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Abstract 

 

Gastropods are one of the most diverse species groups in mangrove habitats, 

however, many of their specific roles in relation to ecological patterns and processes 

are currently largely unknown. The overall aim of this research project was to provide 

basic ecological information for key gastropod species from subtropical mangroves 

within a protected area. South African mangroves cover relatively small areas and 

are restricted to estuaries, these habitats therefore present unique opportunities and 

challenges to the species that occur in them. Three gastropod species, Terebralia 

palustris, Cerithidea decollata, and Melanoides tuberculata, all occur at their natural 

southernmost range limit within South Africa and were selected based on their 

prominence and occurrence in mangrove habitats of the iSimangaliso Wetland Park, 

a UNESCO World Heritage Site. Trophic linkages and resource partitioning, 

resource utilization rates, and ecological resilience were investigated respectively 

using: 1) a stable isotope (δ15N and δ13C) approach; 2) an experimental approach to 

quantify feeding dynamics (ingestion rate, consumption/digestion efficiency and 

grazing impact); and 3) a mixed-effects modelling approach to relate population 

responses to environmental variables. The diet of T. palustris was seasonally 

variable and a number of sources were incorporated by different sized snails, but 

their grazing impact on microphytobenthos was not significant. The results also 

indicated an ontogenetic shift in the dietary niche for T. palustris through robust 

partitioning of resources between different size classes. The diets of C. decollata and 

M. tuberculata were dominated by different primary resources as a function of where 

they occurred in the mangroves. Melanoides tuberculata consumed a wide variety of 

primary resources, a typical trait of an opportunistic generalist species. The ingestion 

rate of M. tuberculata was not dependent on the availability of microphytobenthos, 

and was highest when conditions were oligotrophic. The resilience of C. decollata 

was related to the tree-climbing behaviour of this species and its occurrence was 

best explained by sediment conductivity. These responses were considered in 

conjunction to what has previously been reported on the resilience of the mangrove 

trees. The results of this research project have provided new basic ecological 

information for all three gastropod species in this data-deficient subtropical region. 
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This information can potentially be used in comparative studies for these species in 

other regions or in broader scale ecological studies. Terebralia palustris has recently 

experienced a range contraction along the South African coastline. This research 

project has shown that the diet of this species is highly variable and that food 

limitation and competition for resources should be considered as potential drivers of 

the local decline. Cerithidea decollata has in contrast expanded its distributional 

range in this region. This research project has shown that this species has a 

generalist diet and exhibits traits in relation to tolerance that are expected to have 

facilitated its expansion into temperate saltmarsh habitats that occur in dynamic 

estuaries. Melanoides tuberculata is a globally invasive species, and as South 

African populations are within its native range, ecological information from this region 

is valuable as it can be used to investigate the potential ecological effects following 

introduction into new habitats beyond the native range. Biological drivers have a 

significant impact on mangrove ecosystem functioning, particularly in relation to 

recycling and the retention of organic carbon generated through primary productivity. 

Understanding the ecological linkages that maintain ecological functioning and 

stability is therefore an important step towards conserving and sustainably managing 

threatened ecosystems such as mangrove forests. 
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“To stand at the edge of the sea, 

to sense the ebb and flow of the tides, 

to feel the breadth of a mist moving over a great salt marsh, 

to watch the flight of shore birds that have swept up and down the surf 

lines of the continents for untold thousands of years, 

to see the running of the old eels and the young shad to the sea, 

is to have knowledge of things that are as nearly eternal as any earthly 

life can be” 

 

Rachel Carson – The Edge of the Sea 
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Chapter 1: General Introduction 

 

Mangrove forests are iconic features of tropical and subtropical coastlines around 

the world. These ecosystems have an ancient history as the characteristic 

foundation tree species date back to the Late Cretaceous and Early Palaeocene 

periods (Saenger 1998). The modern mangrove genera were indeed well 

established by about 50 Ma in the Middle to Late Eocene along the shores of the 

Tethys Sea (Ellison et al. 1999). This impressive persistence of mangroves through 

the millennia is attributed to their remarkable ecological stability during periods of 

environmental inconstancy (Alongi 2015). Despite this, as is the case for almost all 

natural systems on Earth, numerous anthropogenic activities have had pronounced 

negative impacts on mangrove forests (Duke et al. 2007). Recent research suggests 

that mangrove ecosystems are potentially able to persist even through current 

predictions of escalated global change (Alongi 2015, Lovelock et al. 2015, Ward et 

al. 2016). However, this persistence is expected to be limited within certain specific 

conditions and the anticipated rapid environmental changes would have a serious 

impact on the ecological integrity of these surviving mangrove ecosystems. 

Conservation of mangroves as functional ecosystems should therefore not focus 

solely on the trees but should also include the associated fauna. Mangrove fauna, 

and the invertebrate species in particular, have been increasingly recognized as 

significant biological drivers of these ecosystems (Cannicci et al. 2008, Alongi 

2009b). Current mangrove ecology is therefore focussed on linking attributes of 

fauna at different levels (individuals, populations, communities) to large scale 

ecosystem functioning. This research project therefore focuses on providing 

information on the ecology of a key group of mangrove invertebrates from a region 

that is data deficient in this regard. 

1.1 Distribution, importance and threats related to mangrove ecosystems 

The term “mangrove” refers to the distinct woody halophytic plant species that due to 

unique adaptations are able to inhabit the interface between terrestrial, estuarine and 

near-shore marine environments (Tomlinson 1999). Globally, the distributional range 

of mangrove tree species is linked to sea surface temperature, with occurrence 

being limited to tropical and sub-tropical regions by the winter 20 °C isotherm (Alongi 
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2009a). This gives these species a general latitudinal distribution between 30 °N and 

30 °S (Giri et al. 2011). Mangrove trees establish between mean sea level and the 

highest spring tide (Alongi 2009a) and their occurrence in these areas has a 

significant influence on the formation of structurally unique habitats that support a 

large diversity of faunal species (Nagelkerken et al. 2008). The ecological 

communities supported within mangroves are often distinct and have a close 

association with the habitat type (Kathiresan & Bingham 2001). Mangrove forests are 

considered to be resilient and stable (Alongi 2008, 2015), and therefore even at their 

range extremities are able to provide suitable habitat to typical tropical species at 

higher subtropical latitudes (Macnae 1963).  

South African mangroves are subtropical and occur at one of the southernmost limits 

of the global distribution range for this ecotype (Traynor & Hill 2008). Along the high 

energy South African coastline, mangroves are limited to occur within sheltered 

estuarine areas (Steinke 1999). Early studies on these ecosystems were largely 

descriptive (Macnae 1963, Ward & Steinke 1982) and focused on the coastal 

distribution of mangrove tree species and the associated fauna. Within this 

geographical region, mangroves only contribute 0.05 % of the total mangrove forest 

area of the entire east African coast (Adams et al. 2004). Similarly, the diversity of 

mangrove trees is relatively low as only six species of the ~ 50 taxa that occur in the 

Indo-West Pacific region are found along the South African coastline (Duke et al. 

1998, Steinke 1999). The diversity of mangrove associated macrofauna is generally 

correlated with the diversity of the flora (Alongi 2009b). However, the structure of 

mangrove macrobenthic assemblages is largely influenced by local environmental 

conditions (Lee 2008). Historical records for South African mangrove fauna indicate 

similarities with the diverse communities from Inhaca Island, Mozambique (Macnae 

& Kalk 1962, Macnae 1963). The southern extension of these typically tropical 

species within this region is supported by the warm and fast-flowing Agulhas Current 

that not only ameliorates sea surface temperature, but also provides an efficient 

dispersal mechanism for viable propagules of mangrove trees and larvae of 

macrofauna through the formation of eddies (Steinke & Ward 2003, Teske et al. 

2011). South African mangroves therefore offer a unique opportunity to assess 

ecological attributes of a large number of species occurring at their global distribution 

limits. Populations such as these that occur at the edge of their species‟ distributional 
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range may exhibit local adaptation and acclimation to environments that could be 

considered as unfavourable (Bennett et al. 2015b). However, as populations at their 

distributional limits are also generally fragmented, they are expected to have a lower 

adaptive potential and fitness as a consequence of reduced genetic diversity 

(Pearson et al. 2009). These factors are important when considering the implications 

for potential range expansions under predicted global change. 

Besides their biodiversity value, mangrove ecosystems are also globally recognized 

for their economic importance as they provide a large number of ecosystem goods 

and services (Barbier et al. 2011). These are defined as the attributes of an 

ecosystem that benefit, sustain and support human well-being (Fisher et al. 2009). 

Ecosystem goods and services are therefore given an economic valuation that 

assigns quantitative values to these naturally provided benefits (Vo et al. 2012). The 

total economic value of mangrove habitat globally has previously been estimated at 

US $ 181 billion or US $ 10 000 ha-1(Alongi 2002). Such a comprehensive economic 

valuation of all mangrove forests along the South African coastline has not been 

completed. However, the mangroves at the Mngazana Estuary in the Eastern Cape, 

which represent the third largest forest in terms of area in the country, have been 

conservatively estimated to have an economic value of ZAR 7.4 million (= 0.5 million 

US $, De Wet 2004). Important natural services that are evaluated in these 

assessments include the provision of coastal protection against erosion and storm 

surges (Dahdouh-Guebas et al. 2005, Arkema et al. 2013), as well as flood 

protection, nutrient processing and sediment retention (Alongi 2002, Lee et al. 2014). 

The provisional services of mangroves also include resources for utilization (wood, 

charcoal) as well as consumption (fruits, honey, fish and invertebrates) (Vo et al. 

2012). The types of goods and services provided by mangrove ecosystems are, 

however, dependent on a large number of factors (Ewel et al. 1998). As 

unsustainable utilization degrades ecosystem functioning there is an inevitable 

negative effect on the provision of these ecosystem goods and services (Duke et al. 

2007, Lee et al. 2014). Small mangrove forests such as those found along the South 

African coastline do provide valuable ecological goods and services, but they may be 

at a higher risk of exploitation as a result of their size. Recent research activities 

have therefore focussed on collecting baseline data for key South African mangrove 

forests (Adams et al. 2004, Rajkaran et al. 2009, Rajkaran & Adams 2011) as well as 
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identifying natural and anthropogenic factors that influence the resilience and 

stability of these ecosystems (Rajkaran et al. 2004, Hoppe-Speer et al. 2013, Adams 

& Human 2016). 

Despite the ecological and economical importance of mangroves, these forests are 

globally one of the most threatened ecosystem types (Polidoro et al. 2010, Sandilyan 

& Kathiresan 2012), with losses estimated at between 20-35 % of the total area 

within the past three decades (Valiela et al. 2001, Giri et al. 2011). These losses are 

largely attributed to anthropogenic factors, such as clearance for development, 

aquaculture and extractive resource use (Duke et al. 2007, Polidoro et al. 2010). 

Along the South African coastline, the mangrove forest area has been reduced 

mainly through direct removal of the trees to allow for industrial, residential or 

agricultural development in areas where coastal wetlands naturally occurred 

(Rajkaran et al. 2004). Most notably the largest removal occurred in Durban Bay, 

where approximately 200 ha of mangrove forest was sacrificed for the development 

of one of the largest industrial ports in the country (Moll et al. 1971). Further large 

scale removal should however be prevented, as under current legislation estuaries 

that harbour mangroves are prioritized for conservation (Turpie et al. 2002). 

However, these ecosystems still face a multitude of threats, particularly in the form of 

extensive harvesting of trees for fire-making as well as for use as building materials 

(Rajkaran et al. 2004, Traynor & Hill 2008). Furthermore, land use practices, 

including the abstraction of freshwater for agriculture, input from waste-water 

treatment plants and the building of dams have a significant impact on the flow 

regime of rivers (Schlacher & Wooldridge 1996, Richter et al. 2003). Severe changes 

in flow regime and dynamics can have a detrimental effect on estuarine mangroves, 

as they may suffer die-back after prolonged inundation or persistent low water levels 

(Edwards 1969, Naidoo 2016). Current mangrove conservation challenges are 

therefore intricately linked with the threats faced by the estuarine and coastal areas 

in which they occur.  

Besides the immediate anthropogenic impacts on mangrove forests, these habitats 

are also vulnerable to threats associated with global climate change (Gilman et al. 

2008). Global change factors such as sea-level rise, increases in temperature, 

precipitation and CO2 and changes in ocean currents are inter-related and spatially 

variable, which presents a challenge for estimating synergistic impacts on global 
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mangrove forests (Ward et al. 2016). As South African mangroves exist at a 

southern continental limit, it is predicted that mangroves will expand their distribution 

further south along this coastline as global temperatures continue to rise (Quisthoudt 

et al. 2013, Saintilan et al. 2014). However, as South African mangroves are limited 

to occurring in estuarine areas, the potential for recruitment of both mangrove fauna 

and flora will be influenced by a number of physical and environmental variables 

associated with these ecosystems. For example, recruitment might be limited by the 

intermittent connectivity of many estuaries with the Indian Ocean (Whitfield et al. 

2012). As global climate change is one of many pressures acting on estuaries, it 

should be viewed as an additional form of anthropogenic alteration. It is therefore 

essential to have baseline ecological data that describe the current dynamics of 

mangrove ecosystems as climate change continues to accelerate.  

As the loss of mangrove habitat has a significant effect on ecological functioning, the 

biodiversity of benthic fauna as well as associated fish species is also threatened 

both directly and indirectly (Blaber 2007, Ellison 2008). South African legislation 

recognizes the importance of ecological biodiversity in the National Environmental 

Management Act (Biodiversity Act, No. 10 of 2004) which furthermore prioritizes the 

conservation of mangroves as important coastal ecosystems (National 

Environmental Act: Integrated Coastal Management Act, No. 24 of 2008). 

Biodiversity research in South African mangroves has however focussed on larger 

taxa such as fish and birds. As mangroves provide important feeding and nursery 

areas, these habitats are used by a wide diversity of these species (Hockey & Turpie 

1999, Whitfield & Marais 1999). Most importantly, mangrove areas provide critical 

habitat to juvenile fish and crustaceans that are targeted by both recreational and 

commercial fisheries (Mann 2013). Globally, the ecological and economical value of 

fisheries species that are dependent on mangroves has been long recognized 

(Rönnbäck 1999). Therefore, a large amount of research has focussed on 

understanding the links between mangrove primary productivity and the lower 

invertebrate taxa that form the base of mangrove ecosystem food webs (Bouillon et 

al. 2002, Kristensen et al. 2008). However, in South Africa relatively little research 

has focussed on the ecology of mangrove invertebrates, and in particular on their 

role as trophic links within these important ecosystems. One of the goals of this 

research project was therefore to provide new information and insight on these key 
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ecological interactions within mangrove ecosystems that are significantly influenced 

by their occurrence within estuaries.  

1.2 Background: Ecological role of mangrove gastropods and their occurrence within 

the mangroves of the iSimangaliso Wetland Park 

The faunal communities associated with mangrove habitats are not diverse in 

comparison to tropical rocky shores and coral reefs (Alongi 2002), and relatively few 

species are completely restricted to occurring only in these environments (Ellison et 

al. 1999). However, one of the prominent groups that occurs globally throughout 

mangrove forests and adjacent habitats is the gastropod molluscs (Vermeij 1973). 

Gastropods that typically occur in mangrove habitats are classified within three 

superfamily groups: Cerithioidea Férussac, 1819; Ellobioidea Pfeiffer, 1854; and 

Littorinoidea Children, 1834. Of these groups, the cerithioideans are often dominant 

in terms of abundance and biomass (Strong et al. 2011) and thus are considered to 

be key components of the ecological communities in which they occur. These 

gastropods are most commonly represented in mangrove ecosystems by members 

of the family Potamididae H. Adams & A. Adams, 1854 (mudwhelks or mud 

creepers). As the potamidids occur almost exclusively within mangroves, they are 

considered to be specialized inhabitants of these ecosystems (Reid et al. 2008). As 

such, the majority of these species have extensive distributions, often extending 

across entire biogeographical regions where mangrove habitat is established 

(Houbrick 1991, Madeira et al. 2012).  

Within mangrove habitats, potamidid species have complex and variable ecological 

roles. As benthic deposit feeders, most of these species consume a combination of 

algae and detritus and thus form important linkages with both autochthonous and 

allochthonous carbon sources to higher trophic levels (Lee 2008). Species that 

consume mangrove leaf litter directly contribute towards the retention of primary 

production within these ecosystems (Cannicci et al. 2008). Additionally, the 

movement of large gastropods over the soft muddy sediments of mangrove habitats 

has a significant effect on the structure of epipsammic meiofaunal and microbial 

communities (Carlén & Ólafsson 2002). Interactions between mangrove gastropods 

and brachyurans are also diverse. Crabs such as Thalamita crenata Rüppell, 1830; 

Epixanthus dentatus (White, 1848); Eurycarcinus natalensis (Krauss, 1843); and 
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Scylla serrata (Forskål, 1775) all predate opportunistically on mangrove gastropods 

(Dahdouh-Guebas et al. 1999, Thimdee et al. 2001). In contrast, grapsid crabs, such 

as Neosarmatium smithi (H. Milne Edwards, 1853), consume mangrove leaf litter 

actively and aggressively compete with gastropods for these resources (Fratini et al. 

2000). The functional roles of both gastropods and ocypodid crabs of the genus Uca 

Leach, 1814 are also comparable, as both groups are primary consumers of benthic 

microalgae and particulate detritus. The occurrence of potamidids within mangrove 

environments has also been related to the specific reliance of some species on 

mangrove trees for the provision of substrate and shelter (Reid et al. 2008). Certain 

species characteristically migrate up the trees with the incoming tide to escape 

predation (Vannini et al. 2006, Belgrad & Smith 2014), while others actively seek 

shaded areas to avoid desiccation stress (Lasiak & Dye 1986, Wells & Lalli 2003). 

These close associations between potamidids and mangrove ecosystems inform on 

the nature of their closely linked evolutionary histories (Reid et al. 2008). 

Understanding the ecological roles of these gastropods within mangroves can 

therefore provide insight to their importance for ecosystem functioning at larger 

scales. 

Within South African mangroves, there are two prominent cerithioidean gastropods 

from the potamidid family: Terebralia palustris (Linnaeus, 1767), the giant mangrove 

whelk; and Cerithidea decollata (Linnaeus, 1767), the climbing mangrove whelk 

(Figure 1.1 A, B). Terebralia palustris has the most extensive global distribution of all 

mangrove potamidids, as it occurs across the entire Indo-Pacific region (Houbrick 

1991), while the distribution of C. decollata is limited to the West Indian Ocean along 

the eastern coast of Africa (Madeira et al. 2012; Reid 2014). However, both species 

occur at their southern distribution limits along the South African coastline. Although 

mangrove potamidids have seldom been observed spawning (Reid et al. 2008), the 

life cycles of both T. palustris and C. decollata are assumed to include a pelagic 

larval stage that is dispersed by oceanic currents. This is supported by evidence of 

genetic homogeneity between populations at regional biogeographic scales (Madeira 

et al. 2012, Ratsimbazafy 2012). The potential limitation of occurring in estuaries that 

have intermittent connectivity to the marine environment is yet to be elucidated for 

these species. 
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Figure 1.1 Key cerithioidean gastropods that occur within the mangroves of the 

iSimangaliso Wetland Park in KwaZulu-Natal, South Africa: (A) Terebralia palustris 

(Linnaeus, 1767), (B) Cerithidea decollata (Linnaeus, 1767), and (C) Melanoides 

tuberculata (Müller, 1774). Photographs were adapted from Perissinotto et al. (2014) 

and Raw et al. (2014). 

 

Considering their South African distributions, T. palustris and C. decollata were both 

historically recorded in at least six estuarine mangroves along the coast (Macnae 

1963). At present, the distribution of T. palustris has declined and the species has 

only been detected in two mangrove systems on the subtropical east coast (Raw et 

al. 2014). Although there have been no comprehensive recent studies on the 

distribution of C. decollata, this species has been reported to have expanded its 

range into saltmarsh estuaries along the southern temperate coast (Hodgson & 

Dickens 2012). These distribution shifts can be considered as ecological indicators 
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of changes in environmental conditions. The recent assessment of T. palustris has 

found that the range of this species has contracted northwards along the South 

African coastline (Raw et al. 2014). The precise cause of this is not known, but T. 

palustris is sensitive to wastewater input (Cannicci et al. 2009). In contrast, C. 

decollata has been considered a pioneer species that has expanded its range 

southwards in response to temperature increases (Whitfield et al. 2016).  

