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Abstract 
Models used to predict species’ potential distributions have been described as either 
correlative or mechanistic. We attempted to determine whether correlative models could 
perform as well as mechanistic models for predicting species potential distributions, 
using a case study. We compared potential distribution predictions made for a coastal 
dune plant (Scaevola plumieri) along the coast of South Africa, using a mechanistic 
model based on summer water balance (SWB), and two correlative models (a profile and 
a group discrimination technique). The profile technique was based on principal 
components analysis (PCA) and the group-discrimination technique was based on 
multiple logistic regression (LR). Kappa (κ) statistics were used to objectively assess 
model performance and model agreement. Model performance was calculated by 
measuring the levels of agreement (using κ) between a set of testing localities 
(distribution records not used for model building) and each of the model predictions. 
Using published interpretive guidelines for the kappa statistic, model performance was 
“excellent” for the SWB model (κ=0.852), perfect for the LR model (κ=1.000), and “very 
good” for the PCA model (κ=0.721). Model agreement was calculated by measuring the 
level of agreement between the mechanistic model and the two correlative models. There 
was “good” model agreement between the SWB and PCA models (κ=0.679) and “very 
good” agreement between the SWB and LR models (κ=0.786). The results suggest that 
correlative models can perform as well as or better than simple mechanistic models. The 
predictions generated from these three modelling designs are likely to generate different 
insights into the potential distribution and biology of the target organism and may be 
appropriate in different situations. The choice of model is likely to be influenced by the 
aims of the study, the biology of the target organism, the level of knowledge the target 
organism’s biology, and data quality.  
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1. Introduction 
Models for predicting species’ potential distributions have been used in many fields of 
biology. Franklin (1995) and Guisan and Zimmermann (2000) have reviewed a number 
of these models and give examples of their application. A current question is which 
models perform best, given particular circumstances ( Guisan and Zimmermann, 2000; 
Hirzel et al., 2001 and Zaniewski et al., 2002). We make use of a new opportunity to 
address this question empirically. We refer here to those models that make potential 
distribution predictions for a single taxon, rather than models used for predictive 
vegetation mapping, some of which are reviewed by Franklin (1995).  

Predictive modelling techniques have been described as static or dynamic models 
(Beerling et al., 1995). Static models provide time-independent equilibrium predictions 
while dynamic models predict time-dependent dynamic responses to a changing 
environment ( Beerling et al., 1995). Both types of model have in turn been divided into 
two groups, namely correlative and mechanistic techniques (Beerling et al., 1995). 
Correlative models rely on strong, often indirect, links between species distribution 
records and environmental predictor variables to make predictions ( Beerling et al., 
1995). These models use values of a predictor variable or more commonly a set of 
predictor variables associated with distribution records to classify the predictor variable 
or predictor variable hyperspace into presence–absence regions, suitability values or 
probabilities, which are visualised as maps. These predictor variables can be direct, 
resource or indirect gradients and tend to be distal rather than proximal. Austin (2002) 
defines proximal and distal as being to the position of the predictor in the chain of 
processes that link the predictor to its impact on the plant. Mechanistic models attempt to 
simulate the mechanisms considered to underlie the observed correlations with 
environmental attributes ( Beerling et al., 1995) by using a detailed knowledge of the 
target species’ physiological responses to environmental variables as well as life-history 
attributes ( Stephenson, 1998). Such models have also been referred to as 
ecophysiological models (Stephenson, 1998) and process orientated models (Carpenter et 
al., 1993). In contrast to correlative models, mechanistic models do not use values of a 
predictor variable or predictor variables associated with distribution records to classify 
the predictor variable(s). The predictor variables used in mechanistic models tend to be 
resource or direct rather than indirect gradients. These predictor variables tend to be more 
proximal than those used in correlative models.  

Stephenson (1998) maintains that the distinction between correlative and 
ecophysiological (mechanistic) models is often not clear. For example, he observes that 
ecophysiological studies of plants depend on empirical correlations to determine 
quantitative relationships between physiologically important factors and vegetation 
distribution. Similarly, correlative models have an ecophysiological basis when they 
employ predictor variables that are suspected to be of broad physiological importance to 
plants ( Stephenson, 1998).  

Predictive models have generally been used to predict the potential distribution of a target 
species under current climatic conditions or various climate change scenarios and to 



determine the importance of selected climatic variables on the distribution of the target 
species. Recent interest in the possible consequences of global climate change has 
resulted in a number of studies focusing on the climatic controls of vegetation 
distribution (Stephenson, 1998). Mechanistic models are considered to be more 
promising at successfully predicting climatically induced changes in the distribution of 
plant species ( Stephenson, 1998), as these models will be more robust under changed 
climatic conditions than correlative models as certain correlations may cease to apply 
under changed conditions ( Prentice et al., 1992). While mechanistic models are likely to 
yield superior results to correlative models (particularly under climate change scenarios) 
they are often extremely time-consuming and more difficult to build, relying on a greater 
knowledge of the biology of the target organism than correlative models.  

