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1. Introduction

In recent years an increasing fraction of empirical macroeconomic research is done on the basis
of panel data. Applications are for example empirical research on long run growth (see Mankiw,
Romer, and Weil (1992), Fischer (1993) and Levine and Renelt (1992)) or the aggregate impact
analysis of active labour market policy (see e.g. Calmfors and Skedinger (1995), Boeri and Burda
(1996) or Hujer and Zeiss (2005)). Typically, methods for panel data are designed for microeco-
nomic applications where the data contains information on individuals or firms and hence the
data usually provides a large cross section in combination with a short time series dimension.
In contrast, panel data for macroeconomic research consist of aggregated time series data for
a set of countries (e.g. OECD countries) or regional districts. Therefore, regional panel data
usually provide a larger time series dimension and often also a smaller cross section dimension
compared to typical panel data. Furthermore, empirical research on the basis of regional data
is usually guided by macroeconomic theory which often suggest a dynamic specifications for the
empirical model. The performance of several estimators for dynamic panel data models in the
macroeconomic context was analysed by Judson and Owen (1999). But, besides the general
problem to obtain consistent estimates in the context of dynamic panel data models, a large
time series dimension often comes along with specific time series issues like serial correlation or
non-stationarity. In order to obtain consistent estimates, especially serial correlation is a severe
problem in dynamic panel data models.

Our paper wants to present and compare two estimation methods for dynamic panel data models
in the presence of serially correlated errors and weakly exogenous regressors. The first is the
first difference GMM estimator as proposed by Arellano and Bond (1991) and the second is the
transformed maximum likelihood estimator as proposed by Hsiao, Pesaran, and Tahmiscioglu
(2002). Thereby, we will only consider the fixed effects model. This is primarily reasoned by
the fact that in most applications of dynamic panel data models in the macroeconomic context,
the data is available only for a few regions or the data cover the full population of regions
for the country of consideration. Furthermore, the fixed effects assumption generally avoids a
parametrisation of the distribution function for the regional specific unobserved heterogeneity
term, which might be hard to justify from a theoretical point of view. In particular, spatial
correlation as well as non-zero correlation of the residual with the regressors should not be
neglected within regional data. A further issue which often arises in dynamic panel data models
is the problem that the regressors can hardly be treated as strictly exogenous. In a dynamic
macroeconomic framework strictly exogenous variables are mostly not available. However, in the
majority of cases regressors turn out to be weakly exogenous (or predetermined), i.e. only future
values of the explanatory variables are affected by the current value of the dependent variable.
In this case identification of the parameters requires to account for the weak exogeneity of the
regressors.

In applied research mostly the first differences GMM estimator is used for empirical analysis.
But, as several simulation experiments have shown, the first differences GMM estimator suffers
from a considerable finite sample bias.1 The bias is usually associated with a highly persistent
pattern of the dependent variable (see Blundell, Bond, and Windmeijer (2000)). As pointed

1 See for example Blundell and Bond (1998), Kiviet (1995) and Hsiao, Pesaran, and Tahmiscioglu (2002).
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out by Arellano and Bond (1991), the identification of the parameters with the GMM estimator
hinges heavily on the lack of serial correlation. But as the utilisation of aggregated time series
data often involves serial correlation, GMM often does not lead to consistent estimates. An
alternative estimator for the fixed effects case was suggested by Hsiao, Pesaran, and Tahmiscioglu
(2002). The transformed maximum likelihood estimator avoids similar to the GMM estimator
the incidental parameter problem and thus yields consistent estimates. Although simulation
experiments from Hsiao, Pesaran, and Tahmiscioglu (2002) have shown that maximum likelihood
performs superior to GMM, especially in the case of a high persistent pattern of the dependent
variable, serial correlation remains a severe problem that leads to inconsistent estimates.

Our analysis wants to compare the performance of both estimators in the presence of serially
correlated errors. Furthermore, we will present a modification of both estimators in order to
account explicitly for serial correlation and analyse the performance of the modified estimators
in the finite sample. Similar work that considers serial correlation in panel data models with
weakly exogenous regressors can be found in Keane and Runkle (1992). In the framework of the
first differences GMM estimator, serial correlation can be counteracted by imposing a sufficient
number of lags for the instruments. Although this is a very simple way to account for serial
correlation, it can make the size of the sample in time dimension diminish in a drastic way
(Sevestre and Trognon, 1996). Furthermore, this approach may lead to severe efficiency losses
especially if the number of lags imposed is large. Within the maximum likelihood framework
serial correlation can be straightforwardly incorporated by directly including moving average
terms. Although this procedure can become burdensome for higher orders of moving average
terms, it should provide a consistent and efficient estimator in the presence of serial correlation.
The finite sample properties of both estimation methodologies are analysed within a simulation
experiment. Furthermore, we will present an empirical example to consider the performance of
both estimators with real data.

The structure of the paper is as follows: Section 2 presents the consequences of serial correlation
for the first differences GMM and the transformed maximum likelihood estimator. Furthermore,
we will discuss how to control for serial correlation in both estimation methodologies. Section 3
contains a simulation experiment to assess the consequences of serial correlation and to analyse
the performance of both estimators if they account for serial correlation. Section 4 presents
an empirical example that analyses the Beveridge Curve for West Germany with regional data.
Finally, section 5 concludes with a short upshot.

2. Serial Correlation in Dynamic Panel Data Models

2.1. First Difference GMM Estimator

Consider the first order autoregressive model

yit = αyi(t−1) + β′xit + µi + uit, (1)

where xit (K × 1) is a set of K regressors, µi is an individual specific constant term and uit

is a residual term which varies over the cross section and time.2 i = (1, 2, · · · , N) is an index
2 The analysis can be easily extended to higher order autoregressive models.
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over the cross section and t = (1, 2, · · · , T ) denotes the time dimension. The residual term uit is
assumed to follow an MA(1) process

uit = εit + θεi(t−1), (2)

where εit is i.i.d. with zero mean and variance σ2
ε . Other forms of serial correlation are generally

ruled out by the assumption that the model (1) has been transformed so that the coefficients
satisfy some set of common factor restrictions. The explanatory variables are assumed to be
weakly exogenous (or predetermined) forcing variables with E(εitxis) 6= 0 for s > t and zero
otherwise. Note, that xit is weakly exogenous with respect to the i.i.d. disturbances εit, i.e.
if θ is nonzero xit is an endogenous variable with respect to uit since E(xituis) 6= 0 for s ≥ t.
Thus, not only the identification of α but also the identification of β is directly affected by serial
correlation.

