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Abstract 
 
A new predictive modelling technique called the fuzzy envelope model (FEM) is introduced. The technique 
can be used to predict potential distributions of organisms using presence-only locality records and a set of 
environmental predictor variables. FEM uses fuzzy logic to classify a set of predictor variable maps based on 
the values associated with presence records and combines the results to produce a potential distribution map 
for a target species. This technique represents several refinements of the envelope approach used in the 
BIOCLIM modelling package. These refinements are related to the way in which FEMs deal with uncertainty, 
the way in which this uncertainty is represented in the resultant potential distribution maps, and the way that 
these maps can be interpreted and applied. To illustrate its potential use in biogeographical studies, FEM was 
applied to predicting the potential distribution of three invasive alien plant species (Lantana camara L., 
Ricinus communis L. and Solanum mauritianum Scop.), and three native cicada species (Capicada decora 
Germar, Platypleura deusta Thun. and P. capensis L.) in South Africa, Lesotho and Swaziland. These models 
were quantitatively compared with models produced by means of the algorithm used in the BIOCLIM 
modelling package, which is referred to as a crisp envelope model (the CEM design). The average 
performance of models of the FEM design was consistently higher than those of the CEM design. There were 
significant differences in model performance among species but there was no significant interaction between 
model design and species. The average maximum kappa value ranged from 0.70 to 0.90 for FEM design and 
from 0.57 to 0.89 for the CEM design, which can be described as 'good' to 'excellent' using published ranges 
of agreement for the kappa statistic. This technique can be used to predict species' potential distributions that 
could be used for identifying regions at risk from invasion by alien species. These predictions could also be 
used in conservation planning in the case of native species. 

 
Introduction 
 
Biogeographical distribution models have been applied to a number of biological problems, and numerous 
examples can be found in recent reviews (Franklin, 1995; Guisan & Zimmermann, 2000). Most of these 
models can be classified as correlative, as they rely on strong, often indirect links between species 
distribution records and environmental predictor variables to make predictions (Beerling et al, 1995). 
Correlative models are an alternative to more complex mechanistic models that attempt to simulate the 
mechanisms considered to underlie the observed correlations with environmental attributes (Beerling et al, 
1995; Robertson et al ., 2003).  
 
Correlative distribution models can be divided into two groups based on the input data used to build them. 
Models that use both presence and absence locality records have been termed group discrimination 
techniques and those that use only presence locality records have been termed profile techniques (Caithness, 
1995).  
 
Presence/absence data are typically obtained by means of systematic field surveys (Margules & Austin, 1994; 
Austin, 1998) that are usually expensive and time consuming to conduct (Austin, 1998). As a result, 
presence-only data (obtained from museum or herbarium collections) are often used instead, despite their 
limitations (Funk & Richardson, 2002; Loiselle et al, 2003).  
 
When presence-only data are used to make predictions, one can either use a profile technique or a group 
discrimination technique that relies on artificially generated pseudo-absence data (e.g. Lehmann et al, 2002; 
Zaniewski et al ., 2002).  
 
A number of profile techniques have been described, examples include the algorithms used in BIOCLIM (Nix, 
1986; Busby, 1991), DOMAIN (Carpenter et al ., 1993), those based on Principal Components Analysis ( 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by South East Academic Libraries System (SEALS)

https://core.ac.uk/display/145031056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Jones & Gladkov, 1999; Erasmus et al ., 2000; Robertson et al ., 2001) and factor analysis (Hirzel et al . 
2002).  
 
A number of group discrimination techniques have been described (reviewed by Guisan & Zimmermann, 
2000). Currently, the most popular of these appear to be Generalized Linear Models (GLM; Austin et al, 1984; 
McCullagh & Nelder, 1989; Austin et al ., 1990; Austin et al ., 1994; Ferrier & Watson, 1997; Guisan et al ., 
1998; Pearce & Ferrier, 2000) and Generalized Additive Models (GAM; Austin & Meyers, 1996; Ferrier & 
Watson, 1997; Hastie & Tibshirani, 1999; Leathwick & Whitehead, 2001).  
 
An important question is whether one should use only presence data in a profile technique or make use of 
presence and artificially generated pseudo-absence data in a group discrimination technique. Although 
comparisons among techniques using these approaches have been undertaken (Ferrier & Watson, 1997; 
Loiselle et al, 2003) further work is needed to resolve this. An important finding is that certain techniques tend 
to make more conservative predictions than others (Loiselle et al, 2003) and thus contain fewer false positive 
prediction errors. An important factor in choosing among models is likely to be the cost of false negative vs. 
false positive errors in the predictions and on how the model’s predictions are to be applied (Fielding & Bell, 
1997; Loiselle et al, 2003). For example, in conservation planning, the cost of making a false positive 
prediction may be more costly than making a false negative prediction. It can be argued that when species 
range predictions are used for conservation area selection (e.g. Loiselle et al, 2003), it is better to have a 
conservative prediction (few false positives), which will ensure that the site selected to protect the species is 
suitable for that species rather than to select a site that is unsuitable. In contrast, when models are used to 
identify regions at risk from invasion by alien organisms, false negatives may be considered to be more 
costly. This is because sites with a high risk will be assigned low priorities, with the result that the species 
may invade the area and only be detected when it is well established.  
 
