied and used to replace the
controller evolution SNNs. The population of controllers are evolved
using the controller evolution SNNs to estimate controller fitness.

7

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 158

Figure 1: The proposed approach

4. The process continually repeats by going back to step 1 or may termi-
nate when stopping conditions are met.

The following section discusses the evaluation methodology used for demon-
strating the viability of this proposed approach. The methodology used to
identify influential factors related to its success or failure is also discussed.

4. EVALUATION METHODOLOGY

The viability of the proposed approach mentioned in the previous section
was demonstrated on a differentially-steered robot (Section 5.1) to perform
three different trajectory planning tasks of varying levels of complexity. ER

8

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 159

was used to evolve waypoint navigational controllers (Section 5.2) in simula-
tion while simultaneously the simulator was optimised using resilient back-
propagation training (Section 5.3). A controller was periodically selected
from the population of open-loop array-based controllers and evaluated on
a real-world robot. These evaluations were tracked using motion tracking
techniques and the behavioural data generated was collected and used for
training the simulator. The simulator used in the controller evolution pro-
cess would thus commence untrained and would gradually improve as more
behavioural data was collected. Section 5.4 describes how the proposed ap-
proach was investigated on the real-world robot and results are presented in
Section 6.1.

The behaviour of the proposed approach for various parameter settings
was subsequently investigated. It was anticipated that the diversity of the
controller population was a key factor because it governed the controller
search space explored during the ER process and also influenced simulator
training. The analysis was thus focused on how the parameters affected the
diversity and how the diversity in turn manifested into the success of the
controllers. The diversity in relation to the effectiveness of the simulator to
predict robot behaviour was also analysed. This experimental investigation
required the testing of a large number of parameter combinations which was
made possible by using an already trained simulator as an alternative to the
real-world robot. The substitute real-world robot expedited the process and
made the experiment viable. The parameter settings investigation was suc-
cessful in determining influential factors related to the success or failure of
the proposed approach. Section 5.5 describes how parameters were investi-
gated while Section 6.2 discusses the results. The following section provides
detailed information regarding the experimental procedure.

5. EXPERIMENTAL PROCEDURE

The following sections provide details regarding the experimental work
and procedures that were followed. Section 5.1 discusses the hardware and
data capturing techniques. Details of the controller used are discussed in Sec-
tion 5.2 and the developed simulator in Section 5.3. The real-world prototype
and parameter comparison experiments are lastly addressed in Sections 5.4
and 5.5, respectively.

9

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 160

5.1. Hardware and Data Capture

The robot used for the experimental work is the Khepera III mobile robot
[23]. The reason this robot was chosen, is because of the robot’s frequent
use in ER [7, 11, 15, 24] and ease of use. The robot is differentially-steered
and movement is controlled by two separately driven wheels. The Khepera is
controlled by sending commands over a Bluetooth serial interface. Steering
was accomplished by varying the relative rate of rotation of the wheels. The
environment upon which the robot operated was a horizontal skid-proof sur-
face. The Khepera was modified by mounting three LED infra-red lights on
top. A Nintendo Wii remote was positioned approximately 1.8 meters above
the robot to track the LEDs so that behavioural data could be captured
[25, 26].

5.2. Controllers

The controllers developed for the Khepera were for waypoint navigation.
A controller in this paper is defined as a list of commands that when executed
on a robot would cause it to maneuver in a particular trajectory without
feedback. Waypoint navigation planning was chosen due to its simplicity.
Controllers therefore did not have access to the robot’s real-time position
during evaluation. Controllers consisted of a variable length sequential list
of commands, each consisting of the left motor speed, right motor speed and
the time duration for which the command must be executed. This was the
first study into the proposed approach and in order to keep the investigation
simple, motor speeds were restricted to moving forwards only. The proposed
approach began by creating a population of randomly generated controllers.
Between four and thirteen commands were generated for each controller in
the initialized population but subsequent generations could create controllers
that could contain an unlimited number of commands through crossovers. A
controller was evaluated by executing the list of commands sequentially on
the robot. Collisions with the boundaries of the working surface were not
considered.

Controllers were developed for three different waypoint navigation tasks.
Figures 3 to 5 demonstrate the paths followed by the robot for each task.
The robot’s starting position was located centrally amongst the goal points
and faced northward. Each of the three tasks were described as a sequential
list of goal points on the operating surface. Success was accomplished when
the robot traversed all these points in the given order. The robot was judged
to have reached a given goal point if it moved within seven centimetres of the

10

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 161

point. The seven centimetre leniency was chosen to allow for more leeway in
reaching goal points during controller evolution. The first task, referred to
as Task 1, was a circular path (Figure 3). The second task, referred to as
Task 2, was an infinity sign path (Figure 4). The third task, referred to as
Task 3, was a complex path (Figure 5).

The end result of a controller evaluation, was a list of positions reached
by the robot at the end of each command. There would also be a list of goal
points the robot needed to reach in the specified order. The pseudo-code for
how controller fitness was calculated is shown in Algorithm 1. This algorithm
took as input the list of positions and goal points. During the traversal of
the positions list, the distance to the first goal point was calculated. Once
that goal point was reached, the distance to the next goal point in the list
was used instead and so on. For each of the positions in the list, the distance
to its goal point was calculated. These distances are summed together and
a penalty distance was added for each missed goal point. This total distance
would ideally be minimized during controller evolution and the fitness was
calculated as its inverse.