Ecological research in South Africa has considered both T. palustris and C. decollata 

within broad scale assessments. However, studies focussing on the specific 

ecological role of these species in South African mangroves are lacking. Although 

these species have been extensively studied on a global scale, the South African 

populations are unique representations as they occur at a southern continental limit. 

Furthermore, the restriction to occurring within estuarine areas will relate to potential 

differences in responses to environmental fluctuations and resource availability, as 

these habitats are strongly influenced by seasonal dynamics (Schumann et al. 

1999). To assess some aspects of the ecological roles of key cerithioidean 

gastropods in South African mangroves, this study was carried out in systems within 

the protected area of the iSimangaliso Wetland Park.  

The iSimangaliso Wetland Park was declared as South Africa‟s first UNESCO World 

Heritage Site in 1999, as it protects an expanse of unique coastal habitats, including 

four Ramsar Wetlands of International Importance (Figure 1.2). The Park covers an 

extensive 330 000 ha along 220 km of the KwaZulu-Natal provincial coastline and in 

total encompasses 9% of the entire South African coastline (Department of 

Environmental Affairs and Tourism 2009). The conservation value of this region is 

intricately linked to the diversity of the region, as a consequence of the unique 

geographical features that create mosaics of fluvial, lacustrine, estuarine, high-

energy beach and coastal dune systems (Botha 2015). iSimangaliso falls within the 

subtropical climatic zone of Africa that is characterized by year-round high relative 

humidity and increased rainfall during the austral summer months of September to 

March.  

The mangrove ecosystems within the iSimangaliso Wetland Park each have a 

distinct history relating to their management that must be considered in order to 

understand their current ecological conditions. These mangrove forests are also 
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amongst the most extensive in the country, and have had relatively minimal 

exposure to prolonged detrimental anthropogenic impacts as a result of formal 

protection. This provides a sound platform and important opportunity to carry out 

basic ecological research. 

 

Figure 1.2 Map of the iSimangaliso Wetland Park indicating the major Ramsar 

Wetlands of International Importance (Lake St Lucia, Lake Sibaya, Kosi Lakes). 

Estuaries that support mangrove ecosystems and sites that were sampled in this 

study are also indicated. This figure was adapted from Miranda et al. (2011).  
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The northernmost mangroves in the country are situated within the sheltered 

estuarine bay that forms the connection between the Kosi Bay lake complex 

(26°53‟37‟‟S; 32°52‟52‟‟E) and the Indian Ocean (Figure 1.3). This mangrove forest is 

the most diverse in terms of tree species, as Avicennia marina (Forssk. Vierh), 

Bruguiera gymnorhiza (L.) Lam, Rhizophora mucronata Lam, Lumneritza racemosa 

Willd and Ceriops tagal Perr. C.B. Robinson are all present here. The only 

Xylocarpus granatum König tree within South African borders also occurs within this 

forest. The mangroves at Kosi Bay experienced a large scale mortality event in 

1965, as the result of prolonged inundation following closure of the mouth for a 

period of five months (Breen & Hill 1969). However, subsequent reports indicate that 

the forest has largely recovered since then (Begg 1980, Rajkaran & Adams 2011). At 

present one of the largest impacts on this mangrove forest is the harvesting of trees 

by the local fishermen who use them to build traditional fish traps. These traps are 

placed permanently within the tidal basin of the estuary. Besides the disturbance 

caused by the direct removal of mangrove material from the forest (Rajkaran & 

Adams 2011), the establishment of the fish traps also has a significant effect on 

sedimentation and thus on hydrodynamics and even recruitment of mangrove 

propagules within the tidal basin (Green et al. 2006). As a consequence of the 

relatively low latitude, the macrofauna species that occur within the Kosi Bay 

mangroves most closely resemble the assemblages of warmer tropical regions. Ten 

crustacean and six mollusc species have been previously recorded from this 

mangrove forest (Macnae 1963). Both T. palustris and C. decollata occur at Kosi Bay 

but appear to be spatially partitioned within the mangroves. Terebralia palustris is 

dominant on the lower shore regions and large individuals are targeted at low tide by 

local fishermen for use as bait (Raw et al. 2014). 

Historically, mangroves were also established within the Mgobezeleni Estuary 

(27°32‟10‟‟S; 32°40‟17‟‟E) (Figure 1.1). Macnae (1963) described the mangroves at 

this location as “of great interest” because the B. gymnorhiza trees reached over 18 

m in height. In this report he also commented on the very large size of T. palustris 

that occurred here. Unfortunately, by the time of the survey by Bruton & Appleton 

(1975), the construction of a bridge over the estuary had significantly constricted the 

flow and reduced the tidal connectivity within the estuary. There was a subsequent 

build-up of freshwater that inundated the mangroves, essentially drowning the trees 
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as their aerial roots remained submerged for an extended period of time (Bruton 

1980). The associated mangrove fauna were not able to survive the regime shift to a 

freshwater-dominated ecosystem (Bruton & Appleton 1975). Although the bridge was 

re-constructed to better facilitate tidal connectivity and flow within the estuary, the 

mangrove ecosystem has since not become re-established. Mgobezeleni therefore 

stands as an important reminder of the significant impact of certain anthropogenic 

activities, which influence environmental conditions that are particularly sensitive to 

change.  

 

Figure 1.3 Map of the Kosi Bay estuarine lake complex, with focus on the area 

where mangroves occur at the mouth of the estuary. (Credit: CR Nolte). 
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The southernmost mangroves of the iSimangaliso Wetland Park occur within the 

lower reaches of the St Lucia Estuary (28°22‟55‟‟S; 32°25‟32‟‟E) and the estuarine 

areas of the adjoining Mfolozi River (Figure 1.4). The mangroves within the St Lucia 

Estuary are unique in that they have persisted despite irregular and limited marine 

connectivity for an extended period of time (Hoppe-Speer et al. 2013). This unusual 

and complicated scenario has been the focus of a large amount of scientific research 

over recent decades (Perissinotto et al. 2013b).  

 

Figure 1.4 Map of the St Lucia Estuary and adjoining Mfolozi River. The recently 

established re-connection is shown in the inset and consists of a backchannel as 

well as a beach spillway. This figure was adapted from Peer et al. (2014).  
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Historically, the St Lucia and Mfolozi estuarine systems formed a shared connection 

to the Indian Ocean (Taylor 2013). However, the establishment of sugar cane 

agriculture at the beginning of the 20th century within the Mfolozi floodplain required 

taking extensive measures to prevent flooding and inundation of low-lying farms 

(Whitfield & Taylor 2009). These measures included draining swamp areas and 

excavating canals to divert floodwaters towards the combined mouth for deposition 

into the marine environment. The swamp had until that point provided important 

ecological services by retaining sediment and allowing the flow of filtered fresh water 

into the St Lucia Estuary (Taylor 1993). The rate of sedimentation in the combined St 

Lucia/Mfolozi mouth became a cause for concern in the 1940s and this was further 

exacerbated by the effects of a drought in the 1950s which resulted in the 

development of a berm that prevented connectivity with the ocean (Whitfield & Taylor 

2009). As low-lying farms were threatened with inundation by backed-up water in the 

Mfolozi River and connectivity to the ocean was seen as a necessity to maintain 

ecological functioning of the estuary, the decision was made to excavate a canal to 

allow the outflow of water to the sea (Kriel 1966). The mouths of the Mfolozi River 

and St Lucia Estuary were thus artificially separated (Whitfield & Taylor 2009). In the 

absence of the Mfolozi linkage, St Lucia became deprived of the single most 

important source of freshwater and this had a significant effect on the health of the 

system, particularly during periods of drought (Whitfield et al. 2013). A series of re-

linkages with the Mfolozi were therefore established in a precautious manner that 

would allow freshwater inflow without excessive deposition of sediment into the St 

Lucia Estuary (Whitfield & Taylor 2009, Taylor 2013). At present the systems are 

managed with a priority to prevent further deterioration and maintain ecological 

functioning.  

Recent research suggests that the health of the mangroves varies spatially within the 

lower reaches of the St Lucia Estuary and is dependent on a number of 

environmental variables (Adams & Human 2016). Presently the largest driver of 

ecological change in the St Lucia Estuary is the tentative connection with the Mfolozi 

River (Whitfield et al. 2013). The effects of this connection on the diversity and 

ecological structure of different invertebrate groups, including zooplankton, 

brachyurans and gastropods, have also been documented (Peer et al. 2014, 

Perissinotto et al. 2014, Carrasco & Perissinotto 2015). Interestingly, T. palustris has 
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not previously been recorded within the St Lucia/Mfolozi mangroves, despite 

historical and recent occurrence records from mangroves further to the south 

(Macnae 1963, Raw et al. 2014). In contrast, C. decollata has persisted in St Lucia, 

even through the drastic ecological changes that have occurred during recent 

decades (Perissinotto et al. 2014). A third cerithioidean gastropod, Melanoides 

tuberculata (Müller, 1774) (Figure 1.1 C), also occurs within the mangroves at St 

Lucia. This is a typically freshwater species from the family Thiaridae Gill, 1871 that 

has some tolerance for salinity and is therefore able to inhabit a wide variety of 

freshwater and brackish aquatic environments including wetlands, streams, rivers, 

lakes and pans (Appleton 1996, Brown 1994). This species has an extensive native 

distribution that includes East Africa, the Middle East and Southeast Asia (Facon et 

al. 2003). Although M. tuberculata is not a characteristic mangrove species, the 

unique non-tidal conditions within St Lucia have allowed these snails to establish 

dense populations in mangrove areas that are adjacent to freshwater seepage zones 

(Perissinotto et al. 2014). The ecological significance of M. tuberculata within a 

mangrove environment was considered as an important component of this research 

project as this species has been introduced to many locations in the New World, 

where it has subsequently become invasive (Facon et al. 2003). The opportunistic 

occurrence of M. tuberculata in a mangrove habitat provided an interesting 

opportunity to determine the nature of ecological interactions, including the 

partitioning of resources and potential niche overlap, between this species and 

typical mangrove gastropods. 

1.3 Key research questions, objectives and thesis structure 

The sustainable management of threatened habitats such as mangroves is most 

effectively achieved through ecosystem-based management built on information 

provided by economics as well as ecological and social sciences (Christensen et al. 

1996, Slocombe 1998). Ecological research that informs ecosystem-based 

management must however be carried out at different temporal and spatial scales, 

as different processes at each level of organization are strongly linked (Levin 1992, 

Leslie & McLeod 2007). For instance, processes that determine ecosystem-scale 

factors such as ecological functioning and stability are informed by studies carried 

out at the community level (Massol et al. 2011). These include biodiversity 

assessments and studies that elucidate the dynamics and structure of the ecological 
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community (Tilman 1999, Loreau et al. 2001, Hooper et al. 2005). These ecological 

aspects are in turn based on information gained from basic ecological studies 

conducted at the levels of species and individuals (Violle et al. 2012). Research that 

is focussed on the interactions among species, as well as between species and their 

environment, is therefore critical for understanding larger scale implications, 

including the ecological role of each species within the ecosystem (DeAngelis & 

Mooij 2005). This research project provides new information on ecological aspects at 

the levels of species and individuals to inform on patterns and processes at larger 

scales. Three ecological aspects for mangrove gastropods, which were then 

formulated into the primary key research questions, were considered in this research 

project and are indicated in Figure 1.5. The ecological aspects that were considered 

were related to the ecological roles of mangrove gastropods and their resilience in 

these ecosystems.  

First, the role of mangrove gastropods as trophic links to different sources of primary 

carbon was investigated. The contribution of carbon derived from different primary 

sources to estuarine and marine food webs associated with mangroves has been 

continuously revised and debated. Although mangrove trees are considered to be 

productive (Komiyama et al. 2008), their direct contribution to the trophic web has 

been considered to be minimal (Connolly et al. 2005). Instead, research has shown 

that there is a significant contribution of carbon from imported (allochthonous) 

sources (Bouillon et al. 2002). However, as South African mangroves are limited to 

occur in estuaries that may have restricted connectivity to the marine environment, 

allochthonous sources may not be readily available. This led to the formulation of the 

second research question which was related to resource utilization rates by the 

dominant mangrove gastropods in each of the two estuarine mangrove ecosystems 

that were considered in this study. The productivity of benthic microalgal 

assemblages in mangrove environments has generally been considered to be quite 

minimal, as mangrove sediments are unfavourable for their growth (Alongi 1994). 

This is largely attributed to the high particulate content and small grain size of the 

sediment, the high tannin content and the shading provided by the canopy of the 

mangrove trees (Alongi & Sasekumar 1992, Cahoon et al. 1999). However, when 

benthic microalgae do establish under certain conditions, they become a nutritious 

food source to benthic invertebrates within the mangroves (Newell et al. 1995, 
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Bouillon et al. 2004a). The role of mangrove gastropods in exerting top-down control 

of benthic primary productivity was therefore investigated. The third ecological 

aspect that was considered in this research project is related to resilience of 

mangrove gastropod species in response to ecosystem changes. Mangroves are 

considered to be stable and resilient habitats (Alongi 2002), however the resilience 

of the fauna associated with mangroves also needs to be investigated. Although the 

mangrove trees that are established in estuaries may be able to withstand certain 

environmental fluctuations associated with threats to estuaries, including changes in 

mouth dynamics and flow regimes, the effects of these factors on the mangrove 

fauna are less clear. Changes to population parameters over time were therefore 

assessed for a key mangrove species, in relation to annual environmental 

fluctuations related to both natural and anthropogenic impacts. 

The key research questions, and the corresponding aims and objectives, of this 

project can thus be formulated as: 

1. Do gastropods within estuarine mangroves represent trophic links to both 

autochthonous and allochthonous sources? 

AIM: To determine the contribution of different primary sources to the diets of key 

gastropods from different estuarine mangrove ecosystems. 

OBJECTIVES: 

A stable isotope approach was used to determine the contribution of different 

sources to the diets of key gastropod species within estuarine mangroves. At Kosi 

Bay, as T. palustris dominates the benthos, the diet of this species was compared 

between different size classes in both the wet and dry seasons (CH 2). As M. 

tuberculata only occurs opportunistically within the mangroves at St Lucia, the diet of 

this population was compared to those of other populations from different aquatic 

environments (CH 3). The diets of M. tuberculata and C. decollata were also 

compared (CH 3) 
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2. Do gastropods in estuarine mangroves have a significant grazing impact on 

available benthic microalgal sources? 

AIM: To determine the role of dominant mangrove gastropods in exerting top-down 

control on benthic primary productivity in estuarine mangrove environments 

OBJECTIVES: 

An experimental approach was used to determine the feeding dynamics (ingestion 

rate, consumption/digestion efficiency, grazing impact) of dominant mangrove 

gastropod species. At Kosi Bay, the feeding dynamics were assessed and compared 

for juvenile T. palustris through a daily and tidal cycle in different rainfall seasons 

(CH 4). At St Lucia, the feeding dynamics were assessed for M. tuberculata in the 

mangroves and compared with those from populations in other aquatic environments 

in which this species typically occurs (CH 5). 

 

3. What is the relationship between large-scale environmental fluctuations and 

the occurrence of a resilient mangrove gastropod species? 

AIM: To determine which environmental factors influence the occurrence and 

abundance of a resilient mangrove gastropod.  

OBJECTIVES: 

Cerithidea decollata has been able to persist in the St Lucia Estuary despite long-

term changes in environmental conditions as a result of different management 

practices that have attempted to maintain ecological functioning of the estuary. The 

effects of environmental fluctuations on the abundance of C. decollata were 

assessed in the St Lucia Estuary (CH 6) using a mixed-effects modelling approach. 
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Figure 1.5 Schematic diagram outlining the relationship between the species-level 

research of this project and larger scale ecological attributes that are used to inform 

on the ecological science component of ecosystem-based management. 
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Chapter 2: Diet of Terebralia palustris at Kosi Bay 

 

Raw JL, Perissinotto R, Bird MS, Miranda NAF, Peer N (In review) Variable niche size of the 

giant mangrove whelk, Terebralia palustris (Linnaeus, 1767) in a subtropical estuarine lake. 

Hydrobiologia 

 

2.1 Introduction 

A key paradigm of modern mangrove research is the high degree of internal 

recycling of mangrove-derived carbon (Alongi 2009b; Lee et al. 2014). This is an 

important indicator of ecosystem functioning, as it is a biologically-driven process 

relying on both macrofauna to mechanically break down the leaf litter, as well as 

microbial activities to enrich the organic content of the sediment by the break-down 

of detritus (Alongi 2009b). Species that consume mangrove leaf litter are therefore 

considered to be integral components of mangrove ecosystems (Lee et al. 2014), 

and are often used as bioindicators in assessments of mangrove health following 

restoration or rehabilitation efforts (Pagliosa et al. 2016). Initially, brachyurans were 

largely accredited as the primary consumers of mangrove leaf litter (Lee 1998), but 

the role of gastropods has also been increasingly recognized (Bouillon et al. 2004b; 

Cannicci et al. 2008). Detritivores and deposit-feeders are considered to be 

functionally redundant (Levin et al. 2001), and these taxa can support ecosystem 

stability through efficient resource partitioning when biodiversity is high (Balvanera et 

al. 2006; Finke & Snyder 2008). As ecological theory predicts that niches are 

conserved through evolutionary time to retain ecological function (Pearman et al. 

2008; Wiens et al. 2010), mangrove ecosystems provide an opportunity to 

investigate aspects of the ecological niche as many co-occurring species have 

similar functional roles. 

The ecological niche is generally identified within a resource utilization framework 

(Pianka 1976) and this can be quantitatively assessed using stable isotopes 

(Bearhop et al. 2004; Newsome et al. 2007; Turner et al. 2010). The conservation of 

isotopic ratios of δ13C through the food web, and the predictable shifts in δ15N with 

each trophic level (DeNiro & Epstein 1978, 1981; Vanderklift & Ponsard 2003) allow 
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for trophic structures to be identified (Peterson & Fry 1987; Middelburg 2014). Stable 

isotope studies have been particularly useful for investigating trophic linkages and 

determining the contribution of mangrove-derived carbon to higher trophic levels 

(Newell et al. 1995; Bouillon et al. 2002; Hsieh et al. 2002). However, recent work 

has highlighted the importance of determining accurate enrichment factors for 

mangrove invertebrates, or the degree to which the isotopes are fractionated by 

metabolic processes (Herbon & Nordhaus 2013; Bui & Lee 2014). In their 

experimental study, Bui & Lee (2014) found that enrichment factors for detritivorous 

crabs are significantly different from those commonly applied in the literature and 

that using their refined enrichment values produced a model that supported 

observations of Parasesarma erythodactyla consuming large quantities of mangrove-

derived detritus. As enrichment factors are variable between species depending on 

their trophic level, feeding mode and excretory system (McCutchan et al. 2003), 

developing a reliable mixing model requires careful consideration of many factors 

and can otherwise result in a model that is either not informative or difficult to 

interpret (Phillips et al. 2014). 

An alternative and recommended approach is to assess trophic dynamics using a 

quantitative measure of isotopic niche space (Bearhop et al. 2004; Layman et al. 

2007). This allows direct conceptualization of the ecological niche as defined by the 

variability of the δ13C and δ15N signatures for the consumer in question (Jackson et 

al. 2011). The size and overlap of the isotopic niches for different consumers can 

also be statistically compared, thus allowing for inferences relating to dietary overlap, 

resource partitioning and competitive interactions. Spatial and temporal comparisons 

of the isotopic niche for a specific consumer can also provide information regarding 

changes in resource availability (Newsome et al. 2007). This is particularly useful for 

assessing trophic linkages in ecosystems, such as estuaries, that are dynamic and 

experience fluctuations in resource availability as a result of physical and biological 

processes (Flint & Kalke 1986; Yang et al. 2008). Changes or shifts to the isotopic 

niches of species that have integral ecological roles relate to larger scale studies that 

aim to assess community-level dynamics or factors that influence ecosystem 

functioning.  

In this study we assessed the isotopic niche for the giant mangrove whelk Terebralia 

palustris (Linnaeus, 1767), a key consumer of mangrove leaf litter within these 
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habitats across the Indo-Pacific region (Houbrick 1991). Previous work in Kenya has 

shown that adult T. palustris consume significant quantities of leaf litter (Slim et al. 