In this paper we describe a simple profile technique (the fuzzy envelope model; FEM) that represents an 
alternative to using a group discrimination technique with pseudo-absence data.  
 
Distribution modelling techniques have a conceptual base in Hutchinson’s niche model (Schoener, 1990). 
Hutchinson’s niche model consists of an abstract space defined by a set of axes, each of which represents a 
resource or condition of importance to the organism (Schoener, 1990). On each there will be a range of 
values within which the organism can survive. This space can be generalized mathematically to include as 
many axes as necessary to completely characterize the species’ needs, resulting in an n-dimensional 
hyperspace that is termed the fundamental niche (Schoener, 1990). Few organisms occupy the whole of their 
fundamental niche because they may be excluded from parts of it by competition or predation (Begon et al, 
1990). The reduced hyper volume in which the organism can survive is termed its realized niche (Begon et al,  
1990; Schoener, 1990). The species environment relationship that forms the basis of correlative models is 
derived from a set of distribution records that are drawn from the target organism’s realized niche (Austin, 
2002).  
 
The simplest of the profile techniques and some of the earliest models (Chicoine et al, 1985) are range-based 
models that are referred to as envelope models. These models are constructed as follows. A set of 
distribution records is used to derive values from each of a set of predictor variable maps (corresponding with 
each of the axes in Hutchinson’s model). For each predictor variable, the minimum and maximum value is 
calculated from the values associated with the distribution records. Next, each predictor variable map is 
reclassified (using the minimum and maximum values) to produce a Boolean map, indicating regions of 
predicted presence (coded 1) and absence (coded 0) of the target organism. It is assumed that the minimum 
and maximum values (obtained from the training set) of each variable represent the climatic limits of the 
target organism (however, this may not be true for alien organisms that have not yet occupied all suitable 
sites). These maps are then superimposed using the Boolean AND function (Burrough, 1989), which is 
achieved by multiplying the Boolean maps (Hill & Binford, 2002). If the organism can survive somewhere in 
the map area, there will be a region where all of the ‘survival ranges’ overlap. In areas where not all 
conditions are satisfactory, the organism should be absent (Chicoine et al, 1985). The output consists of a 
binary potential distribution map indicating regions of predicted presence and absence. For the sake of clarity 
we refer to this approach as a simple envelope model (SEM).  
 
A minor modification of the SEM has been implemented in a generic modelling package known as BIOCLIM 
(renamed ANUCLIM), which uses an envelope approach for predicting potential distributions of species (Nix, 
1986; Busby, 1991). BIOCLIM has been used extensively to predict the potential distributions of various target 
organisms. It has been used to predict the potential distribution of various invasive plant species (Panetta & 



Mitchell, 1991a,b; Sindel & Michael, 1992), various snakes (Nix, 1986), kangaroos (Skidmore et al ., 1996), 
gliders (Jackson & Claridge, 1999), the helmeted honeyeater (Pearce & Lindenmayer, 1998), the golden-
tipped bat (Walton et al, 1992), Leadbeater’s possum (Lindenmayer et al, 1991).  
In BIOCLIM, the distribution of a target organism is predicted by characterizing the organism’s tolerances in 
relation to a number of climatic parameters to produce a ‘climate profile’ for that organism (Busby, 1991). The 
parameters (predictor variables) are considered to provide a broad characterization of annual variations in 
temperature and levels of moisture availability (Nix, 1986). BIOCLIM predicts ‘core’ and ‘marginal’ 
environments for the organism under consideration, based on selected threshold values. Nix (1986) defined 
core environments as those values falling between the 5th and 95th percentile of each of the predictor 
variables, and marginal environments as those that fall outside of the core range but within the upper and 
lower limits of the variables, for the species. Core and marginal environments can be estimated using other 
reasonable values, e.g. Lindenmayer et al, (1991) used the 10th and 90th percentiles to define the core 
range. Nix (1986) points out that these thresholds are arbitrary. The output of BIOCLIM is a distribution map 
indicating regions of predicted presence (in terms of core and marginal habitat) and regions of predicted 
absence. Each of these regions is defined by classifying each of the localities in the map region into one of 
three Boolean or crisp sets (core, marginal or absent) based on the data in the training set. We refer to 
techniques that use this approach as crisp envelope models (CEM).   
 
 
Fuzzy envelope model  
 
The FEM represents a refinement of the CEM, which incorporates the notion that within a particular survival 
range, some conditions are more favourable than others and that the differences are continuous. This 
refinement uses a technique known as fuzzy classification, which is based on fuzzy set theory (Zadeh, 1965). 
Hill & Binford (2002) give a good introduction to fuzzy sets in the context of habitat models.  
 
The use of fuzzy classification for potential distribution modelling has been investigated (Fairbanks & McKelly, 
1994; Fairbanks, 1994), although it appears not to have seen much use in this field of biology (Chapman et al, 
1994; Hill & Binford, 2002). Fuzzy classification has been used in soil science applications (Burrough, 1989; 
Lark & Bolam, 1997) and in remote sensing image classification techniques (Eastman, 1999).  
 