Correlative models are particularly suited to cases where an initial estimate of the 
potential distribution of an organism is required, especially when the biology of the 
organism is not well known. Correlative models also can be used to obtain some insight 
into factors that may be responsible for limiting the distribution of the target organism 
when its biology is not well known. These insights can then be used to incorporate 
mechanistically more important predictor variables into the model, thus making it more 
mechanistic. Through an iterative process, a greater understanding of the target 
organism’s biology can be developed and further insights into the factors that limit its 
distribution may be obtained. This may culminate in developing a mechanistic 
distribution model. Stephenson (1998) suggests that correlative approaches may play an 
important role in understanding of the relationships between climate and species 
distributions by identifying potentially significant and previously overlooked 
physiological mechanisms.  

Correlative models that use both presence and absence locality records to make 
predictions have been referred to as group discrimination techniques, while those that use 
only presence locality records have been referred to as profile techniques (Caithness, 
1995). Examples of group-discrimination techniques include those models based on 
discriminant analysis ( Rogers and Randolph, 1993; Rogers and Williams, 1993 and 
Rogers et al., 1996), Generalised Linear Models ( Austin et al., 1984; Austin et al., 1990; 
Austin et al., 1994; Osborne and Tigar, 1992; Guisan et al., 1998; Higgins et al., 1999 
and Manel et al., 1999; Cumming, 2000a and Cumming, 2000b), generalised additive 
models (GAM; Austin and Meyers, 1996; Leathwick et al., 1996; Leathwick, 1998; 
Pearce and Ferrier, 2000 and Leathwick and Whitehead, 2001) and decision-tree-based 
methods ( Walker, 1990; Lees, 1994; Michaelsen et al., 1994 and Williams, 1994). 
Examples of profile techniques include models developed by Palmer and Van Staden 
(1992), Erasmus et al. (2000), Robertson et al. (2001), Hirzel et al. (2002) and the 
approaches used in the modelling packages known as BIOCLIM ( Nix, 1986 and Busby, 
1991) and DOMAIN ( Carpenter et al., 1993). For examples of comparisons between 
group-discrimination and profile techniques, see Hirzel et al. (2001) and Zaniewski et al. 
(2002).  

The choice between using a mechanistic or correlative approach will depend largely on 
the purposes of the study and the current state of knowledge of the biology of the target 



organism. One of the central questions is whether correlative models can perform as well 
as mechanistic models for predicting species’ potential distributions.  

Most of the mechanistic models in the literature have tended to make predictions at the 
continental scale and usually for several species or functional types, e.g. Woodward and 
Williams (1987), Prentice et al. (1992) and Neilson (1995). However, Peter et al. (2003) 
recently developed a model based on water balance, temperature and plant phenology to 
predict the potential distribution of a single species (Scaevola plumeri) at a regional scale. 
The development of this water balance model presents an opportunity to compare 
quantitatively the success with which mechanistic and correlative approaches are able to 
predict the potential distribution of a target species.  

In this paper we compare potential distribution predictions made using three static 
modelling approaches for a coastal dune plant (S. plumieri) along the coast of South 
Africa. We compare the performance of a mechanistic approach based on water balance 
(described in Peter et al., 2003) and two correlative models (a profile and a group 
discrimination technique). The profile technique is based on principal components 
analysis (PCA), and is described and implemented by Robertson et al. (2001). Similar 
profile techniques include the approach used in the FloraMap package ( Jones and 
Gladkov, 1999), the approach used by Erasmus et al. (2000) and Ecological Niche Factor 
Analysis (ENFA; Hirzel et al., 2002).  

The group-discrimination technique is based on multiple logistic regression (LR), a form 
of Generalised Linear Model (GLM; McCullagh and Nelder, 1983) that has been used 
frequently in biology (e.g. Austin et al., 1984; Austin et al., 1990; Austin et al., 1994; 
Nicholls, 1989; Leathwick and Mitchell, 1992; Osborne and Tigar, 1992; Austin and 
Meyers, 1996; Guisan et al., 1998; Guisan et al., 1999; Higgins et al., 1999 and Manel et 
al., 1999; Cumming, 2000a and Cumming, 2000b; Pearce and Ferrier, 2000 and Hirzel et 
al., 2001).  

