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Neutron star properties in a chiral SU(3) model

M. Hanauske, D. Zschiesche, S. Pal, S. Schramm, H. Stöcker, W. Greiner
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Abstract

We investigate various properties of neutron star matter within an effective

chiral SU(3)L × SU(3)R model. The predictions of this model are compared

with a Walecka-type model. It is demonstrated that the importance of hy-

peron degrees are strongly depending on the interaction used, even if the

equation of state near saturation density is nearly the same in both models.

While the Walecka-type model predicts a strange star core with strangeness

fraction fS ≈ 4/3, the chiral model allows only for fS ≈ 1/3 and predicts that

Σ0, Σ+ and Ξ0 will not exist in star, in contrast to the Walecka-type model.
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The internal constitution and properties of neutron stars chiefly depend on the nature
of strong interactions. The accepted underlying theory of strong interactions, QCD, is
however not solvable in the nonperturbative regime. So far numerical solutions of QCD
on a finite space-time lattice are unable to describe finite nuclei or infinite nuclear matter
[1]. As an alternative approach several effective models of hadronic interactions have been
proposed [2–4]. Especially the Walecka model (QHD) and its nonlinear extensions have
been quite successful and widely used for the description of hadronic matter and finite
nuclei. These models are relativistic quantum field theories of baryons and mesons, but
they do not consider essential features of QCD, like approximate SU(3)R × SU(3)L chiral
symmetry or broken scale invariance. The Nambu–Jona-Lasinio (NJL) model [5,6] is an
effective theory which has these features of QCD implemented but it lacks confinement and
thereby fails to describe finite nuclei and nuclear matter. The chiral SU(3) models, for
example the linear SU(3)-σ model [7] have been quite successful in modeling meson-meson
interactions. The K −N scattering data has been well reproduced using the chiral effective
SU(3) Lagrangian [8,9]. However, all these chiral models lack the feature of including the
nucleon-nucleon interaction on the same chiral SU(3) basis and therefore do not provide a
consistent extrapolation to moderate and high densities relevant to the interior of a neutron
star.

This has lead us to construct a QCD-motivated chiral SU(3)L × SU(3)R model as an
effective theory of strong interactions, which implements the main features of QCD. The
model has been found to describe reasonably well, the hadronic masses of the various SU(3)
multiplets, finite nuclei, hypernuclei and excited nuclear matter [10,11]. The basic assump-
tions in the present chiral model are: (i) The Lagrangian is constructed with respect to the
nonlinear realization of chiral SU(3)L × SU(3)R symmetry; (ii) The masses of the heavy
baryons and mesons are generated by spontaneous symmetry breaking; (iii) The masses of
the pseudoscalar mesons are generated by explicit symmetry breaking, since they are the
Goldstone bosons of the model; (iv) A QCD-motivated field χ enters, which describes the
gluon condensate (dilaton field) [12]; (v) Baryons and mesons are grouped according to their
quark structure.

In this letter we investigate the composition and structure of neutron star matter with
hyperons in this chirally invariant model. The total Lagrangian of the chiral SU(3)L ×
SU(3)R model for neutron star matter can be written in the mean-field approximation as
(for details see Ref. [11])

L = Lkin + LBM + LBV + Lvec + L0 + LSB + Llep , (1)

where
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LSB = −
(
χ

χ0

)2 [
m2

πfπσ + (
√

2m2
KfK − 1√

2
m2

πfπ)ζ

]
,

Llep =
∑

l=e,µ

ψl[iγµ∂
µ −ml]ψl . (2)

Here Lkin is the kinetic energy term of the baryons and the scalar (σ, ζ) and vector (ω, φ, ρ)
mesons. The interaction Lagrangian of the different baryons with the various spin-0 and
spin-1 mesons are LBM and LBV, respectively. The sum over i extends over all the charge
states of the baryon octet (p, n,Λ,Σ−,Σ0,Σ+,Ξ−,Ξ0). Lvec generates the masses of the
spin-1 mesons through the interactions with spin-0 mesons, and L0 gives the meson-meson
interaction term which induce the spontaneous breaking of chiral symmetry. A salient
feature of the model, the dilaton field χ, which can be identified with the gluon condensate,
is included. It accounts for the broken scale invariance of QCD at tree level through the
logarithmic potential. LSB introduces an explicit symmetry breaking of the U(1)A, the
SU(3)V , and the chiral symmetry. The last term Llep represents the free lepton Lagrangian.
The effective masses of the baryons in the nonlinear realization of chiral symmetry are given
by [11]

m∗
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3
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O8(4αOS − 1)(
√