In order to circumvent the incidental parameter problem pointed out by Neyman and Scott
(1948), the first difference GMM estimator as suggested by Arellano and Bond (1991) relies on
the equations in first differences where the fixed effects are eliminated

∆yit = γ∆yi(t−1) + β′∆xit + ∆uit. (3)

To identify α and β in a dynamic model with weakly exogenous regressors, Arellano and Bond
(1991) suggest the following moment conditions

E(yi(t−s)∆uit) = 0; for t = 3, . . . , T and 2 ≤ s ≤ t− 1 (4)

E(xi(t−s)∆uit) = 0; for t = 2, . . . , T and 1 ≤ s ≤ t− 1. (5)

But if uit is generated by an MA(1) process, the orthogonality conditions E(yi(t−2)∆uit) = 0
and E(xi(t−1)∆uit) = 0 are not valid. Thus, if these moment conditions were used the GMM
estimator would become inconsistent. The easiest way to account for the serial correlated errors
is to exclude the invalid moment conditions. As the serial correlation due to an MA(1) process
implies E(∆uit∆uis) = 0 for s ≥ 3, the set of valid moment conditions simply reduces to

E(yi(t−s)∆uit) = 0; for t = 4, . . . , T and 3 ≤ s ≤ t− 1 (6)

E(xi(t−s)∆uit) = 0; for t = 3, . . . , T and 2 ≤ s ≤ t− 1. (7)

A major advantage of this procedure is that the extension to higher order MA processes is
straightforward. The number of lags imposed in the set of instruments simply rises with the
order of the MA process (see Arellano and Bond (1991)). Major drawback of this procedure is
that it reduces the size of the sample in the time dimension in a drastic way for higher order MA
processes (Sevestre and Trognon, 1996). To compute the GMM estimator we require in the case
of a MA(1) process T ≥ 4, in the case of an MA(2) process T ≥ 5 and so on. Furthermore, for
a higher number of lags imposed for the instruments, the explanatory power of the instruments
may be very poor. For this reason, the first difference GMM estimator may suffer from severe
efficiency losses when accounting for higher order of serial correlation.
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To obtain the first difference GMM estimator, the moment conditions can be summarised as
m(γ) = E(Wi∆ui) with the sample counterpart 1

N

∑N
i=1 Wi∆ûi = 0 where

Wi =




[yi1,x′i1,x
′
i2] 0

[yi1, yi2,x′i1,x
′
i2,x

′
i3]

. . .

0 [yi1, yi2, . . . , yi(T−3),x′i1,x
′
i2, . . . ,x

′
i(T−2)]




and the parameters α and β are collected into the vector γ. The first difference GMM estimator
is calculated from

γ̂ =
(
Z′WV−1

N W′Z
)−1 (

Z′WV−1
N W′∆y

)
, (8)

where ∆yi = (∆yi4, . . . ,∆yiT )′, Zi =
[
(∆yi3 ∆x′i4), . . . , (∆yi(T−1) ∆x′iT )

]
and to construct ∆y,

W and ∆Z we stack the observations over the individuals i. Following Hansen (1982) the
optimal choice for the weighting matrix is

ṼN =
N∑

i=1

W′
i∆ûi∆û′iWi, (9)

where ∆ûi = (∆ûi4, . . . , ∆ûiT )′ are the estimated residuals from a consistent one step estimator.
The asymptotic covariance matrix of the first difference GMM estimator is given by

Asy.Var(γ̂) = (Z′WṼ−1
N W′Z)−1. (10)

Although the application of the first difference GMM estimator is straightforward, the con-
sistency can suffer from a weak instruments problem. As discussed by Blundell, Bond, and
Windmeijer (2000) and Binder, Hsiao, and Pesaran (2002), a weak instruments problem arises if
the autoregressive parameter is near unity. In the extreme case of a unit root process, the first-
differences GMM estimator breaks down completely. Furthermore a weak instruments problem
arises if the variables in levels are for a major part driven by the individual effect. In this case
the explanatory power of the instruments in levels for the variables in first differences is very
poor. To overcome these problems Ahn and Schmidt (1995) and Blundell and Bond (1998) have
proposed additional moment conditions. Unfortunately, under the fixed effects assumption these
moment conditions require the identification of the individual effects and therefore do not solve
the incidental parameter problem.3

2.2. Transformed Likelihood Estimator

In order to set up the transformed maximum likelihood estimator as suggested by Hsiao, Pe-
saran, and Tahmiscioglu (2002), we again consider the model given in (1) where the residual
is determined by an MA(1) process. Fixed effects are eliminated by taking first difference as
in equation (3). By collecting ∆yit and ∆xit into ∆ωit, we can write the joint probability
distribution of (∆ωi1, ∆ωi2, . . . , ∆ωiT ) as

f(∆ωiT |I i(T−1))f(∆ωi(T−1)|I i(T−2)), . . . , f(∆ωi1|I i0), (11)

3 Note, that all these estimators were developed for the random effects model.
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where I it contains the information up to time t, i.e. I it = (∆ωi1, ∆ωi2, . . . , ∆ωit) for t =
1, 2, . . . , T − 1 and I i0 is normalised to unity. Since

f(∆ωit|I i(t−1)) = f(∆xit|I i(t−1))f(∆yit|∆xit,I i(t−1)) (12)

for t = 1, . . . , T , the relevant part of the log-likelihood is given by

N∑

i=1

T∑

t=1

ln f(∆yit|∆xit, I i(t−1)). (13)

For t ≥ 2 the elements in (13) are fully specified by equation (3). To define ln f(∆yi1|∆xi1,I i0) =
ln f(∆yi1|∆xi1), we need an assumption about the initial condition of the data generating process
since ∆yi0 is not observable. The problem that remains is to find the density for the initial
observation that does not depend on incidental parameters. By backward substitution we can
write

∆yi1 = αm∆yi(−m+1) + β′
m−1∑

j=0

αj∆xi(1−j) +
m−1∑

j=0

αj∆ui(1−j), (14)

where we assume that the process has started at −m. Taking expectations conditional on
∆yi(−m+1) and ∆xi1, . . . , ∆xi(−m), we obtain

E(∆yi1|∆yi(−m+1), ∆xi1, . . . ,∆xi(−m)) = αm∆yi(−m+1) + β′
m−1∑

j=0

αj∆xi(1−j). (15)

Since ∆xi(1−j) for j = 1, 2, . . . , m is not observable, this expected value is unknown. Treating
the expected value as a free parameter to be estimated would result in an incidental parameter
problem. In order to specify the expected value as a function of a finite number of parameters
Hsiao, Pesaran, and Tahmiscioglu (2002) suggest to write them as a function of the observable
∆xi1. Note that, since the models contains exogenous variables, the likelihood has to be ap-
proximated. See also Bhargava and Sargan (1983) for a exposition of the same method in the
random effects case. The case with no explanatory variables in considered in appendix A1., note
that for this case a exact likelihood function exists. Due to the weak exogeneity assumption only
∆xi1 is a valid explanatory variable for the conditional expectation of ∆yi1. In what follows,
Hsiao, Pesaran, and Tahmiscioglu (2002) assume either that

1. the process has been going on for a long time, i.e. m → ∞ and |α| < 1. Hence
E(∆yi1|∆xi1) = 0, or

2. m is finite and E(∆yi1|∆xi1) is the same across individuals.