1997; Fratini et al. 2004), while juveniles consume detritus and benthic microalgae 

(Fratini et al. 2004; Pape et al. 2008). This corresponds with their spatial distribution 

across the shore, as juveniles generally occur on the seaward edge, while larger 

snails are found beneath the canopy (Pape et al. 2008; Penha-Lopes et al. 2009; 

Raw et al. 2014). The ecological role of this species is therefore variable through 

ontogeny, and partitioning of resources is maintained even if there is no spatial 

segregation between different sized snails within the mangroves (Fratini et al. 2004).  

Using a stable isotope approach, Penha-Lopes et al. (2009) found that adult T. 

palustris at Inhaca Island, Mozambique, incorporated sources besides mangrove leaf 

litter into their diets. As mangrove leaf litter is nutritionally poor (Bosire et al. 2005), 

many invertebrates that consume this source supplement their diets with alternative 

sources (Bouillon et al. 2002). Therefore, the aim of this study was to quantify the 

size and variation of the isotopic niche of T. palustris to provide a measurable 

estimate of how this species contributes towards recycling of mangrove leaf litter in a 

subtropical estuarine ecosystem. A stable isotope approach was used to quantify 

isotopic niche shifts of T. palustris in a subtropical estuarine mangrove forest on the 

east coast of South Africa. As this region experiences a seasonal rainfall regime, it 

was possible to make temporal comparisons of the isotopic niche of T. palustris in 

response to resource quality and availability. The results of this study therefore 

provide important information regarding the variability of the dietary niche of a 

species with a key ecological role within a threatened ecosystem. Furthermore, the 

information gained from baseline studies such as this will be valuable for future 

assessments of responses to contemporary global change. 
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2.2 Materials and Methods 

 2.2.1 Site description 

Globally, the southern distribution limit for Terebralia palustris is along the east coast 

of South Africa (Houbrick 1991). A survey by Raw et al. (2014) found that although 

T. palustris has declined in this region, a healthy population still persists at the 

mangroves of Kosi Bay (26°53‟37‟‟S; 32°52‟52‟‟E) (Figure 1.3), which is within the 

iSimangaliso Wetland Park, a UNESCO World Heritage Site. The mangrove trees at 

Kosi Bay are characteristically stunted (Rajkaran & Adams 2011) as the absence of 

fine organic deposits and low mud content are suboptimal for the establishment of 

large trees (Begg 1980; Wright et al. 1997). Samples for stable isotope analysis were 

collected from an area of the mangrove forest on the south shore of the embayment 

formed at the mouth of the estuary. This area was dominated by Avicennia marina, 

Bruguiera gymnorhiza, and Rhizophora mucronata trees. 

Within this subtropical region there are two climatic seasons that are characterized 

by differences in rainfall. Samples were collected in November 2013 (early summer, 

wet season) and in July 2014 (mid-winter, dry season). The South African coastline 

has a limited tidal range and is classified as microtidal, as the spring tides range 

between 1.8 and 2.0 m (Cooper 2000; Harris et al. 2011). Both sampling excursions 

(in November and July) took place on a morning spring low tide. A YSI 6600 

multiprobe system was used to measure the physical and chemical properties 

(temperature, salinity, dissolved oxygen and pH) of water samples (collected in 

triplicate) from a shallow channel at the sampling site. 

 2.2.2 Sample collection and processing 

For stable isotope analysis, samples were collected for T. palustris as well as any 

potential food sources which were present at the time of sampling. Previous 

assessments on the spatial distribution of T. palustris at Kosi Bay have shown that 

the highest average (± SD) density of snails (97.7 ± 57.1 ind.m-2) occurs in the lower 

shore region and that this zone is dominated by juveniles, as the average (± SD) 

shell height is 27.3 ± 10.2 mm (Raw et al. 2014). Fewer individuals (17.8 ± 8.7 ind.m-

2) of a much larger average size (53.5 ± 20.7 mm) occur in the high shore region 

beneath the canopy (Raw et al. 2014). There is clear evidence for spatial 
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segregation of T. palustris at this site. Therefore, to investigate ontogenetic dietary 

shifts in T. palustris, the gut contents and isotopic signatures of three size classes 

were compared (< 30 mm, 30 – 60 mm, > 60 mm). The size at maturity for T. 

palustris depends on a number of factors but is usually reported at around 50 mm 

(Houbrick 1991). 

Potential food sources that were collected included epiphytic macroalgae that were 

attached to mangrove pneumatophores – termed the bostrychietum community 

(Steinke et al. 2003), microphytobenthos (MPB), fresh and newly fallen mangrove 

leaves, pneumatophores, detritus, sedimentary organic matter (SOM) and particulate 

organic matter (POM). Fresh mangrove leaves (green) as well as newly fallen leaves 

(orange) were collected from B. gymnorhiza, and R. mucronata trees in the sampling 

area. Initial comparisons of the isotopic compositions of these leaves were however 

found to be indistinguishable. As Fratini et al. (2008) have shown that T. palustris 

does not show a strong selective feeding preference between B. gymnorhiza and R. 

mucronata, subsequent samples were later homogenized into representatives of 

“fresh” and “fallen” leaves.  

Macroalgae were collected depending on their occurrence. Detritus was composed 

of decayed macrophyte material. MPB was collected by scraping the upper 1 cm of 

sediment and re-suspending it in filtered estuarine water (Whatman GF/F, 0.7 µm 

pore size). The sediment settled to the bottom while the MPB in suspension was 

filtered onto pre-combusted (450 °C, 6 h) filters (Whatman GF/F 0.7 µm pore size). 

POM was collected in a similar manner by filtering estuarine water onto pre-

combusted filters. SOM was collected using a 20 mm diameter corer. The upper 1 

cm of the core was discarded (as this fraction would contain MPB) and the 

remainder was retained as the sample. MPB, POM and SOM were collected in 

triplicate on each sampling occasion. All samples were frozen after collection until 

laboratory processing. 

In the laboratory, gastropods were examined under a dissecting microscope (40× 

magnification). Recent feeding preferences were assessed by identifying different 

constituents within the gut contents of individual snails and classifying them based 

on gross morphology as “Algae”, “Detritus”, “Filament”, or “Sediment” (Alfaro 2008; 

Miranda & Perissinotto 2012). Muscle tissue was excised from the foot of individual 
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gastropods and treated for lipids that may have been retained from the skin using a 

2:1:0.8 solution of methanol: chloroform: distilled water (Bligh & Dyer 1959). 

Generally, lipids are removed as they can significantly influence the isotopic 

signature of the consumer in question (Logan et al. 2008; Tarroux et al. 2010). In the 

case of the gastropod tissue, lipids would be expected to occur at a higher density in 

the skin, which was removed by dissection. The treatment for lipids was therefore 

precautionary and preliminary results indicated that it did not significantly influence 

the isotopic signatures of the excised muscle tissue. This has previously been 

reported for aquatic consumers (Ingram et al. 2007). 

The mangrove leaves and macroalgae samples were thoroughly rinsed in distilled 

water to remove residual sediment and visible epifauna. The filters for MPB and 

POM as well as the SOM cores and the detritus samples were all treated with 2 % 

HCl until all bubbling had ceased, an indication that biogenic carbon in the form of 

calcium carbonate (CaCO3) was completely removed. All samples for stable isotope 

analysis were subsequently dried in an air-circulated oven at 60 °C for at least 48 h. 

After drying, the samples were prepared for stable isotope analysis following 

standard protocols. Each dried tissue sample was ground into a homogenous 

powder using a mortar and pestle which was sterilized between subsequent samples 

with 70 % ethanol. The samples were weighed (~ 0.5 mg for animal tissue and ~ 1.0 

mg for plant, algal and detrital matter) and packaged into 5 x 9 mm tin capsules 

(SÄNTIS Analytical AG, Switzerland). Gastropod tissue from up to 5 individuals was 

pooled only in cases where individual snails were too small to contribute enough 

muscle tissue for the stable isotope samples to be successfully analysed. SOM 

samples were homogenized and packaged into Eppendorf microcentrifuge tubes. 

Five replicates were processed for each gastropod size class and each source item 

in each season.  

 2.2.3 Stable isotope analysis 

Samples were analyzed by the Environmental Isotope Laboratory at iThemba 

Laboratories in Pretoria, South Africa. The stable isotope analyses were carried out 

using a Flash HT Plus elemental analyzer coupled to a Delta V Advantage isotope 

ratio mass spectrometer by a ConFloIV interface (ThermoFisher, Bremen, 

Germany).  
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The isotopic ratios are expressed using the standard delta notation (δ) as the relative 

per mil (‰) difference between samples and the international standards of Vienna 

PeeDee Belemnite for carbon and atmospheric N2 for nitrogen. The ratio is therefore 

defined as: 

𝛿 𝑋 =    
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 −  1  × 1000 

where X is 13C or 15N and R is the corresponding ratio of 13C/12C or 15N/14N 

respectively. Merck Gel was used as the in-house standard (δ13C = -20.57 ‰; δ15N = 

+6.80 ‰). 

 2.2.4 Data analysis 

The δ13C signatures of the potential food sources were compared for each season 

using separate Kruskal-Wallis rank sum tests as the data were found to be non-

parametric. Nemenyi post hoc tests with Tukey distribution were used for 

subsequent pair-wise comparisons. This indicated whether primary sources could be 

distinguished based on their δ13C signatures. Univariate parametric assumptions and 

the non-parametric tests were run using the packages “car” (Fox & Weisberg 2014) 

and “PMCMR” (Pohlert 2014) in R v 3.2.5 for Windows (R Development Core Team 

2016). 

Seasonal and ontogenetic differences in the δ13C and δ15N for T. palustris individuals 

were compared using a two-way non-parametric permutational MANOVA 

(PERMANOVA, Anderson 2001). The δ13C and δ15N data were first normalized and 

then combined into a multivariate resemblance matrix (Euclidean distance measure). 

Differences between size classes (fixed factor, three levels: large, > 60 mm; medium, 

30-60 mm; and small, < 30 mm) and between the sampling occasions (fixed factor, 

two levels: November and July), were tested using 999 permutations of the residuals 

under a reduced model. The PERMANOVA+ add-on (Anderson et al. 2008) to 

PRIMER v6 software (Clarke & Warwick 2001; Clarke & Gorley 2006) was used to 

carry out these multivariate analyses. 

To further explore differences in the feeding niche of T. palustris individuals of 

different sizes, and between sampling occasions, the Stable Isotope Bayesian 

Ellipses in R (SIBER, Jackson et al. 2011) model was used. The Bayesian Inference 
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method allows the error associated with fitting ellipses to each group to be calculated 

using the number of samples as well as their distribution. Thus, the standard ellipse 

area (SEA) for a set of bivariate data (in this case δ13C and δ15N isotope space) is 

calculated using a MCMC algorithm to generate a distribution of covariance matrices 

that describe the observed data in terms of likelihood. The SEA contains 

approximately 40% of the data (Jackson et al. 2011), hence revealing the core niche 

area that is largely insensitive to sample size fluctuations and extreme values. SEA 

is then corrected (SEAC) to minimize bias caused by small sample sizes (Jackson et 

al. 2011) using the equation: 

𝑆𝐸𝐴𝑐 = 𝑆𝐸𝐴 ∗  
 𝑛 − 1 

 𝑛 − 2 
  

Ellipse areas were subsequently compared using pair-wise tests that calculated the 

probability that the posterior distribution of one group (Group 1 = large snails; Group 

2 = medium snails; Group 3 = small snails) is larger than that of another. This 

allowed significant differences in niche sizes among size classes to be inferred. 

The stable isotope niche model was run using the package “SIBER” developed by 

Jackson et al. (2011) for R v 3.2.5 for Windows (R Development Core Team 2016).  
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2.3 Results 

 2.3.1 Habitat characteristics 

There were some differences between the sampling occasions for the physical and 

chemical properties measured at the shallow water channel near the sampling site 

(Table 2.1). Most notably, higher temperature and lower salinity were recorded in 

November. 

 

Table 2.1 Differences in environmental conditions at Kosi Bay, as indicated by the 

mean (± SD) estimates for physical and chemical variables measured from the water 

column in November 2013 and July 2014. The mean (± SD) shell heights of 

Terebralia palustris from different size classes that were collected for stable isotope 

analyses are also presented. 

Environmental Parameter November July 

Temperature (° C) 32.9 ± 0.3 24.5± 0.2 

Salinity 23.6± 0.6 35.2 ± 0.1 

Dissolved O2 (mg/L) 8.8± 1.3 9.9 ± 0.6 

pH 8.2± 0.4 8.7± 0.03 

Terebralia palustris size classes   

> 60 mm 69.4 ± 8.9 84.3 ± 4.7 

30 – 60 mm 44.0 ± 7.3 47.9 ± 3.7 

< 30 mm 21.3 ± 3.6 25.7 ± 2.8 

 

Regarding T. palustris, the same size classes (< 30 mm, 30 – 60 mm, > 60 mm) 

were targeted for collection on both sampling occasions. However, snails collected in 

the July were slightly larger on average, particularly those that measured > 60 mm. 

This might have been a consequence of reduced harvesting pressure of the largest 

individuals by local fishermen for use as bait in the cooler winter season. This was 

not expected to influence the stable isotope signatures, as the dietary transition in 

this species occurs at around 50 mm (Houbrick 1991). 
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 2.3.2 Gut content analyses 

Gut content varied between snails of different size classes, but appeared to be 

relatively similar between sampling occasions (Figure 2.1). Distinct pieces of orange 

leaf material were only found in the gut contents of snails > 30 mm. Filamentous 

algae also occurred less frequently within the gut contents of snails < 30 mm. 

Sediment and detrital matter was present within the gut contents of most individuals, 

irrespective of size. The fresh algal material within the gut contents could not be 

clearly identified as either microalgae (MPB) or fragments of macroalgae and was 

therefore grouped together. This source was mostly present within the guts of 

smaller individuals.  

 

Figure 2.1 Percentage occurrence of items within the gut contents of Terebralia 

palustris individuals (n = 15 for each size class) collected for stable isotope analyses 

in the November 2013 (A) and July 2014 (B) at Kosi Bay. Gut contents were 

categorized based on gross morphology. 
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 2.3.3 Seasonal variation in source signatures 

Source signatures for δ13C were significantly different in both November (Kruskal 

Wallis χ2 = 22.493, df = 7, p = 0.0021) and July (Kruskal Wallis χ2 = 25.714, df = 8, p 

= 0.0012). On both sampling occasions the available sources were generally 15N-

depleted (Figure 2.2, Table 2.2). In November, the mean (± SD) δ13C signatures for 

sources ranged from -30.32 ± 0.04 ‰ for fresh mangrove leaves to -12.66 ± 0.09 ‰ 

for Cladophora sp. In July, Cladophora sp. was the most enriched inδ13C (-16.16 ± 

0.44 ‰), while orange mangrove leaves were most depleted (-27.98 ± 0.04 ‰). 

 

 

Figure 2.2 Biplot of the mean (± SD) δ15N and δ13C signatures of Terebralia palustris 

and the available food items at Kosi Bay in November 2013 (A) and July 2014(B) (n 

= 5 for each potential food source and each snail size class). 

 



 
 

 

 

Table 2.2 Mean (± SD) δ15N and δ13C signatures of Terebralia palustris and the available food items at Kosi Bay in November 2013 

and July 2014. The mean (± SD) C:N ratio is also provided. 

Sources 
November 2013 July 2014 

δ15N (‰) δ13C (‰) C:N δ15N (‰) δ13C (‰) C:N 

Cladophora sp. -0.930 ± 0.12 -12.66 ± 0.09 7.88 ± 0.08 4.50 ± 0.55 -16.16 ± 0.44 24.52 ± 2.35 

Epiphytic rhodophyta - - - 4.76 ± 1.45 -20.58 ± 0.01 68.55 ± 4.35 

Detritus 0.766 ± 0.61 -28.05 ± 0.17 66.78 ± 2.95 -4.72 ± 1.21 -27.65 ± 0.04 40.51 ± 2.69 

Fresh mangrove leaves 0.742 ± 0.12 -30.32 ± 0.04 26.41 ± 0.36 -2.72 ± 0.44 -27.33 ± 0.05 69.08 ± 2.85 

Fallen mangrove leaves -0.707 ± 0.15 -28.24 ± 0.02 59.34 ± 0.91 -9.44 ± 1.38 -27.98 ± 0.04 201.66 ± 4.50 

Pneumatophore -0.747 ± 0.57 -26.44 ± 0.06 34.92 ± 1.25 -0.09 ± 0.54 -27.87 ± 0.03 93.89 ± 0.01 

MPB -0.106 ± 0.72 -23.75 ± 1.50 11.75 ± 0.31 5.80 ± 0.86 -23.67 ± 0.03 17.11 ± 1.24 

SOM -0.241 ± 0.62 -25.50 ± 0.24 13.75 ± 0.79 0.72 ± 0.55 -22.60 ± 0.13 28.78 ± 2.23 

POM 0.579 ± 0.12 -19.91 ± 0.01 9.16 ± 0.03 1.24 ± 0.15 -20.87 ± 0.09 18.48 ± 3.50 

Terebralia palustris       

> 60 mm 1.41 ± 0.07 -22.55 ± 0.38 3.62 ± 0.04 1.70 ± 0.20 -17.68 ± 0.37 5.26 ± 0.36 

30 – 60 mm 2.09 ± 0.11 -20.51 ± 0.15 3.57 ± 0.01 1.53 ± 0.33 -18.11 ± 0.10 4.45 ± 0.05 

< 30 mm 2.82 ± 0.05 -18.44 ± 0.05 3.60 ± 0.01 1.78 ± 0.17 -17.06 ± 0.05 4.48 ± 0.02 
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 2.3.4 Isotopic signatures for Terebralia palustris and estimates of niche width 

The isotopic composition of T. palustris individuals varied between sampling 

occasions and amongst size classes (Table 2.2, Table 2.3, Figure 2.2). The highly 

significant interaction between these two factors indicates that differences were not 

consistent across the sampling occasions. This is evident in the pair-wise tests which 

showed that isotopic composition was significantly different among all size classes in 

November, but in July there was only a significant difference between the medium 

(30-60 mm) and small (< 30 mm) size classes (Table 2.3). 

 

Table 2.3 PERMANOVA comparisons for muscle tissue isotopic composition of 

Terebralia palustris individuals from different size classes collected in November 

2013 and July 2014 at Kosi Bay. Pair-wise comparisons for each size class in each 

season are also provided.  

PERMANOVA df SS MS F p 

Sampling occasion 1 22.330 22.330 154.170 0.001 

Size 2 18.912 9.456 65.287 0.001 

Sampling occasion× Size 2 13.283 6.642 45.856 0.001 

Residual 24 3.476 0.144 - - 

Total 29 58 - - - 

PAIR-WISE COMPARISONS  November 2013 July 2014 

(> 60 mm) vs (30-60 mm)  t = 11.175, p = 0.012* t = 1.136, p = 0.249 

(> 60 mm) vs (< 30 mm)  t = 29.798, p = 0.011* t = 1.407, p = 0.236 

(30-60 mm) vs (< 30 mm)  t = 15.521, p = 0.008* t = 2.191, p = 0.003* 
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Figure 2.3 shows the bivariate isotope-space for different size classes of T. palustris 

in both November and July. Pair-wise tests indicated that the ellipse for large snails 

(> 60 mm) was larger than the ellipse for medium-sized snails (30 – 60 mm) in 

November as well as in July (Table 2.4). Similarly, on both sampling occasions the 

ellipses for medium-sized snails were larger than the ellipses for small (< 30 mm) 

snails (Figure 2.3, Table 2.4). 

 

Figure 2.3 Variation in δ15N and δ13C for different size classes of Terebralia palustris 

(> 60 mm = red, 30-60 mm = blue, < 30 mm = magenta) in November 2013 (A) and 

July 2014 (B), a focus on the converged ellipses for July is also provided (C). 

Standard ellipses were based on maximum likelihood estimates and were corrected 

for small sample sizes. The convex hulls (dotted lines) are also included. 
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In November, the ellipses for each size class were clearly separated in isotope-

space (Figure 2.3). Although there was a convergence of the ellipses in isotope-

space in July (Figure 2.3B), there was still no overlap between the ellipses for 

different size classes of T. palustris (Figure 2.3C). 

 

Table 2.4 Pair-wise comparisons of posterior distributions for the ellipses that 

illustrate the isotopic niches of large (> 60 mm), medium (30 – 60 mm) and small (< 

30 mm) Terebralia palustris (Groups 1, 2, and 3 respectively) in November 2013 and 

July 2014 at Kosi Bay. 

