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Abstract. A microscopic model of deconfined matter based on color inter-

actions between semi-classical quarks is studied. A hadronization mechanism

is imposed to examine the properties and the disassembly of a thermalized

quark plasma and to investigate the possible existence of a phase transition

from quark matter to hadron matter.

The study of relativistic heavy-ion collisions is motivated to a considerable

extend by the search for and the unambiguous observation of a phase transition

from confined, hadronic matter to a deconfined state of QCD-matter dubbed the

quark-gluon plasma [1, 2].

In the forthcoming experiments at RHIC (and later at LHC), the formation

of a zone of quark-gluon plasma is generally expected. The primary stage of

a collision at RHIC will be dominated by hard pQCD processes leading to the

creation of a tremendous number of quarks and gluons which are believed to form

a zone of hot and dense and therefore expectedly deconfined partonic matter.

This part of a heavy-ion collision has been described microscopically by partonic

cascade models as VNI [3]. However, pQCD is, by definition, only applicable in

reactions with large momentum transfer Q2. At SPS these partonic processes

are strongly suppressed as compared to hadronic interactions in the early stage.

Here, the strong collective motion of the impinging heavy nuclei may drive the

system to temperatures and densities beyond the hadronic level into a deconfined

phase. However, in both pictures, partonic or hadronic, the major part of particle

production takes place in primary collisions within the first few fm/c when the

system is strongly compressed and heated.

Most recently, a combination of partonic and hadronic cascades has been

established by connecting the VNI model with the UrQMD model which finally

copes with the hadronic secondary interactions [4].
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Unfortunately, a possible quark-gluon plasma phase dominated by soft,

non-perturbative QCD processes which mediates between parton and hadron

mode and intrinsically performs the hadronization process is not dynamically

treated. The non-perturbative properties of QCD, which are crucial for this

transition, impede the applicability of all common approaches to a first-principle

description of hadronization. Effective models have to be constructed which

allow a numerical calculation of observables by simulating the essential features

of non-perturbative QCD. In [5], a dynamical approach based on the Nambu-

Jona-Lasinio model has been presented, in which quarks are propagated on

classical trajectories while their effective masses are calculated self-consistently

according to the NJL equations of motion. Hadron production is driven by qq

and qh collisions. Unfortunately, this approach does not provide confinement

and therefore is not suitable for the investigation of heavy-ion collisions. On the

footing of the Friedberg-Lee Lagrangian, a similar study has been performed in

the chromodielectric model [6] completely respecting confinement. Hadronization

is performed by mapping quark-gluon states onto irreducible representations of

color SU(3). However, this method is numerically extremely expensive. This

prohibits the simulation of heavy-ion collisions.

In this paper we present a semi-classical model which mimics the properties

of non-abelian QCD by the means of a two-body color potential between quarks.

In addition, a dynamical hadronization criterion is defined which allows for the

consecutive migration from quark to hadronic degrees of freedom. The long

term objective of this investigation is the unification of the different species of

microscopic models, partonic in the initial, hadronic in the final stage of the

reaction, into one single model, which finally will allow the simulation of a

complete heavy-ion collision including a QGP phase transition. In this paper

we shall elaborate the major thermodynamic properties of the so-defined system

which will justify the crude approximation by its phenomenological implications.

In a subsequent publication we will investigate the dynamical evolution of the

model and adopt it to more realistic initial conditions which then will allow to

describe heavy-ion collisions.

1. The model Hamiltonian

The colored and flavored quarks are treated as semi-classical particles interacting

via a Cornell potential with color matrices [7]. This interaction provides an

effective description of the non-perturbative, soft gluonic part of QCD. The

Hamiltonian reads

H =
N
∑

i=1

√

p2
i +m2

i +
1

2

∑

i,j

CijV (|ri − rj|)

where N is the number of quarks. Four quark flavors (u, d, s, c) with current

masses mu = md = 10 MeV, ms = 150 MeV and mc = 1.5 MeV are considered.
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The confining properties of V (r) are ensured by a linear increase at large

distances r. At short distances, the strong coupling constant αs becomes small,

yielding a Coulomb-type behavior as in QED. This color Coulomb potential plus

the confining part is the well known Cornell-potential [8]

V (r) = −3

4

αs

r
+ κ r ,

which has successfully been applied to meson spectroscopy. For infinite quark

masses this inter-quark potential has also been found in lattice calculations over

a wide range of quark distances [9]. For small quark masses, retardation and

chromomagnetic effects should be included. This is neglected in the present

work. However, the linear behavior at large distances seems to be supported by

the success of the string model even for zero quark masses [10].