Note, that assumption 2 only requires that the expected changes in the initial endowments are
the same across individuals and does not require |α| < 1. The expected value of ∆yi1 conditional
on ∆xi1 is given by

E(∆yi1|∆xi1) = b∗ + E


β′

m−1∑

j=0

αj∆xi(1−j)|∆xi1


 + E




m−1∑

j=0

αj∆ui(1−j)|∆xi1


 , (16)

where b∗ = 0 under assumption 1 and b∗ = b under assumption 2.
Hsiao, Pesaran, and Tahmiscioglu (2002) suggested a projection technique in order to get a
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computable expression for expected values in equation (16). The elements of the sum of the first
expected value in equation (16) can be projected with

E(∆xi1−j |∆xi1) = gj + Ψj∆xi1, (17)

where Ψj is a (K×K) matrix and gj is a (K×1) vector. In our case Ψj and gj depend not only
on the autocovariances of the processes determining xit. Additionally, dependencies between the
processes of the regressors determine the structure of Ψj . In the extreme case of independent
processes, determining xit the off-diagonal elements of Ψj would be zero.

For the elements of the sum of the second expected value in equation (16) we write

E(∆u1−j |∆x1i) = dj + ϕj∆xi1, (18)

where dj is a scalar and ϕj is a (1×K) vector. The elements in dj and ϕj can be derived from
the joint distribution of (xi1,xi0,xi,−1, · · · , ui1, ui0, ui,−1, · · ·) (Hsiao, Pesaran, and Tahmiscioglu,
2002).

The projection technique suggested by Hsiao, Pesaran, and Tahmiscioglu (2002) allows xit to
follow trend stationary and first difference stationary data generating processes. Important is
however, that the process generating xit does not follow different trends (stochastic or determin-
istic) for different i. In this case the expected value would not be a function of finite parameters,
i.e. the incidental parameter problem could not be solved and inconsistent estimates would be
the result for finite T .4

Inserting the projections into equation (16) we get

E(∆yi1|∆xi1) = b∗ + β′
m−1∑

j=0

αj [gj + Ψj∆xi1] +
m−1∑

j=0

αj
[
dj + ϕj∆xi1

]
. (19)

Therefore, we can write for ∆yi1 the following simplified expression

∆yi1 = λ0 + ∆xi1λ1 + ξi1, (20)

where λ0 and λ1 (K × 1) are unknown coefficients. The parameter vectors λ0 and λ1 are
functions of b∗,β, α,gj ,Ψj, dj and ϕj . The residual ξi1 with E(ξi1|xi1) = 0 is defined as

ξi1 = ∆yi1 −E(∆yi1|∆xi1). (21)

The expression for ξi1 can be obtained from (14) and (19).

ξi1 =
(
αm∆yi(−m+1) − b∗

)
+ β′

m−1∑

j=0

αj
{
∆xi(1−j) − [gj + Ψj∆xi1]

}

+
m−1∑

j=0

αj
{
∆ui(1−j) −

[
dj + ϕj∆xi1

]}
(22)

To construct the likelihood function we set up the vector of residuals [ξi1, ui2, ui3, · · · , uiT ] from

∆u∗i =
[
∆yi1 − λ0 + ∆xi1λ1, ∆yi2 − α∆yi1 − β∆xi2 , . . . , ∆yiT − α∆yi(T−1) − β∆xiT

]′
. (23)

4 Notice that in this case the projection would depend on i, i.e. E(∆xi1−j |∆xi1) = gi,j + Ψi,j∆xi1.
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As uit is generated by an MA(1)-process we additionally have to consider the structure of the
covariance matrix E(∆u∗i ∆u∗i

′) = σ2
εΩi

∗ = Ωi. Concerning the variance of the initial condition
we specify E(ξ2

i1) = σ2
εω and treat ω as a free parameter to be estimated. As noted by Hsiao,

Pesaran, and Tahmiscioglu (2002) this procedure poses no problem as long as m is unknown
and identical across i. For the covariances regarding the initial condition, the MA(1) process of
uit implies

E(ξi1∆ui2) = −σ2
ε [(1− θ)2 − θα],

E(ξi1∆ui3) = −σ2
εθ and

E(ξi1∆uit) = 0 for t = 4, . . . , T.

The remaining elements of the covariance matrix Ωi are given by

E(∆u2
it) = 2(1 + θ2 − θ)σ2

ε ,

E(∆uit∆ui(t−1)) = −σ2
ε(1− θ)2,

E(∆uit∆ui(t−2)) = −θσ2
ε and

E(∆uit∆ui(t−j)) = 0 for j ≥ 3.

Under the assumption εit ∼ N(0, σ2
ε) the log-likelihood function is given by

LL = −NT

2
ln(2π)− N

2
ln |Ωi| − 1

2

N∑

i=1

∆u∗
′

i Ωi
−1∆u∗i . (24)

Since the log-likelihood function given in (24) is highly nonlinear, maximisation is performed by
iterative methods like Newton-Raphson. The likelihood function depends on a fixed number of
parameters and satisfies standard regularity conditions, so the MLE is consistent and asymp-
totically normal distributed as N → ∞ (Hsiao, Pesaran, and Tahmiscioglu, 2002). Note, that
in the case of weakly exogenous regressors this holds whether T is fixed or tends to infinity.
Monte-Carlo experiments by Hsiao, Pesaran, and Tahmiscioglu (2002) have shown that in the
finite sample the MLE generally performs superior compared to the first difference GMM esti-
mator. Especially if the AR-coefficient is near unity, MLE produces a considerably lower finite
sample bias.

Accounting for serial correlation within the maximum likelihood framework provides an asymp-
totically normal distributed and efficient estimator. Thus, if the serial correlation is driven by
an MA process, MLE directly accounting for the MA terms provides a superior procedure to
control for the serial correlation. However, compared to the first difference GMM estimator,
computation of the MLE is associated with more computational burden. Especially for higher
order MA processes, which is a straightforward extension, the construction of the covariance
matrix for the MLE can become tedious. Therefore, the following simulation experiment wants
to assess the gains in bias and efficiency that results from the application of MLE compared to
the first difference GMM estimator.

3. Monte Carlo Evidence

To assess the finite sample performance of the GMM and the transformed maximum likelihood
estimator in the presence of weakly exogenous regressors and serial correlation, we have con-
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ducted a simulation experiment. The design of the data generating process is closely related to
Hsiao, Pesaran, and Tahmiscioglu (2002). The model for the dependent variable yit is given by

yit = αyi(t−1) + xitβ + µi + uit. (25)

Along with the assumptions of the previous sections, serial correlation is specified as an MA(1)
process

uit = εit + θ1εi(t−1), (26)

where εit is distributed as N(0, σ2
ε).