2. Materials and methods 

2.1. The target species: Scaevola plumieri 

S. plumieri represents a good test case for developing and comparing mechanistic and 
correlative models. Ecophysiological measurements could be made with relative ease 
since the plant is short, has broad leaves and stands of this plant were relatively easily 
accessible. Since it has an open, well ventilated canopy and it occurs on the same 
substrate (sand) throughout its range, certain simplifying assumptions could be made 
(Peter and Ripley, 2000). Making the necessary ecophysiological measurements that 
would be required to build a similar mechanistic model for other species (e.g. a large 
forest species), would be more challenging.  

An important implicit assumption made by these models is that the target species is in 
equilibrium with its environment (in an ecological rather than a physiological sense), 
since these are static models (Guisan and Zimmermann, 2000 and Austin, 2002). Since S. 



plumieri is indigenous to southern Africa, it is likely to be in equilibrium with its 
environment in the sense that it has had sufficient time to occupy all suitable sites (as 
opposed to an alien plant species that may not yet be in equilibrium with the 
environment). It is unlikely to compete directly with other species and thus is unlikely to 
be excluded from a particular site due to competition for space. Since it is confined to a 
narrow habitat, namely coastal sand dunes, we have been able to sample a large 
proportion of the plant’s potential habitat along the South African coast. The chance of 
make false negative errors is low because the plant is conspicuous and thus is unlikely to 
have been recorded absent when it was present at a particular site. False positive errors 
are unlikely since S. plumieri is not easily confused with other species. This attribute of 
the plant has thus enabled accurate presence and absence locality data to be collected. 
This in turn has allowed reliable profile (PCA) and group-discrimination (LR) models to 
be built.  

2.2. The data 

The predictor variables used in these models consisted of various digital climatic variable 
maps and the response variable consisted of point distribution records for S. plumieri. 
The digital climatic variable maps were developed by Schulze et al. (1997) for South 
Africa, Lesotho and Swaziland. Each of these climatic maps was interpolated from point 
data obtained from a network of weather recording stations distributed throughout South 
Africa, to produce continuous digital maps at a 1-min spatial resolution ( Schulze et al., 
1997). Monthly maps of mean maximum temperature, mean minimum temperature, mean 
relative humidity and median rainfall ( Schulze et al., 1997) were used in the water 
balance model ( Peter et al., 2003) while further preprocessing of these maps was done to 
yield a smaller subset of variables that were used to develop the correlative models.  

Localities where S. plumieri was found to be present or absent (Fig. 1) were obtained by 
direct surveys using a GPS, from herbarium specimens and from historical photographs 
(for details see Peter et al., 2003). Locality data were partitioned randomly into a set of 
training localities and a set of testing localities in a ratio of 3:1, based on Huberty’s 
(1994) recommendations. The training localities consisted of 158 presence and 57 
absence records and the testing localities consisted of 53 presence and 19 absence 
records. The training localities were used to calibrate the models and the testing localities 
were used for model evaluation. Locality data were used only to calibrate the PCA and 
LR models and not in the calibration phase of the water balance models.  



 

Fig. 1. The coast of South Africa indicating localities where S. plumieri was recorded as being present (•) 
and where it was recorded as being absent (▪). In the inset, black portion indicates the position of South 
Africa relative to Africa.  

 

2.3. The water balance model 

An empirical relationship of transpiration (E) to atmospheric vapor pressure deficit 
(VPD) was calculated at the leaf level for S. plumieri (Peter and Ripley, 2000). VPD can 
be calculated from atmospheric temperature and relative humidity. Peter and Ripley 
(2000) also successfully scaled leaf level transpiration rates to the canopy level. 
Transpiration rates of S. plumieri were extrapolated from VPD which was in turn 
calculated from regional level values of temperature and relative humidity. Water balance 
was calculated by subtracting transpiration from rainfall for a given month (Peter et al., 
2003). Monthly maps of mean maximum temperature, mean minimum temperature, mean 
relative humidity and median rainfall were used to calculate 12 monthly water balance 
maps using the approach and equations described by Peter et al. (2003). These monthly 
water balance maps were cross-correlated to investigate their relationships ( Table 1). 
Based on these correlations maps for October, November, December, January, February 
and March were summed to produce a map of summer water balance (SWB). Similarly 
maps for May, June, July and August were summed to produce a map of winter water 
balance (WWB). Seasonal, rather than annual, water balance was calculated because S. 
plumieri was found at sites that experienced water surpluses during the summer months, 
when the plants were most actively growing and reproducing (Peter et al., 2003).  