PAIR-WISE COMPARISONS  Wet Dry 

Group 1 Ellipse > Group 2 Ellipse  probability = 0.751 probability = 0.931 

Group 1 Ellipse > Group 3 Ellipse  probability = 0.999 probability = 0.999 

Group 2 Ellipse > Group 3 Ellipse  probability = 0.998 probability = 0.959 
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2.4 Discussion 

Terebralia palustris is widely recognized as an integral component of Indo-Pacific 

mangroves because its consumption of leaf litter contributes significantly towards 

recycling within these ecosystems (Fratini et al. 2004; Cannicci et al. 2008). Previous 

research has described the diet of T. palustris in mangrove habitats in relation to the 

size of the snails, as well as their spatial distribution across the shore (Slim et al. 

1997; Penha-Lopes et al. 2009). However, this is the first study to report on the size 

and associated variability of the dietary niche for this species. The results of this 

study indicate that changes in nutritional quality of available resources have a 

significant impact on the dietary niche size of T. palustris. This may be an important 

factor determining the persistence of this species in subtropical estuarine mangroves 

that are characterized by seasonal regime shifts.  

 2.4.1 Ontogenetic shifts in diet in relation to spatial resource availability and 

partitioning 

Ontogenetic niche shifts occur in many species (Werner & Gilliam 1984) and have 

been reported to drive the dynamics and structure of populations, communities and 

ecosystems (Polis & Strong 1996; Claessen et al. 2002). These shifts are 

characterized by a change in diet, habitat range, or a combination of the two (Werner 

& Gilliam 1984). The ontogenetic dietary shift in T. palustris has been well 

documented, as it is distinguished by a morphological change to the structure of the 

radula as individuals mature (Houbrick 1991). This change in radula structure is 

related to the general spatial distribution of T. palustris in the mangroves as larger 

snails consume mangrove leaf litter when they occur in higher shore regions beneath 

the canopy (Houbrick 1991). Isotopic signatures for T. palustris have been previously 

reported by Slim et al. (1997) who found a significant difference in the δ13C 

signatures of juvenile and adult snails in Kenya. Furthermore, Penha-Lopes et al. 

(2009) compared both δ13C and δ15N signatures for T. palustris of different sizes at 

Inhaca Island, Mozambique, as a function of their occurrence across the shore and 

thus in relation to microhabitat and potential resource availability.  

Quantitative measures to identify shifts in niche width, niche position and niche 

overlap using stable isotope data have been recently recommended 
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(Hammerschlag-Peyer et al. 2011). The application of a hypothesis-testing 

framework, using both univariate and multivariate statistical approaches to analyze 

the stable isotope data, provides information that is more valuable than simple 

qualitative observations or inferring shifts based on correlations of isotopic 

signatures with body size (Hammerschlag-Peyer et al. 2011). In this study we found 

clear support for an ontogenetic niche shift in T. palustris at Kosi Bay, South Africa, 

using both qualitative and quantitative approaches. First, based on the observed 

spatial segregation of different sized individuals, we hypothesized that an 

ontogenetic dietary shift did occur for this population. Second, we found differences 

in the gut contents of snails from different size classes. Furthermore, isotopic 

signatures were significantly different between size classes, and were similar to 

those reported by Penha-Lopes et al. (2009). Third, the application of the Bayesian 

ellipse model to the isotope data allowed a direct assessment of isotopic niche size 

that can be used to quantitatively infer an ontogenetic dietary shift. 

The differences in the isotopic niche sizes, as indicated by the ellipses, provide some 

important insight regarding resource partitioning between the size classes of T. 

palustris. In both seasons, the small individuals (< 30 mm) had the smallest isotopic 

niche, indicating consumption of relatively fewer sources in comparison to the large 

individuals (> 60 mm). This was reflected in the gut contents, as smaller individuals 

were found to consume mainly detritus and algal material, while large snails were 

also feeding upon filamentous algae and mangrove leaf litter. However, the 

occurrence of certain items within the gut contents could also be related to 

digestibility. Generally, food items that have greater structural complexity take longer 

to be digested and are assimilated less efficiently (Hargrave 1970; Brendelberger 

1997). For example, macroalgal material that contains complex carbohydrates often 

requires specific enzymes in order to be fully digested (Galli & Giese 1959, Linton & 

Greenway 2007). The high prevalence of detritus within the gut contents of all size 

classes of T. palustris might therefore be an indication of a reduced ability to digest 

this source.  

Previous studies have reported that juveniles are generalist deposit-feeders that 

consume a variety of sources, while adults consume predominantly leaf litter (Fratini 

et al. 2004; Pape et al. 2008). However, mangrove leaf litter has a low nutritional 

quality and large-scale studies have shown that it only significantly contributes to the 
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diets of relatively few specialist invertebrate consumers (Bouillon et al. 2004a; 

Imgraben & Dittmann 2008; Mazumder & Saintilan 2010). Alternative primary carbon 

sources that are consumed by mangrove invertebrates, such as benthic microalgae 

and epiphytic macroalgae, have been identified using stable isotope approaches 

(Bouillon et al. 2002). For T. palustris, the results of this study corroborate those of 

Penha-Lopes et al. (2009): the depletion of δ13C signatures of large snails in 

comparison to those of smaller individuals does not signify a complete reliance on 

mangrove leaf litter, and other enriched sources contribute significantly to the diet of 

these individuals.  

Habitat shifts related to ontogenetic dietary shifts have been shown to contribute to 

niche partitioning frameworks (Schellekens et al. 2010). Loreau & Ebenhoh (1994) 

showed that where a habitat shift in a population optimized resource use, it 

prevented intraspecific competition across these habitats and within the population. 

Predation is also expected to influence habitat shifts and foraging patterns as explicit 

predator avoidance behaviours are often exhibited by gastropods that are prey 

species (Turner 1996; Dalesman et al. 2009; Mach & Bourdeau 2011). Predation 

could therefore be an important factor that drives dietary shifts of primary consumers 

both directly and indirectly through trophic cascades (Rosenzweig 1991; Huxel et al. 

2002). In the case of T. palustris, larger individuals generally do not have natural 

predators, but they are harvested by humans for use as bait or for consumption 

(Wells & Lalli 2003, Raw et al. 2014). This could influence the population structure 

and also the partitioning of resources between size classes, but further research is 

needed to directly test these effects. Predation of juvenile T. palustris by brachyuran 

predators could be restricting their occurrence to certain foraging areas, but this is 

yet to be investigated. 

Within mangrove forests, the variability in environmental conditions on small spatial 

scales has a significant impact on resource availability, and thus on the diets of 

benthic invertebrates (Guest & Connolly 2004; Kon et al. 2007; Kon et al. 2011). 

Most significantly, the lower shore regions support the growth of benthic microalgae 

(Alongi 1994; Liu et al. 2013), while upper shore regions are characterized by higher 

organic content within the sediment (Cahoon et al. 1999). This variability in sediment 

characteristics has been related to the occurrence and diet of T. palustris that are 

spatially segregated across the shore by Penha-Lopes et al. (2009). Dietary shifts 
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could therefore be interpreted as a consequence of spatial distribution, but Fratini et 

al. (2004) have shown that diets differ even when there is spatial overlap between 

size classes. 

Fratini et al. (2001) have also demonstrated that large T. palustris actively respond to 

chemical compounds that are released when fallen mangrove leaves are 

mechanically damaged. This indicates that they forage selectively, and do not only 

consume leaves that are encountered by chance on the substrate (Fratini et al. 

2001). However, T. palustris is not an obligate consumer of mangrove leaf litter as 

evidenced by our results as well as those of Penha-Lopes et al. (2009) and Fratini et 

al. (2004). This species has also been reported to occur outside of mangrove 

habitats by Feulner (2000). The selective incorporation of a nutritionally poor 

resource, particularly when superior alternatives are available, is potentially driven by 

an evolutionary mechanism to support resource partitioning between the different 

size classes. It is expected that, as suggested by Schellekens et al. (2010), the 

ontogenetic shift provides juveniles with a large supply of a nutritious resource, while 

adults incorporate resources that are less readily available and nutritionally 

inadequate, in order to reduce intraspecific competition. 

 2.4.2 Seasonal shifts in source signatures and diet of Terebralia palustris 

Primary productivity in estuarine systems is largely reliant on terrestrially-derived 

nutrients (Knoppers 1994; Alongi 1998), and is therefore significantly influenced by 

seasonal changes in temperature and precipitation (Nozais et al. 2001; Perissinotto 

et al. 2002). This relates to significant variability in terms of resource availability for 

primary consumers (Cloern & Jassby 2008). Furthermore, stable isotope signatures 

of primary producers are seasonally influenced by changes in nutrient availability 

(Vizzini & Mazzola 2003). The temporal differences in consumer stable isotope 

signatures can therefore be attributed to either large-scale shifts in environmental 

signatures, or to the consumption of different resources in different seasons 

depending on availability (Peterson & Fry 1987; Vizzini & Mazzola 2003; Baeta et al. 

2009).  

The mean annual precipitation for the Kosi Bay region is 939 mm/year, as measured 

by the South African Weather Service at the Ingwavuma meteorological stations at 

Kosi Bay and Manguzi (Ndlovu & Demlie 2016). According to data collected between 
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1972 and 2015, the largest portion of this rainfall is received during the wet summer 

months, with the mean monthly precipitation ranging from 100 mm in November to 

150 mm in January (Ndlovu & Demlie 2016). In contrast, in the drier winter period, 

the mean monthly precipitation ranges from 40 mm in June to 35 mm in August 

(Ndlovu & Demlie 2016). As a result, there is a strong inflow of fresh water from the 

head of the estuary during the summer period (Kyle & Ward 1995).  

The Kosi Bay system is naturally oligotrophic (Begg 1980) and there are no 

significant nutrient inputs from anthropogenic sources (Kyle & Ward 1995). 

Therefore, in winter, when rainfall is reduced, the system has a significantly reduced 

input of freshwater and nutrients. This was reflected in the depleted δ15N signatures 

and higher C:N ratios that were recorded for mangrove leaves in July 2014. The C:N 

ratios of mangrove leaves and detritus vary seasonally as they are influenced by 

decomposition rates, moisture and the availability of inorganic nutrients (Ehleringer 

et al. 2000; Bosire et al. 2005; Bouillon et al. 2008). High C:N ratios may be driven 

by very low nitrogen content, as the δ13C signatures at Kosi Bay were within the 

expected range of -35.1 to -21.9 ‰ for mangrove leaves (Bouillon et al. 2008). 

Nitrogen content of mangrove leaves has been shown to be significantly reduced in 

low rainfall periods (Bosire et al. 2005) and negative δ15N signatures have previously 

been recorded for mangrove sources in other regions (Fogel et al. 2008). The C:N 

ratio of freshly fallen leaves from Rhizophora mucronata and Bruguiera gymnorhiza 

at Kosi Bay in July was considerably higher than the C:N ratios recorded for R. 

mucronata and Sonneratia alba in Kenya (Bosire et al. 2005) further emphasizing the 

oligotrophic state of the Kosi Bay system. In contrast, algal sources are highly 

productive with relatively fast turn-over rates and therefore exhibit high temporal 

variability in δ15N and δ13C (Post 2002b; Oakes et al. 2010). At Kosi Bay, we found 

that MPB and the filamentous Cladophora sp. were comparatively N-enriched in 

July, as indicated by higher δ15N signatures.  

For T. palustris, we found that signatures for both δ15N and δ13C were more similar 

between the different size classes in July in comparison to November. Also, the δ13C 

signatures for T. palustris of all size classes were enriched in July, while the δ15N 

signatures were enriched for the large individuals, but depleted for medium- and 

small-sized snails. This could indicate that all size classes were consuming sources 

that had relatively similar δ13C signatures. Variability in the δ15N signatures of 
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primary consumers has been used to assess trophic niche width, as it indicates high 

diversity in the diet when a number of different sources can be incorporated 

(Bearhop et al. 2004). The increased range of δ15N signatures for different size 

classes of T. palustris in July could therefore be interpreted as an increase in the 

size of the dietary niche. As the δ15N for large snails became enriched in July, this 

could indicate a shift to consuming a source with a lower C:N ratio. Considering only 

the isotopic signatures, it could be interpreted that the diet of large T. palustris had 

shifted to overlap with those of smaller sized snails in July. However, the 

comparisons of isotopic niches (represented by the ellipses) indicated that the 

significant differences in the sizes of the niches were retained in July and that there 

was no overlap between the isotopic niches of different sized snails.  

Shifts in the isotopic signatures of T. palustris could be the result of snails consuming 

different resources, or perhaps different proportions of the primary sources 

depending on availability or nutritional quality. Alternatively, the δ15N signature of 

larger snails may also be influenced by internal metabolic processes that assist 

digestion of nutritionally poor macrophyte material. Linton & Greenway (2007) 

reported on the ability of herbivorous land crabs to internally recycle N, as they 

predominantly consume plant material and detritus that has high levels of cellulose 

and tannins. Within subtropical mangroves, the availability of mangrove leaf litter 

varies seasonally as leaf fall is dependent on rainfall patterns (Tomlinson 1999). 

Furthermore, as decomposition rates are driven by temperature, the availability of 

mangrove-derived detritus is also variable (Mackey & Smail 1996). In contrast, the 

availability of MPB is relatively similar between the wet and dry seasons at Kosi Bay 

(unpubl. data), and Steinke et al. (2003) have reported that Cladophora sp. is a 

diagnostic component of the epiphytic macroalgal community found on the 

pneumatophores of mangroves in the lower tidal basin. The low C:N ratios of the 

algal sources indicate that they are of higher nutritional quality than the macrophyte-

derived sources, a general trend within both mangrove and salt marsh ecosystems 

(Bouillon et al. 2002; Hart & Lovvorn 2003). However, analysis of the gut contents 

indicated that algal sources were not very prevalent in the diets of larger snails. 

Instead, detritus was a prominent component of the gut contents, and this source 

had a relatively low C:N ratio in the dry season. The C:N ratios of sources and 

gastropods presented in this study therefore indicate that sources other than 
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mangrove leaf litter may be incorporated by T. palustris in the dry season, either by 

direct selective feeding on these resources or selective assimilation within the 

digestive tract (Doi et al. 2006; Pape et al. 2008). 

 2.4.3 Ecological role of Terebralia palustris in subtropical mangroves 

The decline in productivity and biomass of mangrove trees with increasing latitude is 

expected to be the result of a number of inter-related physiological challenges 

experienced beyond the equatorial region (Komiyama et al. 2008). The biological 

and environmental processes that drive nutrient and carbon cycling in mangroves 

are influenced by many factors (Feller et al. 2010) and as a result there is 

considerable within-region variation in the productivity of mangroves at higher 

latitudes (Imgraben & Dittman 2008; Morrisey et al. 2010). Reduced productivity may 

directly result in smaller proportions of mangrove-derived carbon and nutrients being 

incorporated into higher trophic levels (Morrisey et al. 2010). Some studies have 

indeed indicated that mangrove leaves and mangrove-derived detritus do not make a 

significant contribution to the diets of prominent benthic macrofauna, such as 

brachyurans, at higher latitudes (Mazumder & Saintilan 2010; Gladstone-Gallagher 

et al. 2014). At tropical latitudes, T. palustris consumes a significant proportion of 

mangrove leaf litter (Slim et al. 1997; Fratini et al. 2004) and is therefore considered 

as having an integral ecological role (Cannicci et al. 2008). Fratini et al. (2004) found 

that mangrove leaf litter was the main component (62.5 %) of the gut contents of 

large T. palustris in Kenya and Slim et al. (1997) reported that under wet conditions 

these snails could remove up to 41.6 % of available leaf litter. This is also reflected in 

the δ13C signatures for T. palustris in this region, as adults have been reported to 

have values ranging from -20.2 to -21.82 ‰ (Pape et al. 2008).  

However, at subtropical latitudes, the ecological function of T. palustris as a 

consumer of mangrove leaf litter may be less pronounced, as indicated by the 

variability of the dietary niche reported in this study, as well as the findings of Penha-

Lopes et al. (2009) for this species in Mozambique. Penha-Lopes et al. (2009) found 

that the averageδ13C signature of large T. palustris (>50 mm) was 21.3 ± 0.9 ‰, 

while in this study large snails were even further depleted in 13C (-22.55 ± 0.38 ‰). 

The contribution of mangrove leaf litter towards the diet of T. palustris was not 

directly quantified in this study. Although this source was always present within the 
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gut contents of large individuals, other sources (detritus, filament and algae) were 

also consistently present.  

Mangrove leaf litter in the form of detritus is consumed by a number of gastropod 

species, however T. palustris is one of the few species that directly consumes freshly 

fallen mangrove leaves (Cannicci et al. 2008), and is therefore directly competing 

with brachyurans for these resources (Slim et al. 1997; Fratini et al. 2000). 

Competition could therefore be driving the dietary shifts and thus influencing the 

ecological role of T. palustris at higher latitudes. Fratini et al. (2000) reported on 

strong competitive interactions between these snails and the herbivorous crab 

Neosarmatium smithi. In South African mangroves, the closely related N. meinterti 

has been described as having a similar ecological role to that of N. smithi 

(Emmerson & McGwynne 1992). Mangrove leaf litter has been reported to constitute 

over 70 % of the diet of N. meinerti (Steinke et al. 1993), and this species has been 

estimated to consume over 40 % of the available leaf litter in the mangroves of the 

warm temperate Mngazana Estuary (31°41‟29‟‟S; 29°25‟24‟‟E) (Emmerson & 

McGwynne 1992). This species is therefore responsible for retaining a large 

proportion of mangrove leaf litter, particularly in high shore mangroves such as those 

along the South African coastline (Ólafsson et al. 2002). The latitudinal distribution of 

mangroves along the South African coastline also extends beyond the range limits of 

T. palustris (Raw et al. 2014). Therefore, although T. palustris may make some 

contribution towards retention of mangrove leaf litter at subtropical latitudes when it 

is present, this ecological role is evidently dominated by the grapsid crabs in this 

region. This is a trend which has been globally reported upon (Lee 1998).  
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2.5 Conclusion 

The observed plasticity in the diet of all size classes of T. palustris is related to niche 

variation of this species and is expected to contribute towards partitioning of 

resources through ontogeny. This partitioning is particularly important for the 

sustainability of this population in a dynamic estuarine mangrove ecosystem subject 

to oligotrophy and seasonal fluctuations. Ellipse-based stable isotope models 

provided a quantitative assessment of the dietary niche allowing for direct inferences 

regarding seasonal dietary shifts and potential overlap. As mangrove ecosystems 

are variable across latitudinal gradients, the results of this study highlight the 

importance of conducting basic research in different regions to provide information 

about key ecological aspects that contribute to larger scale processes and 

ecosystem functioning.  
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Chapter 3: Diet of Melanoides tuberculata 

 

Raw JL, Perissinotto R, Miranda NAF, Peer N (2016) Diet of Melanoides tuberculata (Müller, 

1774) from subtropical lakes: Evidence from stable isotope (δ13C and δ15N) analyses. 

Limnologica 59: 116-123. 

 

3.1 Introduction 

The vast majority of freshwater gastropods are benthic crawlers that forage by a 

combination of scraping (for epipelic and epilithic algae and bacterial films) and 

deposit feeding (for episammic algae and detritus). Besides direct top-down control 

on benthic primary productivity, gastropod grazing also influences nutrient demand 

and recycling processes in established algal mats (Hillebrand et al. 2002; Vanni 

2002). Furthermore, as freshwater gastropods are important prey items to fish and 

crustaceans, they serve as integral trophic links to higher consumers (Vermeij & 

Covich 1978; Covich et al. 1999). Considering their broad ecological roles and their 

widespread global distribution, freshwater gastropods are often key components in a 

multitude of diverse habitats (Strong et al. 2008).  