Fuzzy classification is an approach that has its own algebra, which is an extension of Boolean algebra 
(Burrough, 1989). In classical mathematical set theory, an object either belongs to a particular set or not (Hill 
& Binford, 2002). These sets (classes) are typically characterized by a clearly defined value or criterion and 
are termed crisp sets (Lark & Bolam, 1997) or Boolean sets (Burrough, 1989). This type of classification 
assumes that all change between classes takes place at the class boundary and that very little significant 
change occurs within classes (Burrough, 1989), although this is often not the case with continuous data (Hill & 
Binford, 2002). In cases where a clearly defined criterion or value of class membership does not exist, fuzzy 
set theory can be used (Zadeh, 1965; Altman, 1994; Hill & Binford, 2002). A fuzzy set has a continuum of 
grades of membership, allowing for situations where clearly defined class membership values are absent. A 
fuzzy set is described by a fuzzy membership function, with values ranging from 0 to 1, corresponding with 
non-membership through to complete membership (Eastman, 1999). Fuzzy sets thus have continuous 
membership functions and for this reason the term ‘continuous classification’ is used by some authors instead 
of ‘fuzzy classification’ (Heuvelink & Burrough, 1993). Although fuzzy membership functions may appear to be 
similar to probability functions, these two concepts are quite different (Zadeh, 1965; Hill & Binford, 2002): 
fuzzy membership functions define possibility rather than probability (Zadeh, 1987).  
 
In practice, a set of distribution records is used to derive a set of values from each of the predictor variable 
maps to produce a training data set. Each predictor variable map is reclassified using an appropriate fuzzy 
membership function. The shape of the membership function can be defined by the data in the training set. 
These reclassified maps (fuzzy sets) are then superimposed using fuzzy algebra (Heuvelink & Burrough, 
1993) to produce a final map indicating the potential distribution of the target organism (a multivariate fuzzy 
set). The final potential distribution map contains a continuum of possibility values indicating conditions of 
varying suitability for the target organism. Localities with high possibility values are interpreted as 
representing more favourable conditions for the organism than those with low possibility values.  
 
The FEM technique is explored by predicting the distribution of three invasive alien plant species and three 
cicada species in South Africa, Lesotho and Swaziland. In addition, an established and popular predictive 
modelling technique, the CEM, is used to quantitatively compare the performance of the FEM technique.   
 



 
 
Methods 
 
The data  
 
The map region for this study included South Africa, Lesotho and Swaziland. Models were produced for three 
invasive alien plants, Lantana camara L, Ricinus communis L. and Solanum mauritianum Scop. and three 
cicada species Capicada decora Germar , Platypleura deusta Thun. and Platypleura capensis L. Alien plants 
were selected because they represent organisms for which absence data are usually not available or are 
unreliable, because they are of considerable economic and ecological importance and because we had some 
insight into the potential distribution of these species from previous work (Robertson et al ., 2001). Cicadas 
were selected because their datasets are representative of collections data, for which no absence data are 
available (Funk & Richardson, 2002). These species were selected because the datasets are quite small 
(each species is represented by fewer than 80 presence records), the species are endemic to the map region, 
and their distributions are moderately well understood.  
 
The plant presence records were obtained from the Southern African Plant Invaders Atlas (Henderson, 1998), 
from the National Botanical Institute’s PRECIS database, and by means of roadside surveys. Absence 
records were obtained by means of roadside surveys (Robertson et al, 2001) designed to sample major 
environmental gradients. The cicada presence records were obtained from the Albany Museum 
(Grahamstown), Durban Museum (Durban), National Museum of South Africa (Bloemfontein), National 
Collection of Insects (Pretoria), Natal Museum (Pietermaritzburg), Natural History Museum (London), 
Museum für Naturkunde (Berlin), Transvaal Museum (Pretoria), Rhodes University (Grahamstown), Pretoria 
University (Pretoria), and the private collections of Isak Coetzer, Rudi Mijburgh, Renzo Perissinotto, Martin 
Villet, Richard Stephen, Tony Ewart and published records of Michelle Boulard. The cicada absence records 
were based on localities selected using the expert opinion of one of the authors (MHV). For all of the species, 
only those distribution records that were recorded to the nearest minute were used for the purposes of 
modelling (to be consistent with the spatial resolution of the predictor variable data, see below). The numbers 
of presence and absence records available for each species for model training and testing are listed in Table 
1. For each species, the set of presence records was partitioned randomly in a ratio of 3 : 1 training to testing 
data, and this was repeated five times to ensure that different combinations of records were available for 
model building and evaluation (Table 1). Localities representing the absence of these species were used for 
model evaluation but not for training (Table 1). There were thus five sets of data for model training (each set 
selected randomly from the available record set), consisting only of presence records. There were also five 
sets of data for evaluation, which consisted of presence and absence records.  
 