 
 
 
 



Table 1. Correlation matrix of monthly water balance values for the entire coast (n=1439) 

 
 
 

We refer to the SWB model as a mechanistic model (although this term was not used to 
describe this model by Peter et al., 2003). We believe that SWB model is mechanistic for 
two reasons. Firstly, a predictor variable (SWB) was calculated using the physiological 
responses of the plant to environmental variables obtained by means of field 
measurements and through a knowledge of life history attributes (phenology). Secondly, 
the predictor variable was not classified using distribution records to produce a 
distribution map. This was unnecessary because the values of the predictor variable 
(SWB) had direct physiological significance to the plant. The plant should be absent from 
those sites experiencing summer water deficits and present at sites experiencing summer 
water surpluses ( Peter et al., 2003). This is based on the hypothesis that the plant is 
unable to survive at sites that experience water deficits during those periods when the 
plant was actively growing and reproducing (i.e. summer).  

2.4. Predictor variable pre-processing 

To reduce the dimensionality of available climatic variable data, four PCAs were 
performed on the 12 maps for each of the following: mean monthly maximum 
temperature, mean monthly minimum temperature, mean monthly relative humidity and 
median monthly rainfall. Each of the monthly maps was calculated from mean values for 
a calendar month, e.g. January. PCA has previously been employed as a pre-analytical 
data reduction technique used in distribution modelling (Osborne and Tigar, 1992; 
Buckland and Elston, 1993; Robinson et al., 1997 and Guisan et al., 1998). Those 
principal component axes whose eigenvalues were greater in magnitude than eigenvalues 
obtained from datasets of random numbers of the same sample size were retained as 
predictor variables. This follows the “broken stick” stopping rule for PCA ( Jackson, 
1993). Predictor variables used in the PCA and logistic regression models are listed in 
Table 2.  



Table 2. Predictor variables and their abbreviations used in the PCA and LR models 

 
 
 

Although variables such as potential evaporation or elevation (as used previously, 
Robertson et al., 2001) could have been used in addition to those predictor variables 
listed for building the correlative models ( Table 2), the same sets of predictor variables 
were used to build the mechanistic model and the two correlative models so that any 
differences in model performance could be attributed to model design and were not 
confounded by differences in the predictor variables used.  

2.5. The PCA model 

We used a PCA-based modelling technique, described by Robertson et al. (2001), for 
predicting environmental suitability for a target organism from environmental predictor 
variables using only presence locality records. This technique constructs a hyperspace for 
the target species using principal component axes derived from a training data set. The 
training data set comprises the values of the predictor variables associated with those 
localities where the species has been recorded as present. The origin of this hyperspace is 
taken to characterise the centre of the niche of the organism. All the localities (grid-cells) 
in the map region are then fitted into this hyperspace using the values of the predictor 
variables at these localities (termed the prediction data set). The Euclidean distance from 
any locality to the origin of the hyperspace gives a measure of the “centrality” of that 
locality in the hyperspace. These distances are used to derive probability values for each 
grid cell in the map region. The probability values are taken to indicate the suitability of 
each grid cell in a map for the target species in terms of the suite of predictor variables. 
The approach taken in this paper is identical to that of Robertson et al. (2001) except that 
different predictor variables were used.  

2.6. The logistic regression model 

A logistic regression was performed using GLMFIT, a generalised linear modelling 
function within MATLAB. In order to calculate the values of the coefficients (βi in Eq. 
(1)), a binomial error distribution and a logit link function were used. The response 
variable consisted of localities representing surveyed presence (coded 1) and surveyed 
absence (coded 0). The response variables consisted of the values of the environmental 
variables associated with the surveyed localities. Probability values for each grid cell in 



the map region were calculated by substituting the values of the predictor variables 
associated with that cell into the following equations: 

 
β1variable1+β2variable2+ +β8variable8=η (1)

 

 
(2)

 
 
The first equation is known as the linear predictor and the second equation is the inverse 
logistic transformation. In order to constrain the values of the linear predictor between 0 
and 1, the inverse logistic transformation has to be applied.  

2.7. Model evaluation 

There are several measures for assessing model performance (Fielding and Bell, 1997 
and Guisan and Zimmermann, 2000). A number of these measures are derived from a 
confusion matrix ( Table 3). A reliable and well-known measure based on the confusion 
matrix is the kappa (κ) statistic (Fielding and Bell, 1997). The κ statistic is dependent on 
a single threshold to distinguish between predicted presence and predicted absence and 
thus falls into the class of threshold-dependent measures (Fielding and Bell, 1997). 
Threshold-independent measures, such as receiver operating characteristic (ROC) plots 
which are emerging as useful measures of model performance ( Packer et al., 1999; 
Cumming, 2000a and Cumming, 2000b; Robertson et al., 2001) are considered to be 
superior since they use a range of thresholds and are therefore less likely to introduce 
distortions ( Fielding and Bell, 1997). Although the ROC measure is considered to be a 
superior measure, it could not be used on our data since it requires values to be 
constrained between 0 and 1, and in the case of the water balance models, negative values 
were evident. As a result, we used the κ statistic to evaluate the models.  