Algorithm 1: Controller fitness evaluation

Data:
positions← List of positions reached by robot
goalpoints← List of goal points
Result: Fitness of controller
penalty ← A large constant integer value
goalPointIndex← 0
sum← 0
for each position in positions do

if position reaches goalpoints[goalPointIndex] then
goalPointIndex← goalPointIndex+ 1

end
sum← sum + (distance to goalpoints[goalPointIndex])

end
sum← sum+ penalty * (number of goal points not reached)
fitness← 1/sum return fitness

The fitness function was designed to minimize the number of commands
used to accomplish the task. Controllers were continually evolved throughout

11

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 162

the process using a GA. Elitism was used, with the best performing controller
for each generation carrying over to the next.

5.3. The Simulator

The operating surface can be mathematically represented as an xy-plane
of a Cartesian coordinate system, known as the global coordinate system.
The robot’s movements were captured based on the global coordinate system.
The robot had its own local coordinate system where the origin was always
the centre of the robot’s wheel axis and the y-direction was aligned with the
robot’s forward heading. The simulator was trained to predict changes in
relation to the robot’s local coordinate system.

The simulator was used to assign fitness values to the population of con-
trollers. In the beginning, the simulator was untrained, so fitness assignments
would effectively be random. However, the quality of the fitness assignments
gradually improved as more training data became available from real-world
controller evaluations. A training pattern consisting of the previous left mo-
tor speed, previous right motor speed, current left motor speed, current right
motor speed, time duration of execution, the robot’s local x-displacement,
the robot’s local y-displacement and change in the robot’s orientation angle.
Captured training patterns were added to either the training data set or ver-
ification data set. There was a 75% probability of data being added to the
training data set and a 25% probability of being added to the validation set.
The validation set was not utilized during simulator training, but was used
to analyse potential issues in over-fitting and accuracy. It was found that
over-fitting did not occur during training.

The simulator consisted of three separate SNNs, each consisting of a single
Feed Forward Neural Network (FFNN) (Figure 2). The FFNN setup was
chosen based on previous investigations. The simulator was separated across
multiple FFNNs to produce more accurate results [10]. Each FFNN had 5
input neurons, 20 hidden neurons and 1 output neuron. An indication of the
optimal number of hidden neurons was determined experimentally during
previous studies [27]. The input and output neurons made use of a linear
activation function while the hidden neurons made use of a sigmoid activation
function.

All FFNNs took as input the previous left motor speed, previous right
motor speed, current left motor speed, current right motor speed and the
time duration of the current command. The outputs of each of the separate

12

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 163

...

previous left

motor speed

previous right

motor speed

current left

motor speed

current right

motor speed

time

duration

H1

Hn

∆x/∆y/∆θ

Input
layer

Hidden
layer

Ouput
layer

Figure 2: Simulator Neural Networks

FFNNs were the x-displacement (∆x), y-displacement (∆y) and change in
angle (∆θ).

SNNs were implemented using an open source machine learning library
called Encog [28] and trained used the Resilient Backpropagation algorithm
[29]. There were two types of SNNs, the training SNNs and the controller
evolution SNNs. A copy of the training SNNs was periodically made and used
for the controller fitness assessments (referred to as the controller evolution
SNNs). The training SNNs were periodically trained for 1000 iterations using
Resilient Backpropagation, after which new training data was added from the
training data buffer.

To ensure that controllers were better able to cross the reality gap, noise
could be added to the simulator during controller evaluations [6]. However,
noise was not added to the controller evolution SNNs for any of the exper-
iments presented in this investigation. The reason noise was not utilized
during controller evolution was because it was observed that controllers were
able to transfer well to reality without the addition of noise.

13

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 164

5.4. Prototype Experiments

The proposed approach was performed on the real-world hardware men-
tioned in Section 5.1. Experiments proceeded until the robot was visually
perceived to have consistently traversed all the goal points accurately. Each
of the three waypoint navigation tasks were completed using the proposed
approach over three trials.

The parameters used for controller evolution are given in Table 1. Opti-
mal parameter values were determined experimentally based on the param-
eter comparison experiments described in Section 5.5.

Table 1: Parameters for controller evolution

Controller Population Size 400

Initialization Random from a uniform distribution

Selection Tournament (Tournament size 50%)

Crossover Method Two parent

Mutation Probability 10%

Mutation Method Random Component Perturbation

The Controller Population Size parameter (Table 1) was the size of the
population of controllers used for controller evolution. The initial popula-
tion of controllers were created such that each controller contained a random
number of commands, each command being generated randomly from a uni-
form distribution. The range of motor speeds were based on the operational
limits of the robot and were between 3000 and 30000 and the duration of
each command was between 400 and 3000 milliseconds. Durations below the
lower limit would be difficult to measure and predict while durations above
the upper limit could result in rotation angles that were larger than 180
degrees.