 
 
Table 1 The number of presence (Pres.) and absence (Abs.) localities used for model training (Train.) and 
model evaluation (Eval.) of CEM and FEM models. For both the CEM and FEM techniques only localities 
representing the presence of the target species are used to train the models   
 

 
 
 
 



 
Table 2 Predictor variables selected for building the distribution models 
 

 
 
 
 
 
Digital maps of environmental variables (nine climatic variables and altitude) developed by Schulze et al. 
(1997) were selected as predictor variables (Table 2). Each of the climatic predictor variables was 
interpolated from point data obtained from a network of weather recording stations distributed throughout 
South Africa, to produce continuous digital maps at a one-minute spatial resolution (Schulze et al, 1997). The 
values of the 10 predictor variables (Table 2) associated with the training localities are referred to as the 
training data set.  
 
 
Implementation  
 
The crisp envelope model  
 
The CEM algorithm was implemented in MATLAB (MATLAB, 2000) and the distribution maps were visualized 
in IDRISI32 (Eastman, 1999). Distribution maps containing regions indicating the core and marginal ranges 
for each species were produced. For a given species the following procedure was undertaken. Firstly, a map 
of the marginal range was produced. This map was generated by superimposing (by multiplication) a set of 
Boolean maps (one for each predictor variable). Each Boolean map was produced as follows. Each grid cell 
in the predictor variable map was evaluated and if its value fell within the range defined by the minimum and 
maximum value then it was assigned a value of one in the new Boolean map, otherwise it was assigned a 
value of zero. Next, a map of the core range was produced. This map was generated in the same way as the 
marginal range map except that the 10th and 90th percentiles were used to define the ranges for creating the 
Boolean maps from the predictor variable maps. Finally, the marginal and core range maps were 
superimposed (by addition) to produce a single map indicating the core and marginal range. We used the 
same approach described by Nix (1986) for BIOCLIM, except that we used different predictor variables.  
 
 
The fuzzy envelope model  
 
The design of the FEM was based on some of the concepts implemented in the fuzzy classification module of 
IDRISI32 (Eastman, 1999). The FEM program was written and implemented entirely in MATLAB. The FEM 
algorithm operates in the following way. For each predictor variable map, a fuzzily classified map is produced. 
These fuzzily classified maps are then superimposed using a minimum overlay function to produce the final 
fuzzy distribution map for the target organism. The minimum overlay function allows the individual fuzzy sets 
to be intersected to produce a multivariate set (Heuvelink & Burrough, 1993; Eastman, 1999; Hill & Binford, 
2002) representing the potential distribution of the organism. Both Boolean and fuzzy multivariate sets are 
defined by a joint membership function (JMF), which describes the combined effect of the individual 
membership functions (Heuvelink & Burrough, 1993). The value of the JMF is given by the minimum value of 
the individual membership functions (Heuvelink & Burrough, 1993) and thus a minimum overlay function is 
appropriate (Eastman, 1999; Hill & Binford, 2002).  
 



A fuzzy map is produced by assigning a value between zero and one to each grid cell in a predictor variable 
map using an appropriate fuzzy membership function. A number of forms of membership function could be 
used, such as linear, sigmoidal, j-shaped, or more complex non-monotonic shapes (Eastman, 1999). The 
FEM algorithm does not currently allow the data to directly define the shape of the membership function for 
each predictor variable, and this has to be specified by the user. Niche theory postulates that species’ 
responses to environmental variables will at least be curvilinear and a bell-shaped (Gaussian) distribution is 
often assumed (Austin & Smith, 1989; Begon et al ., 1990), although skewed responses are common (Austin, 
2002). A sigmoidal membership function was considered to be appropriate most often for approximating 
responses to environmental variables. The sigmoidal membership function can have symmetric, 
monotonically increasing or monotonically decreasing forms (Fig. 1; the equations defining these functions 
are listed in the Appendix).  
 
A symmetric function is used to approximate a bell-shaped distribution that is often assumed to underlie 
resource utilization axes (Austin & Smith, 1989; Begon et al ., 1990). The use of monotonically increasing or 
monotonically decreasing functions allows for skewed distributions, which are considered to be the most 
common type of response function (Austin, 2002). The selection of the appropriate form of membership 
function (symmetric, monotonically increasing or monotonically decreasing), is done by examining a 
frequency histogram of the training data for that predictor variable.  
 
The shape of the membership function is governed by four control points (Fig. 1), which are ordered from low 
to high on the measurement scale of the predictor variable axis. For the symmetric membership function, 
point ‘a’ marks the location where the membership function begins to rise above zero, point ‘b’ indicates 
where it reaches a value of one, point ‘c’ indicates the location where the membership grade begins to drop 
below one, and point ‘d’ marks the region where it again approaches zero (Fig. 1a). In the case of the 
monotonically increasing function, point ‘a’ indicates the location where the membership function rises above 
zero and all values on the measurement scale above point ‘b’ take a value of one. In the case of the 
monotonically decreasing function, all values below point ‘c’ on the measurement scale take on a value of 
one, while point ‘c’ indicates the location where the membership grade begins to drop below one.  
 
For the symmetric membership function, points ‘a’ and ‘d’ are defined by the minimum and maximum values, 
respectively, and points ‘b’ and ‘c’ are both defined by the median value from the training data set. When the 
monotonically increasing function is selected, all values greater than or equal to the median are assigned a 
value of one. When the monotonically decreasing function is selected, all values less than or equal to the 
median are assigned a value of one.   
 