The color matrix elements Cij regulate the sign and relative strength of the

interaction between two quarks/antiquarks, respectively, depending on the color

combination of the pair. The matrix Cij in the short range color interaction

potential between quarks, Vcolor = −Cij
3
4

α
r
, can be calculated from the quark-

gluon interaction part of the QCD Lagrangian

Lint =
g

2
Ψ̄λaγµΨGµ

a

on the one-gluon exchange level represented by the Feynman diagram

16 Kapitel 2. E�ektive Modelle f�ur die QCDkonzentrieren und es aus der QCD motivieren. F�ur weiterf�uhrende �Uberlegungenund die Herleitung von spinabh�angigen Beitr�agen sei auf die Literatur ([Luc91])verwiesen. F�ur alle in dieser Arbeit relevanten Fragestellungen sind die dadurchentstehenden Korrekturen vernachl�assigbar.Quark-Quark-Potential f�ur kleine Abst�andeIn der QED kann ein Potential f�ur die Interaktion von e+ und e� �uber Ein-Photon-Austausch ohne Probleme angegeben werden:VCoul = ��r ; (2.31)wobei sich der Vorfaktor gem�a�
+p� �p�e�
e�

e+
e+

aus dem Produkt der Vertex-Faktoren (�1)(+1)p�p� = �� ableitet5.Da sich die QCD f�ur kleine Abst�ande verh�alt wie die QED f�ur gro�e, erwartetman auch hier f�ur den Ein-Gluon-Austausch ein Potential der FormVFarb = CF �r ; (2.32)wobei sich der Vorfaktor hier entsprechend der SU(3)-Struktur der QCD ergebenmu�. Der Wechselwirkungsgraph
g T a g T a	1�

	1 y�0
	2�
	2 y�0

5Der eigentliche QED-Vertex lautet ip��. Da hier aber nur der totale Vorfaktor interes-siert, werden die Gamma-Matrizen nicht angegeben.Using the standard fundamental representation of SU(3)color for the quarks

and the adjoint representation for the gluons,

~qR =







1

0

0






, ~qG =







0

1

0






, ~qB =







0

0

1






,

T a =
1

2
λa, a = 1, . . . , 8

where λa are the Gell-Mann matrices, and separating the quark wave function in

the color and Dirac parts,

Ψα = ψ ~qα

the interaction amplitude

Mαα′ββ′ ∼ g2

4
Ψ̄α′γµλ

aΨα Dµν
ab (q) Ψ̄β′γνλ

bΨβ

separates in color and Dirac parts (Dµν
ab (q) = Dµν(q)δab is the gluon propagator):

Mαα′ββ′ ∼ ψ̄1γµψ1D
µν(q)ψ2γνψ2 ~q

†
α′λ

a~qαδab~q
†

β′λ
b~qβ .
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Table 1. Color matrix elements of the 36 different elementary color

combinations of the quarks. The matrix elements can be obtained from the

scalar products of the corresponding weight vectors

Cαβ
c R G B B G R

R −1 + 1

2
+ 1

2
− 1

2
− 1

2
+1

G + 1

2
−1 + 1

2
− 1

2
+1 − 1

2

B + 1

2
+ 1

2
−1 +1 − 1

2
− 1

2

B − 1

2
− 1

2
+1 −1 + 1

2
+ 1

2

G − 1

2
+1 − 1

2
+ 1

2
−1 + 1

2

R +1 − 1

2
− 1

2
+ 1

2
+ 1

2
−1

λ(3)

λ(8)

α = 1 (R)α = 2 (G)

α = 3 (B)