2ζ − σ)

m∗
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3
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√

2ζ − σ) , (3)

with m0 = gS
O1(

√
2σ + ζ)/

√
3, in the usual notation [11]. The parameters gS

O1, g
S
O8 and αOS

are used to fit the vacuum baryon masses to their experimental values. The thermodynamic
potential of the grand canonical ensemble per unit volume at zero temperature for the
neutron star matter can be written as

Ω/V = −Lvec − L0 − LSB − Vvac −
∑

i

γi

(2π)3

∫
d3k [E∗

i (k) − µ∗

i ] −
1

3

∑

l

1

π2

∫
dk k4

√
k2 +m2

l

.

(4)

In Eq. (4) the vacuum energy Vvac has been subtracted. For a given baryon species i, the
single particle energy and chemical potential are respectively,

E∗

i (k) =
√
k2

i +m∗2
i ,

µi = biµn − qiµe = µ∗

i + giωω0 + giφφ0 + giρI3iρ0 , (5)

with µ∗

i ≡ E∗

i (k = kFi
); bi and qi are the baryon number and charge of the ith species. The

energy density and pressure follows from the Gibbs-Duhem relation, ε = Ω/V +
∑

k=i,l µkρk

and P = −Ω/V . At a given baryon density ρB, the field equations as obtained by extremizing
Ω/V are solved self-consistently in conjunction with the charge neutrality and β-equilibrium
conditions.
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The parameters of the chirally invariant potential, k0 and k2, are used to ensure an
extremum in the vacuum, while k3 is constrained by the η′ mass, and k1 is varied to give
mσ = 500 MeV. The vacuum expectation value of the fields σ and ζ are constrained by
the pion and kaon decay constants, σ0 = fπ and ζ0 = −(2fK − fπ)/

√
2. The parameters

gNω and χ0 are used to fit the binding energy of nuclear matter B/A = ε/ρB − mN =
−16 MeV at the saturation density ρ0 = 0.15 fm−3. In the present calculation we have
employed the parameter set C1 of Ref. [11]. The predicted values of effective nucleon mass,
incompressibility, and symmetry energy at the saturation density are m∗

N/mN = 0.61, K =
276 MeV, and asym = 40.4 MeV. The remaining couplings to the strange baryons are then
determined by the additive quark model constraints:

gΛω = gΣω = 2gΞω =
2

3
gNω = 2gV

O8; gΛφ = gΣφ =
gΞφ

2
=

√
2

3
gNω . (6)

Figure 1 shows the energy per baryon as a function of baryonic density ρB for varying
neutron-proton asymmetries, δ = (ρn − ρp)/ρB, calculated in the chiral model. The curve
δ = 0 describes infinite symmetric nuclear matter with a minimum at ρ0. With increasing
asymmetry, (δ > 0) the binding energy decreases and the saturation density is shifted to
lower values. The binding in nuclear matter for small values of δ stems from the isospin
symmetric nuclear forces. At asymmetries δ ≥ 0.84 (i.e. a neutron to proton ratio > 11),
the system starts to become unbound even at the low density regimes. The stiffest equation
of state (EOS) is obtained for pure neutron matter with δ = 1. Due to the β-equilibrium
conditions, the EOS for neutron star matter (labeled NS) composed of neutrons, protons and
electrons (npe) is softer as compared to pure neutron matter. The gravitational attraction
provides the necessary binding of neutron stars. The present results from the chiral model
corroborate those obtained in Walecka-like models [13,14] and in the relativistic Brueckner-
Hartree-Fock calculations [15].