 
 
 

 
 
Figure 1 Sigmoidal fuzzy membership functions: (a) a symmetric membership function; (b) a monotonically 
increasing membership function and (c) a monotonically decreasing membership function (from Eastman, 
1999). Control points are indicated by the letters a to d.   
 
 
 
 
 
 
 
 
 



Figure 2 provides a summary of the implementation of the FEM technique and describes the process used to 
partition records into sets for training and evaluation.  
 
 

 
Figure 2 Implementation of the fuzzy envelope model (FEM) indicating how the original set of locality records 
was partitioned into a training and a testing (evaluation) set. The components of the FEM appear in the box. 
The procedure shown in this figure describes how a single potential distribution prediction is made. This 
procedure was repeated five times for each species so that different combinations of presence records could 
be used for model training and evaluation.   
 
 
 
 
Model evaluation  
 
 
Most quantitative model performance tests are based on a confusion matrix in which the observed (actual) 
and predicted presence/absence patterns are cross-tabulated (Fielding & Bell, 1997). Various threshold-
dependent and threshold-independent accuracy measures can be calculated from the confusion matrix 
(reviewed by Fielding & Bell, 1997). Threshold-independent measures (e.g. ROC curves) are considered to 
be more robust and more objective than threshold-dependent measures (e.g. Kappa statistics) since they do 
not rely on a single threshold to distinguish between predicted presence and predicted absence (Fielding & 
Bell, 1997). However, threshold-independent accuracy measures could not be calculated for the CEM, since it 
does not produce a map of continuous values. As a result, the kappa statistic (a threshold-dependent 
measure) was calculated using those localities reserved for model evaluation (Table 1). In the case of the 
CEM design, the value of kappa was calculated at the threshold defined by the marginal range of the model. 
For FEM, kappa values were calculated at all thresholds between zero and one (instead of a single threshold) 
and the maximum value of kappa (κmax.) was selected as a measure of performance for the model. The 
threshold at which performance was highest was thus selected for each model, which can be regarded as an 



optimum threshold for evaluating predictions on an independent data set (Guisan & Zimmermann, 2000). The 
equation for calculating the kappa statistic (Fielding & Bell, 1997) is:   
 
 
 

 
 

where: 
 
 

a = the number of cases predicted present when actually present 
          b = the number of cases predicted present when actually absent 

                                    c = the number of cases predicted absent when actually present 
                                    d = the number of cases predicted absent when actually absent 
                                    N = a + b + c + d 

 
 
 
 
Results 
 
Results of a two-way ANOVA suggest that there was a significant difference in performance between models 
produced using the CEM and FEM designs (Table 3). The average performance of the FEM design was 
consistently higher than the CEM design. There were significant differences in model performance among 
species but no significant interaction between model design and species (Table 3).  
 
 
 
 
 
Table 3 Results of a two-way ANOVA. Model performance is the mean of five maximum kappa values (based 
on five replicates) for each species   
 

 
 
 
 
 
 
Potential distribution maps produced using the FEM and CEM techniques for all the species appear to 
correspond fairly well with localities used to build these models (Figs 3 and 4). This can be confirmed by the 
results of the quantitative tests of model performance. The average maximum kappa value ranged from 0.70 
to 0.90 for FEM design and from 0.57 to 0.89 for the CEM design, which can be described as ‘good’ to 
‘excellent’ using the ranges of agreement for the kappa statistic proposed by Monserud & Leemans (1992).   
 
There is a difference in the appearance of the distribution map produced by the FEM design compared with 
the CEM design. Distribution maps produced from the FEM design have a continuous grade of values (which 
have been reclassified into five classes for better display) while those produced from the CEM have only two 
categories, the core and marginal range (Figs 3 and 4).  
 
 



 
 
 
 
 

 
Figure 3 Potential distribution maps for three alien plant species generated using FEM and CEM predictive 
modelling techniques; a. Lantana camara FEM (κmax = 0.65, n = 322); Countries: Lesotho (L) and Swaziland 
(S); Provinces of South Africa: Limpopo (LP), Northwest (NW), Gauteng (G), Mpumalanga (MP), Northern 
Cape (NC), Free State (FS), KwaZulu-Natal (KN), Western Cape (WC) and Eastern Cape (EC);b. Lantana 
camara CEM (κmax = 0.65); c. Ricinus communis FEM (κmax = 0.87, n = 237); d. R. communis CEM (κmax = 
0.58); e. Solanum mauritianum FEM (κmax = 0.74, n = 324); f. S. mauritianum CEM (κmax = 0.74). The 
insets indicate the presence localities for each species. 



 
 

 
Figure 4 Potential distribution maps for three cicada species generated using FEM and CEM predictive 
modelling techniques; a. Platypleura capensis FEM (κmax = 0.94, n = 23); Countries: Lesotho (L) and 
Swaziland (S); Provinces of South Africa: Limpopo (LP), Northwest (NW), Gauteng (G), Mpumalanga (MP), 
Northern Cape (NC), Free State (FS), KwaZulu-Natal (KN), Western Cape (WC) and Eastern Cape (EC); 
b. P. capensis CEM (κmax = 0.88); c. Capicada decora FEM (κmax = 0.81, n = 27); d. C. decora CEM (κmax 
= 0.44); e. Platypleura deusta FEM (κmax = 0.82, n = 78); f. P. deusta CEM (κmax = 0.44). The insets 
Indicate the presence localities for each species. 
 