Here, α and β represent the color charges of the incoming quarks, α′ and β ′ of

the outgoing quarks. Collecting the color parts in a color factor

Cc
αα′ββ′ =

3

4

8
∑

a=1

~q †
α′λ

a~qα ~q
†

β′λ
a~qβ =

3

4

8
∑

a=1

(λa)αα′ (λa)ββ′ ,

one can calculate the net amplitude by summing over all possible combinations

of in- and outgoing colors. As there is evidence from lattice calculations that

there is no color transport over distances larger than λ ≈ 0.2 . . . 0.3 fm, only the

commutating diagonal Gell-Mann matrices λ3 and λ8 from the Cartan subalgebra

of SU(3)color contribute over larger distances. In this Abelian approximation the

total color matrix for quark-quark interactions then is given by

Cc
αβ =

3

4

∑

a=3,8

(λa)αα(λa)ββ = ~wT

α ~wβ ,

where

~wα =

√
3

2

(

(λ3)αα

(λ8)αα

)

, α = 1, 2, 3 (R,G,B)

are the normalized weight vectors corresponding to the three quark colors in

(λ3, λ8) space. Imposing a factor −1 at each antiquark vertex in color space

yields the color matrix elements for the different color combinations as collected

in table 1. They can easily be read off as the scalar products of the weight

vectors corresponding to the three colors or anticolors, respectively. Positive

values indicate attractive, negative repulsive interactions.

Note that the relative strength of the color matrix elements is rigorously

enforced by the requirement of color neutrality of widely separated qq and qqq

states.

The properties of the interacting quark gas turn out to be independent from

the selection of the shape of the potential at small distances, as far as the long

distance term is defined properly. Therefore, we shall extend the linear potential

to small distances r instead of using the color Coulomb potential at small r, which
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brings us in accordance to widely used phenomenological models for hadrons

[11, 12].

Regge trajectories yield values of κ0 ≈ 1.1 GeV/fm, while in the string model

the string constant is found at κ0 ≈ 0.9 GeV/fm. However, these values were

fitted to the properties of isolated strings [13]. In a dense medium, quarks interact

with all other color charges. This prohibits the confinement of the field lines

into one single flux tube – deconfinement is the consequence. Thus, free string

constants κ0 are not appropriate to calculate the properties of quark matter at

high temperatures and densities as expected in heavy-ion collisions [14]. In-

medium effects, e. g. interacting color fields, yield an effective increase of the

string tension (Casimir scaling) [15]. In the present model κ effectively describes

these in-medium effects. It will be treated as a free parameter of the model and

should not be identified with the zero temperature value of free strings.

Obviously, a sufficiently high density of color charge carriers will lead to

the screening of the the color interaction in the dense medium, and thus color

deconfinement results, even in the simple semi-classical toy model presented here.

We will discuss this below.

On the other hand, in a less dense and cooler system, all quarks will

condense into clusters of two or three (anti-)particles with a total color charge

in each cluster of zero. Note that higher quark numbers may also form totally

color neutral states which appear to be bound. However, further propagation

causes a separation into smaller likewise color neutral subclusters. Therefore, we

ultimately obtain bound states which correspond to mesons or baryons.

2. Hadronization

It is now the second request to the model to define a criterion how to map those

bound quark states to hadrons. Such a mechanism is essential as the Hamiltonian

is not tuned to describe bound and truly confined hadron states. Attempts have

been made [16] to do so in a Vlasov approach. Here, we use the straight-forward

requirement that the total color interaction from a pair (or a three particle state)

of quarks with the remaining system vanishes . Then, these qq- and qqq-states do

no longer contribute to the color interaction of the quark gas (see figure 1). In the

present model, this criterion of confinement – which in a numerical simulation of

course would never be fulfilled exactly – has been softened by introducing a lower

bound for the remaining interaction κmin between the cluster and the residual

quark matter beyond which the cluster is declared to be frozen out [17]. It is

convenient to measure κmin in units of the natural scale of the model, κ.

|Fcluster| =

∣

∣

∣

∣

∣

1

Ncluster

∑

i∈cluster

Fi

∣

∣

∣

∣

∣

< κmin = Fcut · κ .
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Here,

Fi =
∑

j

Fij = −
∑

j

Cij∇jV (|ri − rj|)

gives the total force of the system acting on particle i.

If a bound quark state fulfills the hadronization criterion it will be mapped

to an appropriate hadronic state with identical quantum numbers. Spin and

isospin of the hadron is randomly chosen according to the probabilities given by

the Clebsch-Gordon coefficients.