Grazing gastropods generally exhibit a degree of plasticity in their diets and this is 

attributed to their unselective feeding modes. Dietary plasticity is considered an 

indicator of niche breadth, as the range of items consumed is related to the level of 

dietary specialization (Feinsinger et al. 1987; Bolnick et al. 2002). These attributes, 

which underlie many general ecological principles, can be directly elucidated with 

data from stable isotope analysis (SIA) (Bearhop et al. 2004; Turner et al. 2010). As 

isotopic ratios of δ15N and δ13C are conserved through the food web with predictable 

shifts at each trophic level (DeNiro & Epstein 1978, 1981; Vanderklift & Ponsard 

2003), changes in trophic structure and energy flow can be tracked with SIA 

(Peterson & Fry 1987; Middelburg 2014). However, there is evidence that the shifts 

in isotopic ratios are not always predictable, and may depend on a number of factors 

such as diet type, feeding mode and digestion/assimilation efficiencies (McCutchan 

et al. 2003; Yokoyama et al. 2005; Caut et al. 2009; Robbins et al. 2010, Remien 

2015). This has recently been highlighted for detritivores that consume nutritionally 



 
 

 
45 

poor resources, such as herbivorous crabs that feed on mangrove leaf litter (Herbon 

& Nordhaus 2013; Bui & Lee 2014). Despite this, SIA is still a powerful tool for 

ecologists and a number of procedures and models are therefore being developed in 

order to improve the efficiency and accuracy of this technique (Moore & Semmens 

2008; Parnell et al. 2010; Remien 2015; Brett et al. 2016). 

SIA can also be used to assess dietary overlap between consumers and therefore 

provide insight into potential competitive interactions (Bootsma et al. 1996). This 

aspect of SIA has been widely applied within the field of invasion ecology to 

determine the degree of dietary overlap between introduced and native species 

(Miranda & Perissinotto 2012; Hill et al. 2015). Using SIA to determine the dietary 

composition of primary consumers, such as gastropods, supplies essential 

information to larger scale ecosystem studies (Layman et al. 2007). Furthermore, 

benthic organisms are considered effective isotopic indicators as they provide a 

representative baseline of energetic inputs to higher trophic levels (Grey 2006). 

Melanoides tuberculata (Müller, 1774) is a freshwater thiarid gastropod that is 

considered to be a generalist, non-selective deposit feeder (Madsen 1992). Globally, 

this species is one of the two most important invasive thiarid gastropods (Facon et 

al. 2003). This species has established across the New World, including regions of 

the United States (Karatayev et al. 2009), the Caribbean (Pointier et al. 2011) and 

South America (De Marco 1999; Peso et al. 2011). Melanoides tuberculata has an 

extensive native range along eastern Africa and across the Middle East to Southeast 

Asia (Brown 1994; Facon et al. 2003) where it inhabits a wide variety of aquatic 

environments (de Kock & Wolmarans 2009; Perissinotto et al. 2014). Like many 

freshwater gastropods, M. tuberculata is an important primary consumer and serves 

as an integral trophic link as it is predated upon by fish, crustaceans and birds 

(Chimbari & Madsen 2003; Escobar et al. 2009; Evers et al. 2011; Peer et al. 

2015b). 

A number of genetically and phenotypically distinct morphs are found within the 

native range of M. tuberculata (Samadi et al. 1999; Facon et al. 2003). However, 

there have been no reports on variation in ecological traits; such as reproductive 

capacity, feeding rates and diet, between different morphs. The aim of this study was 

to provide baseline information on the dietary composition of three distinct M. 
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tuberculata populations from different habitats within subtropical lakes on the north-

eastern coast of South Africa. This was achieved through SIA of natural δ13C and 

δ15N abundances for sources and gastropod consumers within the different habitats. 

Within the study region, M. tuberculata has a substantial grazing impact on available 

microphytobenthos (Raw et al. 2016b). However, the degree of dietary plasticity and 

potential niche breadth of M. tuberculata from this region have not previously been 

assessed. The diet of M. tuberculata was hypothesized to vary in two ways. Firstly, 

as M. tuberculata is expected to feed indiscriminately on benthic resources, the diet 

would vary seasonally depending on resource availability. Secondly, as M. 

tuberculata inhabits a variety of diverse habitats, the diet would differ between 

populations and therefore indicate trophic plasticity. This estimation of diet should 

provide useful information relating to the potential competitive interactions between 

M. tuberculata and other co-occurring benthic gastropods. 
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3.2 Materials and Methods 

Melanoides tuberculata were collected for stable isotope analyses from three distinct 

populations (Lake Nhlange, the Mpophomeni Stream and St Lucia Estuary Mouth) 

within coastal lakes of the iSimangaliso Wetland Park (Figure 1.2). This region is 

within the native range of M. tuberculata (Brown 1994), however, there is preliminary 

evidence that several morphologically distinct populations exist within South Africa 

(Appleton & Miranda 2015). In this study, snails from the St Lucia Estuary Mouth and 

those from the Mpophomeni Streamhave been identified as the indigenous form (see 

Appleton 1996), while those from Lake Nhlange are cryptic and appear to have 

Asiatic origins when characterized following the guidelines of Facon et al. (2003). 

This is the subject of ongoing work and the true origins of these snails will only be 

confirmed through molecular genetics studies. 

 3.2.1 Description of study sites 

Collection sites (Figure 3.1) represented different habitat types and therefore varied 

in terms of physico-chemical parameters (Table 3.1). Lake Nhlange (26°57‟56‟‟S 

32°49‟77‟‟E) of the Kosi Bay estuarine lake complex is a predominantly freshwater 

oligotrophic lake that spans an area of approximately 32 km2 (Allanson & van Wyk 

1969; Begg 1980). Here M. tuberculata was associated with the submerged 

macrophyte, Ceratophyllum sp. within the shallow littoral zone. The Mpophomeni 

Stream (27°57‟17‟‟S 32°22‟37‟‟E) is a small, brackish stream with a muddy bed that 

passes through an area dominated by sand forest vegetation that is unique to the 

region (Kirkwood & Midgley 1999). The stream flows into the False Bay basin of 

Lake St Lucia, the largest estuarine lake in Africa (Whitfield et al. 2013). Melanoides 

tuberculata at the Mpophomeni Stream were sometimes associated with the 

filamentous algae, Cladophora sp. At the St Lucia Estuary Mouth (28°22‟48‟‟S 

32°25‟18‟‟E), M. tuberculata were collected from a channel that carries freshwater 

dune seepage through the mangrove forest on the northern bank of the estuary. 

There is a salinity gradient along the channel, ranging from fresh at the upper 

reaches to brackish at the point where it empties into the mouth of the estuary. This 

mangrove area, consisting of Avicennia marina and Bruguiera gymnorhiza trees, is 

unique in that it persists despite limited tidal connectivity to the Indian Ocean 

(Whitfield & Taylor 2009; Hoppe-Speer et al. 2013). 
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Figure 3.1 Photographs of sites (A – Lake Nhlange, B – Mpophomeni Stream, C – 

St Lucia Estuary Mouth) from which Melanoides tuberculata and relevant primary 

sources were collected for stable isotope analyses. Photo credit: L Clennell. 

 

The subtropical climate of this region is characterized by a high rainfall (wet) season 

between October and April (summer) and a low rainfall (dry) season between May 

and September (winter). As the iSimangaliso Wetland Park covers an expansive 

area, the mean annual precipitation is variable between the three sites. For Lake St 

Lucia, this has been estimated as 890 mm (Stretch et al. 2013), while the Kosi Lakes 
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receive approximately 940 mm (Ndlovu & Demlie 2016). Rainfall for the St Lucia 

Estuary has previously been reported to range from approximately 250 mm per 

month in December and January to below 50 mm per month in August and 

September (Tirok & Sharler 2013). The area near the Mpophomeni Stream is 

characterized by a lower monthly rainfall on average, with approximately 200 mm per 

month in December and January and below 20 mm per month in August and 

September, as reported by Tirok & Sharler (2013). 

To determine any seasonal shifts in dietary composition, samples for stable isotope 

analysis were collected from each location during both rainfall seasons over the 

2013-2014 period. A YSI 6600-V2 multiprobe was used to measure physico-

chemical parameters at each location at the time of sample collection. Besides M. 

tuberculata, any other prominent aquatic gastropods present at the time of sampling 

were also collected for stable isotope analysis. The climbing mangrove whelk, 

Cerithidea decollata (Linnaeus, 1767), was collected at St Lucia Estuary Mouth while 

the invasive thiarid, Tarebia granifera (Lamarck, 1822), was collected at Lake 

Nhlange. No other aquatic gastropods were detected at the Mpophomeni Stream. 

 3.2.2 Sample collection and processing 

Gastropods were collected by hand or by using a sweep net, depending on water 

depth. The snails were frozen after collection until processing in the laboratory. After 

careful removal of the shell, muscle tissue of the foot was excised, homogenized and 

defatted in a solution of methanol : chloroform : distilled water (2 : 1 : 0.8; Bligh & 

Dyer 1959) to remove any residual lipids retained from the skin. This was a 

precautionary treatment as lipids would influence the measured isotopic signature 

(Logan et al. 2008; Tarroux et al. 2010). The tissue was oven dried at 60 °C for at 

least 48 h before further processing. 

Microphytobenthos (MPB) was collected by scraping the upper 1 cm of sediment and 

suspending this sediment in filtered water (0.7 µm Whatman GF/F) from the 

respective site. The sediment settled and the suspended MPB was vacuum filtered 

onto pre-combusted (450 °C, 6 hr) glass fibre filters (0.7 µm Whatman GF/Fs). Water 

samples were collected to obtain a representative of particulate organic matter 

(POM). This was collected as a representative of phytoplankton and suspended 

particulate detritus that may settle on the substrate and therefore become available 
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to grazing gastropods. POM was collected by the same filtration method onto pre-

combusted GF/Fs. Other potential food sources, including fringing vegetation, 

submerged macrophytes, macroalgae and detritus, were also collected. For 

sedimentary organic matter (SOM) analysis, 20 mm diameter cores were taken and 

the upper 1 cm was discarded (as it would contain predominantly microalgae). All 

samples collected in the field were frozen until laboratory processing. The filters 

(containing MPB and POM) were acid washed (2% HCl) to remove any carbonates. 

The acid treatment was also applied to the detritus and sediment samples until all 

visible bubbling had ceased. The macroalgal and macrophyte samples were 

carefully rinsed with distilled water to remove sediment and visible associated fauna. 

All source samples were subsequently placed in an air-circulated oven (60 °C, 48 h) 

for drying. 

3.2.3 Stable isotope analysis 

After drying, all samples were independently homogenized using a mortar and pestle 

and then weighed to the appropriate mass for stable isotope analysis. Source 

material including detritus, roots, leaves and macroalgae was weighed to 

approximately 2.5 mg per sample and gastropod tissue was weighed to 

approximately 1 mg per sample. Each sample was packaged into a 5 x 9 mm tin 

capsule (SÄNTIS Analytical AG, Switzerland). For sediment, approximately 20 mg 

was packaged into Eppendorf microcentrifuge tubes. Five replicates were packaged 

for each source item and each gastropod species collected from each site. 

The packaged samples were sent to IsoEnvironmental cc at Rhodes University, 

Grahamstown, South Africa. The samples were analyzed on a Europa Scientific 20-

20 isotope ratio mass spectrophotometer linked to an ANCA Prep Unit. The ratios 

were expressed in delta notation (δ) as parts per thousand (‰) deviation from the 

accepted international standards of atmospheric nitrogen and Vienna Pee Dee 

Belemnite for the nitrogen and carbon isotopes respectively. The following equation 

was used to determine delta values: 

𝛿 𝑋 =    
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 −  1  × 1000 

where X = 13C or 15N and R = corresponding ratio of 13C/12C or 15N/14N.  
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 3.2.4 Statistical analyses and source contribution 

Statistical analyses were conducted using R v 2.11.1 for Windows (R Development 

Core Team 2010). MANOVAs were run using the “car” package (Fox & Weisberg 

2014) to test for significant temporal differences in carbon and nitrogen stable 

isotope ratios of potential food items and gastropod consumers. 

The mixing model SIAR v 4.0 (Stable Isotope Analysis in R, package “siar” by 

Parnell & Jackson 2013) was used to estimate the proportionate contribution of each 

potential food item to the diet of gastropods at the different sites in each season. 

Following the guidelines of Parnell et al. (2010) and Inger et al. (2010), diagnostic 

matrix plots were used to assess the performance of the model. Sources that 

consistently had a minimal contribution to the diet were therefore systematically 

removed to achieve the most parsimonious model. The δ15N and δ13C values of all 

sources were corrected with the trophic enrichment factors (mean ± SD) of 2.2 ± 

1.61 and 0.4 ± 1.34 respectively. These values follow the recommendation of 

McCutchan et al. (2003) for consumers with plant-based diets. 
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3.3 Results 

 3.3.1 Habitat characteristics 

There was an observable seasonal difference in the physico-chemical parameters at 

each site (Table 3.1). These variations in environmental conditions would be 

expected to influence resource availability. Although this was not quantified directly, 

there were some notable differences between seasons. At Lake Nhlange, the 

filamentous alga Cladophora sp., was absent from the sampled littoral zone in the 

dry season. Similarly, at the Mpophomeni Stream, Cladophora sp. was less 

extensive in the dry season leading to a patchy distribution along the stream bed. 

The St Lucia Estuary Mouth appeared to remain stable in terms of resource 

availability. 

 

Table 3.1 Physico-chemical measurements at Lake Nhlange, Mpophomeni Stream 

and St Lucia Estuary Mouth at the time of stable isotope sample collection.  

 Lake Nhlange Mpophomeni 

Stream 

St Lucia Estuary 

Mouth 

 Wet Dry Wet Dry Wet Dry 

Salinity 3.1 3.1 7.5 9.1 7.6 3.3 

Temperature (°C) 29.8 21.9 26.6 19.8 25.9 20.0 

Dissolved O2 (mg/L) 7.6 9.7 8.1 10.0 4.2 5.4 

pH 8.5 8.4 8.4 7.4 8.2 6.3 

 

 3.3.2 Stable isotope analysis 

The δ15N and δ13C signatures were significantly different (MANOVA) between 

available sources in both rainfall seasons at each respective site. This allowed for 

appropriate differentiation between sources in the SIAR mixing models.  

During the wet season at Lake Nhlange (F4,14= 29.596, Pillai‟s Trace = 1.858, p < 

0.05), mean (± SD) source signatures for δ13C ranged from -31.32 ± 0.04 ‰ in 

Phragmites sp. to -22.36 ± 0.01 ‰ in detritus while those for δ15N ranged from 1.06 ± 

0.45 ‰ in Cladophora sp. to 7.65 ± 0.07 ‰ in the submerged macrophyte, 
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Ceratophyllum sp. (Table 3.2). Similarly, source signatures were different (F4,12= 

29.771, Pillai‟s Trace = 1.836, p < 0.05) in the dry season and ranged from -31.29 ± 

0.09 ‰ to -24.4 ± 0.5 ‰ for δ13C and -1.89 ± 0.33 ‰ to 8.98 ± 1.36 ‰ for δ15N 

(Table 3.2). 

 

Table 3.2 Mean (± SD) δ15N and δ13C signatures of available food items and 

gastropods from Lake Nhlange in both the wet and dry seasons. 

Sources 
Wet Dry 

δ15N (‰) δ13C (‰) δ15N (‰) δ13C (‰) 

Phragmites sp. 5.50 ± 0.05 -31.32 ± 0.04 2.88 ± 0.12 -31.29 ± 0.09 

Ceratophyllum sp. 7.65 ± 0.07 -24.83 ± 0.06 8.98 ± 1.36 -30.69 ± 0.07 

Cladophora sp. 1.06 ± 0.45 -25.85 ± 0.04 - - 

Detritus 2.11 ± 0.73 -22.36 ± 0.01 -1.89 ± 0.33 -25.06 ± 0.14 

MPB 2.98 ± 0.42 -24.50 ± 0.20 7.22 ± 1.95 -24.4 ± 0.50 

SOM 1.83 ± 0.50 -24.51 ± 0.16 7.28 ± 0.46 -25.27 ± 0.11 

POM 4.36 ± 0.16 -25.96 ± 0.02 6.82 ± 1.07 -26.55 ± 0.37 

Gastropods     

M. tuberculata 6.53 ± 0.05 -23.26 ± 0.07 6.14 ± 0.62 -24.07 ± 0.11 

T. granifera 7.41 ± 0.13 -20.63 ± 0.26 7.28 ± 0.27 -21.30 ± 0.10 

 

At the Mpophomeni Stream, source signatures were different in both the wet (F4,16= 

28.083, Pillai‟s Trace = 1.837, p < 0.05) and dry (F4,16= 42.486, Pillai‟s Trace = 

1.879, p < 0.05) seasons. The benthic algal sources were most enriched in both δ13C 

and δ15N at this site. MPB was the most enriched in δ13C in both the wet and dry 

seasons (-20.17 ± 0.17 ‰ and -21.78 ± 0.7 ‰ respectively) (Table 3.3). MPB was 

also most enriched with δ15N in the dry season (10.57 ± 3.09 ‰), while Cladophora 

sp. was most δ15N enriched (13.17 ± 0.2 ‰) in the wet season (Table 3.3). 
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Table 3.3 Mean (± SD) δ15N and δ13C signatures of available food items and 

gastropods from Mpophomeni Stream in both the wet and dry seasons. 

Sources 
Wet Dry 

δ15N (‰) δ13C (‰) δ15N (‰) δ13C (‰) 

Macrophytes 8.50 ± 0.12 -28.03 ± 0.04 3.93 ± 0.13 -27.69 ± 0.003 

Cladophora sp. 13.17 ± 0.20 -28.53 ± 0.06 9.08 ± 0.10 -36.01 ± 0.18 

Detritus 8.07 ± 0.33 -22.82 ± 0.61 -3.47 ± 2.86 -26.91 ± 0.13 

MPB 8.09 ± 0.15 -20.17 ± 0.17 10.57 ± 3.09 -21.78 ± 0.70 

SOM 6.55 ± 0.12 -20.52 ± 0.06 5.27 ± 0.96 -23.49 ± 0.55 

POM 10.15 ± 0.41 -24.14 ± 0.11 5.92 ± 1.27 -25.36 ± 0.07 

Gastropods     

M. tuberculata 13.87 ± 0.09 -27.19 ± 0.007 14.02 ± 0.44 -27.12 ± 0.31 

M. tuberculataa - - 16.83 ± 0.12 -25.85 ± 0.14 

aindicates M. tuberculata collected specifically from outside Cladophora sp. patches. 

 

At the St Lucia Estuary Mouth, source signatures were also different between the 

wet (F4,14= 76.255, Pillai‟s Trace = 1.936, p < 0.05) and dry (F4,14= 9.702, Pillai‟s 

Trace = 1.623, p < 0.05) seasons. For δ13C, mangrove leaves were most depleted (-

28.81 ± 0.05 ‰) in the wet season while SOM was most enriched (-21.56 ± 0.64 ‰). 

In comparison, dry season δ13C signatures ranged from -29.42 ± 0.15 ‰ to -21.29 ± 

0.33 ‰ (Table 3.4). Interestingly, wet season mangrove leaves were most depleted 

in δ15N (-0.21 ± 0.2 ‰), while dry season mangrove leaves were most enriched (4.75 

± 0.41 ‰). 
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Table 3.4 Mean (± SD) δ15N and δ13C signatures of available food items and 

gastropods from St Lucia Estuary Mouth in both the wet and dry seasons. 

Sources 
Wet Dry 

δ15N (‰) δ13C (‰) δ15N (‰) δ13C (‰) 

Mangrove leaves -0.21 ± 0.20 -28.81 ± 0.05 4.75 ± 0.41 -28.01 ± 0.05 

Cladophora sp. 1.13 ± 0.39 -22.55 ± 0.19 2.26 ± 0.10 -29.42 ± 0.15 

Detritus 2.16 ± 0.21 -28.72 ± 0.02 -8.75 ± 1.56 -27.64 ± 0.05 

MPB 3.23 ± 0.07 -22.05 ± 0.20 1.18 ± 0.51 -24.04 ± 0.02 

SOM 2.25 ± 0.27 -21.56 ± 0.64 4.15 ± 0.07 -21.29 ± 0.33 

POM 3.56 ± 0.36 -27.08 ± 0.08 0.18 ± 0.06 -27.56 ± 0.17 

Gastropods     

M. tuberculata 3.60 ± 0.03 -24.41 ± 0.07 3.86 ± 0.28 -27.42 ± 0.02 

C. decollata 4.49 ± 0.06 -20.84 ± 0.05 4.48 ± 0.16 -20.74 ± 0.24 

 

Seasonal comparisons (ANOVA) between δ15N and δ13C signatures for gastropods 

yielded different results for each site. At Lake Nhlange (Table 3.2, Figure 3.2), both 

M. tuberculata (F1,10= 186.44, p < 0.05) and T. granifera (F1,10= 28.49, p < 0.05) were 

enriched with δ13C in the wet season. However, δ15N remained relatively constant for 

both species between seasons (Table 3.2). Although Cladophora sp. was available 

during the wet season, this source made a minimal contribution to the diets of both 

M. tuberculata and T. granifera (95 % CIs [0, 0.26] and [0, 0.32] respectively) (Figure 

3.2). Detritus dominated the diet of M. tuberculata in both the wet and dry seasons 

(95 % CIs [0.10, 0.51] and [0.23, 0.45] respectively). In the wet season, the diet of T. 

granifera was also dominated by detritus (95 % CI [0, 0.46]) while in the dry season 

this species consumed a marginally higher proportion of SOM (95 % CI [0.22, 0.50]) 

(Figure 3.2). 