 
 



There was very good visual agreement between maps generated from the FEM and CEM designs for R. 
communis and S. mauritianum (Fig. 3). The maximum kappa value (κmax.) was the same for the CEM and 
FEM designs for S. mauritianum, but the FEM design had a higher κmax value than the CEM model for R. 
communis. There was less visual agreement between the FEM and CEM designs for L. camara and P. 
deusta, and a considerable difference for C. decora (Fig. 4). The FEM predicted the presence of L. camara 
along the western border of the Limpopo Province, while the CEM predicted it to be absent in this region. The 
κmax value was the same for the FEM design (0.65) as for the CEM design (0.65). The CEM design 
appeared to make a much more conservative prediction than the FEM design in the case of C. decora. The  
κmax value was higher for the FEM design (0.81) than the CEM design (0.62), indicating better performance. 
For P. deusta, the FEM design predicted the species as being present in the southern and western regions of 
Lesotho, the northern regions of the Eastern Cape and in parts of the south-eastern Free State, whereas it 
was predicted as being absent in these regions by the CEM design. Again, the κmax value was higher for the 
FEM design (0.82) than the CEM design (0.44), indicating much better performance. In general, the core 
ranges of the CEM maps corresponded fairly well with areas of high possibility (> 0.6) in the FEM maps.  
 
There was fairly good visual agreement between the distribution maps produced for L. camara, R. communis 
and S. mauritianum  using the FEM technique (Fig. 3) and models produced using an independent PCA-
based modelling technique (Robertson et al., 2001).   
 
 
Discussion 
 
 
Performance of FEMs  
 
Models of the FEM design performed on average significantly better than those produced using the CEM 
design. For the selected distribution maps examined (Figs 3 and 4) there was either no difference in 
performance between the FEM and CEM designs or the FEM design performed better than the CEM design 
for models produced for the same species (see individual κmax values). These results suggest that the FEM 
design is capable of performing as well or better than the CEM design. In addition, the average performance 
of models of both the FEM and CEM designs was ‘good’ to ‘excellent’ using the ranges of agreement for the 
kappa statistic proposed by Monserud & Leemans (1992).  
 
 
Design features of FEMs  
 
One of the most important features of the design of FEMs is that various fuzzy membership functions are 
used to construct a model for a target species. Different forms of the membership function (symmetrical, 
monotonically increasing or monotonically decreasing) may be appropriate for expressing the response of the 
target species to a particular predictor variable. For example, a species that is intolerant of frost (which occurs 
quite frequently during winter in the higher elevation areas of the map region) would survive at localities 
where no frost occurs or where there are very few days of frost per year, but it would not survive at localities 
with moderate to large numbers of frost days per year.  
 
A monotonically decreasing membership function would be appropriate to express this response. For this 
function, the possibility value is highest when the number of frost days is low (values less than the median) 
and decreases as the number of frost days increases (values greater than the median) to a minimum 
possibility value corresponding with the maximum value in the training set (d). A monotonically increasing 
membership function would be appropriate for expressing the response of a species that is associated with 
high altitudes. In this example, survivorship of the species increases with increasing altitude with no decrease 
in survivorship at very high altitudes. Plant species are found at the highest altitudes in the mountains of the 
map region; the highest point is 3515 m. For a monotonically increasing membership function, possibility 
values are lowest when the altitude is lowest (corresponding with the minimum value of the training set, a) 
increasing to a maximum at higher altitudes (corresponding with the median value of the training set, b).  
 
A similar example of the response of a species to increasing altitude can be used to illustrate the use of a 
symmetric membership function. In this example, survivorship of the species increases with increasing 
altitude up to some maximum threshold, beyond which survivorship would again decline at very high altitudes.  



A symmetric membership function would be appropriate to express this response as possibility values 
decrease for values larger than the median (c) to a minimum possibility value when the maximum training set 
value is reached (d).  
 
The higher average performance of the FEM models over the CEM models is largely due to the greater 
flexibility of function selection of the FEM models and that it is possible to select an optimal threshold for the 
FEM but not for the CEM. When all of the functions selected in the FEM are symmetric then the ranges of an 
FEM and CEM model built on the same data will coincide, e.g. Fig. 3e,f. It is possible for FEMs to predict 
wider species ranges than CEMs. This occurs when a monotonically increasing or monotonically decreasing 
membership function is selected in the FEM for the predictor variable that is most limiting to the target 
species, e.g. Figs 4c,d. The ability to vary the threshold allows the predicted range of a FEM model to be 
reduced or expanded. The higher the suitability value at which the threshold is selected, the greater is the 
reduction in the predicted range. A reduction in the predicted range results in a more conservative prediction.  
 
 
Fuzzy sets vs. crisp sets  
 
Fuzzy sets (used in FEM) rather than crisp sets (used in CEM) may be more appropriate for building envelope 
distribution models, for various reasons. A locality with attributes that place it close to the threshold between 
two crisp classes (e.g. the coremarginal threshold) could be assigned to either class depending on the values 
of the thresholds in the training set. Heuvelink & Burrough (1993) suggest that it is not sensible to use crisp 
sets to classify continuous variables (the predictor variables) because attributes with very similar values may 
be assigned to different classes which have very different meaning, e.g. core and marginal.  
 