The mass of the produced hadron is determined by energy and momentum

conservation. The total energy of the multi-quark state is given by the expression

EH =
∑

i∈cluster

(

Ei +
1

2

∑

j∈cluster

j 6=i

CijV (|ri − rj |)
)

+δE .

where δE represents the residual energy which was set free due to the field cut-off

in the hadronization process and is of the order δE/E . 10−2. The momentum

of the hadron reads

PH =
∑

i∈cluster

pi

which yields a hadron mass of

MH =
√

E2
H − P2

H .

Usually the obtained hadron masses will hardly fit to the tabulated pole masses

of the known hadrons. Therefore, the quark clusters will preferably be mapped

to resonances with a broad mass distribution instead of sharply peaked ground

states. In case of multiple possible selections for given quantum numbers we pick

one randomly according to mass distributions which are given by Breit-Wigner

distributions

f(M) ∼ Γ2

(M −m0)2 + (Γ/2)2
.

Here, m0 and Γ denote the peak mass and the total decay width of the particle,

respectively. To low masses, the distribution is cut-off at a minimal mass to

ensure hadronic decay according to the experimentally known branching ratios.

In the current version the model discriminates 29 mesonic and 36 baryonic states.

3. Thermodynamic properties of the interacting quarks gas

In the present work, the properties of the interacting quark gas, i. e. of hot quark

matter, are studied in complete thermal equilibrium. The system of interacting

quarks is not an ideal gas, but rather a strongly coupled quark fluid. Therefore,

the integration of the partition function cannot be carried out analytically. By

adopting the Metropolis algorithm [18], an arbitrary number Nrep of N -particle

phase space configurations can be generated. The latter configurations are
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representations of the equilibrium state of the system. These representations

are evaluated by imposing an initial configuration (x
(0)
i ,p

(0)
i ) (i = 1..N) and then

repeatedly joggling all coordinates and momenta

x
(r)
k → x

(r+1)
k = x

(r)
k + δx

(r)
k ,

p
(r)
k → p

(r+1)
k = p

(r)
k + δp

(r)
k .

In each iteration, each displacement (δx
(r)
k , δp

(r)
k ) in phase space will cause a

change in total energy of the system

∆E = E(r+1) −E(r) .

According to the standard Metropolis algorithm, if ∆E < 0, the new

configuration is energetically more favorable than the old one and will be

accepted. If, on the other hand, ∆E is positive, the new configuration will be

accepted with a probability exp(−∆E/T ). This allows for a statistical increase

of the free energy of the system driven by the “temperature” T . After a sufficient

number of iterations the system will enter a stationary state, where further

iteration will account for a thermal motion of the sample around the ground state.

All configurations can then be identified as representations of the thermalized

state.

Now, the ensemble average of any thermodynamical variable O can be

approximated by the sum over those representations

〈O〉 =
1

Nrep

Nrep
∑

k=1

O(x
(k)
i ,p

(k)
i ) , i = 1 . . .N .

This enables us to calculate the energy density

ǫ =
1

V
〈H〉

and – by using the virial theorem – the pressure of the interacting quark gas

P =
1

3V

〈

∑

i

pivi +
∑

i

ri∇iV

〉

.

Here vi = pi/Ei is the velocity of particle i.

In addition to the description of the quark phase we have to cope with the

hadronic sector. The produced hadrons are evaporated into the void. The hadron

pressure and temperature are assumed to be equal to the quark phase.

We will now assume a system of N quarks in a finite sphere of volume V with

all color charges adding up to zero. This system is thermalized at a temperature

T according to the previously discussed Metropolis method. A spherical system

with a radius of 4 fm contains about 400 quarks and antiquarks at a temperature

of 150 MeV. If during the equilibration process quarks form clusters that fulfill

the above hadronization criterion they are converted to color neutral hadrons

which do no longer interact due to color forces.
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3.1. Mixed phase and the equation of state

The first important observable is the number of quarks which are hadronized

from a given thermodynamic sample. For high temperatures this quantity should

converge to zero, while at T → 0 all quarks should be hadronized due to

confinement. The fraction ξ = Nh/(Nh + Nq) of hadrons compared to the total

particle number in the system therefore should be 1 in this limit. Figure 2 depicts

this hadron fraction ξ as a function of the temperature (µ = 0) measured in units

of the “critical temperature” TC, where the latter is defined as the temperature

of the steepest descent for each set of parameters (κ, Fcut). A rapid fall-off within

0.2 TC from a hadron to a quark dominated phase can be observed indicating

the existence of a mixed phase during the transition. In case of a true first order

phase transition in an infinite volume a sharp discontinuity of this quantity would

be expected at TC [19].