Let us now discuss the inclusion of hyperons. With the choice of the parameter set dis-
cussed above, the chiral model is found to produce unrealistically large hyperon potential
depths in nuclear matter in comparison to the experimental values of UN

Λ,Ξ ≈ −28 MeV for
the Λ and Ξ particle. Parameter sets that reproduce reasonable values of UN

Λ,Ξ are, how-
ever, found to yield unsatisfactory nuclear properties [11]. Fortunately, explicit symmetry
breaking can be introduced in the nonlinear realization without affecting, e.g., the partially
conserved axial-vector currents relations. This allows for the inclusion of additional terms
for the hyperon-scalar meson coupling [11]:

Lhyp = m3Tr
(
ψψ + ψ [ψ, S]

)
Tr (X −X0) , (7)

where X represents a scalar and Sa
b = −[

√
3(λ8)

a
b − δa

b ]/3 with λ’s are the usual Gell-Mann
matrices. In the mean field approximation this leads to the following additional mass term

m̃∗

i = m∗

i + a m3

[√
2(δ − δ0) + (ζ − ζ0)

]
, (8)

where m∗

i is given by Eq. (3). With a = ns, where ns is the number of strange quarks in
the baryon, and, with the parameter m3 adjusted to UN

Λ = −28 MeV, the other hyperon
potentials obtained are UN

Σ = +3.2 MeV, and UN
Ξ ∼ +30 MeV. Since the potential of Ξ in

ground state nuclear matter is still not satisfactory, we have used a = 1 as an alternative
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parametrization. For UN
Λ = −28 MeV, one obtains now UN

Σ = +3.2 MeV, and UN
Ξ = −42

MeV. We are well aware that our choice of the parametrization of the hyperon potentials
is not unique; the examination of different ways of generating the experimentally favored
values for UN

Σ and UN
Ξ is in progress and will be reported in a different context. Hereafter

we have employed a = 1 in our calculations.
Let us compare the results obtained in the chiral model with that of a Walecka-type

model. The latter model employed here has a cubic and quartic self-interaction for the σ
field, U(σ) = g2σ

3/3 + g3σ
4/4, introduced to get correct nuclear matter compressibility [3],

and a quartic self-interaction for the vector field ω, Lv = g4(ω
µωµ)

2. This modification
leads to a reasonable reproduction of the Dirac-Brueckner calculation [16]. We have used
the parameter set TM1 of Ref. [16] which gives a saturation density and binding energy
of ρ0 = 0.145 fm−3 and B/A = −16.3 MeV. It is to be noted that in the TM1 set, the
values of m∗

N/mN = 0.63, K = 281 MeV, and asym = 36.9 MeV which primarily influence
the bulk properties of neutron star matter are nearly identical to those in the chiral model.
The hyperon couplings σ-Y are obtained from a depth of UN

Y = −28 MeV, while the ω-Y
couplings are obtained from SU(6) symmetry relations (6). Two additional strange mesons,
ζ and φ, are introduced which couple only to the hyperons. The ζ-Y couplings are fixed by
the condition UΞ

Ξ ≈ 2UΛ
Λ ≈ −40 MeV [17,18].

Figure 2 shows the particle fractions versus the baryonic density in β-equilibrated matter
in the chiral model (top panel) and the Walecka-type model, TM1 (bottom panel). With
increasing density, it is energetically favorable for nucleons at the top of the Fermi sea to
convert into other baryons. Note that the sequence of appearance of the hyperon species is
the same in both models. The first strange particle to appear is the Σ−, since its somewhat
higher mass (as compared to the Λ) is compensated by the electro-chemical potential in the
chemical equilibrium condition (5). Because of its negative charge, charge neutrality can
be achieved more economically which causes a drop in the lepton fraction. More massive
and positively charged particles than these appear at higher densities. These are in fact
generic features found in neutron star calculations with hyperons [13,14,19,20]. Because of
the equilibrium condition (5), the threshold densities of the different hyperon species are,
however, strongly dependent on the magnitude of the scalar and vector fields at a given
density and their interactions with the baryons. The nucleon-nucleon interaction which
determines the variation of neutron chemical potential with density also determines the
threshold. The relatively smaller attractive scalar fields and thereby larger effective mass
of all the baryons cause a significant shift of the density at which the hyperons (Σ0,Σ+,Ξ0)
appear in the chiral model calculation. This enhances the saturation values of both the
neutron and proton fractions (at a level of ∼ 30%) in the chiral model. Consequently, the
cores of massive stars in the TM1 model (and also in other Walecka-type models [18]) are
in general predicted to be very (> 50%) hyperon-rich. The chiral model, on the other hand,
predicts neutron stars with considerable smaller hyperon fractions in the core.