The weakly exogenous regressor xit is generated by the process

xit = ψit + νi + λ
t−1∑

s=1

1
t− s

εis, (27)

where ψit follows an ARMA(1,1) process

ψit = φψi(t−1) + ωit + ρωi(t−1) (28)

with ωit ∼ N(0, σ2
ω). Weak exogeneity is incorporated into the regressor process via the term

λ
∑t−1

s=1
1

t−sεis. By setting λ unequal to zero we ensure that E(εitxik) is zero for k ≤ t and
non-zero for k > t. For the latter case this correlation is given by E(εitxi(t+j)) = λ

j σ2
ε for

j = (1, 2, 3, · · ·). Therefore, we ensure that the correlation decreases as the distance between
the observations increases. An important feature of this specification is that in the case of serial
correlation the regressor is in fact endogenous since E(uitxit) 6= 0. Hence β is not identified if
the estimation procedure does not account for the serially correlated error term. Furthermore, it
should be noted that the specification of the xit leads basically to a non-stationary process since
variance and autocovariance of xit changes over time due to the term λ

∑t−1
s=1

1
t−sεis. Considering

the moments of xit we find that in the limit with respect to t, i.e. for a sufficiently long history
of the process the variance converges to

lim
t→∞E(x2

it) =

[
1 +

(ρ + φ)2

(1− φ2)

]
σ2

ω + σ2
ν +

(λσεπ)2

6
. (29)

In particular, the part of the variance E(x2
it) associated with the term λ

∑t−1
s=1

1
t−sεis converges

form an initial level (λσε)2 to a final level (λσεπ)2

6 as t increases. Therefore, in the limit the
variance of xit can be handled as a constant given by (29). Furthermore, in the limit the process
becomes covariance-stationary as the autocovariances do not depend on t. This can be seen
from the limit of the first order and second order autocovariances for xit, which are given by

lim
t→∞E(xitxi(t−1)) = g(1) + σ2

ν + λ2σ2
ε (30)

lim
t→∞E(xitxi(t−2)) = g(2) + σ2

ν +
3
4
λ2σ2

ε , (31)

where g(z) denotes the autocovariance generating function for the ARMA(1,1) process ψit (see
Hamilton (1994)). Hence, as t increases the variance and the autocovariances of the xit-process
converge form an initial level to a final level given by (29), (30) and (31). For the variance
the speed of convergence is such that for t = 100 the variance has reached 99.4% of (29). In
our simulation experiment we generate the series form t = −100 and exclude the first 100
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Tab. 1: Simulation design

Simulation Design α β θ φ ρ g λ σ2
ε σ2

ω σ2
µ σ2

ν σµν

1 0.4 0.6 0 0.5 0.5 0.01 0.2 0.85 1 1 1 0.7

2 0.4 0.6 0.5 0.5 0.5 0.01 0.2 0.85 1 1 1 0.7

3 0.4 0.6 0.9 0.5 0.5 0.01 0.2 0.85 1 1 1 0.7

4 0.4 0.6 0 0.5 0.5 0.01 0.2 1.25 1 1 1 0.7

5 0.4 0.6 0.5 0.5 0.5 0.01 0.2 1.25 1 1 1 0.7

6 0.4 0.6 0.9 0.5 0.5 0.01 0.2 1.25 1 1 1 0.7

7 0.4 0.6 0 0.9 0.5 0.01 0.2 0.85 1 1 1 0.7

8 0.4 0.6 0.5 0.9 0.5 0.01 0.2 0.85 1 1 1 0.7

9 0.4 0.6 0.9 0.9 0.5 0.01 0.2 0.85 1 1 1 0.7

10 0.8 0.2 0 0.5 0.5 0.01 0.2 0.85 1 1 1 0.7

11 0.8 0.2 0.5 0.5 0.5 0.01 0.2 0.85 1 1 1 0.7

12 0.8 0.2 0.9 0.5 0.5 0.01 0.2 0.85 1 1 1 0.7

13 0.8 0.2 0 0.5 0.5 0.01 0.2 1.25 1 1 1 0.7

14 0.8 0.2 0.5 0.5 0.5 0.01 0.2 1.25 1 1 1 0.7

15 0.8 0.2 0.9 0.5 0.5 0.01 0.2 1.25 1 1 1 0.7

16 0.8 0.2 0 0.9 0.5 0.01 0.2 0.85 1 1 1 0.7

17 0.8 0.2 0.5 0.9 0.5 0.01 0.2 0.85 1 1 1 0.7

18 0.8 0.2 0.9 0.9 0.5 0.01 0.2 0.85 1 1 1 0.7

observations to ensure that for |φ| < 1, xit is a covariance stationary process and thus yit is also
stationary if |α| < 1. Furthermore, the exclusion of the initial observations avoids an unnecessary
impact of the initial values on ψit and yit.

The individual effects µi and νi are generated according to a multivariate normal distribution

(µi νi) ∼ N


(0 0),


 σ2

µ σµν

σµν σ2
ν





 . (32)

By allowing the individual effects to be correlated, we make sure that the random effects esti-
mates would be inconsistent.

To provide comparability of the simulation experiment to our empirical example, we set N = 150
and T = 20 and use the following parameter values for the simulations. For the individual effects
we set σ2

µ and σ2
ν to unity and impose a correlation between both effects of 0.7. Concerning the

regressor we introduce weak exogeneity by setting λ to 0.2. Furthermore, we impose a trend with
g = 0.01 and the parameters of the ARMA process are given by (φ, ρ) = (0.5, 0.5) and (0.9, 0.5).
Hence, we either allow for a slight or a strong persistence in the regressor process. The variance
of ω is set to σ2

ω = 1. For the dependent variable we fix similar to Kiviet (1995) the long run
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multiplier β
1−α to unity and specify (α, β) = (0.4, 0.6) and (0.8, 0.2). The variance of the residual

is set to σ2
ε = 0.85 and 1.25, i.e. we consider either a situation with σ2

ε/σ2
µ < 1 or a situation with

σ2
ε/σ2

µ > 1. As pointed out by Blundell, Bond, and Windmeijer (2000), a high variance of the
individual effects µi relative to the variance of εit leads to a weak instruments problem because
the predictive power of the instrument in levels for the variables in first differences becomes very
poor. A similar problem arises if the autoregressive parameter tends to unity. Finally, we assess
the consequences of serial correlation by setting θ to 0, 0.5 and 0.9. Table 1 summarises our
simulation design and the simulation results from 1000 replications can be found in table 2 and
3.

For the calculation of the GMM estimates we cut the history of the series as instruments at
t− 5. The results for the simulation designs with α = 0.6 and β = 0.4 are collected in table 2.
For the specification without serially correlated errors, i.e. designs 1,4 and 7, we find a superior
performance for the maximum likelihood estimator by comparing the RMSE. Note, that both
estimators perform best when the process originating the forcing variable is highly persistent.
Also the superior performance of the MLE is more clear cut for the autoregressive parameter
than for the parameter of the weakly exogenous variable.