The selection operator used for controller crossover was tournament se-
lection [30]. A Tournament Selection Size of 50% of the controller population
was chosen and a two parent crossover method was used for controller evo-
lution. Two parent crossover involved two parent controllers, for which the
command sequence sizes of both parents may be of differing lengths. A ran-
dom crossover point was chosen for each parent which resulted in each parent

14

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 165

forming two segments of commands. The child controllers were created by in-
terchanging the first segments of each parent. There was an 80% probability
that the crossover points of two parents were identical and a 20% probability
that they could be different. This crossover method was chosen to allow for
the number of commands to be optimized while not unnecessarily distort-
ing existing solutions. The Mutation Rate was the probability that the left
motor speed, right motor speed or duration of a command may change by
a random amount. The Mutation Rate chosen for controller evolution was
10%.

An additional parameter which was specific to the proposed method was
the Real-world Selection parameter. At the end of every real-world controller
evaluation a new controller was selected for the next real-world evaluation.
This new controller was selected from the population of controllers using
tournament selection and the tournament size was specified by the Real-world
Selection parameter. A Real-world Selection Size of 70% of the controller
population was chosen for the experimental work.

5.5. Parameter Comparisons

In order to investigate important factors that contributed to the success
or failure of the proposed approach, the influence various parameter settings
had on success was investigated. The parameters tested are listed in Table 2.
Due to the stochastic nature of the experiments, every possible combination
of the parameter settings was independently run for 30 trials for each task.

Table 2: Parameter values used for comparisons

Controller Population Sizes 50, 100, 200, 400

Tournament Selection Sizes 10%, 20%, 30%, 40%, 50%

Mutation Probability Rates 10%, 30%, 50%, 70%, 90%

Real-world Selection Sizes 10%, 30%, 50%, 70%, 90%

The investigation of such a large number of parameter combinations on a
real-world robot would take infeasibly long due to the time required to run
them. A pre-computed simulator based on previous studies was thus used as
a substitute for the real-world robot [27], referred to as the static simulator.
Training data generated from the real-world robot would inevitably contain

15

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 166

errors due to inconsistencies in motor function and sensor readings [27]. To
accurately simulate reality, noise was thus added to the static simulator in
order to realistically replicate noise that would be present. The noise dis-
tribution was assumed to be Gaussian with mean zero and with variances
based on the difference between the static simulator and real-world data.
The static simulator with noise which acted as a substitute to the real-world
robot will be referred to simply as the substitute real-world.

The substitute real-world also simulated the actual time required to eval-
uate controllers in reality. This artificial slowing down of the substitute
real-world was done to allow for the SNN training and controller evolution
to progress with durations similar to reality. Each experimental run was
progressed until the 100th controller was evaluated in the substitute real-
world. Achieving the desired behaviour beyond the hundredth evaluation
was considered impractical for real-world experiments.

A controller successfully completed a given task if during evaluation the
robot passed through all goal points in the assigned order. Goal points were
defined as points in the xy-plane forming a circled region with a radius of
seven centimetres. Success rates over time were calculated for varying goal
sizes for every combination of parameter settings. The varying goal point
sizes had a radius of either twenty, fourteen, ten or seven centimetres. These
various levels of success rate were used to identify how close the substitute
real-world robot was able to achieve the desired behaviour.

The best fitness value during controller evolution was periodically recorded
and the average fitness of each parameter combination over the 30 trial runs
was calculated. The success rate for a given parameter combination was its
success ratio out of the 30 trial runs. The success rates for the various goal
point sizes, along with the average fitness of controllers evaluated for each
parameter combination was used to rank how well they performed overall.

Ranking how well the various parameter combinations performed was
done by ordering the success rates according to the seven centimetre goal
point radius, then ten, fourteen, twenty and lastly on the average fitness.
The top ten best and worst ten parameter combinations could thus be iden-
tified through this ranking method. The reason for not simply using average
fitnesses for ranking was because the proposed approach could sometimes fail
if controller evolution converged towards sub-optimal solutions. Experiments
that resulted in a sub-optimal solution would thus result in poor fitness val-
ues. These poor fitness values often varied greatly in value and could unfairly
skew the average fitness of a parameter combination. A ranking based on or-

16

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 167

dering parameter combinations according to how well the desired behaviour
was achieved was thus chosen.

The diversity of the controller population during controller evolution was
measured. The relationship between the diversity and various other proper-
ties such as parameter settings, controller success rates and how well the de-
veloped simulator was able to predict the substitute real-world fitnesses were
also studied. The diversity for a given controller population was calculated
using Equation 1. The motor speeds and time durations for all controllers
were normalized to ensure that there was equal weighting of importance. The
normalized left motor speed, right motor speed and time duration of the jth

command for the ith controller in the population of controllers are denoted
by Lij, Rij and Tij respectively. The controller population size is denoted
by n and the total number of commands for the ith controller is denoted by
ri. The average normalized left motor speed, right motor speed and time
duration for the jth command over all controllers is denoted by Lj, Rj, and
T j respectively.