A similar continuous transition can be observed in the energy dependence of

the quark phase as plotted in figure 3. Here, the energy density ǫ and the pressure

p are divided by T 4 and are given for various values of κ and Fcut as discussed

above. The pressure has been multiplied by a factor of 3. Lattice calculations

reveal a similar transition, slightly smoothed for energy density and pressure.

[20]. However, our microscopic finite size simulation exhibits an even broader

crossover. It is worth to note that the absolute values of lattice calculations for

very high temperatures may not be compared to our results as we neglect the

contributions of hard gluons.

A functional form of thermodynamic quantities similar to one found here

has been parameterized [21, 22] in order to model the assumed smooth crossover

transition and to study the physical consequences. In accordance to those

investigations our microscopic model also reveals a minimum of the equation

of state in the phase transition region (see figure 4). However, compared to the

case of infinite matter this dip is less pronounced.

The plots in fig. 2 and 3 both reveal a perfect scaling behavior for Fcut . 0.01.

This imposes a natural range for the seemingly completely arbitrary parameter

Fcut which could a priori not be connected to any physical observable.

Despite the conformity in shape, the absolute scale of TC is strongly affected

by the particular choice of these parameters. A reduction of Fcut to zero will

ultimately shift TC → 0, since hadronization is completely suppressed in this

limit. On the other hand, an increase of the string tension, κ, gives rise to

an increasing critical temperature TC, revealing a scaling dependence of the

form TC ∼
√
Fcut · κ. This can be directly understood from the hadronization

mechanism: If any colorless quark cluster (qq, qqq or, in principle, any multi-

quark state) separates from the remaining quarks, we shall always obtain a

finite remaining color field between the two quark samples whose strength κ

is reduced (screened) compared to the vacuum value. The quark clusters are now

assumed to separate sufficiently slowly so that the mediating color field lines can
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be considered to confine to an equilibrated flux tube which approximately fulfills

the presumptions of a cylindrical MIT bag. In the bag model the field strength κ

is connected to the bag constant B according to κ ∼
√
B [13]. On the other hand,

the bag pressure for an ideal quark-gluon gas raises as B ∼ T 4
C. – therefore one

immediately obtains TC ∼ √
κ. In our model, the separating cluster is declared

a “hadron” if the remaining force drops below the cut-off Fcut · κ. Applying the

flux tube picture as derived form the MIT bag model then yields the previously

found dependency for the critical temperature TC ∼
√
Fcut · κ.

While the lattice results predict a critical temperature of TC ≈ 150 MeV [20],

the natural choices κ = κ0 ≈ 1 GeV/fm and Fcut = 0.01 give a much lower value

TC ≈ 90 MeV. As the value for Fcut is at the upper bound of the scaling domain,

the critical temperature may only be enhanced by increasing the field strength

κ > κ0. The impact of a variation of κ on the thermodynamical properties is

visualized in figure 5. In this plot, we further extend the investigations to finite

µ and calculate the phase diagram for various κ. First attempts to apply lattice

QCD to finite densities [23] seem to support our findings. It is obvious that

for high κ the curvature of the lines appears smaller as compared to the curves

usually extracted from the MIT bag model. To approach the lattice results of

TC ≈ 140 MeV for µ → 0, values κ & 2κ0 are required. For T → 0 the chemical

potential than is about 350 MeV so that normal nuclear matter (µ ≈ 300 MeV)

is safely within the hadronic region. This is in perfect agreement with the above

discussion and reflects the finite density character of the quark phase.

The high value found for κ should not come as a surprise: As discussed

before, because of in-medium effects an increased string constant (compared to

the free value) should be expected.

However, this high value of κ contradicts to the two-particle limit (one quark

and one antiquark). The model then turns into the common string model which

determines the color field strength to κ = κ0. In principle, this suggests the

introduction of a density and temperature dependence of the string constant.

A more qualitative view on the properties of the interacting quark gas shall

be provided. However, it should be noted that the hadronization of the QGP

is mainly based on quark rearrangements within the blob compared to string

fragmentation on the surface of the plasma. This also supports the assumption

of particle number conservation in the hadronization process. Hence, we fix the

string constant to a medium value of κ = 2κ0.