 
 

 

 

 

Figure 3.2 Gastropods and food sources at Lake Nhlange. Stable isotope (δ15N and δ13C) biplots show the signatures (error bars 

represent SD) of sources and gastropods in both the wet (A) and dry (B) seasons. SIAR boxplots indicate the proportionate 

contribution (25, 75, and 95% CIs) of dominant sources to the diet of M. tuberculata and T. granifera in both seasons. CLA = 

Cladophora sp., DTR = detritus, MPB = microphytobenthos, POM = particulate organic matter, SOM = sedimentary organic matter. 
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For M. tuberculata at the Mpophomeni Stream, both δ15N and δ13C signatures were 

similar (F1,10= 0.557, p > 0.05 and F1,10= 0.249, p > 0.05 respectively) between 

seasons (Table 3.3). However, in the dry season, individuals collected from outside 

patches of Cladophora sp. were significantly enriched with both δ15N (F1,10= 150.18, 

p < 0.05) and δ13C (F1,10= 56.36, p < 0.05) (Table 3.3). Cladophora sp. clearly made 

the largest proportionate contribution towards the diet of M. tuberculata in the wet 

season (95% CI [0.47, 0.84]) (Figure 3.3). In the dry season, MPB contributed 

towards the diet of individuals both within and outside of Cladophora sp. patches (95 

% CIs [0.02, 0.45] and [0.02, 0.42] respectively). Furthermore, Cladophora sp. had a 

larger contribution to the diet of individuals collected from within these patches (95 % 

CI [0.21, 0.40]) in comparison to those collected outside of the patches(95% CI 

[0.08, 0.29]). 

At the St Lucia Estuary Mouth, δ15N signatures were similar between seasons for 

both M. tuberculata (F1,10= 6.221, p > 0.05) and C. decollata (F1,10= 0.001, p > 0.05) 

(Table 3.4). However, δ13C was significantly different (F1,10= 3359.3, p < 0.05) 

between seasons for M. tuberculata (Table 3.4). The proportionate contribution of 

various sources to the diet varied seasonally for both gastropod species (Figure 3.4). 

In the wet season, both detritus and Cladophora sp. made prominent contributions 

towards the diet of M. tuberculata (95 % CIs [0.12, 0.43] and [0.04, 0.45] 

respectively). The proportionate contribution of Cladophora sp. to the diet (95 % CI 

[0.14, 0.51]) was similar in the dry season. POM also made a notable contribution to 

the diet in the dry season (95 % CI [0, 0.43]). In contrast, in both the wet and the dry 

seasons detritus made a minimal contribution to the diet of C. decollata (95 % CIs [0, 

18. 0.24] and [0, 0.24] respectively). Instead, these snails consumed larger 

proportions of SOM and MPB in both the wet (95 % CIs [0.04, 0.58] and [0.02, 0.49] 

respectively) and dry (95 % CIs [0.06, 0.60] and [0, 0.43] respectively) seasons. 



 
 

 

 

Figure 3.3 Gastropods and food sources at the Mpophomeni Stream. Stable isotope (δ15N and δ13C) biplots show the signatures 

(error bars represent SD) of sources and gastropods in both the wet (A) and dry (B) seasons. SIAR boxplots indicate the 

proportionate contribution (25, 75, and 95% CIs) of dominant sources to the diet of M. tuberculata in both seasons (* indicates 

snails collected specifically from outside Cladophora sp. patches). CLA = Cladophora sp., DTR = detritus, MPB = 

microphytobenthos, POM = particulate organic matter, SOM = sedimentary organic matter. 



 
 

 

 

Figure 3.4 Gastropods and food sources at St Lucia Estuary Mouth. Stable isotope (δ15N and δ13C) biplots show the signatures 

(error bars represent SD) of sources and gastropods in both the wet (A) and dry (B) seasons. SIAR boxplots indicate the 

proportionate contribution (25, 75, and 95% CIs) of dominant sources to the diet of M. tuberculata and C. decollata in both seasons. 

CLA = Cladophora sp., DTR = detritus, MPB = microphytobenthos, POM = particulate organic matter, SOM = sedimentary organic 

matter. 
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3.4 Discussion 

Melanoides tuberculata has previously been incorporated into broader stable isotope 

studies (Coat et al. 2009; Peer et al. 2015b). However, this is the first to focus on the 

potential dietary plasticity and niche breadth of this species. Melanoides tuberculata 

is well recognized as a generalist deposit feeder that indiscriminately consumes 

microalgae, detritus and periphyton (Madsen 1992; Vasconcelos et al. 2013). 

Besides supporting these observations, we also found that the diet of M. tuberculata 

is to some extent influenced by resource availability, limiting the potential for 

opportunistic or optimal foraging strategies. 

 3.4.1 Variation in diet in response to resource availability 

The feeding and mobility habits of benthic gastropods limit the number of sources 

accessible to them for foraging. As such, similar sources were sampled as potential 

dietary components for M. tuberculata in each of the different habitats. The diet of M. 

tuberculata was however variable between sites. This may indicate potential 

adaptive and plastic traits related to feeding ecology. As a habitat generalist, M. 

tuberculata occurs in diverse environments that vary in terms of hydroperiod, salinity, 

substrate type, and water flow (Appleton 1996; de Kock & Wolmarans 2009; 

Perissinotto et al. 2014). The persistence of M. tuberculata under these different 

conditions directly relates to the ability of this species to cope with varying levels of 

resource availability. 

Availability of benthic resources is influenced by numerous factors, gastropod 

grazing being one of the most prominent (Blanchard et al. 2001; Vasconcelos et al. 

2013). However, environmental parameters also significantly influence resource 

availability. In shallow freshwater environments irradiance and nutrient availability 

directly affect the productivity and biomass of periphyton (Rosemond et al. 2000). At 

the Mpophomeni Stream, which is well shaded within the established sand forest, 

nutrient availability varies seasonally in relation to rainfall and runoff (Peer et al. 

2015b). It has also been established that the δ15N signatures of consumers is related 

to whether the ecosystem as a whole is eutrophic or oligotrophic (Woodland et al. 

2012). However, at the Mpophomeni Stream the source of δ15N enrichment has not 

yet been identified. In the dry season, there was an observable decrease in the 

cover extent of the filamentous Cladophora sp. that may have been related to 
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reduced nutrient inputs. At this time, snails consumed a larger proportion of MPB 

both within and outside of Cladophora sp. patches. As MPB biomass and 

productivity is strongly negatively correlated with the presence of filamentous algae 

(Nozaki 2001), it is apparent that M. tuberculata most likely consumes more MPB in 

the dry season as it becomes more available.  

The seasonal comparison of diet for M. tuberculata at the St Lucia Estuary Mouth 

also showed a clear difference in the proportionate contributions of detritus and 

POM. Within mangrove forests, mangrove leaf litter and benthic microalgae are the 

dominant sources of autochthonous carbon, while phytoplankton and seagrass 

detritus provide supplementary sources (Kristensen et al. 2008). At the time of the 

study, the detrital material collected at St Lucia Estuary Mouth consisted almost 

entirely of decomposing mangrove leaves. The severely depleted δ15N signature for 

detritus in the dry season is worth noting, although the cause was not investigated as 

part of this study. Microbial processes generally enrich detrital sources in mangroves 

(Tremblay & Benner 2006), while physical processes such as leaching can drive 

depletion (Hill & McQuaid 2009). This could also influence the availability of this 

resource to gastropod consumers. Mangrove leaf fall varies seasonally in this 

subtropical region, with increased leaf fall occurring during the wet summer months 

(Steinke 1999). In contrast, POM would be consistently available. The increased 

proportionate contribution of POM to the diet of M. tuberculata during the dry season 

may simply be due to increased settling of suspended particulate material on the 

substrate due to seasonally reduced flow (as a consequence of lower rainfall) within 

the channel. In contrast, at Lake Nhlange, although the filamentous Cladophora sp. 

was available during the wet season, this source only made a minimal contribution to 

the diet of M. tuberculata. In this case, the Cladophora sp. was most likely not readily 

consumed because it was not easily accessible to the snails in deeper water. 

Interestingly, although M. tuberculata was associated with the submerged 

macrophyte, Ceratophyllum sp., at Lake Nhlange this plant did not make any 

detectable contribution to the diet of these snails. 
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 3.4.2 Variation in δ15N and trophic plasticity 

Large ecosystem-scale stable isotope studies usually aim to provide an assessment 

of food web dynamics by using δ15N (and the appropriate enrichment factors) to 

determine trophic position for secondary and tertiary consumers (Vander Zanden & 

Rasmussen 2001). Generally, δ15N signatures of consumers are directly related to 

their trophic position as a consequence of isotopic fractionation through each trophic 

level (Post 2002b). However, because organisms such as gastropods are 

unanimously recognized as primary consumers, temporal and spatial differences in 

δ15N signatures are not truly a reflection of their trophic level (Riera 2010). Instead, 

these differences in δ15N reflect high diversity in the diet as a number of different 

sources can be incorporated over time. The variation associated with δ15N can 

therefore be used to assess trophic niche width (Bearhop et al. 2004).  

Melanoides tuberculata did exhibit generalist feeding habits, as shown by the 

temporal and spatial differences in the proportionate contribution of various sources 

to the diet. Furthermore, the variance associated with δ15N was always greater in the 

dry season. A greater diversity of sources is therefore incorporated into the diet at 

this time. This may reflect a seasonal change in resource partitioning to optimize 

utilization when there is a change in availability (possibly as a consequence of less 

favourable environmental conditions). Although resources are most optimally 

exploited in communities that have a higher diversity of specialist consumers (Finke 

& Snyder 2008), it has been proposed that the limitations of “generalist” consumers 

faced with intraspecific competition can be overcome through individual-level dietary 

diversity (Bolnick et al. 2002; Doi et al. 2010). Although the overall trophic niche of 

M. tuberculata is relatively broad, it is likely that individual snails utilize the different 

sources in different proportions and at variable rates. These trends have previously 

been reported for stream macroinvertebrates under variable resource levels (Rosi-

Marshall & Wallace 2002). Habitat heterogeneity and differences in microhabitat 

resource availability may explain these individual-level differences in diet (Doi et al. 

2010). This was evident at the Mpophomeni Stream, as the diet of snails varied over 

a small spatial scale. Trophic plasticity should therefore not be considered as a 

singular trait exhibited by a species, but rather as a flexible measure of potential 

resource use that is largely influenced by external factors. 
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 3.4.3 Potential competitive interactions 

As the variation associated with δ15N is used to assess trophic niche width, it can 

also be used to infer on potential competition (Svanbäck & Bolnick 2007). Species 

with overlapping isotopic signatures would occupy similar trophic niches and are 

therefore considered to be in competition for similar resources. The stable isotope 

biplots show a clear difference in the δ15N and δ13C signatures for M. tuberculata 

and C. decollata at the St Lucia Estuary Mouth, indicating minimal dietary overlap. In 

contrast, at Lake Nhlange, although M. tuberculata and T. granifera did not have 

definitively overlapping isotopic signatures, there were no clear differences in the 

proportionate contributions of the various sources to the diets of these two species. 

Both MPB and SOM made similar proportionate contributions to the diets of these 

species in both seasons. Previous work has suggested that these species may be 

competing for MPB at this site as they are able to feed at comparable rates (Miranda 

et al. 2011; Raw et al. 2016b). As Lake Nhlange is oligotrophic, it appears that 

detrital sources may be consumed more readily by both species despite this source 

being of poorer nutritional quality in comparison to MPB.  

Invasive gastropods have been repeatedly reported as generalist consumers that 

efficiently compete with native species through resource exploitation (Miranda et al. 

2011; Hill et al. 2015; Larson & Black 2016). Both M. tuberculata and T. granifera 

have been assessed as efficient competitors following their establishment as alien 

species in new habitats (Pointier et al. 2011; Miranda & Perissinotto 2012). However, 

the competitive interactions between M. tuberculata and T. granifera remain unclear 

and are yet to be fully investigated. The introduction and establishment of T. 

granifera within coastal lakes of the iSimangaliso Wetland Park has been associated 

with the decline of historic M. tuberculata populations, with the exception of those 

from Lake Nhlange (Miranda & Perissinotto 2014). Differences in behaviour have 

also been recorded between M. tuberculata from Lake Nhlange and those from St 

Lucia Estuary Mouth (Raw et al. 2015). As individuals from Lake Nhlange appear 

cryptic in their morphology and potentially have Asiatic origins, a shared evolutionary 

history with T. granifera may explain these variations. Asiatic morphs of M. 

tuberculata may therefore be more efficient competitors than their African 
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counterparts. This has important implications for human-mediated introductions of 

this species, even within its native range. 

3.5 Conclusion 

The invasion success of M. tuberculata is expected to be influenced by a 

combination of traits relating to tolerance, feeding and reproductive capacity. Here 

we found that diet was variable and was largely dependent on resource availability. 

Seasonal differences in diet indicate that the species exploits different resources at 

variable rates. Future work should focus on determining the degree to which 

individual-level dietary diversity contributes to the species overall generalist niche. 
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Chapter 4: Feeding dynamics of Terebralia palustris 

 

Raw JL, Perissinotto R, Miranda NAF, Peer N (In press) Feeding dynamics of Terebralia 

palustris (Gastropoda: Potamididae) from a subtropical mangrove ecosystem. Molluscan 

Research 

 

4.1 Introduction 

Benthic microalgal assemblages, collectively termed microphytobenthos (MPB), 

which occur within the surface sediment of shallow marine and freshwater 

environments, have been largely acknowledged for their significant contribution 

towards primary productivity (MacIntyre et al. 1996). In contrast, within tropical 

mangrove forests, the contribution of MPB to primary productivity is expected to be 

minimal due to growth limitation by shading and the high concentrations of tannins 

within the muddy sediments (Alongi 1994). Macrophyte-derived detritus has 

therefore been considered as the major basal resource that is available for benthic 

primary consumers in these habitats (Bouillon et al. 2004b). However, numerous 

studies have shown that the contribution of mangrove detritus to higher trophic levels 

is highly variable (Kruitwagen et al. 2010; Giarrizzo et al. 2011). Alternative 

autochthonous and allochthonous basal resources have subsequently been 

identified as providing nutrition to primary consumers that serve as trophic links 

within mangrove ecosystems (Newell et al. 1995; Bouillon et al. 2002; Abrantes & 

Sheaves 2009). One such autochthonous source is MPB (Bouillon et al. 2004a), 

which is a crucial component in comparable estuarine mud flat and salt marsh 

ecosystems (Sullivan & Currin 2000; Lemley et al. 2016) 

The prevalence of MPB within mangrove forests is largely dependent on the physical 

environment and is therefore highly variable between and within these systems. 

Larger grain sizes and lower particulate organic content of the sediment are 

correlated with increased MPB biomass (Alongi 1994; Cahoon et al. 1999). The 

presence of these conditions in mangrove habitats will be largely dependent on the 

local geomorphological features. The required sediment and environmental 

characteristics that favour MPB are therefore generally found in the lower intertidal 
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region. This zone is favourable for MPB because it is regularly flushed by the tide, 

there is minimal shading by the canopy and a lower density of pneumatophores 

prevents the accumulation of fine particulate material (Liu et al. 2013). The resources 

consumed by mangrove macrofauna are largely dependent on their microhabitat and 

considerable variation may exist across relatively small spatial scales (Guest & 

Connolly 2004; Kon et al. 2011; Pratt et al. 2015). Therefore, consumption of MPB in 

mangrove habitats would be limited to benthic primary consumers that occupy the 

lower intertidal zone, including gastropod molluscs and brachyurans such as fiddler 

crabs (Macnae 1969). The importance of MPB as an autochthonous source within 

mangroves is also expected to vary across a latitudinal gradient. Leaf fall is largely 

correlated with rainfall patterns and therefore varies between regions (Tomlinson 

1999). Decomposition rates of mangrove leaf litter are significantly influenced by 

temperature, and thus by seasonality (Mackey & Smail 1996). Seasonality at 

subtropical latitudes therefore has a large effect on the availability of mangrove leaf 

litter for consumption by deposit feeders. Alternative resources may therefore be of 

higher importance to benthic consumers in these regions (Gladstone-Gallagher et al. 

2014).  

Terebralia palustris (Linnaeus, 1767), the largest and most widespread of the extant 

Potamididae family (Houbrick 1991; Strong et al. 2011), is considered a major 

component of Indo-Pacific mangrove macrofauna assemblages (Cannicci et al. 

2008). A large number of studies have therefore investigated the ecological role of T. 

palustris. Most notably, adult T. palustris are known to be avid consumers of freshly 

fallen mangrove leaf litter (Slim et al. 1997; Fratini et al. 2000), as an ontogenetic 

change in the structure of the radula enables them to mechanically graze on these 

resources (Houbrick 1991). Generally, juveniles occur within the lower intertidal zone 

while adults occupy higher regions of the shore, but this is not always the case 

(Fratini et al. 2004). The spatial segregation of T. palustris within the mangroves has 

however been related to the ontogenetic niche partitioning of the diet for this species. 

Juvenile T. palustris that occupy the lower intertidal zone have been reported to 

consume mainly MPB (Pape et al. 2008; Penha-Lopes et al. 2009). In contrast, 

juveniles that occur in higher shore regions when there is no spatial segregation 

between age classes have detritus-based diets (Fratini et al. 2004). The ecological 

role of T. palustris as a benthic consumer within Indo-Pacific mangroves is therefore 
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complex and variable, particularly as these gastropods are able to attain very high 

densities (Pape et al. 2008; Penha-Lopes et al. 2009; Raw et al. 2014). The potential 

impact that grazing may have on MPB resources in intertidal mangrove habitats 

should therefore be quantified. 

The aim of this study was to provide an assessment on the rates at which juvenile T. 

palustris are able to consume MPB. A seasonal comparison of feeding activity was 

also made as this study was carried out within an estuarine mangrove ecosystem at 

a subtropical location that is characterized by different rainfall periods. Feeding 

activity was therefore hypothesized to vary at two different temporal scales. Firstly, 

for a large number of intertidal organisms, feeding activity is limited by abiotic (e.g. 

desiccation) and biotic (e.g. predation) factors (Chapperon & Seuront 2013). 

Therefore, it was hypothesized that the feeding activity of T. palustris juveniles would 

vary over the course of 24 h depending on light and tidal conditions. Secondly, 

seasonal rainfall patterns have a large impact on nutrient availability, and thus on 

primary productivity within subtropical estuarine environments (Whitfield et al. 2012). 

Therefore, it was hypothesized that the consumption of MPB by T. palustris would be 

influenced by the availability of this resource and would therefore vary seasonally.  
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4.2 Materials and Methods 

 4.2.1 Site description and gastropod collection 

The Kosi Bay estuarine lake system (26°53‟37‟‟S; 32°52‟52‟‟E) (Figure 1.3) is one of 

three major Ramsar wetlands within the iSimangaliso Wetland Park, a UNESCO 

World Heritage Site on the northern coast of the KwaZulu-Natal Province of South 

Africa. There is an extensive mangrove forest on the south shore of the sandy 

embayment at the mouth. However, the mangrove trees in this area are stunted with 

an average height of below 300 cm and an average diameter at breast height (DBH) 

of less than 4 cm (Rajkaran & Adams 2011).This is the result of a weak foundation 

as the area is characterized by a lack of mud and fine sediment deposits (Begg 

1980; Wright et al. 1997).  