1

n

n∑

i=1

(

ri∑

j=1

|Lij − Lj|+ |Rij −Rj|+ |Tij − T j|) (1)

An obvious requirement for the proposed approach to perform well was
the need for controller fitness estimates in simulation to be fairly close to the
substitute reality. A fitness error was calculated by computing the absolute
difference between a controller’s fitness in simulation versus the substitute
real-world (in other words a measure of how well the developed SNNs sim-
ulated the substitute real-world). At the end of each substitute real-world
evaluation, data was collected regarding the controller population diversity,
differences between the fitness in simulation and substitute real-world (re-
ferred to as the fitness error) and the success at varying levels of accuracy.

In order to determine how well controllers perform over the lifetime of an
experimental run, the relationship between the developing simulator’s per-
ceived fitnesses and the substitute real-world fitnesses over time were studied.
A single experimental run of the proposed approach was conducted using the
substitute real-world robot. The parameter settings chosen for the exper-
iment were identical to the real-world validation experiments. During the
ER process, the best controller’s fitness in simulation was recorded for every
generation. The best controller’s corresponding substitute real-world fitness
was also calculated for every generation. The change between subsequent

17

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 168

simulators used for the controller evolution process was also studied.

6. RESULTS AND DISCUSSION

Section 6.1 discusses the results of the prototype experiments referred to
in Section 5.4 and Section 6.2 discusses the results of the parameter compar-
ison experiments described in Section 5.5.

6.1. Prototype Results

The real-world prototype experiments were able to demonstrate that the
proposed approach is indeed viable. The developed SNNs made sufficiently
accurate predictions of robot behaviour. This allowed controllers to success-
fully evolve and demonstrate the required behaviours.

The three waypoint navigation tasks are presented in Figures 3 to 5.
These figures represent the final controllers found for each trial run using
the proposed approach. Real-world generations represent the number of con-
trollers that were tested on the robot. Each experiment was run until the
robot was visually perceived to have successfully and consistently performed
the goal task, which was why the total number of real-world generations for
the trials differ. In each figure, the solid line represents the real-world path
followed by the robot when the fittest controller was evaluated. The dotted
line represents the developed simulator’s perception of how the robot would
behave when the same controller was evaluated in reality. The circled grey
regions are the goal points with a radius of 7cm. The order in which the goal
regions must be traversed by the robot are annotated with circled numbers.
The total run-time and number of real-world evaluations for each trial is
given in Table 3. It can easily be seen that the prototype run-times do not
seem to be consistent and do vary considerably.

As previously mentioned, controllers were developed for trajectory plan-
ning. Therefore, controllers were not aware of the position of the robot during
evaluations which can result in an accumulation of errors. However, the pro-
totype experiments showed that the trained SNNs were able to predict robot
behaviour with enough accuracy to develop viable controllers.

Task 1 (Figure 3) had four goal points positioned 40cm apart from each
other in a square formation. The first and second trial runs for Task 1
(Figures 3a and 3b) had similar solutions, where the robot made an initial
right turn and produced a spiral shape. The third trial made use of an

18

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 169

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(a) First trial run at the
45th real-world generation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(b) Second trial run at the
20th real-world generation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(c) Third trial run at the
15th real-world generation

1
5

2 3

4 1

2

5

3

4 1
5

2 3

4

Figure 3: Task 1 prototype trial runs

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(a) First trial run at the
40th real-world generation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(b) Second trial run at the
30th real-world generation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(c) Third trial run at the
20th real-world generation

5

4 1

2 5

7 4 1

2 5

4 7 1

2

6 36 3

7

6 3

Figure 4: Task 2 prototype trial runs

alternative strategy which differed from the first two trials by initially turning
left instead.

Task 2 (Figure 4) had five uniquely positioned goal points where the
centre one had to be reached twice by the robot. All solutions to the second
task made use of the same strategy. The robot started at the centre position
and traversed the goal regions in the annotated order. The real-world paths
for the first two trials closely matched the simulators perception of reality
(Figures 4a and 4b). The third trial run successfully performed the task
in reality, however, the simulator’s perception of reality was less accurate
(Figure 4c).

Task 3 (Figure 5) contained six independent goal points and good solu-

19

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 170

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(a) First trial run at the
55th real-world generation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(b) Second trial run at the
60th real-world generation

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

y
 (

c
m

)

x (cm)

reality
simulator

(c) Third trial run at the
45th real-world generation

1
7

2 4

5 1
7

2 4

5 1
7

2 4

5

3
6

3
6

3
6

Figure 5: Task 3 prototype trial runs

Table 3: Prototype run-times

Goal task Trial number Run-times Real-world evaluations

Trial 1 25 minutes 45

Task 1 Trial 2 12 minutes 20

Trial 3 9 minutes 15

Trial 1 25 minutes 40

Task 2 Trial 2 19 minutes 30

Trial 3 12 minutes 20

Trial 1 40 minutes 55

Task 3 Trial 2 50 minutes 60

Trial 3 30 minutes 45

tions needed to perform many sharp and quick turns. Each trial solved Task
3 using a different strategy. The first trial contained no loops at all while
the second and third trials contained two and one loops respectively. The
second and third trials contained a loop around the bottom left goal point.
The second trial produced a loop around the top centre goal point.