The hadronization of the thermalized quark system yields hadron ratios

which can be compared at mid-rapidity to those measured in CERN-SPS

experiments (see compilation in [24]). Fig. 6 shows the comparison to the outcome

in a S+Au collision, assuming a thermal fireball as hadron source. We find a

very good agreement in all MM , MB and BB ratios, while the antibaryons

seem to be clearly under-predicted. Particle ratios, however, proved not to be

a very sensitive observable to test the quality of theoretical models. Fits of a

pure hadron gas [24] proved to describe data with a comparable precision as
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other thermal or hydrodynamical approaches including a QGP phase transition

or several microscopic simulations as UrQMD [25]. However, the analysis of

event-by-event fluctuations [26] and of the dynamical properties of the system

may yield new insight.

3.2. Dissociation of a quark blob

All results from the last paragraph presume complete equilibration of a finite

canonical ensemble which is defined by all possible microscopic representations

at a time. One particular representation will always contain fluctuations which

may cause the properties of the single representation to deviate strongly from the

collective behavior [27]. This effect is emphasized in figure 7 where the average

radial force

Frad(r) =

〈

∑

i

Fi r̂i

〉

acting on a quark at a distance r from the origin of a spherical thermalized quark

blob (R = 4 fm, T = 200 MeV, µ = 100 MeV) is plotted. In the ensemble average

the quarks in the center of the quark matter do not feel any net interaction: color

is screened. A net interaction within approximately 1fm from the surface traps

the color charges confined within the blob. Moreover, this result is independent

of the particular shape of the interaction potential as long as it fulfills the

symmetry requirements concerning the color charges as given in table 1. Then,

within the center of the quark phase all contributions from the potential cancel

exactly to zero if the spatial distribution is sufficiently homogeneous. However,

this statement holds only for a large number of quark samples. In one single

microscopic representation one can find large fluctuations of the net color force

on each quark. This is pointed out in figure 8, where the distribution function of

the radial color forces Fi r̂i acting on quarks in the center of the blob is plotted.

We obtain an almost perfect Gaussian distribution with a standard deviation

σ = 0.5κ indicating huge fluctuations. Therefore strong inhomogeneities in one

single event are to be expected. Hence, the microscopic system will not behave

like an ideal quark gas. Due to the color interactions we do not expect that the

quark system does expand hydrodynamically, smoothly reducing temperature

and density. Instead, these results indicate that during the expansion the quark

phase will rupture, and hadrons will condense both from its surface as well as

from its interior.

4. Conclusion

We have presented a microscopic description of the deconfinement phase

transition by means of a semiclassical interacting quark gas supplemented with

a dynamical hadronization criterion. The color interaction potential has been

motivated from phenomenological QCD in the abelian approximation. A smooth
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crossover was found, comparable to recent lattice results. The phase diagram for

finite µ has been calculated. Particle ratios have been compared to experimental

results yielding a reasonable agreement. An event-by-event analysis revealed

strong fluctuations which initially drive the dissociation process.
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Figure 1. Hadronization of white quark clusters

Figure 2. Hadron fraction as a function of temperature in a finite quark blob

for various sets of parameters κ and Fcut. The temperature is measured in

TC which is defined for any set of parameters as the temperature of steepest

descent with T . The distributions show perfect scaling behavior for Fcut < 0.01

(black symbols).
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Figure 3. Energy density and pressure of the quark phase as a function of

temperature for various sets of parameters κ and Fcut.

Figure 4. Equation of state for κ = κ0 (dashed line) and κ = 2κ0 (solid line).

A softening of the EOS around ǫ = 1GeV/fm3 is revealed.



Statistical Mechanics of semi-classical colored Objects 14

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

(GeV)

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
(G

eV
)

= 0.9
= 1.8

HG

QGP

Figure 5. Phase diagram in the T -µ plane for κ/κ0 = 1, 2. The lines are fits

to the calculation.

Figure 6. Final state hadron ratios from thermal qMD calculations (open

circles) compared to S+Au data at 200 AGeV (full circles, taken from [24])
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Figure 7. Averaged radial force |∑Fr̂| acting on a quark at a distance

r within a quark blob of radius R = 4fm. In the center the quarks are

approximately free. Near the surface they are strongly pulled back into the

sphere.

Figure 8. Fluctuations of net radial forces Frad =
∑

Fr̂ acting on a central

quark (r < 1fm).