By introducing serial correlation through a moderate MA coefficient, i.e. designs 2,5 and 8, we
find some huge improvements of the RMSE for the modified estimation methods in comparison
to the methods that do not take the problem into account. This is not a surprising finding,
since we compare unbiased with biased estimation methods. The interesting postulation is that
the RMSE for the mis-specified MLE is higher than for the mis-specified GMM estimator. The
comparison of both estimators changes in favour to the MLE when autocorrelation is taken into
account. The RMSE falls dramatically in both cases, but is reduced by a factor around 8 for
the MLE and a factor around 4 for the GMM estimator. The results of the simulation designs
3,6 and 9, i.e. imposing a moving average coefficient of θ = 0.9 are similar to the findings for
θ = 0.5, although it can be stated that the estimation methods loose some precision in finite
samples if serial correlation increases. The only case where this finding is contradicted is in the
comparison of design 5 with design 6, where the RMSE falls from 0.0302 to 0.0275.

A loss of precision can also be observed for the designs with a higher variance of εit. For example,
by comparing model 2 with model 5 we find that the RMSE for the GMM estimator increases
from 0.0266 to 0.0302 for the autoregressive parameter and from 0.0309 to 0.0449 for the β

parameter. The numbers for the MLE are 0.0161 to 0.0181 and 0.0144 to 0.0200, respectively.
It can be stated that the RMSE for the MLE do not only increase by a lesser absolute amount,
0.002 against 0.036, but they are also robuster in a relative sense. The RMSE of the MLE only
increases by 12.42% against an increase of 13.53% for the GMM estimator. In the case of a
moving average parameter of 0.9 the RMSE for the MLE increases by a higher amount than the
RMSE of the GMM estimator. Nevertheless, MLE remains efficient than GMM by the means
of the RMSE.

For the model specifications which impose a highly persistent regressor process, we can state
that the ML-estimators become more accurate. This can be seen from the comparison of design
2 with design 8, and design 3 with design 9. In the case of θ = 0.5 we find for the MLE a
reduction of the RMSE of 0.0038 and 0.0032 for α and β respectively. For the GMM estimator
the figures are an increase of 0.0051 and a decrease of 0.0037. Similar to the case of an increasing
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variance, the results change by imposing an MA coefficient of 0.9. For the likelihood method we
even obtain an increase in RMSE for the β parameter, whereas for the GMM method we obtain
a increase for α. But again we have a better performance of the MLE in terms of RMSE.

Considering the direction of the bias in the case GMM and MLE ignores serial correlation, we
find that for the autoregressive parameter both estimators tend to be upward biased. For the
regressor coefficient we find a contrary direction of the bias, i.e. GMM tends to be upward
biased, whereas MLE tends be downward biased.

The results for the simulation designs with parameter values of 0.8 and 0.2 for α and β are
collected in table 3. The general conclusions for the designs with α = 0.4 carry over to the
designs with α = 0.8, i.e. MLE dominates the GMM estimator by comparing the RMSE. An
important finding is however that the advantage of MLE with respect to the autoregressive
parameter is considerably higher if the dependent variable is highly persistent. By comparing
the RMSE of the MLE and the GMM estimator for the designs with a moderate autoregressive
parameter we find a ratio of 54% up to 86%, i.e. MLE-RMSE reaches between 54% and 86% of
the GMM-RMSE. In contrast, the range for this ratio is 21% up to 62% in the case of a high
autoregressive parameter. Furthermore, this finding is obtained for each individual design. For
the estimator of the β parameter this finding cannot be confirmed, since the performance of
the MLE is nearly identical compared to the designs with a moderate autoregressive parameter.
Regarding the direction of the bias in the case of a high α coefficient, we again find the tendency
of MLE to be upward biased while GMM tends to be downward biased. For the regressor
coefficient no clear cut picture with respect to the direction of the bias can be found.

Our simulation results show that in the presence of serial correlation the first difference GMM
and the transformed maximum likelihood estimator suffer from a severe finite sample bias. We
find that the bias due to serial correlation is generally larger for the autoregressive parameter
compared to parameters for the explanatory variables. Accounting for serial correlation we find
a significant bias-reduction in terms of RMSE compared to the estimation methods that do not
account for this data characteristic. If the estimators account for serial correlation, we find a
superior performance of the maximum likelihood estimator relative to the GMM estimator. That
is, the explicit allowance for MA terms within the MLE framework leads to a considerable gain
in precision of the parameter estimates. Moreover, we find that the advantage of the MLE over
the GMM estimator increases with a higher autoregressive coefficient. The inferior performance
of the GMM estimator in the case of a high persistent dependent variable is carried over from
dynamic specifications without serial correlated errors. So, if one is primarily interested in the
autoregressive coefficient or wants to compute the lag coefficients, it is advisable to use MLE.
With respect to the coefficients for the explanatory variables we generally find smaller differences
between MLE and GMM.
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Tab. 2: Simulation Results (α = 0.4 and β = 0.6)