During the proposed approach, controllers evaluated in reality would con-
verge towards the desired behaviour. However, there were instances where
this convergence was lost, but gradually improved towards the desired be-
haviour again. This sudden loss of successful controllers was possibly due
to the simulator periodically changing. Thus causing controllers that barely
reached certain goal points to failed to reach them when the simulator was
updated.

20

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 171

6.2. Parameter Comparison Results

The results of the parameter combination experiments described in Sec-
tion 5.5 are discussed in this section. These experiments were conducted
completely in simulation using a simulator (substitute real-world) as an al-
ternative to a real-world robot. Section 6.2.1 discusses results related to
all the parameter combination experiments, whereas Section 6.2.2 discusses
results related to the best and worst performing parameter combinations.

6.2.1. Overall Parameter Combination Results

The success rate over time for each of the parameter values listed in
Table 2 were determined over all parameter combination experiments. These
success rates were used to determine which parameters were most influential
in the success of the proposed approach.

The success rates of the tested controller mutation rates over all exper-
iments is shown in Figure 6. The controller mutation rate was seen to be
the most influential parameter tested. The largest difference between the
mutation success rates was approximately 45% for Task 1, 66% for Task 2
and 17% for Task 3. Lower mutation rates generally performed better. Tasks
1 and 2 mostly performed better with a 30% mutation rate whereas Task 3
performed better with a 10% mutation rate.

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(b) Task 2

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

10%

30%

50%

70%

90%

Mutation rate

(c) Task 3

Figure 6: Success rate versus number substitute real-world evaluations for the tested
controller mutation rates

The success rates over time for the tested controller population sizes over
all experiments is shown in Figure 7. The controller population size was the
second most influential parameter tested. The largest difference between the
population size success rates was approximately 15% for Task 1, 7% for Task
2 and 4% for Task 3. It was found that larger controller population sizes

21

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 172

performed better. During controller evolution, good solutions may be lost
due to a changing simulator or a high controller mutation rate. However, a
higher population size may contribute towards reducing these issues.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(b) Task 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100

S
u

c
c
e

s
s
 R

a
te

Substitute Real-world Evaluations

50
100
200
400

Population size

(c) Task 3

Figure 7: Success rate versus number substitute real-world evaluations for the tested
controller population sizes

Success rates for the controller and real-world tournament selection sizes
were not shown graphically due to their lower importance. The overall re-
sult showed that the controller tournament selection size was the third most
influential parameter tested and generally performed better for larger val-
ues. The 10% controller tournament selection size performed the worst for
all tasks while sizes 20% and above performed similarly better. The largest
difference between controller tournament selection size success rates were
6.3% for Task 1, 6.7% for Task 2 and 1% for Task 3. The least influential
parameter tested was the real-world tournament selection size which did not
appear to have any discernible trend across the different tasks. The largest
difference between the success rates of the real-world tournament sizes were
3% for Task 1, 2.5% for Task 2 and 1.7% for Task 3.

In order to determine how well the simulators performed in relation to
diversity, the fitness error was measured. This measures the difference be-
tween a controller’s fitness in the developed simulator and substitute real-
world. The average fitness error versus population diversity for each param-
eter combination after the 100th substitute real-world evaluation can be seen
in Figure 8. The success rate versus diversity of the tested parameter com-
binations were also investigated. The success rates versus diversity for each
parameter combination is shown in Figure 9.

Figures 8 and 9 indicate that a low diversity had a wider range of fitness
errors and success rates when compared to the optimum diversity range.

22

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 173

A low diversity may indicate the premature convergence of the controller
population. This convergence to suboptimal solutions allowed the simulator
to accurately model the behaviour, however, tasks were never successfully
completed.

A very high diversity may indicate that controllers were continually per-
forming an exploratory search of the search space and thus resulted in con-
trollers being unable to exploit good solutions. Figure 8 shows that the
average fitness error generally increased after the diversity passed a certain
point. The increase in the fitness error may have been a result of controllers
evaluated in the substitute real-world not converging towards the desired be-
haviour. The controllers would thus be less specialized and the training data
for the simulator would be less targeted towards the desired behaviour which
made simulator training more challenging.

0

1000

2000

3000

4000

5000

6000

7000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
it
n
e
s
s
 E

rr
o
r

Diversity

(a) Task 1

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
it
n
e
s
s
 E

rr
o
r

Diversity

(b) Task 2

0

2000

4000

6000

8000

10000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
it
n
e
s
s
 E

rr
o
r

Diversity

(c) Task 3

Figure 8: Average fitness error versus diversity after 100 substitute real-world generations

There appeared to be an optimum region of diversity that needed to be
maintained to optimize the success of the proposed approach. The optimum
diversity regions for Tasks 1 and 2 appeared to be similar (approximately
between 0.5 to 0.7), whereas for Task 3 the optimum diversity was approx-
imately between 0.4 to 0.6. These optimum diversity ranges appeared to
correspond to where the fitness errors were consistently lower. An obvious
reason for this would be that the simulator needed to be sufficiently accurate
to evolve better controllers.