It is often difficult or inappropriate to define attributes in terms of exact thresholds and when this is possible, 
there is often uncertainty as to the exact values of these thresholds (Heuvelink & Burrough, 1993; Hill & 
Binford, 2002). In such cases, fuzzy methods are appropriate because they are designed to handle this 
inexactness and uncertainty in a definable way (Burrough, 1989; Hill & Binford, 2002). In bioclimatic modelling 
this uncertainty arises because distribution models tend to predict the ‘average’ distribution of a species 
because climatic variables used as predictors are usually calculated using long-term means (Dent et al., 
1989; Schulze et al., 1997). The locality records used to predict the potential distribution of an organism are 
usually collected over a period of time (usually several years or seasons). Inter-annual species range 
expansion or contraction may occur due to such factors as resource fluctuations or disturbances mediated by 
certain events, e.g. El Niño climate shifts (Hayward, 1997). This is likely to alter the values of the thresholds 
defining the distribution in the training set, depending on the temporal period during which the locality records 
were collected. Uncertainty also arises due to measurement and interpolation errors in the predictor variables 
(Heuvelink & Burrough, 1993). There is thus some uncertainty as to the exact value of these thresholds and 
hence the spatial extent of the core and marginal ranges of the target organism. We suggest that fuzzy 
classes more realistically represent this ‘average’ potential distribution and the uncertainty associated with the 
data than crisply defined techniques do. In addition, error propagation through models is reduced when 
continuous classes (fuzzy classes) are used rather than crisply defined classes (Heuvelink & Burrough, 
1993).  
 
 
Advantages of a continuous output  
 
Through the use of fuzzy classification (fuzzy sets) a continuous output can be produced in the resultant 
distribution map. A continuous output allows one to calculate the kappa value for model evaluation at an 
optimal (e.g. where the kappa value is highest), rather than an arbitrary, threshold for that model. This is likely 
to be particularly important when comparing among model designs, species or sample sizes as it appears 
unlikely that a single arbitrary threshold has the same meaning among different model designs, species or 
sample sizes. It has been suggested that distribution maps produced from different modelling techniques 
(model designs) have different meanings (Zaniewski et al., 2002; Robertson et al, 2003).  
 
Once the optimal threshold has been calculated (using the maximum kappa value) then the continuous 
distribution map can be objectively reclassified into a categorical distribution map containing only two classes 
(e.g. present and absent), which is often useful for further analysis and interpretation (Guisan & Zimmermann, 
2000).  
 



A continuous representation of the predicted distribution can be used in the final distribution map produced by 
the model to indicate to the user that there is a level of uncertainty in the prediction. The interpretation of 
fuzzy potential distribution maps by managers is likely to be different from the interpretation of binary potential 
distribution maps or maps with crisply defined core and marginal ranges. Fuzzy maps more realistically 
display the uncertainty associated with the input data used to generate them.  
 
We suggest that the continuous output of the FEM design (and other techniques that produced continuous 
outputs) provides more scope for interpreting the predicted distribution of the target organism in terms of its 
biology than the output of the CEM design. Interpretation of the predicted distribution can be done in the 
following way. If one has data on the relative performance of the target species at a set of localities in the map 
region, such as density or fecundity, then the values in the model associated with those localities can be 
extracted. The relationship between the predicted values (extracted from the model) and the species 
performance measure can then be used to reclassify the continuous distribution map to produce a new map 
based on a feature of the biology of the target species. For example this approach was used to reclassify 
continuous maps of potential distribution predictions made for a number of biocontrol agents (insects) 
released in South Africa for the control of the invasive plant Lantana camara (Baars 2002). Data on the level 
of damage caused to the invader and the abundance of these agents at a number of localities were used as a 
measure of species performance for reclassifying the original continuous distribution maps into categorical 
maps to facilitate further analysis of the data. These data could also be used directly to define fuzzy 
membership functions, although this is not possible with the current version of the FEM. A further advantage 
of the FEM technique is that the individual fuzzily classified predictor variable maps that are used to produce 
the final distribution map can be examined and interpreted.  
 
It is possible to refine the CEM approach, that uses only two envelopes (the marginal and core range), so that 
a continuous or nearly continuous output can be produced. This can be done by producing several 
successive envelopes, e.g. defined by the 5th and 95th, 10th and 90th, 15th and 85th percentiles. This would 
be equivalent to producing a fuzzy model using a stepped symmetrical function for each predictor variable.  
 