Simulation Design Bias α Bias β Std α Std β RMSE α RMSE β

1 GMM -0.0103 -0.0018 0.0170 0.0178 0.0198 0.0179

GMM MA(1) -0.0249 0.0073 0.0309 0.0274 0.0397 0.0283

MLE -0.0077 -0.0114 0.0126 0.0132 0.0119 0.0141

MLE MA(1) -0.0113 -0.0101 0.0155 0.0136 0.0154 0.0136

2 GMM 0.0923 0.0139 0.0189 0.0239 0.0943 0.0276

GMM MA(1) -0.0021 0.0009 0.0266 0.0309 0.0266 0.0309

MLE 0.1210 -0.0533 0.0131 0.0168 0.1210 0.0533

MLE MA(1) -0.0123 -0.0085 0.0155 0.0157 0.0161 0.0144

3 GMM 0.1046 0.0383 0.0196 0.0280 0.1064 0.0474

GMM MA(1) 0.0033 0.0036 0.0272 0.0353 0.0274 0.0355

MLE 0.1685 -0.0574 0.0136 0.0200 0.1685 0.0574

MLE MA(1) -0.0200 0.0115 0.0146 0.0147 0.0212 0.0149

4 GMM -0.0142 -0.0028 0.0206 0.0257 0.0250 0.0258

GMM MA(1) -0.0388 0.0114 0.0397 0.0384 0.0555 0.0400

MLE -0.0060 -0.0183 0.0162 0.0189 0.0138 0.0217

MLE MA(1) -0.0140 -0.0153 0.0209 0.0193 0.0203 0.0199

5 GMM 0.1464 0.0406 0.0198 0.0334 0.1477 0.0525

GMM MA(1) 0.0001 -0.0002 0.0302 0.0449 0.0302 0.0449

MLE 0.1662 -0.0689 0.0149 0.0229 0.1662 0.0689

MLE MA(1) -0.0120 -0.0119 0.0188 0.0217 0.0181 0.0200

6 GMM 0.1502 0.1025 0.0193 0.0426 0.1514 0.1109

GMM MA(1) 0.0047 0.0064 0.0272 0.0532 0.0275 0.0535

MLE 0.2114 -0.0546 0.0147 0.0272 0.2114 0.0550

MLE MA(1) -0.0227 0.0275 0.0171 0.0210 0.0241 0.0292

7 GMM -0.0069 0.0031 0.0139 0.0172 0.0155 0.0175

GMM MA(1) -0.0159 0.0074 0.0244 0.0222 0.0291 0.0234

MLE -0.0015 -0.0043 0.0117 0.0115 0.0095 0.0097

MLE MA(1) -0.0018 -0.0041 0.0129 0.0121 0.0105 0.0100

8 GMM 0.0624 -0.0108 0.0174 0.0245 0.0648 0.0268

GMM MA(1) 0.0063 -0.0006 0.0311 0.0272 0.0317 0.0272

MLE 0.0998 -0.0717 0.0121 0.0137 0.0998 0.0717

MLE MA(1) -0.0058 -0.0013 0.0140 0.0140 0.0123 0.0112

9 GMM 0.0701 -0.0004 0.0178 0.0312 0.0723 0.0312

GMM MA(1) 0.0162 0.0026 0.0370 0.0328 0.0404 0.0329

MLE 0.1435 -0.0977 0.0137 0.0163 0.1435 0.0977

MLE MA(1) -0.0198 0.0163 0.0138 0.0139 0.0207 0.0179
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Tab. 3: Simulation Results (α = 0.8 and β = 0.2)

Simulation Design Bias α Bias β Std α Std β RMSE α RMSE β

10 GMM -0.0672 -0.0142 0.0391 0.0202 0.0778 0.0247

GMM MA(1) -0.0998 -0.0116 0.0628 0.0252 0.1179 0.0277

MLE -0.0175 -0.0200 0.0128 0.0113 0.0183 0.0204

MLE MA(1) -0.0236 -0.0194 0.0150 0.0113 0.0242 0.0198

11 GMM -0.0693 0.0161 0.0473 0.0297 0.0839 0.0338

GMM MA(1) -0.0296 -0.0025 0.0431 0.0303 0.0523 0.0304

MLE 0.0711 -0.0190 0.0117 0.0162 0.0711 0.0208

MLE MA(1) -0.0156 -0.0157 0.0156 0.0148 0.0181 0.0178

12 GMM -0.0643 0.0159 0.0462 0.0295 0.0791 0.0335

GMM MA(1) -0.0272 -0.0025 0.0412 0.0301 0.0494 0.0302

MLE 0.0900 -0.0082 0.0119 0.0197 0.0900 0.0170

MLE MA(1) -0.0184 0.0038 0.0154 0.0147 0.0200 0.0122

13 GMM -0.0617 -0.0120 0.0375 0.0273 0.0721 0.0298

GMM MA(1) -0.0884 -0.0103 0.0555 0.0365 0.1044 0.0379

MLE -0.0100 -0.0252 0.0162 0.0164 0.0153 0.0260

MLE MA(1) -0.0159 -0.0245 0.0185 0.0164 0.0200 0.0254

14 GMM -0.0075 0.0724 0.0358 0.0375 0.0366 0.0815

GMM MA(1) -0.0204 -0.0002 0.0376 0.0426 0.0428 0.0426

MLE 0.0878 -0.0123 0.0134 0.0225 0.0878 0.0205

MLE MA(1) -0.0100 -0.0171 0.0170 0.0205 0.0158 0.0215

15 GMM -0.0644 0.1248 0.0387 0.0510 0.0751 0.1348

GMM MA(1) -0.0110 0.0095 0.0327 0.0511 0.0345 0.0520

MLE 0.1009 0.0208 0.0133 0.0293 0.1009 0.0289

MLE MA(1) -0.0159 0.0222 0.0163 0.0218 0.0186 0.0255

16 GMM -0.0226 -0.0048 0.0200 0.0169 0.0302 0.0176

GMM MA(1) -0.0352 -0.0068 0.0321 0.0205 0.0476 0.0216

MLE -0.0055 -0.0086 0.0109 0.0083 0.0099 0.0099

MLE MA(1) -0.0067 -0.0083 0.0115 0.0083 0.0108 0.0097

17 GMM -0.0346 0.0177 0.0296 0.0253 0.0455 0.0309

GMM MA(1) -0.0146 -0.0023 0.0317 0.0253 0.0349 0.0254

MLE 0.0508 -0.0242 0.0112 0.0114 0.0508 0.0244

MLE MA(1) -0.0082 -0.0089 0.0135 0.0113 0.0127 0.0118

18 GMM -0.0879 0.0293 0.0369 0.0382 0.0953 0.0482

GMM MA(1) -0.0108 0.0023 0.0311 0.0305 0.0329 0.0306

MLE 0.0704 -0.0271 0.0116 0.0135 0.0704 0.0274

MLE MA(1) -0.0156 0.0029 0.0141 0.0124 0.0173 0.0100
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4. Empirical Example

In this section we estimate the Beveridge curve relationship for West Germany with the first
difference GMM and the transformed maximum likelihood estimator and account for possible
serial correlation as presented in the previous sections. The Beveridge curve represents a steady-
state relationship between the unemployment rate and the vacancy rate that can be derived from
a matching function that approximates the trading frictions on the labour market due to a time
and cost consuming search process. The existence of an non-instantaneous job matching involves
a negative relationship between the unemployment and the vacancy rate that can be investigated
with aggregate data. Beveridge curves were estimated by a number of authors, e.g. Jackman,
Pissarides, and Savouri (1990) for several countries (see Petrongolo and Pissarides (2001) for an
overview of the empirical studies).

To estimate the Beveridge curve for West Germany we use a regional data set consisting of 141
West German adminstration areas of the Federal Employment Services.5 For these 141 regions
we have monthly data from Jan. 2002 up to Dec. 2003 at hand. The empirical model is given
by

ln uit = α lnuit−1 + β ln vit−1 + µi + λt + ξit, (33)

where uit denotes the unemployment rate and vit the vacancy rate relative to the labour force.
Furthermore the model includes a regional specific constant term µi, a time specific constant term
λt and a possible serial correlated residual term ξit varying over i and t. For all estimations the
time specific constant term is removed by the transformation yit− 1

N

∑N
i=1 yit. The vacancies vit

are assumed to be endogenous with E(ξitvis) 6= 0 for s ≥ t. With this assumption the vacancies
are determined by the current and lagged unemployment rate but not by future values. To avoid
a simultaneity bias the vacancies enter equation (33) with one lag and therefore can be handled
as weakly exogenous regressors. Furthermore, in the case of monthly data it is reasonable to
assume that the current unemployment rate is determined by the state of the labour market at
the end of the previous month. Following Jackman, Pissarides, and Savouri (1990) we specify a
dynamic model in order to account for the persistence of the unemployment rate.