 

Table 3. A confusion matrix used to calculate κ statistics (Fielding and Bell, 1997) 

 

+: Presence; −: absence. The parameters a, b, c and d represent counts rather than percentages. 

Kappa statistics were calculated from the parameters in the confusion matrix (Table 3) in 
two ways. Firstly, κ-values were calculated for all models using the presence and absence 
testing localities as observed presence and observed absence, respectively (Table 3). This 
gives a measure of model performance. Secondly, κ-values were calculated using the 
SWB model. Grid-cells with water balance values above zero were taken to represent 



observed presence and grid-cells with water balance values below zero were taken to 
represent observed absence. This gives a measure of model agreement between the SWB 
model and the PCA model, and between the SWB model and the LR model. Kappa 
statistics were calculated using thresholds that yielded maximum κ-values for the PCA 
and LR models, following recommendations of Guisan and Zimmermann (2000). In 
contrast, κ-values for summer and winter water balances were calculated using thresholds 
of zero, which represent a biologically justifiable threshold. S. plumieri is unlikely to be 
able to survive water deficits (values below zero) for extended periods, particularly in the 
summer when it is actively growing (see Peter et al., 2003).  

3. Results 
S. plumieri was recorded as being present along the south and east coasts of South Africa 
(Fig. 1 and Fig. 2). Arniston was the most westward locality at which S. plumieri was 
recorded present. All localities west of Arniston represent observed absence and all 
localities to the east represent observed presence (Fig. 1 and Fig. 2). For simplicity, the 
coast to the north of Cape Columbine is referred to as west coast, between Cape 
Columbine and Arniston as the south west coast; between Arniston and Port Elizabeth as 
the south coast and between Port Elizabeth and the Mozambique border as the east coast 
(Fig. 2a).  

 



 



Fig. 2. (a) The observed presence (n=211) and absence (n=76) of S. plumieri at localities along the South 
African coast from the Mozambique border (grid-cell 0) to the Namibian border (grid-cell 1439). The 
position of major towns and geographical features along the coast: 1: Cape Columbine; 2: Cape Town; 3: 
False Bay; 4: George; 5: Port Elizabeth; 6: Port Alfred; 7: East London; 8: Durban; 9: Mtunzini. The 
vertical line in all the figures indicates the position of Arniston, the most westward locality at which S. 
plumieri was observed present. The results of four predictive models: (b) winter water balance; (c) summer 
water balance; (d) suitability calculated using the PCA model; (e) probability calculated using the LR 
model.  

 

 

 

Winter water balances (Fig. 2b) had low positive values to slight negative values on 
much of the east coast. Water balance values were particularly low between Port Alfred 
and Durban. On the south west coast between False Bay and Cape Columbine, relatively 
large water surpluses were evident. Localities on the west coast experienced relatively 
large water deficits.  

In summer the south and east coasts were characterised by large water surpluses (Fig. 2c). 
Localities immediately to the east of Arniston (at the distribution limit) had small water 
surpluses or experienced small deficits. The west and south west coasts were 
characterised by large water deficits, particularly to the beyond Cape Town.  

On the south and east coasts, predicted suitability (from the PCA model) was generally 
high but variable (Fig. 2d). Suitability on the west and south west coasts was lower than 
that on the south and east coasts with the exception of two peaks in suitability occurring 
near Cape Columbine and at localities just west of Arniston. The trend of lower 
suitability on the west and south west coasts and higher suitability on the south and east 
coasts follows the trend observed for SWB ( Fig. 2c). A trough of low predicted 
suitability just to the east of Mtunzini (in the region of grid-cell 100) corresponds with a 
peak in winter water surplus ( Fig. 2b).  

The results of the LR model have been reported as probabilities which can be interpreted 
as probability of occurrence (Fig. 2e). The east coast was characterised by consistently 
high probabilities. The south coast was characterised by greater variability in the 
probability values with more localities having low probabilities. On the south west coast 
probabilities were consistently very low or zero. On the west coast probabilities were 
mostly zero but increased towards the Namibian border (grid-cell 1440). The coefficients, 
their associated standard errors and Wald statistics are presented in Table 4 for the LR 
model. Only linear terms were included in the linear predictor as scatter plots indicated 
that there was no justification for including higher order terms.  



Table 4. Coefficients (B) with their associated standard errors (S.E.) and Wald statistics for the LR model 

 

The full names of the variables can be found in Table 2. 

3.1. Kappa statistics 

Kappa statistics can be used to objectively assess the level of agreement between 
observed and predicted data. Monserud and Leemans (1992) suggested the following 
ranges of agreement for the κ statistic: no agreement, <0.05; very poor, 0.05–0.20; poor, 
0.20–0.40; fair, 0.40–0.55; good, 0.55–0.70; very good, 0.70–0.85; excellent, 0.85–0.99; 
and perfect, 0.99–1.00. Negative values indicate extremely poor agreement (Monserud 
and Leemans, 1992). We used these ranges to describe the levels of agreement reported 
here using two tests.  