The Task 3 diversity versus success rate (Figure 9c) does not appear to
have the pattern seen in Figures 9a and 9b. A possible reason may be the
low success rates obtained for Task 3. The Task 3 diversity versus success
rate figure was recalculated as shown in Figure 9d, with the goal point radius
being slightly larger. This made it clear that all success versus diversity plots

23

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 174

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u
c
c
e
s
s
 R

a
te

Diversity

(a) Task 1 (using 7cm goal point radius)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u
c
c
e
s
s
 R

a
te

Diversity

(b) Task 2 (using 7cm goal point radius)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u
c
c
e
s
s
 R

a
te

Diversity

(c) Task 3 (using 7cm goal point radius)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
u
c
c
e
s
s
 R

a
te

Diversity

(d) Task 3 (using 10cm goal point radius)

Figure 9: Success rate versus diversity after 100 substitute real-world generations

had a similar pattern. The best performing parameter combination for Task
1 (Figure 9a) had a success rate of about 76% and Task 2 (Figure 9b) had a
success rate of about 90%. Task 3 had a poor success rate for the 7cm goal
point radius, where success rates were below 37% (Figure 9c). If the goal
point radius was relaxed to be 10cm, the best success rate improved to be
roughly 79% (Figure 9d).

6.2.2. Top and Worst Performing Parameter Combinations

The best and worst performing parameter combinations were compared
with each other in order to identify differences, thereby identifying the in-
fluential factors. The diversity over time for the top 10 best and worst per-
forming parameter combinations for Tasks 1 and 3 can be seen in Figures 10
and 11 respectively. The Task 2 diversity over time was not included as a

24

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 175

figure due to its similarity to Task 1. The diversity for the first few substi-
tute real-world evaluations of the proposed approach was usually the highest.
However, there was little point in analysing how the diversity behaved be-
fore the fifth substitute real-world generation, as controller evaluations were
almost random. For this reason, figures do not present the diversity before
the fifth substitute real-world evaluation.

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(a) Top 10 parameter combinations

0.75

0.8

0.85

0.9

0.95

1

1.05

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(b) Worst 10 parameter combinations

Figure 10: Diversity versus number of substitute real-world evaluations for Task 1

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(a) Top 10 parameter combinations

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 20 40 60 80 100

D
iv

e
rs

it
y

Substitute Real-world Evaluations

(b) Worst 10 parameter combinations

Figure 11: Diversity versus number of substitute real-world evaluations for Task 3

The top 10 best performing parameter combinations had a lower diver-
sity when compared to the worst performers for each task. A higher diversity
may have been due to controllers having a higher mutation rate which could

25

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 176

have resulted in controller evolution being unable to exploit good solutions.
Controllers that are mutated too much, together with the issue of the SNNs
continually changing may have contributed to higher mutation rates perform-
ing poorly. Most of the top 10 worst performers had mutation rates that were
70% or above for all tasks. The vast majority of the top 10 best performers
had mutation rates of 30% or less.

In the previous section, the optimum diversity range was estimated based
on success rates and fitness errors. Six of the ten ten for Task 2 and eight
out of ten for Tasks 1 and 3 were within their estimated optimum ranges.
The diversities of the best performers were fairly constant after the twentieth
substitute real-world evaluation for the first two tasks and after the fortieth
substitute real-world evaluation for the third task (Figures 10a and 11a).
The diversity of the worst performers tended to increase over time for all
tasks.

An interesting observation emerged where the first two tasks had a larger
range of diversities for the best parameter combinations when compared to
worst performers. The reverse was seen for Task 3, where the worst per-
formers had a larger range of diversity. All worst performers for Task 3 had
a 0% success rate for all levels of success. The ranking therefore had to be
based on greatly varying fitness estimates which resulted in a wider diversity
range. The higher diversities for worst performers indicate that a satura-
tion point was reached where the diversity could not become much higher.
These saturation ranges were confirmed by comparing them with the max-
imum diversities obtained in Figures 8 and 9. The top 10 best and worst
parameter combinations for the other parameter types did not clearly show
any trends, which may be due to the mutation rate being the dominating
factor for success for top or worst performers.

The potential success indicator was important for determining how rapidly
the desired behaviour was achieved and was a good indicator that success-
ful solutions would be found. This indicator was defined to be the success
rate for task completion when a robot traversed all goal points, but with
the goal point radius being set to be twenty centimetres (for example, in
Task 1, the robot would at least be moving through the correct quadrants
of the xy-plane). The convergence towards the target behaviour for the top
10 best performing parameter combinations using the potential success in-
dicator can be observed in Figure 12. A potential success indicator value of
50% was achieved by all top 10 best parameter combinations by the 20th,
10th and 100th substitute real-world evaluation for Tasks 1, 2 and 3 respec-

26

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 177

tively. This indicated that Task 2 generally converged towards the desired
behaviour the soonest, Task 1 converged slower and Task 3 converged much
later. Task 3 clearly struggled to converge towards the desired behaviour
which could indicate that solutions often converged to sub-optimal solutions
or good solutions were frequently lost.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
o

te
n

ti
a

l
s
u

c
c
e

s
s
 i
n

d
ic

a
to

r

Substitute Real-world Evaluations

(a) Task 1

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
o

te
n

ti
a

l
s
u

c
c
e

s
s
 i
n

d
ic

a
to

r

Substitute Real-world Evaluations

(b) Task 2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
o

te
n

ti
a

l
s
u

c
c
e

s
s
 i
n

d
ic

a
to

r

Substitute Real-world Evaluations

(c) Task 3

Figure 12: Potential success indicator versus number of substitute real world evaluations
for the top 10 parameter combinations