For the calculation of the first difference GMM estimator we utilise the following moment con-
ditions

E(∆ξituit−s) = 0 for s = 2 + k, 3 + k, · · · , t− 1 (34)

E(∆ξitvit−s) = 0 for s = 2 + k, 2 + k, · · · , t− 1, (35)

where the choice of k depends then on the assumed order of serial correlation. That is, if we
assume there is no serial correlation, then we set k = 0 and for first or second order serial corre-
lation k is set to 1 or 2 respectively. The relatively large time dimension leads to a huge amount
of moment conditions if the whole history of the series as instruments is used. As mentioned by
Arellano and Bond (1998) using too many instruments may lead to an (small sample) overfitting
bias. For the calculation of the GMM estimators we therefore cut the history of the series as
instruments at t− 5. Monte Carlo studies, see e.g. Arellano and Bond (1991) have often found

5 Due to the immense differences between the East and West German labour market we restrict the analysis

to West Germany.
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Tab. 4: First Difference GMM Estimates1

No Serial Correlation MA(1) Process MA(2) Process

Parameter t-Value Parameter t-Value Parameter T-Value

uit−1 0.8320 64.66 0.8612 62.53 0.8382 40.78

vit−1 -0.0498 -5.12 -0.0464 -4.95 -0.0423 -3.92

Wald-Test (df) 4488.68 (2) 3974.73 (2) 1665.10 (2)

Sargan (df) 140.52 (162) 125.32 (118) 104.14 (76)

m(1) (df) -5.05 (141) -5.61 (141) -2.96 (141)

m(2) (df) -6.26 (141) -6.36 (141) -6.11 (141)

Hausman-Test (df) 4.70 (2) 4.38 (2)

Degrees of freedom for test statistics are in parenthesis.
1 Two step estimates with corrected standard errors.

severely downward biased asymptotic standard errors of the two-step estimates in small samples.
Therefore we present in the following analysis the two-step estimates with corrected standard
errors as proposed by Windmeijer (2005).6 This is because the expression for the asymptotic
variance ignores the presence of the estimated one-step estimates in the weight matrix (Bond
and Windmeijer, 2002). Monte Carlo results have shown that the corrected variance of the two-
step estimator often provides more reliable inference with size proportions similar to those of the
one-step variance, see Bond and Windmeijer (2002) and Windmeijer (2005). The calculation
of the maximum likelihood estimator was done according to the presentations in section 2.2.
The weak exogeneity assumption for vit−1 enables us to use ∆vi0 in the linear projection for
the initial condition ∆ui1 with the additional parameter π(∆vi0).7 The variance of the initial
condition is parameterised as (1/σ2

ε)Var(∆ui1) = (1 − 1/T ) + w2 to ensure a positive definite
variance covariance matrix.

In the following analysis both estimators are applied under three assumptions. First ξit is not
serial correlated, i.e. ξit = εit where εit ∼ iid(0, σ2

ε). Second ξit is generated from a MA(1) process
with ξit = εit + θ1εit−1. And finally ξit follows a MA(2) process with ξit = εit + θ1εit−1 + θ2εit−2.
The derivation of the variance covariance matrix of the MLE in the case of an MA(2)-process
can be found in the Appendix. Table 3 contains the results for the GMM estimator and table 4
contains the results for the MLE.

In the case we do not account for serial correlation the GMM estimator leads to an AR coefficient
of 0.83 and the MLE to a coefficient of 0.88. For the vacancies both estimators find a significant
negative coefficient, i.e. a negative relationship between unemployment and vacancies in West
Germany. The relatively small coefficient for the vacancy rate primarily results from the fact
that our data includes only those vacancies that are registered by the Federal Employment
Services (see Franz and Smolny (1994)). Comparing GMM and MLE we find that GMM leads
nearly to a twice as large coefficient for the vacancy rate as MLE. Turning to the test statistic
for first and second order serial correlation (m(1) and m(2)) we find that both statistics reject
the null hypothesis. Arellano and Bond (1991) suggested the m(1) and the m(2) statistic to test

6 All results for the GMM estimator are computed using the DPD98 Software for GAUSS.
7 Since time specific effects are removed the linear projection does not include the constant.
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Tab. 5: Maximum Likelihood Estimates

No Serial Correlation MA(1) Process MA(2) Process

Parameter t-Value Parameter t-Value Parameter t-Value

uit−1 0.8800 67.12 0.7978 51.50 0.7315 40.49

vit−1 -0.0247 -9.56 -0.0236 -7.74 -0.0230 -6.90

θ1 0.5292 34.16 0.6279 30.55

θ2 0.2245 10.54

σε 0.0271 74.14 0.0235 75.30 0.0231 75.97

w 0.4446 9.89 0.7213 13.63 0.8029 12.90

π(∆vi0) -0.0297 -3.53 -0.0375 -3.33 -0.0427 -3.22

Log-Likelihood 6681.42 7098.08 7150.45

AIC -13350.84 -14184.15 -14284.89

Wald-Test θ1, θ2 (df) 1166.88 (1) 938.21 (2)

Degrees of freedom for test statistics are in parenthesis.

whether the estimates suffer from serial correlation. m(1) tests for E(ξitξit−1) = 0 and m(2)
tests for E(ξitξit−2) = 0, where both statistics are asymptotically normal distributed. As the
consistency of the GMM estimator hinges heavily on the lack of second-order serial correlation,
the m(2) statistic suggest that the results from the GMM may be problematic.

If we account for an MA(1) process within the GMM and the MLE method we find that the
estimate for the autoregressive parameter increases for the GMM to 0.86 and decreases for the
MLE to 0.79. The contrary movent of the GMM and MLE estimate fits to our results from the
simulation experiments for high persistent processes. Regarding the vacancy rate we find only
marginal changes in the estimates for both estimation methods. In the case we account for an
MA(2) process the estimate for the autoregressive parameter from MLE reduces again to 0.73.
For the GMM the autoregressive coefficient is similar to the GMM estimate if we do not account
for serial correlation. However, as indicated by the Wald test excluding the instruments for t−2
and t − 3 obviously leads to considerable efficiency losses of the GMM estimator. Again the
changes in the coefficient of the vacancy rate are marginal, although we find throughout a slight
reduction of the coefficient if we account for serial correlation. The results show that accounting
for serial correlation primarily leads to changes in the estimate of the autoregressive parameter,
where these changes are more distinctive for the MLE. Therefore primarily statements that are
made with respect to the autoregressive parameter or the lag coefficients are affected by serial
correlation. In contrast, the unemployment vacancy relationship remains robust whether the
estimation method accounts for serial correlation or not.

To test whether serial correlation is problematic in our model, we apply a Hausman-Test for the
difference between the usual GMM estimator and the GMM estimator that accounts for serial
correlation. This test was suggested by Arellano and Bond (1991) and utilises the test statistic

(δ̂I − δ̂)′[est.avar(δ̂I)− est.avar(δ̂)]−(δ̂I − δ̂) ∼ χ2
r, (36)

where δ̂ is the GMM estimator calculated from the full set of instruments, δ̂I is the GMM
estimator calculated form the reduced set of instruments and r = rank(est.avar(δ̂I− δ̂)). If there
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were no serial correlation, both estimators would be consistent but only δ̂ would be efficient since
it uses all available moment conditions. The Hausman-Test rejects the null hypothesis for the
GMM estimator that accounts for first order serial correlation on the 10 percent level, whereas
for the GMM estimator that accounts for second order serial correlation the null hypothesis
cannot be rejected.