Our first test involved using the locality records reserved for testing (the testing 
localities). The WWB model had a negative κ-value of −0.150 (Table 5) indicating 
extremely poor agreement between observed and predicted values (Monserud and 
Leemans, 1992). In contrast, the SWB model had a high κ-value (0.852) indicating 
excellent agreement (Table 5). The LR model had a κ-value of 1.000, indicating perfect 
agreement. The PCA model had a lower value (0.721) than that of SWB model, although 
this falls into the category of very good agreement.  

 

Table 5. Tests of model performance using κ statistics and confusion matrix parameters 

 

Kappa statistics were calculated using thresholds that yielded maximum values for each of the models, with 
the exception of summer (SWB) and winter water balances (WWB) which were calculated using thresholds 
of zero. Kappa statistics were calculated using only those grid-cells in which S. plumieri was observed to be 
either present or absent (surveyed grid-cells). 

Our second test involved using all of the predicted values from the PCA and LR models 
and measuring their agreement (using κ) with the SWB model. In order to test model 
agreement in this way, a set of “observed presence” and “observed absence” localities 



(grid-cells) had to be defined. Grid-cells in the SWB model with water surpluses (≥0) 
were taken to represent “observed presence” and grid-cells with water deficits (0) were 
taken to represent “observed absence” to assess the level of agreement between the SWB 
model and the PCA and LR models (Table 6). There was good agreement between the 
SWB and the PCA model (0.679), and very good agreement between the SWB and the 
LR model (0.786; Table 6).  

Table 6. Tests of model agreement using κ statistics and confusion matrix parameters calculated for the 
PCA and LR models using all the grid-cells along the entire coast 

 

Calculations were performed as follows: those grid-cells with summer water balance values greater or 
equal to zero were taken to represent “observed presence” while grid-cells with water balance values below 
zero were taken to represent “observed absence”. Thresholds that yielded maximum kappa (κmax) values 
were selected. 

4. Discussion 

4.1. Interpretation of model predictions 

We suggest that the predictions produced by each of these models may offer different 
insights into the potential distribution and biology of the target organism. The 
probabilities in the map generated from the LR model are interpreted as the probability of 
occurrence for the target species (S. plumieri). In contrast the probabilities in the map 
generated from the PCA model are interpreted as environmental suitability values 
(Robertson et al., 2001). The PCA model has no explicit “knowledge” of the conditions 
that exist at localities where the target organism is absent and thus the probabilities 
generated cannot be interpreted as probability of occurrence for the target organism. We 
use the term “suitability” to distinguish these from the probabilities produced using a LR 
model ( Robertson et al., 2001). Similarly, the term “suitability” is also used to describe 
the values produced by another profile modelling technique based on ENFA ( Hirzel et 
al., 2001 and Hirzel et al., 2002). The values of the water balance models are biologically 
meaningful since they empirically integrate energy and moisture levels.  

Guisan and Zimmermann (2000) distinguish models that predict the fundamental niche 
from those that predict the realised niche of the target organism. Correlative models such 
as those presented here (PCA and LR) use actual distribution records to make predictions 
and these therefore must be drawn from the realised niche of that organism ( Malanson et 
al., 1992). Thus, although biotic interactions are not explicitly accounted for ( Robertson 
et al., 2001), their influence will be implicit by ampling the realised niche, and the result 
has been considered to be a prediction of the realised niche ( Austin and Smith, 1989; 
Malanson et al., 1992; Franklin, 1995 and Guisan and Zimmermann, 2000). Austin 
(2002) has recently suggested that statistical models (correlative models) may not 
represent the realised niche but rather an amalgam of realised niche and sink areas. Sink 
areas are those areas where population growth is below replacement and populations are 



maintained by dispersal from source areas, where population growth is positive ( Pulliam, 
1988).  

In contrast, mechanistic models that are based only on physiological constraints and that 
do not explicitly account for biotic interactions (such as the SWB) tend to predict the 
fundamental niche of the target organism (Austin and Smith, 1989 and Guisan and 
Zimmermann, 2000). These can be refined to model the realised niche by adding rules to 
account for biotic interactions (see Prentice et al., 1992).  

In the case of S. plumieri, there is probably very little difference between its realised and 
fundamental niche because it has few predators or pathogens, and effectively no 
competitors. This may help to explain the close agreement between predictions made by 
the mechanistic and correlative models in this study.  