The composition of the star is crucial for neutrino and antineutrino emission which can be
responsible for the rapid cooling of neutron stars via the URCA process. It was demonstrated
[21] that for a npe system rapid cooling by nucleon direct URCA process is allowed when
the momentum conservation condition kFp

+ kFe
≥ kFn

, corresponding to a proton fraction
Yp ≥ 0.11, is satisfied. The magnitude of Yp at a given ρB, in turn, is determined mainly
by the symmetry energy, which is nearly identical in the two models. Therefore, in both
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models this condition is satisfied at densities ρB
>∼ 2.2ρ0 thus, rapid cooling by direct URCA

process can occur.
The most profound implication of the constitution of neutron star matter on its bulk

properties are manifested in the equation of state (EOS). The pressure P versus the energy
density ε is displayed in Fig. 3 for neutron star matter in the chiral (thick lines) and TM1
(thin lines) model. For npe stars (solid lines), although the incompressibility K and the
effective nucleon mass m∗

N at the normal nuclear matter density are similar in the two
models, the EOS at large densities is found to be considerably softer for the chiral model as
compared to the EOS for TM1. In the latter model, the m∗

N rapidly decreases with density,
consequently the EOS passes quickly to one that is dominated by the repulsive vector mesons
(ω and ρ) leading to a stiffer EOS. This has a strong bearing on the mass and radius of such
stars discussed below. The structure of static neutron stars can be determined by solving
the Tolman-Oppenheimer-Volkoff equations [22]. We use the results of Baym, Pethick and
Sutherland [23] to describe the crust consisting of leptons and nuclei at the low-density
(ρB < 0.001 fm−3) EOS. For the mid-density regime (0.001 < ρB < 0.08 fm−3) the results
of Negele and Vautherin [24] are employed. Above this density, the EOS for the relativistic
models have been adopted. The masses M of the nonrotating neutron star sequence is shown
in Fig. 4 as a function of central energy density εc in the two models. The corresponding
mass-radius relationship is presented in Fig. 5. It is observed that the stiffer EOS for a
npe star in the TM1 model can support a larger maximum mass of Mmax = 2.16M⊙ with
a corresponding radius of RMmax

= 11.98 km at a central baryonic density of ρc = 6.08ρ0.
The corresponding values obtained in the chiral model are Mmax = 1.84M⊙, RMmax

= 11.10
km, and ρc = 6.98ρ0. The large difference in the Mmax values obtained in the two models,
with nearly identical K and m∗

N values at ρ0, clearly demonstrates that measurements
of maximum masses of neutron (npe) stars at high densities cannot be used to constrain
the incompressibility and the effective nucleon mass around the nuclear matter densities.
Constraints on K and m∗

N from radius measurements of massive stars will be even more
uncertain, since about 40% of these stars’ radius originates from the low density EOS. In
fact, no precise radius measurements currently exist.