The relatively flat and sandy physical features of Kosi Bay are therefore suitable for 

the establishment of MPB communities. This locality is one of the southernmost 

limits for the global distribution of T. palustris (Houbrick 1991) and previous 

assessments have shown that there is a spatial segregation of size classes within 

the mangrove habitat (Raw et al. 2014). The size at maturity for T. palustris varies 

depending on environmental conditions (Houbrick 1991; Nishihira et al. 2002) but the 

ontogenetic dietary shift generally occurs around 50 mm total shell length. As the 

population structure at Kosi Bay closely resembles that reported by Penha-Lopes et 

al. (2009) in Mozambique, we only used snails < 30 mm total shell length as 

representatives of juvenile deposit feeders. These individuals were collected for 

experiments from amongst the pneumatophores on the seaward side of the 

mangrove area dominated by Rhizophora mucronata and Brugueira gymnorhiza 

trees. 

As there are two climatic seasons characterized by rainfall patterns in this 

subtropical region, experiments were carried out in February 2015 (late austral 

summer, wet season) (mean monthly rainfall of 150 mm – Ndlovu & Demlie 2016) 

and in July 2015 (mid austral winter, dry season) (mean monthly rainfall of 50 mm – 

Ndlovu & Demlie 2016), to allow for seasonal temporal comparisons. The South 

African coastline is classified as microtidal (Cooper 2000; Harris et al. 2011), 

therefore both experiments were carried out during a full moon phase, beginning on 

the first day with the spring low tide occurring in the morning. 
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The physico-chemical parameters of salinity, temperature (°C), dissolved oxygen 

(mg. L-1), pH and turbidity (NTU) were measured in the water column of a narrow 

channel adjacent to the study site upon arrival using a YSI 6600-V2 multiprobe 

system. 

 4.2.2 Gastropod grazing experiment 

The natural variations in gut pigment content were estimated by collecting five 

gastropods every 3 hours over a 24 hour period. After collection, the gastropods 

were dissected and their whole guts were placed in 8 mL of 90 % acetone. The 

samples were stored in darkness at 4 °C for 48 hours to allow for chlorophyll a 

extraction of the gut contents. The total pigments (chlorophyll a and phaeopigments) 

were measured with a 10-AU Turner Designs fluorometer using the non-acidification 

method (Welschmeyer 1994). These measurements were then expressed as 

chlorophyll-a equivalents (μg pigm. ind-1).  

The relationship between gut chlorophyll and shell height (SH) was compared 

between seasons using an Analysis of Covariance, as larger individuals would be 

expected to consume greater quantities of microalgae. However, the linear 

relationship, as indicated by linear regression, between SH and gut chlorophyll was 

different between seasons (F(1,40) = 3.563, p = 0.067 in the wet season and F(1,43) = 

1.371, p = 0.248 in the dry season). Therefore, gut chlorophyll measurements were 

size-standardized across both seasons (to allow for suitable comparisons) using the 

mean SH as follows: 

𝐺𝑢𝑡 𝑝𝑖𝑔𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑐𝑕𝑙𝑜𝑟𝑜𝑝𝑕𝑦𝑙𝑙𝑎  𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠 ×   
𝑚𝑒𝑎𝑛 𝑆𝐻

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝐻
  

Differences in the average gut pigment content between seasons were compared 

using an independent samples t-test. For each season, the gut pigment content was 

compared between tidal phases (Low, Flood, High, Ebb) and between time periods 

(Day, Night) using a two-way ANOVA. Statistical comparisons were performed using 

the “car” package (Fox & Weisberg 2014) in R v 2.11.1 (R Development Core Team 

2010) for Windows after testing that the parametric assumptions (Shapiro Wilks test 

for normality, Levene‟s test for homoscedasticity) were met.  
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The feeding rate of T. palustris juveniles was estimated with the in situ gut 

fluorescence technique (Mackas & Bohrer 1976). This method has previously been 

successfully adapted for gastropods (Miranda et al. 2011) and allows for the daily 

ingestion rate (I, mg pigm. ind-1 day-1) to be estimated as follows: 

𝐼 =  
𝑘𝐺

 1 − 𝑏 
 

Here k is the gut evacuation rate (h-1), G is the integrated average size-standardized 

gut pigment concentration (mg pigm. ind-1) over 24 h and b is an index of pigment 

consumption/digestion within the gut (Wang & Conover 1986). The calculated 

ingestion rates for T. palustris juveniles were compared between the two rainfall 

seasons.  

 Gut evacuation rate (k) 

Freshly collected T. palustris juveniles were brushed and rinsed to remove sediment 

and epiphytes from their shells before being isolated in 250 mL plastic jars. Individual 

snails were each placed in 100 mL of water that had been collected in situ and 

filtered through a Whatman GF/F (0.7 µm) and a Millipore filter (0.2 µm) to ensure 

removal of all particulate material. Non-fluorescent cornstarch was added to the 

filtered water. This provided a food source to promote continuous gut evacuation 

(Pakhomov & Perissinotto 1996; Carrasco & Perissinotto 2010). Five individuals 

were processed (as outlined above) to provide an estimate of gut pigment content at 

the start of the experiment. For the first hour of the experiment, five individuals were 

removed from their jars and processed every 10 minutes. For the final two hours 

(total duration 3 h), five individuals were processed every 30 minutes. As the snails 

continuously consumed the cornstarch, their gut pigment content decreased over 

time. The linear slope of this change in gut pigment over time was then used to 

estimate the gut evacuation rate (Pakhomov & Perissinotto 1996). A maximum gut 

evacuation rate (kmax) was calculated from the first 30 min of the experiment. This 

value was subsequently used to estimate a maximum ingestion rate (Imax). 
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 Pigment consumption/digestion (b) 

A two compartment pigment budget approach (Mayzaud & Razouls 1992) was used 

to estimate the efficiency at which T. palustris is able to consume/digest 

photosynthetic pigments within the gut. Twenty freshly collected individuals were 

isolated as described above in 600 mL plastic jars containing 200 mL of the filtered 

estuarine water and cornstarch mixture. After the first 12 hours, the water-cornstarch 

solution was replaced to maintain favourable conditions within the jars. After the 

second 12 hours (total duration 24 h), ten of the individuals were processed as 

described above to estimate their residual gut pigment content. The remaining ten 

individuals were each placed in a 2 L bucket containing 200 mL of pure filtered 

estuarine water. MPB that had been collected from the substrate at the collection site 

were suspended in filtered estuarine water and provided in aliquots of 20 mL to each 

bucket. A series of 10 control buckets were set up in the same manner but without 

the addition of gastropods. The snails were allowed to consume the settled 

microalgae for a period of one hour. After this time period the snails were processed 

and the water from each respective bucket (including the controls) was filtered 

separately (Whatman GF/F 0.7 µm). The filters were placed in 8 mL of 90 % acetone 

for extraction of chlorophyll-a. The snails did not produce any faecal pellets during 

the time spent feeding on the microalgae. The efficiency of T. palustris to 

consume/digest pigments within the gut was therefore calculated as the difference in 

pigment concentration between the water and snail compartments.  

 4.2.3 Gastropod abundance and impact on microphytobenthos 

Gastropod abundance was estimated in triplicate using a 0.25 m2 quadrat. The 

number of individuals within the frame was counted to estimate population density 

(ind.m-2). This was replicated three times within the lower region of the shore on 

each sampling occasion. The average population density was then multiplied by the 

calculated average and maximum ingestion rates in order to estimate the potential 

average and maximum feeding impacts, respectively (FI and FImax in mg pigm.m-2d-

1). 

The amount of microphytobenthos (MPB) available on the substrate (mg pigm.m-2) 

was estimated in triplicate. A 20 mm internal diameter corer was used to collect 

sediment cores of which the upper 2 cm containing the MPB was retained. Each 
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sample was placed in 30 mL of 90 % acetone at 4 °C for 48 hours to allow for 

chlorophyll extraction. After this period, the pigment concentrations were measured 

fluorometrically as described above. The calculated feeding impact was then 

expressed as a percentage of the MPB available for consumption by the snails. Per 

capita resource availability (mg pigm. m-2 ind-1) was also calculated for comparison 

between seasons. 
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4.3 Results 

 4.3.1 Seasonal variation in environmental conditions 

There were clear seasonal trends in the environmental conditions at Kosi Bay, as 

indicated by the measured physico-chemical parameters (Table 4.1). As expected, 

temperature was considerably lower at the time of the winter experiment. As rainfall 

is higher in summer, a lower salinity was recorded in the estuary during this season, 

while in winter the environmental conditions reflected characteristics of the marine 

environment.  

 

Table 4.1 Average (± SE) physico-chemical parameters measured in each season 

from the water column of the Kosi Bay estuary. The average (± SE) shell height (SH) 

of individuals collected on each sampling occasion is also provided. 

 Austral summer Austral winter 

 (February 2015) (July 2015) 

Time 12h00 13h00 

Temperature (°C) 32.9 ± 0.2 24.5± 0.2 

Salinity  23.6± 0.4 35.2 ± 0.1 

pH 8.2± 0.2 8.7± 0.02 

Turbidity (NTU) 2.3 ± 0.1 1.8 ± 0.8 

Dissolved oxygen (mg.L-1) 8.8± 0.7 9.9 ± 0.3 

Shell height (mm) 20.3 ± 2.5 24.7± 3.7 

 

Terebralia palustris juveniles that were collected for the winter experiment were also 

larger on average than those collected the previous summer (Table 4.1). 

 4.3.2 Seasonal, diel and tidal variations in gut pigment content 

The average gut pigment content of T. palustris varied between seasons, between 

day and night hours and also between tidal phases. Seasonal differences in daily 

average gut pigment content were significant (t = - 3.878, df = 85, p = 0.0002) with 

higher gut pigment content recorded from snails collected during the drier winter 

period (Table 4.2, Figure 4.1). Although the average gut pigment content of T. 



 
 

 
74 

palustris varied throughout the day (Figure 4.1), a significant difference (t = 3.072, df 

= 38, p = 0.004) between day and night hours was only found in winter. 

The average gut pigment content measured during each tidal phase was different 

between seasons. In summer, the gut pigment content was highest during high tide 

and lowest at flood tide (Table 4.2). In contrast, in winter the highest gut pigment 

content was recorded from snails collected at ebb tide and the lowest was recorded 

during high tide (Table 4.2). However, there were no significant differences for gut 

pigment content between tidal phases in summer (F3,37 = 2.069 p = 0.123) or in 

winter (F3,40 = 0.213, p = 0.887) (Table 4.2).  

When considering time of day (Day, Night) and tidal phase (Low, Flood, High, Ebb) 

as categorical predictors of gut pigment content there were no significant interactions 

between these factors either in summer (F3,37 = 1.527 p = 0.228) or winter (F3,40 = 

2.500, p = 0.077). In summer, gut pigment content was generally similar between 

corresponding day and night tidal phases (Figure 4.1C). In contrast, during the winter 

experiment there was a clear, although not statistically significant, difference in gut 

content between day and night tidal phases (Figure 4.1D). 

 



 
 

 

 

Figure4.1 Diel and tidal variations in gut pigment content for Terebralia palustris at Kosi Bay recorded in austral summer (A, C) and 

austral winter (B, D). Thicker line on horizontal axes (A, B) indicates night time hours. Error bars (C, D) represent the standard 

error of the mean. 



 
 

 

 

 

 

 

Table 4.2 Seasonal, diel and tidal variations in the average (± SE) gut pigment content measured for T. palustris juveniles in 

summer and winter of 2015 at Kosi Bay, South Africa. 

 Gut pigment content (µg pigm.ind-1) 

 24 h cycle Diel variation Tidal variation 

  Day Night High Ebb Low Flood 

Summer 76.1 ± 6.6 76.1 ± 9.1 87.2 ± 11.2 104.3 ± 12.6 76.2 ± 17.2 79.5 ± 11.2 56.1 ± 12.9 

        

Winter 153.9 ± 18.9 225.6 ± 31.9 113.9 ± 20.7 135.6 ± 31.4 180.7 ± 40.4 156.0 ± 45.7 144.6 ± 49.3 
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 4.3.3 Ingestion rates and feeding impact 

The feeding parameters that were used to calculate ingestion rate varied seasonally 

for juvenile T. palustris (Table 4.3). A larger quantity of chlorophyll was consumed by 

snails over a 24 h period in winter, as indicated by the integrated gut pigment content 

(G). However, a faster gut evacuation rate was recorded during the summer 

experiment (Table 4.3, Figure 4.2). The efficiency at which snails were able to 

consume/digest pigments within the gut also varied between seasons (Table 4.3). 

The higher consumption/digestion efficiency in winter, coupled with the larger 

quantity of chlorophyll consumed (G), resulted in a faster calculated ingestion rate for 

snails in this drier season (Table 4.3). 

 

Table 4.3 Integrated size-standardized average gut pigment content (G) measured 

over 24 h; maximum gut evacuation rate (kmax) and corresponding gut passage time 

(GPT); and pigment consumption/digestion efficiency (b) calculated for  

for juvenile Terebralia palustris at Kosi Bay, South Africa in both seasons. 

Season  (G) 

(mg pigm.ind-1) 

 (kmax) 

(h-1) 

GPT 

(h) 

(b) 

(%) 

Summer 0.63 0.84 1.19 35.9 

Winter 1.25 0.66 1.52 51.0 
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Figure 4.2 Decline in gut pigment content over a three hour period for Terebralia 

palustris in austral summer (t0 = 15:00)(A) and in austral winter (t0 = 14:00)(B) at 

Kosi Bay. The average gut evacuation rate (k) was calculated from the linear slope 

of the log-transformed gut pigment values measured over the 180 min experiment. 

 

In winter, T. palustris occurred at a higher population density (Table 4.4). As the 

calculated ingestion rate was also higher during this season, the potential feeding 

impact was higher in winter (Table 4.4). The total available biomass of MPB was 

similar between seasons. The potential daily consumption of MPB was much higher 

in winter and this resulted in lower per capita resource availability in this season 

(Table 4.4). 



 
 

 

 

 

 

Table 4.4 Calculated average and maximum values for feeding impact of Terebralia palustris as estimated from population density 

and calculated ingestion rates (I, Imax) at Kosi Bay, South Africa. Microphytobenthos (MPB) biomass (average ± SE) and per-capita 

availability of MPB for each season are also provided.  

Season Density Ingestion rate Feeding impact MPB biomass 
Daily 

consumption 

Per capita 

available MPB 

 (ind.m-2) (mg pigm.ind-1 d-1) (mg pigm. m-1 d-1) (mg pigm. m-2) (%) (mg pigm. m-2 ind-1) 

  I Imax FI FImax    

Summer 60 ± 20 0.29 0.82 17.62 49.34 116.77 ± 17.02 15.1 1.95 

Winter 100 ± 40 0.61 1.67 61.03 167.82 120.42 ± 16.33 50.7 1.20 
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4.4 Discussion 

Terebralia palustris is a conspicuous component of Indo-Pacific mangroves, because 

of its large size and the high densities at which at occurs (Fratini et al. 2004; Pape et 

al. 2008; Penha-Lopes et al. 2009). The ecological importance of this species to 

these systems has already been highlighted as adult snails consume a significant 

proportion of mangrove leaf litter and are therefore in direct competition with large 

sesarmid brachyurans for food resources (Slim et al. 1997; Fratini et al. 2000). 

Furthermore, their movement on the surface of the sediment has a significant impact 

on meiofaunal and bacterial communities (Carlén & Ólafsson 2002), and their 

deposit-feeding activities have much larger scale consequences in terms of nutrient 

dynamics and recycling of carbon (Cannicci et al. 2008; Penha-Lopes et al. 2010). 

This is however the first quantitative report on the rates at which juvenile T. palustris 

are able to consume available benthic photosynthetic resources in the form of MPB. 

Differences in the feeding activity of T. palustris did not strictly correlate with daily 

environmental fluctuations; however differences across the seasonal temporal scale 

were more predictable. There was, however, some variability that could be 

associated with differences in resource availability between seasons.  

 4.4.1 Temporal differences in feeding dynamics 

Daily feeding activity (as indicated by gut pigment content) of T. palustris was 

expected to vary with tidal and light conditions; however this was not always the 

case. Higher environmental temperatures coupled with increased insolation and 

longer emergence times during day time spring low tides in the summer significantly 

raise the risk of desiccation to intertidal gastropods (McMahon & Britton 1983; 

Davenport & Davenport 2005). In the case of T. palustris, individuals generally 

aggregate in shady areas or within shallow pools during day time low tides (Slim et 

al. 1997; Wells & Lalli 2003). However, at Kosi Bay we found that the feeding activity 

of juvenile T. palustris remained relatively constant irrespective of tidal and light 

conditions in the summer season. 

Nocturnal foraging by intertidal gastropods is generally driven by lower desiccation 

stress. Predation risk may however be higher for these periods, particularly during 

full moon phases. Larger T. palustris do forage in all light and tidal conditions (Fratini 

et al. 2001; Fratini et al. 2008). However, they generally occur within well shaded 
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regions of the mangroves and due to their size they are more tolerant to desiccation 

(Soemodihardjo & Kastoro 1977) and have fewer predators. In contrast, juveniles 

can be predated upon by larger brachyurans (Vannini et al. 2001; Wells & Lalli 2003) 

and their occurrence on the lower region of the shore has been related to their lower 

desiccation tolerance, as this zone receives run-off and seepage from upper regions 

and is characterized by shorter emergence times (Penha-Lopes et al. 2009). At Kosi 

Bay, we found that feeding activity was only greatly reduced during the night time 

low tide of the winter experiment. Although the prevalence of potential brachyuran 

predators at Kosi Bay has not been quantified, gastropods are generally driven by 

the chemical and mechanical cues of their potential predators (Mach & Bourdeau 

2011). In our study, the observed patterns in feeding activity of juvenile T. palustris 

are therefore most likely to be driven by the seasonal subtropical climate. 

As a consequence of these temperature-driven activity patterns, seasonal 

differences in parameters relating to the feeding dynamics of T. palustris were also 

observed. As warmer summer temperatures increase the metabolic rate of the 

snails, their continuous feeding throughout the course of the day resulted in a faster 

gut evacuation time for this season. Although winter feeding activity was reduced 

and gut evacuation time was slower, higher consumption/digestion efficiency was 

recorded for this season. The estimated consumption/digestion efficiency for T. 

palustris consuming MPB was however lower than what has been reported for other 

mangrove deposit-feeding gastropods, such as Cerithidea cingulata when feeding on 

bacteria (Dye & Lasiak 1987). If traits that are related to consumption/digestion 

efficiency are plastic, this may promote the ability of this species to survive during 

unfavourable conditions. This trend was previously reported for the fiddler crab, Uca 

annulipes, within a subtropical mangrove forest (Peer et al. 2015a). Greater 

consumption/digestion efficiency may therefore enable the snails to meet their 

energetic requirements despite the reduction in feeding activity over the course of 24 

hours.  

Measuring feeding activity over a synodic month in both the summer and winter 

seasons will indicate how these snails respond to short local scale fluctuations. A 

comparison between neap and spring tides may further indicate whether activity at 

spring tide was in fact reduced, particularly in the summer when the gut chlorophyll 

content was much lower. Slim et al. (1997) found that feeding activity of T. palustris 
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was reduced when the inundation period was shorter and this is presumably a 

strategy to conserve water by reducing mucous trails. Differences in the cross-shore 

distribution of juveniles between the two climatic seasons should also be considered. 

To mitigate the effects of desiccation, in summer juvenile T. palustris may occur 

relatively higher up on the shore in shaded areas where detrital sources are more 

available, thus reducing their gut chlorophyll content in this season. 

 4.4.2 Feeding dynamics in response to resource availability 

Along high energy coastlines, such as the east coast of South Africa, mangrove 

forests are restricted to occur within sheltered estuarine areas (Macnae 1963). 

Within this region, estuaries are dynamic and are largely influenced by seasonal 

drivers (Scharler 2012). For instance, seasonal increases in flow, as a result of 

increased rainfall, have a significant influence on the availability of inorganic 

nutrients and thus on the primary productivity within the estuary (Nozais et al. 2001; 

Perissinotto et al. 2002; Collins & Melack 2014). However, at Kosi Bay we found that 

the biomass of MPB was relatively similar in summer and in winter. Despite this, 

there was a clear difference in the utilization of this resource by juvenile T. palustris.  

Juvenile T. palustris consumed a much lower proportion of the total available MPB 

biomass in summer when they were slightly smaller and occurred at a lower density. 