Mechanistic models (that are fundamental niche models) are considered to be most 
promising at successfully predicting climatically induced changes in the distribution of 
plant species (Malanson et al., 1992; Stephenson, 1998 and Guisan and Zimmermann, 
2000). These models will be more robust under changed climatic conditions than 
correlative models as certain correlations may cease to apply under changed conditions ( 
Prentice et al., 1992). In particular, correlative models have no way of handling the 
effects of climate change on the other organisms involved in the biotic interactions 
underlying realised niches. One solution is to incorporate certain biotic interactions into 
predictive models. For example, Leathwick et al. (1996) and Leathwick and Austin 
(2001) incorporated the effects of competition from a dominant species into models used 
to predict the spatial distribution of density of other species.  

4.2. Model performance 

There is fairly good visual agreement (Fig. 2) between the observed data in the form of 
presence and absence testing locality records and the SWB, the PCA and LR models. 
This was confirmed by κ statistics calculated using testing locality records (Table 5). In 
contrast, the κ statistic calculated for the WWB model was negative (Table 5), which 
indicates extremely poor agreement between the model and the testing localities ( 
Monserud and Leemans, 1992). Using the scale of agreement proposed by Monserud and 
Leemans (1992), the κ statistics indicated “very good” agreement for the PCA and 
“excellent” agreement for the SWB model and “perfect” agreement for the LR model.  

Although the κ-values calculated for the LR model indicated “perfect” agreement with 
the testing locality records, this probably represents an overestimate of the actual 
performance of the LR model. The LR model predicted high probabilities of S. plumieri 
being present along the west coast close to the Namibian border (between grid-cells 1470 
and 1440; Fig. 2e). However, we believe that S. plumieri is unlikely to occur in this 
region. Unfortunately, we were unable to evaluate the performance of the LR model 
quantitatively (using κ statistics) along this section of the west coast due to a lack of 
testing localities (Fig. 2a). Two sources of indirect evidence suggest that S. plumieri is 
unlikely to occur in this region. Firstly, the LR model suggests that S. plumieri is likely to 



occur at the Namibian border (grid-cell 1440 at the edge of the map region), which in 
turn suggests that it is also likely to occur just beyond the current map region, along the 
arid coast of Namibia. However, no herbarium records exist for this species from 
Namibia, and a distribution map produced by Tinley (1985) suggests that S. plumieri 
does not occur in Namibia but only occurs considerably further north along the northern 
coast of Angola. Finally, the SWB and PCA models also suggest that S. plumieri is 
unlikely to occur along this section of the South African coast. Although we believe S. 
plumieri to be absent along this section of the coast, a survey is required to confirm this.  

The LR model attained a higher κ-value than the SWB model, suggesting better 
agreement between the observed and predicted values for the LR model than for the SWB 
model. This may be at least partly influenced by the method of evaluation used. Chatfield 
(1995) maintains that splitting data into a training and a testing set is a poor substitute for 
true replication, as the two datasets are not completely independent. This is likely to be 
true in this case and this dependence (between the training and testing sets) could explain 
the higher κ-value calculated for the LR model than that calculated for the SWB model. 
The LR model was built using a training set of presence and absence localities, and then 
evaluated using a set of testing localities that were not completely independent of the 
training set. In contrast, the SWB model was based on empirical ecophysiological data 
rather than on presence and absence localities. This model was thus evaluated using data 
that were independent of the data used to build it. The LR model thus had a better chance 
of performing well using this model evaluation test than the SWB model. Similarly, the 
PCA model also had a better chance of performing well using this test than the SWB 
model—the only difference being that the PCA model was built using only presence data 
(rather than presence and absence data as was the case with the LR model). This is the 
reason for using the model agreement tests (Table 6).  

Kappa-values suggest that the LR model also performed better than the PCA model. This 
is possibly because the LR model had the advantage of being built using 57 absence 
localities in addition to the 158 presence localities used in the PCA model.  

The performance of the mechanistic model would probably have been better had another 
mechanistic process been incorporated into this model. Although the LR and PCA 
models had a greater chance of performing well using these model evaluation tests than 
the SWB model, all three models demonstrated good performance.  

4.3. Model agreement 

Kappa-values that were calculated using the reclassified SWB map were used to assess 
the level of agreement between the SWB and both the PCA and LR models. Kappa-
values indicated “good” agreement between the SWB model and the PCA model (Table 
6). The agreement between the SWB model and the LR model was “very good” using the 
scale of agreement proposed by Monserud and Leemans (1992). These values suggest 
very good correspondence between predictions made using a simple mechanistic model 
(the SWB model) and two correlative models (the PCA and LR models). Slightly better 
agreement between the LR model and the SWB model than between this model and the 



PCA model can again be explained by the LR model having 57 absence localities in 
addition to the 158 presence localities used to build the PCA model. The close agreement 
between the correlative (PCA and LR) models and the mechanistic model (SWB) may be 
because the realised niche of S. plumieri probably quite closely resembles its fundamental 
niche.  