When the hyperon degrees of freedom are included, the EOS (represented by dash-
dotted lines in Fig. 3) for both the models are appreciably softer as compared to npe
stars. This is caused by the opening of the hyperon degrees of freedom which relieves some
of the Fermi pressure of the nucleons. Also the decrease of the pressure exerted by the
leptons (they are replaced by negatively charged hyperons to maintain charge neutrality)
contributes to softening of the EOS. Since the threshold density for the appearance of the
hyperons, especially (Σ0,Σ+,Ξ0) (see Fig. 2), are smaller in TM1 model, these stars contain
more baryon species. This leads to an enhanced softening as compared to that in the
chiral model. In fact, both models with hyperons predict quite similar values of pressure at
moderate and high densities; the structures observed in the EOS (Fig. 3) correspond to the
population of different hyperon species. These should reflect both in the masses and radii
of the stars. The maximum masses and corresponding radii of stars with hyperons in the
two models are almost identical with Mmax = 1.52M⊙, RMmax

= 11.64 km, and ρc = 5.92ρ0

in the chiral model, while in the TM1 model, Mmax = 1.55M⊙, RMmax
= 12.14 km, and

ρc = 5.97ρ0. The magnitude of the central densities indicates that the hyperons (Σ0,Σ+,Ξ0)
are entirely precluded in stars for the chiral model whereas all hyperon species appear with

6



comparable abundances in the TM1 model for the maximum-mass star. The strangeness
fraction, fS =

∑
i |Si|ρi/ρB, are vastly different at the center of the maximum-mass stars:

0.33 vs. 0.75 in the chiral and in the TM1 model, respectively. Thus, models with similar
nuclear matter incompressibilities and effective nucleon masses, leading to similar maximum
star masses and corresponding similar radii can however have a widely different baryonic
constitution!

For progressively smaller central densities, the masses of the stars with hyperons are
larger in the TM1 model (see Fig. 4), although the pressure at a given density is smaller
than in the chiral model. This is because the masses of stars are determined by the overall
EOS, and the TM1 model possess a distinctively stiffer EOS at moderate densities (see Fig.
3). The radii of these small mass hyperon-rich stars are quite distinct in these two models
(see Fig. 5), because the radius of the stars depend most sensitively on the low density
behavior of the EOS. In both models, stars of mass 1.44M⊙ (corresponding to the lower
limit imposed by the larger mass of the binary pulsar PSR 1913+16 [25]) also contain many
hyperon species with sizeable concentration.

In conclusion, we have investigated the composition and structure of neutron star matter
in a novel chiral SU(3) model, and compared its predictions with that of a Walecka-type
model based on different underlying assumptions. The two models with nearly identical val-
ues of effective nucleon mass, incompressibility, and symmetry energy at the normal nuclear
density yield widely different maximum neutron star masses and radii. When the hyperon
degrees of freedom are included, the maximum masses and the corresponding radii in the two
models are found to be rather similar. However, softness of the nucleonic contribution in the
chiral model precludes the hyperons Σ0,Σ+,Ξ0 leading to much smaller hyperon abundances
in these stars.
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FIG. 1. The binding energy per nucleon B/A versus the baryonic density ρB/ρ0 for different

values of neutron-proton asymmetries δ = (ρn − ρp)/ρB in the chiral model. The normal nuclear

matter density is ρ0 = 0.15 fm−3. The curve labeled NS describes a neutron star matter consisting

of nucleons and electrons.
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FIG. 2. The composition of neutron star matter with hyperons in the chiral (top panel) and in

the TM1 (bottom panel) model. The normal nuclear matter density is ρ0 = 0.15 and 0.145 fm−3

in the chiral and TM1 model.
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npe Y
npe

FIG. 3. The equation of state, i.e. the pressure P , versus the energy density ε. The results are

for npe stars (solid lines), and for stars with further inclusion of hyperons and muons (dash-dotted

lines). The calculations are in the chiral model (thick lines) and in the TM1 model (thin lines).
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npe Y
npe

FIG. 4. The mass as a function of central energy density εc/ε0 for npe stars and for stars with

further inclusion of hyperons and muons in the chiral and TM1 models. The chiral model results are

represented by thick lines, and the TM1 results are given by the thin lines. The circles correspond

to the respective maximum masses. The central energy density at normal nuclear matter value is

ε0 = 142.9 and 137.0 MeV/fm3 in the chiral and in the TM1 model, respectively.
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npe Y
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FIG. 5. The mass as a function of radius for neutron stars consisting of npe and for stars with

further inclusion of hyperons and muons in the chiral and TM1 model. The symbols have the same

meaning as in Fig. 4.
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