For the MLE one may test the relevance of the additional parameters θi with a likelihood ratio
test or a Wald test. A Wald-Test for the MA parameters is presented in the table. Similar to
the t-Value the Wald-Test shows that the MA parameters are significant. A second approach is
to consider the fit of the model if we account for additional MA terms. For our analysis we use
the Akaike-Information-Criteria (AIC) and find the lowest value for the model with an MA(2)
process. In this case one may continue to add MA terms to the model until the AIC is minimised
although this may be a burdensome procedure. Accounting for higher order serial correlation
within the methodology of the GMM estimator is also not advisable, since the predictive power
of the instruments can be expected to decrease as the lag of the instruments increases. Therefore,
if higher order serial correlation seems to be present, it is advisable to consider a respecification
of the model.

5. Conclusion

Regional panel data used for empirical macroeconomic research usually provides larger time
series compared to typical panel data for individuals or firms. Therefore, time series issues
like serial correlation are an important issue in order to obtain consistent estimates in dynamic
panel data models with fixed effects and weakly exogenous regressors. Accounting for serially
correlated errors within the first difference GMM framework (Arellano and Bond, 1991) may
be problematic for two major reasons: First, the size of the sample in the time dimension
diminishes in a drastic way for higher order serial correlation. Second, large efficiency losses
may prohibit a reliable analysis on the basis of the results from the first differences GMM
estimator in the presence of serial correlation. Alternatively, serial correlation can be accounted
for in the framework of the transformed maximum likelihood estimator suggested by Hsiao,
Pesaran, and Tahmiscioglu (2002). Directly allowing for serial correlation due to a MA process
leads to an asymptotic normal and efficient estimator.

To evaluate the finite sample properties of the first difference GMM estimator and the trans-
formed maximum likelihood estimator in the presence of serially correlated errors we conducted
a simulation experiment. The results show that the presence of serial correlation leads to a severe
finite sample bias. By accounting for serial correlation we find a superior performance of the
maximum likelihood estimator relative to the GMM estimator. That is, the explicit allowance
for MA terms within the MLE framework leads to a considerable gain in precision of the param-
eter estimates. Moreover, we find that the advantage of the MLE over the GMM increases with
a higher autoregressive coefficient. With respect to the coefficients for the explanatory variables,
we generally find smaller differences between MLE and GMM.

To assess the behaviour of the maximum-likelihood estimator and the GMM estimator in an
empirical application, we present an empirical example where the Beveridge curve relationship
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for West Germany is estimated with regional panel data. The results show that the considera-
tion of serial correlation primarily changes the estimate of the autoregressive parameter, where
these changes are more distinctive for the MLE. If serial correlation cannot be eliminated by
a respecification of the model, GMM and MLE provide a viable approach to obtain consistent
estimates. Although maximum likelihood is computationally more demanding than GMM, we
find that the efficiency gains, even in small samples, are worth the difficulties.
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A Appendix

A1. The Covariance Matrix for an ARMA(1,1) Process

Consider the model given in equation (1) with no exogenous variables. This model will be of
limited practical value, but is interesting due to the fact that a exact likelihood function exists.
After taking first differences we arrive at

∆yit = α∆yi(t−1) + ∆uit, (A.1)

where we assume that uit is generated by an MA(1) process

uit = εit + θεi(t−1). (A.2)

With the assumption 1, i.e. the process has been going on for a long time, i.e. m → ∞ and
|α| < 1 the the mean is given by E(∆yi1) = 0 and the covariance matrix σ2

εΩ
∗ = Ω is given by

E(∆y2
i1) = σ2

ε

{
1 + [(θ − 1) + α]2 +

φ2

1− α2

}
(A.3)

E(∆yi1∆ui2) = −σ2
ε [(1− θ)2 + θα] (A.4)

E(∆yi1∆ui3) = −σ2
εθ (A.5)

E(∆yi1∆uit) = 0 for t = 4, . . . , T. (A.6)

Under assumption 2, i.e. m is finite and E(∆yi1) = b is the same across individuals the variance
is given by

E(v2
i1) = σ2

ε

[
1 + [(θ − 1)− α]2 + α2(m−2)(α(θ − 1)− θ)2 − α2(m−1)θ2 + φ2 1− α2(m−3)

1− α2

]
,(A.7)

with vi1 = ∆yi1 − b, φ = α2 + α(θ − 1) − θ and the covariances correspond to (A.4-A.6). The
remaining entries of the covariance matrix are given in 2.2.. These moments follow directly from
the assumption about the covariance structure for uit and ui(t−s). Note, that even though E(v2

i1)
is depending on α, we can treat it as a free parameter (see Hsiao, Pesaran, and Tahmiscioglu
(2002)). In addition, note that the difference between the covariance matrix for a model with and
without regressors consists basically in the term for the residual regarding the initial condition.

A2. The Covariance Matrix for the MLE with a MA(2) Residual

In order to demonstrate how the model can be generalized to higher order MA processes we
consider the case in which the residual is generated by

uit = εit + θ1εi(t−1) + θ2εi(t−2). (A.8)

Under assumption 1 the following entries for the matrix Ω result

E(∆y2
i1) = σ2

ε

{
1 + [(θ1 − 1) + α]2 + [(θ2 − θ1) + α(θ1 − 1) + α2]2 +

φ2

1− α2

}
(A.9)

E(∆yi1∆ui2) = −σ2
ε

[
1 + (θ2 − θ1)2 + (1− α)(θ2 − θ1) + αθ2(θ1 + α− 1)− θ1

]
(A.10)

E(∆yi1∆ui3) = −σ2
ε [θ1 + θ2(θ1 + α− 2)] (A.11)

E(∆yi1∆ui4) = −σ2
εθ1 (A.12)

E(∆yi1∆uik) = 0 k ≥ 5, (A.13)
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with φ = α3 + α2(θ1 − 1) + α(θ2 − θ1) − θ2. The entry for E(∆y2
i1) can easily be modified to

hold under assumption 2. The remaining covariance terms are

E[(∆uit)2] = σ2
ε(1 + θ2

1 + θ2
2 − θ1 − θ1θ2)2 (A.14)

E[∆uit∆ui(t−1)] = −σ2
ε [1 + (θ1 − θ2)2 + θ2 − 2θ1] (A.15)

E[∆uit∆ui(t−2)] = σ2
ε(2θ2 − θ2θ1 − θ1) (A.16)

E[∆uit∆ui(t−3)] = −σ2
εθ2 (A.17)

E[∆uit∆ui(t−k)] = 0 for k ≥ 4, (A.18)

where the variance of the error for the initial condition is again treated as a free parameter and
all other conclusion given in A1. remain valid.
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