Figure 13a illustrates the substitute real-world’s observed fitnesses and
the simulator’s assigned fitnesses over the duration of a single experimental
run of Task 2. The experiment terminated after thirty substitute real-world
controller evaluations. The initial fitness assignments were volatile and in-
accurate but over time stabilized and the simulator became more accurate.
The substitute real-world fitness was mostly found to be less than the sim-
ulator’s perceived fitness. A small drop in fitness was occasionally observed
which corresponded to changes to the simulator.

A set of ten randomly generated controllers were created before the exper-
imental run and each controller contained five commands that were generated
from a uniform distribution. These controllers were evaluated periodically
over time and final positions reached were noted. Figure 13b represents how
close these final positions were in simulation to the substitute real-world.
The position difference varied significantly during the early stages of the ex-
periment and later stabilized. Figure 13c presents the difference between the
final positions of successive generations of the simulators. This demonstrated
that there were large changes between successive simulators which gradually
stabilized to become less severe.

27

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 178

0 5 10 15 20
Time (minutes)

10-6

10-5

10-4

Fi
tn
es

s

substitute real-world
simulator

(a) Fitness over time

0 5 10 15 20
Time (minutes)

0

50

100

150

200

Av
er
ag

e
po

si
tio

n
di
ffe

re
nc

e
fro

m
 id

ea
l (
cm

)

(b) Position displacement over time

0 5 10 15 20
Time (minutes)

10-1

100

101

102

103

Av
er
ag

e
po

si
tio

n
di
ffe

re
nc

e
 b
et
w
ee

n
si
m
ul
at
or
s
(c
m
)

(c) Change in position displacement over time

Figure 13: Experimental run over time

28

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 179

7. CONCLUSIONS AND FUTURE WORK

A vital goal in ER worth exploring has been shown to be the automatic,
real-time creation of controllers and simulators with minimal human inter-
vention or specialized knowledge. SNNs have been shown to provide a viable
alternative to physics-based simulators for this goal. Traditional SNN con-
struction requires the collection of large amount of empirical data and may
simulate unnecessary behaviours. Many traditional approaches to simulator
development are complex, time-consuming and require specialized knowledge
while SNNs are relatively simple to develop but can also be time-consuming.
Bidirectional approaches to controller and simulator development have shown
much promise in reducing the interaction times caused by real-world con-
troller evaluations. The prototype developed in this paper demonstrated
that a bidirectional approach to controller and SNN development during the
ER process is indeed viable.

The proposed approach demonstrated accurate modelling of robot be-
haviour and also produced successful controllers for performing waypoint
navigational tasks using a robot. This paper focused on developing simulators
that were specialized according to the required behaviour. The specialization
was due to the evaluation of task specific controllers for behavioural data,
as opposed to the development of a more general simulator. The use of task
specific controllers attempted to reduce the number of controller evaluations
needed, thereby speeding up the ER process.

The controller population size and controller mutation rate were shown
to be the most influential parameters in controlling the success of the pro-
posed approach. However, there was no guarantee of a successful solution.
Controller evolution may converge to sub-optimal solutions or good solutions
may be lost due to a changing simulator. Higher population sizes can result
in fewer instances where good solutions were lost due to a changing simulator.
Lower mutation rates were shown to perform better than higher values which
could be due to higher values not allowing controllers to exploit important
features.

When compared to prior work the bidirectional approach proposed in this
paper is likely to require fewer real-world evaluations than the traditional ap-
proach to SNN development. However, the choice between using a traditional
or bidirectional SNN approach may be dependent on various factors. Tradi-
tional SNNs are focused on developing a generalized simulator that simulates
a wide range of behaviours and is useful for evolving controllers for many dif-

29

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 180

ferent behaviours. Bidirectional SNNs are more focused on simulating only
the behaviours required to evolve controllers for specific tasks.

Future work could investigate ways of improving the proposed approach.
Other aspects regarding simulator training, controller evolution and auto-
matic damage recovery could also be investigated. A future investigation into
the viability of the proposed approach on a more complex robot is planned.

Acknowledgement

The financial assistance of the National Research Foundation (NRF) to-
wards this research is hereby acknowledged (UID number: 89526). Opinions
expressed and conclusions arrived at, are those of the authors and are not
necessarily to be attributed to the NRF.

References

[1] J. C. Bongard, Evolutionary robotics, vol. 56, ACM, 2013.

[2] I. Harvey, P. Husbands, D. Cliff, Others, Issues in evolutionary robotics,
School of Cognitive and Computing Sciences, University of Sussex, 1992.

[3] C. J. Pretorius, M. C. du Plessis, C. Cilliers, Simulating robots without
conventional physics: A neural network approach, Journal of Intelligent
& Robotic Systems 71 (3-4) (2013) 319–348.