4.4. Water balance as a predictor variable in correlative models 

The results of model performance tests suggest that the SWB model is a far better 
predictor of S. plumieri presence than the WWB model. This may be explained by 
considering the phenology of the plant (Peter et al., 2003). The SWB model was 
calculated for those months which coincide with periods when the plant is actively 
growing and reproducing ( Peter et al., 2003). This suggests that water balance values 
calculated for these periods may be mechanistically more important, and as a result 
should be more important and useful for predicting plant distributions. This is particularly 
important when water balance is used as a predictor variable in correlative models (in 
contrast to the mechanistic approach adopted in this study). Water balance has been used 
as a predictor variable in various correlative studies (for example, Leathwick, 1995; 
Leathwick, 1998; Leathwick et al., 1996 and Leathwick and Whitehead, 2001). 
Stephenson (1998) suggested that site water balance should be used as a predictor 
variable for the purposes of building correlative models, even if it is only crudely 
calculated. Site water balance considers the interactions of energy and water which are 
important for predicting distributions ( Stephenson, 1998). In addition, Guisan and 
Zimmermann (2000) have suggested that “physiology-based” parameters such as site 
water balance should be used in preference to physiographic predictors for developing 
static models that are more mechanistic. Our data suggest that the phenology of the target 
species should be taken into consideration when calculating water balance values in order 
to focus on those periods which are biologically significant.  

4.4.1. Profile versus group discrimination techniques 

An issue that is likely to generate considerable debate in the future is the choice between 
profile and group discrimination techniques for predicting species distributions. Profile 
models are likely to be appropriate when absence data are not available or are unreliable. 
In a recent study, using simulated data, Hirzel et al. (2001) found that a profile technique 
(ENFA) performed better than a group discrimination technique (GLM) in cases where 
the target organism was not in equilibrium with the environment, e.g. alien invasive 
organisms. However, when reliable presence and absence data are available then group 
discrimination techniques are likely to perform best ( Ferrier and Watson, 1997 and 
Hirzel et al., 2001). This is confirmed by the slightly better agreement between the SWB 
and LR models than the agreement between the SWB and PCA models.  

When a target organism is not in equilibrium with its environment, absence data collected 
for this organism are likely to contain a proportion of false absence records, which may 
adversely affect model performance (Hirzel et al., 2001). However, logistic regression 
has been successfully applied using “unsurveyed absence” records (e.g. Cumming, 2000a 



and Cumming, 2000b). Recently, Zaniewski et al. (2002) successfully used “pseudo-
absence” data to apply GAM for predicting the distribution of ferns.  

There appears to be a need for further comparative studies that compare the performance 
of profile and group discrimination techniques using data of varying quality. In particular, 
an important question is whether group discrimination techniques such as GLM or GAM 
can be applied without using surveyed absence data (e.g. Cumming, 2000a and 
Cumming, 2000b; Zaniewski et al., 2002) to produce models that perform better than 
those produced by profile techniques (e.g. Robertson et al., 2001 and Hirzel et al., 2002), 
given data of the same quality.  

4.5. Conclusion 

The results suggest that correlative models can perform as well or better than simple 
mechanistic models. However, the generality of this statement requires testing. These 
models have different requirements in terms of input data and prior knowledge of the 
target organism’s biology. The predictions generated from these models are each likely to 
offer slightly different insights into the potential distribution and biology of the target 
organism and may be appropriate for different purposes. Mechanistic models such as 
those used here (the SWB model) require a greater knowledge of the biology of the 
organism and require making time-consuming ecophysiological measurements. These 
models may in turn yield greater insights into the biology of the organism that are 
mechanistic in nature. In contrast, correlative models are easier and less time-consuming 
to build and require less prior knowledge of the target organism’s biology. These models 
will yield different insights into the biology and potential distribution of the target 
organism from mechanistic models. The choice of model is likely to be influenced by 
several factors, such as the aims of the study, the biology of the target organism, the level 
of knowledge the target organism’s biology and data quality. We suggest that the type of 
target organism and the level of knowledge of the target organism’s biology will play a 
central role in the model development process. Simple correlative models may be used 
initially when the biology and distribution of the organism is not well known. These 
models can then be iteratively refined (see Chatfield, 1995) to produce models that are 
more mechanistic in nature. This is equivalent to incorporating more knowledge of 
“ecological process” ( Austin, 2002) into the model. This may be followed (if feasible) by 
the development of ecophysiological models that simulate the mechanisms considered to 
underlie the correlations between the distribution records and the predictor variables 
observed in developing the correlative models.  
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