 
Advantages and disadvantages of FEMs  
 
We suggest that the major advantage of the FEM is that it does not rely on artificially generated pseudo-
absence data. Alternative, more sophisticated, group discrimination techniques (such as GLM and GAM) 
require the use of pseudo-absence data in cases where only presence data are available (Lehmann et al., 
2002; Zaniewski et al, 2002; Loiselle et al, 2003). Both the quality of the pseudo-absence records and the 
sensitivity of these techniques to false absences will influence the accuracy of the predictions. The quality of 
the records will largely depend on how the records are derived. One approach is to use randomly selected 
points as pseudo-absence records (Ferrier & Watson, 1997). A more reliable approach is to use the presence 
of one species as evidence for the absence of the target species (e.g. Zaniewski et al, 2002; Loiselle et al., 
2003). This approach is only possible when a database of distribution records is available for a group of 
species in the same taxon (e.g. ferns, Zaniewski et al., 2002 or cotingid birds, Loiselle et al., 2003). A distinct 
advantage of GAMs is that the data directly define the shape of the response curves (Hastie & Tibshirani, 
1999), whereas these have to be selected in a somewhat subjective manner by the user in the FEM. In 
addition, the shape of the response curves in GAM can be more complex than those currently available for 
FEM. Species responses are often better fitted using complex, nonparametric responses (available in GAM) 
than by linear or quadratic parametric curves (Bio et al., 1998). The availability of only three possible functions 
within FEM could be viewed as a weakness.  
 
A criticism of BIOCLIM (which also holds for FEM) is that it does not account for interactions among predictor 
variables and each predictor variable axis is treated independently (Carpenter et al., 1993). Techniques that 
are based on multivariate statistics, for example, PCA (Erasmus et al., 2000; Robertson et al., 2001), GLM 
and GAM (Guisan & Zimmermann, 2000) take the multivariate structure of the data into consideration and 
may thus perform better. The CEM and FEM make the implicit assumption that all the predictor variables are 
equally important in predicting (or determining) the distribution of the target species. This is probably 
unrealistic and may lead to inaccuracies in predictions. In contrast, techniques such as GLM and GAM weight 
variables according to their importance and those that do not contribute significantly can be eliminated from 
the model.  
 
In cases where pseudo-absence records can be generated with confidence (and the dataset contains few 
errors), models built using GLM or GAM may perform better than FEM. However, in cases where few data 



points are available for a species, a simple approach such as FEM may be preferred to the data-driven 
approach used in GAM.  
 
 
The role of correlative models in biological invasions  
 
Recently, Hulme (2003) criticised the approaches that are currently utilized in monitoring and managing 
biological invasions by non-indigenous species. He raises some important points about mapping distributions 
and predicting species’ ranges that are relevant here. Hulme (2003) points out that the spatial resolution and 
extent of species occurrence maps largely determines how they are interpreted and how they can be used to 
address issues in invasion ecology. While fine resolution mapping is considered to be most informative and 
most realistic (compared with coarse resolution maps) it demands considerable resources. Repeated 
sampling of specific points across a large geographical area is suggested to be more useful in terms of 
monitoring and management of invasions than attempting to produce maps of complete cartographic 
coverage of a species (Hulme, 2003). In addition, these points should be placed so that they sample a range 
of different environmental conditions, preferably using the gradsect approach (Austin & Heyligers, 1991). This 
will ensure that distribution data used to produce range predictions adequately sample the environment. While 
this may be the best approach to take in the future, much of the currently available data (for invasive alien and 
native species) is presence-only data. The approach described in this paper (FEM) will enable the use of 
currently available data, however, the limitations should be taken into account when applying the predictions.  
 
Correlative distribution models assume that the species is in equilibrium with its environment (Austin, 2002; 
Hulme, 2003), however, this will not be true for species whose distributions are still expanding (many alien 
species). Hulme (2003) discusses the problems associated with predictions made for these species. 
Repeated sampling of specific points will help to distinguish those sites where the species is likely to be 
genuinely absent from those that are suitable but where the species has not yet invaded. For these species it 
will be necessary to iteratively refine distribution models as further data are gathered and as more insight is 
gained into the factors that are responsible for limiting their distributions. This will hopefully lead to models 
that incorporate factors that are more mechanistically important, leading to better predictions.  
 
Hulme (2003) suggests that a wider range of variables should be used, and that variables such as land use, 
human population density and geology may be important. These variables could be incorporated to increase 
the value of range predictions. For example, a land cover map (derived from satellite imagery, e.g. Fairbanks 
et al., 2000) could be incorporated to identify transformed habitats, which may represent regions in the 
landscape that are likely to be invaded first. A similar approach has been used in conservation planning, 
where a land cover map was used to identify regions with high potential for ensuring the persistence of 
biodiversity (Wessels et al., 2000).  
 
 
Conclusion 
 
The FEM is suited to predicting distributions of species for which absence data are either not available, or are 
unreliable. The advantages of FEM are that it is easy to implement, simple and it does not rely on pseudo-
absence data. Although criticisms can be levelled at the FEM, it appears to be useful and to produce 
reasonable results but it needs to be compared quantitatively with other competing techniques.  
 
FEMs appear to deliver credible results and they represent refinements to the CEM approach used in the 
BIOCLIM modelling package. These refinements are related to the way in which FEMs deal with uncertainty, 
the way in which this uncertainty is represented in the resultant potential distribution maps, and the way that 
these maps can be interpreted and applied.  
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Appendix  
 
The following equations describe the monotonically increasing and monotonically decreasing sigmoidal 
membership functions, from which the symmetric membership function is comprised. These equations are 
identical to those used in the fuzzy classification module in IDRISI32 (Eastman, 1999).   
 
The monotonically increasing function: 
 

 