[4] C. J. Pretorius, M. C. du Plessis, J. W. Gonsalves, A comparison of
neural networks and physics models as motion simulators for simple
robotic evolution, in: Evolutionary Computation (CEC), 2014 IEEE
Congress on, IEEE, 2793–2800, 2014.

[5] J. C. Zagal, J. Ruiz-Del-Solar, Combining simulation and reality in evo-
lutionary robotics, Journal of Intelligent and Robotic Systems 50 (1)
(2007) 19–39, ISSN 0921-0296.

[6] N. Jakobi, P. Husbands, I. Harvey, Noise and the reality gap: The use
of simulation in evolutionary robotics, in: Advances in artificial life,
Springer, 704–720, 1995.

[7] D. Floreano, P. Husbands, S. Nolfi, Evolutionary robotics, Springer
handbook of robotics (2008) 1423–1451.

30

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 181

[8] O. Miglino, K. Nafasi, C. Taylor, Selection for wandering behavior in a
small robot, Artificial Life 2 (1) (1994) 101–116.

[9] M. Matarić, D. Cliff, Challenges in evolving controllers for physical
robots, Robotics and autonomous systems 19 (1) (1996) 67–83.

[10] C. J. Pretorius, M. C. du Plessis, C. B. Cilliers, Towards an artificial
neural network-based simulator for behavioural evolution in evolution-
ary robotics, in: Proceedings of the 2009 Annual Research Conference
of the South African Institute of Computer Scientists and Information
Technologists, ACM, 170–178, 2009.

[11] D. Floreano, F. Mondada, Automatic creation of an autonomous agent:
Genetic evolution of a neural-network driven robot, From animals to
animats (1994) 421–430.

[12] J. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby, R. Watson, Evo-
lutionary techniques in physical robotics, in: Evolvable Systems: from
biology to hardware, Springer, 175–186, 2000.

[13] G. B. Parker, Co-evolving model parameters for anytime learning in
evolutionary robotics, Robotics and Autonomous Systems 33 (1) (2000)
13–30.

[14] J. Bongard, V. Zykov, H. Lipson, Resilient machines through continuous
self-modeling, Science 314 (5802) (2006) 1118–1121, ISSN 1095-9203.

[15] S. Koos, J. Mouret, S. Doncieux, The transferability approach: Cross-
ing the reality gap in evolutionary robotics, Evolutionary Computation,
IEEE Transactions on 17 (1) (2013) 122–145.

[16] A. Faiña, F. Bellas, F. Orjales, D. Souto, R. J. Duro, An evolution
friendly modular architecture to produce feasible robots, Robotics and
Autonomous Systems 63 (2015) 195–205.

[17] W. Lee, J. Hallam, H. Lund, A hybrid GP/GA approach for co-evolving
controllers and robot bodies to achieve fitness-specified tasks, in: Evo-
lutionary Computation, 1996., Proceedings of IEEE International Con-
ference on, IEEE, 384–389, 1996.

31

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 182

[18] H. Lipson, J. Pollack, Automatic design and manufacture of robotic
lifeforms, Nature 406 (6799) (2000) 974–978.

[19] J. C. Zagal, J. Ruiz-del Solar, UCHILSIM: A dynamically and visually
realistic simulator for the robocup four legged league, in: RoboCup 2004:
Robot Soccer World Cup VIII, Springer, 34–45, 2005.

[20] R. De Nardi, O. E. Holland, Coevolutionary modelling of a miniature
rotorcraft, Intelligent Autonomous Systems 10: IAS-10 (2008) 364.

[21] S. Nakamura, R. Saegusa, S. Hashimoto, A Hybrid Learning Strategy
for Real Hardware of Swing-Up Pendulum, Journal of Advanced Com-
putational Intelligence & Intelligent Informatics (JACIII) 11 (8).

[22] L. Wang, A hybrid genetic algorithm-neural network strategy for sim-
ulation optimization, Applied Mathematics and Computation 170 (2)
(2005) 1329–1343, ISSN 00963003.

[23] K-Team, Khepera III, http://www.k-team.com/mobile-robotics-

products/khepera-iii, accessed: November 2014, 2014.

[24] O. Miglino, H. Lund, S. Nolfi, Evolving mobile robots in simulated and
real environments, Artificial life 2 (4) (1995) 417–434.

[25] J. C. Lee, Hacking the nintendo wii remote, Pervasive Computing, IEEE
7 (3) (2008) 39–45.

[26] Nintendo, Wii Official Site at Nintendo, http://wii.com, accessed:
November 2014, 2014.

[27] C. J. Pretorius, Artificial Neural Networks as simulators for behavioural
evolution in evolutionary robotics, Masters thesis, Nelson Mandela
Metropolitan University, 2010.

[28] Heaton Research, Official Encog Site,
http://www.heatonresearch.com/encog, accessed: December 2014,
2014.

[29] M. Riedmiller, H. Braun, A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm, in: Neural Networks, 1993.,
IEEE International Conference on, IEEE, 586–591, 1993.

32

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 183

[30] A. P. Engelbrecht, Computational intelligence: an introduction, John
Wiley & Sons, 2007.

33

APPENDIX B. ROBOTICS AND AUTONOMOUS SYSTEMS 184