Alternative sources may have therefore been available for consumption during this 

warmer season. For instance, increased flow is known to transport fluvial organic 

matter downstream (Whitfield et al. 2012). Mangrove leaf litter is also more readily 

available during summer at subtropical latitudes, as the warmer temperatures 

facilitate the rate of decomposition into detritus (Mackey & Smail 1996; Tomlinson 

1999). These sources would not be detected by the fluorometric approach. As 

deposit-feeding gastropods are largely considered to be non-selective generalists, 

their diets generally reflect the availability of resources. However, there is evidence 

that selective assimilation of nutritional sources occurs within the gut (Doi et al. 

2006). Pape et al. (2008) suggested that juvenile T. palustris selectively assimilate 

benthic microlagae such as diatoms based on their δ13C isotopic signature. 

However, prevailing low salinity conditions may promote the growth of different algal 

groups that are less favourable for consumption by T. palustris, resulting in a dietary 

switch to non-fluorescent material such as detritus. A stable isotope study is needed 
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to reveal whether there is in fact a seasonal dietary shift and a lower incorporation of 

MPB into the diet during summer for juvenile T. palustris at Kosi Bay. 

The per capita resource availability of MPB was however lower in winter, because T. 

palustris occurred at a higher density and had a faster ingestion rate. Direct 

intraspecific competition for benthic microalgal resources is therefore expected to be 

higher during this period. In winter the maximum potential feeding impact (FImax) of T. 

palustris juveniles on the total available MPB biomass was more than three times 

higher than in summer. Grazing by gastropods has been shown to have significant 

effects on the biomass and productivity of MPB (Pillay et al. 2009; Pratt et al. 2015). 

However, even if the snails consistently grazed at their maximum ingestion rate (Imax) 

for 24 h they would only reduce the available MPB biomass at Kosi Bay by around 

half. However, the productivity dynamics of MPB fluctuate throughout the course of 

the day and stocks are replenished by the tide (Blanchard et al. 2001), therefore the 

actual feeding impact that these snails have on available MPB at Kosi Bay is likely 

not very substantial.  

4.5 Conclusion 

Although the feeding activity of T. palustris was largely influenced by temperature, it 

appears that this species is well suited to the subtropical climatic regime. Terebralia 

palustris is able to utilize resources at variable rates and their potential maximum 

consumption rates did not exceed the available MPB biomass. Although juvenile T. 

palustris do consume mangrove derived detritus, their occurrence on the lower 

regions of the shore also enables them to incorporate MPB into their diets. The 

importance of MPB to the diet of T. palustris appears to be highly variable and 

dependent on a number of factors. Undoubtedly, the consumption of sources that 

are not derived from mangroves allows this species to inhabit coastal areas that do 

not support these macrophytes (Feulner 2000). The consumption of this 

autochthonous resource should therefore be considered as an integral part of the 

ecological role for this widespread and charismatic species. 

  



 
 

 
84 

Chapter 5: Feeding dynamics of Melanoides tuberculata 

 

Raw JL, Perissinotto R, Miranda NAF, Peer N (2016) Feeding dynamics of Melanoides 

tuberculata. Journal of Molluscan Studies 82: 328-335. 

 

5.1 Introduction 

Benthic primary producers provide an essential autochthonous resource in shallow 

water ecosystems. This resource is ultimately linked to higher trophic levels through 

deposit-feeders, such as gastropods. Deposit-feeders are generally indiscriminate 

while feeding and thus often exhibit a large degree of trophic plasticity. The degree 

of trophic plasticity evident in most benthic aquatic gastropods is considered an 

important trait influencing the success of some species following their introduction 

into habitats outside their native range. The invasion success of apple snails 

(Ampullariidae), such as Pomacea canaliculata and P. maculata, the New Zealand 

mud snail Potamopyrgus antipodarum, and the thiarid Tarebia granifera, has been 

attributed at least in part to the broad generalist diets of these species (Baker et al. 

2010; Miranda & Perissinotto 2012; Bennett et al. 2015a). Grazers at high densities 

have a substantial impact on available resources (Hillebrand 2009), including top-

down control on primary productivity and effects on community structure of benthic 

macrofauna as a result of competition (Kerans et al. 2010).  

Melanoides tuberculata (Müller, 1774) is renowned as one of two globally invasive 

thiarid gastropods (Facon et al. 2003). The native range of M. tuberculata extends 

through East Africa, across the Middle East and to Southeast Asia (Brown 1994; 

Facon et al. 2003). Within this range it is possible to find genetically and 

phenotypically distinct morphs (Samadi et al.1999), which may have either African or 

Asian evolutionary origins due to human-mediated spread (Facon et al. 2003). 

Melanoides tuberculata typically occurs in a wide variety of perennial or temporary, 

freshwater or brackish habitats including rivers, streams, springs, wetlands, pans 

and coastal lakes (Brown 1994; Appleton 1996; de Kock & Wolmarans 2009; 

Perissinotto et al. 2014). It is currently unknown whether the generalist habitat and 

dietary traits recorded for M. tuberculata are in fact due to intrinsic variations 
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between genetically distinct morphs. Regardless, following establishment M. 

tuberculata attains high population densities (Work & Mills 2013) and successfully 

displaces native gastropods, presumably through interspecific competition 

(Guimarães et al. 2001).  

Relatively little is known about the role M. tuberculata plays as a benthic consumer 

of primary production except that individuals feed by indiscriminately scraping the 

substrate for detritus, sedimentary organic matter and photosynthetic benthic 

microalgae (Madsen 1992; Coat et al. 2009; Miranda & Perissinotto 2012). 

Laboratory studies report that grazing by M. tuberculata influences the species 

richness and density of periphyton (Vasconcelos et al. 2013). However, the potential 

feeding impact of M. tuberculata on standing stocks of microphytobenthos has not 

previously been investigated. The aim of this study was to estimate the feeding 

dynamics of M. tuberculata and to determine the impact of this species on available 

benthic resources. Feeding dynamics were assessed and compared for three distinct 

populations from environments that are representative of the variety of habitats in 

which the species occurs. It was predicted that feeding dynamics would differ 

between populations in different habitats in two ways. First, as M. tuberculata is a 

generalist deposit feeder, the average gut pigment content of individuals would be 

related to the available biomass of microalgae in each habitat. Second, the rate at 

which M. tuberculata consumed microalgae would vary with population density. 

Variation in feeding dynamics between different populations of M. tuberculata would 

be indicative of plasticity in these traits. This plasticity could be intrinsic or in 

response to environmental parameters, such as resource availability. The estimation 

of the potential feeding impact of M. tuberculata on microalgal resources should 

provide useful information relating to the invasion success of this species. 
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5.2 Materials and Methods 

 5.2.1 Site description and gastropod collection 

The iSimangaliso Wetland Park, a UNESCO World Heritage Site on the north coast 

of KwaZulu-Natal Province, South Africa, protects a wide range of coastal habitats 

including three major Ramsar Wetlands of International Importance (Figure 1.2). 

For this study, in situ experiments were carried out with Melanoides tuberculata 

collected from three different habitats: (1) the mangrove forest on the north shore of 

the St Lucia Estuary Mouth; (2) the muddy bed of the Mpophomeni Stream in the 

False Bay region of Lake St Lucia; (3) the sandy shores of Lake Nhlange in the Kosi 

Bay lake system. These habitats are representative of the range of environments in 

which M. tuberculata typically occurs in terms of temperature, salinity and substrate 

type. Although M. tuberculata is indigenous to South Africa (Brown 1994), 

preliminary conchological analyses using the categorical scoring system of Facon et 

al. (2003) indicate that there are currently several morphologically distinct 

populations. In this study (Figure 5.1), M. tuberculata from the St Lucia Estuary 

Mouth (A) as well as the Mpophomeni Stream (B) have been identified as the 

characteristic tuberculate form, which is considered to be indigenous (see Appleton, 

1996). However, those from Lake Nhlange (C) display a smooth sculpture and have 

a distinct columellar band, resembling the Asian genotype/morph illustrated by 

Genner et al. (2004). This is the subject of an ongoing study in South Africa 

(Appleton & Miranda 2015). 
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Figure 5.1 Melanoides tuberculata collected from (A) St Lucia Estuary Mouth, (B) 

Mpophomeni Stream, and (C) Lake Nhlange of the iSimangaliso Wetland Park, 

South Africa. Photo: N. Miranda 

 

The experiments with M. tuberculata from the St Lucia Estuary Mouth and the 

Mpophomeni Stream were carried out on 21 and 23 February 2014, respectively. 

The experiments with M. tuberculata from Lake Nhlange were carried out on 31 

January 2015. Physico-chemical parameters were measured upon arrival at each 

site using a YSI 6600-V2 multiprobe. Approximately 10 individual snails were 

collected and then processed to obtain an estimate of gut pigment content at that 

time. 

 

 



 
 

 

 

 

Table 5.1 Average (± SE) values of physico-chemical variables, population parameters and gut pigment content for Melanoides 

tuberculata at St Lucia Estuary Mouth, Mpophomeni Stream and Lake Nhlange. 

Site Date and time Salinity 
Temperature 

(°C) 

Gut pigment 

content*  

(μg pigm.ind-1) 

Average SH 

(mm) 

Density 

(ind.m-2) 

St Lucia Estuary 

Mouth 

21 Feb 2014 

10:00 
7.6 ± 0.04 25.9 ± 0.25 83.36 ± 13.15 13.37 ± 0.58 288 ± 15 

       

Mpophomeni 

Stream 

23 Feb 2014 

16:00 
8.8 ± 0.02 24.6 ± 0.07 338.86 ± 39.18 26.17 ± 0.92 67 ± 7 

       

Lake Nhlange 

 

31 Jan 2015 

14:00 
2.9 ± 0.03 32.4 ±0.11 255.07 ± 69.94 13.22 ± 0.56 104 ± 34 

       

* Gut pigment content estimated from the 10 individuals collected immediately upon arrival at each site. SH, shell height. 

Abbreviation SH: Shell height 
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 5.2.2 Gastropod grazing experiments 

Gut contents: 

To determine the dominant constituents in the diet of M. tuberculata, the gut contents 

of 15 randomly selected individuals from each site were examined under a dissecting 

microscope. Gut contents were classified by gross morphology (microalgae, 

filamentous algae, detritus, sediment) and the percentage of snails that contained 

these items in their guts was calculated. 

To determine natural variations in the pigment in the gut (a proxy for ingested 

photosynthetic material), individuals were collected at 3-h intervals over a period of 

24 h. Five individuals were collected after each time interval and the shell height 

(SH) of each snail was measured with Vernier callipers. The gastropods were 

dissected and each whole gut was placed in 8 ml of 90% acetone and then stored in 

the dark at 4 °C for 48 h to extract chlorophyll a. The total pigments (chlorophyll a 

and phaeopigments) were subsequently measured using the non-acidification 

method with a 10-AU Turner Designs fluorometer (Welschmeyer 1994) and 

expressed as chlorophyll a equivalents (μg pigm.ind-1). 

Gut chlorophyll content was expected to vary with shell size. Therefore, to determine 

whether gut chlorophyll content varied over the course of the day at each site, time 

period (morning, afternoon, evening, night) was used as a categorical predictor 

variable in a general linear model (GLM), which incorporated shell height as a 

continuous covariate. The slope of the linear relationship between gut chlorophyll 

content and shell size was not consistent between sites. Therefore, to compare the 

overall difference in gut pigment content in μg pigm.ind-1 between sites the 

measurements were size-standardized across all three populations to allow for 

suitable comparisons using the mean SH as follows: 

𝐺𝑢𝑡 𝑝𝑖𝑔𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑐𝑕𝑙𝑜𝑟𝑜𝑝𝑕𝑦𝑙𝑙𝑎  𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠 ×   
𝑚𝑒𝑎𝑛 𝑆𝐻

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝐻
  

ANOVA with Tukey‟s HSD post hoc test was used to compare gut pigment content 

between populations. Size-standardized gut pigment values were used to calculate 

all subsequent parameters in order to make these values directly comparable 

between populations. 
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The feeding rate of M. tuberculata was estimated using the in situ gut-fluorescence 

technique developed by Mackas & Bohrer (1976), which has since been adapted for 

gastropods (Miranda et al. 2011; Díaz et al. 2012). The daily ingestion rate (I, mg 

pigm.ind-1 d-1) was estimated as follows: 

𝐼 =  
𝑘𝐺

 1 − 𝑏 
 

Where k is the gut evacuation rate (h-1), G is the integrated average size-

standardized gut pigment concentration (adjusted to mg pigm.ind-1) over 24 h and b 

is an index of pigment consumption/digestion within the gut (Wang & Conover 1986; 

see below). The calculated values for I were compared between populations using 

Pearson‟s chi square test.  

Gut evacuation rate (k): 

The gut evacuation rate was measured with freshly collected M. tuberculata. 

Individuals were isolated in 100 ml plastic vials containing water collected in situ and 

filtered through a Whatman GF/F (0.7 μm) and a Millipore filter (0.2 µm), to ensure 

removal of all particulate material. To promote continuous gut evacuation, 

nonfluorescent cornstarch was added as a source of food to the filtered water 

(Carrasco & Perissinotto 2010). The gut pigment content was measured (see above) 

from five gastropods at the beginning of the experiment. Five individuals were 

subsequently processed every 10 min for the first hour and every 30 min for the 

following 2 h (total duration 3 h). The gut evacuation rate was estimated from the 

linear slope of the change in gut pigment over time (Pakhomov & Perissinotto 1996). 

To determine maximum potential ingestion rates (Imax), the maximum gut evacuation 

rate (kmax) was estimated from the rate of pigment decline over the first 30 min of the 

experiment. 

Pigment consumption/digestion (b): 

The efficiency of M. tuberculata in consuming/digesting photosynthetic pigments in 

the gut was determined using the two-compartment pigment-budget approach 

(Mayzaud & Razouls 1992). Twenty individuals were isolated in 100 ml of the filtered 

water and cornstarch mixture described above for a period of 24 h. The water-

cornstarch solution was replaced after 12 h to avoid a build-up of waste products. 
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After the 24-h period, the gut pigment content was measured from ten individuals. A 

20-ml suspension of microalgae was added to each of ten 2L buckets containing 300 

ml of pure filtered water (no cornstarch) collected in situ. After the microalgae had 

settled, the remaining ten snails were each placed in a bucket and allowed to feed 

for a period of 1 h. A control was set up in the same manner but without the addition 

of gastropods. After the incubation period of 1 h, the snails were processed as 

described above. The water from each replicate was filtered (Whatman GF/F 0.7 µm) 

and the filter was placed in 8 ml of 90% acetone for extraction as described. No 

faecal pellets were produced during the incubation period. The differences in 

pigment concentration between the water and snail compartments were therefore 

attributed to consumption or digestion within the gut.  

 5.2.3 Gastropod abundance, resource availability and impact on 

microphytobenthos 

Gastropod abundance was measured quantitatively using a corer with an internal 

diameter of 42 mm at the St Lucia Estuary Mouth and the Mpophomeni Stream. The 

corer was pushed into the sediment and all individuals within the area were counted. 

This method could not be employed at Lake Nhlange where M. tuberculata occurs in 

deeper water. Instead, a net of 0.3 m diameter was swept across 5 m of the 

substrate where M. tuberculata occurred. Abundance sampling was replicated in 

triplicate at each site to estimate population density (ind.m-2).  

The potential feeding impact (mg pigm.m-2 d-1) was calculated as the product of the 

daily ingestion rate and the density of gastropods for each population. The average 

available microphytobenthos (MPB) standing stock (mg pigm.m-2) was estimated 

from triplicate cores (20 mm internal diameter) placed in 30 ml of 90% acetone at 4 

°C for 48 h. After chlorophyll a extraction, the pigment concentrations were 

measured fluorometrically as described above. The feeding impact of gastropods 

was then expressed as a percentage of the average available MPB standing stock. 

The biomass of MPB available per individual snail (mg pigm.m-2 ind-1) was estimated 

as an indication of resource availability at each site. The estimates for feeding impact 

were compared between populations using Pearson‟s chi square tests.  
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5.3 Results 

5.3.1 Gut pigment content 

The gut contents of Melanoides tuberculata were dominated by microalgae and 

detritus for snails from all three populations (Table 5.2). Filamentous algae only 

occurred in the guts of snails from the Mpophomeni Stream, although their 

percentage was relatively low.  

 

Table 5.2 Percentage occurrence of gut content items for Melanoides tuberculata 

from the St Lucia Estuary Mouth, Mpophomeni Stream and Lake Nhlange. 

Site Microalgae Filamentous algae Detritus Sediment 

St Lucia Mouth 73.3 - 80 6.7 

Mpophomeni Stream 72.2 16.7 61.1 33.3 

Lake Nhlange 64.3 - 78.6 42.9 

 

The average gut-pigment content of individuals collected immediately upon arrival 

differed between sites. The average size of individuals was relatively similar at the St 

Lucia Estuary Mouth and Lake Nhlange, while those at the Mpophomeni Stream 

were double this size (Table 5.1). Although shell height was a significant covariable 

of gut chlorophyll content at St Lucia Estuary Mouth (F1,37 = 4.249, P = 0.047), 

Mpophomeni Stream (F1,38 = 5.515, P = 0.025) and Lake Nhlange (F3,36 = 6.2716, P 

= 0.017), these parameters were in fact poorly correlated at each site (r2 = 0.162; r2 = 

0.145 and r2 = 0.228 respectively).  

Gut chlorophyll content did not differ significantly during the course of the day for M. 

tuberculata at Lake Nhlange (GLM: F3,36 = 0.982, P = 0.413), Mpophomeni Stream 

(GLM: F3,38 = 451, P = 0.718) or St Lucia Estuary Mouth (GLM: F3,37 = 1.362, P = 

0.271) (Figure 5.2). However, the average size-standardized gut chlorophyll 

measured over 24 h (G) between snails was higher at the Mpophomeni Stream 
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(ANOVA: F2,126 = 27.745, P = 0.001) in comparison with those from the St Lucia 

Estuary Mouth and Lake Nhlange (Table 5.3). 

 

Figure 5.2 Diel variation in gut pigment content for Melanoides. tuberculata at the St 

Lucia Estuary Mouth, the Mpophomeni Stream and Lake Nhlange. 

 

 

Table 5.3 Integrated size standardized average gut pigment content (G) measured 

over 24 h; maximum gut evacuation rate (kmax) and corresponding gut passage time 

(GPT); and pigment consumption/digestion efficiency (b) calculated for Melanoides 

tuberculata from different localities.  

Site (G) 

(mg pigm.ind-1) 

 (kmax) 

(h-1) 

GPT 

(h) 

(b) 

(%) 

St Lucia Estuary 

Mouth 
1.38 0.48 2.08 11.1 

Mpophomeni 

Stream 
3.93 0.42 2.38 87.7 

Lake Nhlange 1.40 0.54 1.85 84.1 
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5.3.2 Ingestion rates, feeding impact and resource availability 

A negative exponential model provided the best fit for the rate of pigment decline 

over a 3-h period for all experiments (Figure 5.3). The maximum gut evacuation rate 

(kmax) varied between sites and was highest for snails at Lake Nhlange and lowest at 

the Mpophomeni Stream (Table 5.3). Both the average gut evacuation rate (k) 

(Figure 5.3) and the calculated average ingestion rate (I) were similar (χ2 = 1.455, df 

= 2, P = 0.483) between populations (Table 5.4). This was the result of the variation 

in the consumption/digestion efficiency (b) and the size-standardized gut chlorophyll 

content (G) between snails from different sites (Table 5.3). As a product of density 

and ingestion rate, the average feeding impact did differ significantly (χ2 = 36.602, df 

= 2, P < 0.0001) between sites (Table 5.4). The maximum potential feeding impact 

(estimated from Imax) was also significantly different between sites (χ2 = 471.077, df = 

2, P < 0.0001) (Table 5.4). Biomass of MPB was similar at the St Lucia Estuary 

Mouth and the Mpophomeni Stream (Table 5.4). As M. tuberculata occurred at the 

lowest density at the Mpophomeni Stream where MPB biomass was relatively high, 

the per capita resource availability (mg pigm.m-2 ind-1) was greatest at this site 

(Table 5.4). The average potential daily consumption of MPB differed significantly 

between sites (χ2 = 39.942, df = 2, P < 0.0001) and was highest at Lake Nhlange 

(Table 5.4).  
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Figure 5.3 Decrease in gut pigment content over time for Melanoides tuberculata 

from St Lucia Estuary Mouth (t0 = 12:00) (A), Mpophomeni Stream (t0 = 14:00) (B) 

and Lake Nhlange (t0 = 16:00) (C). Average gut evacuation rate (k) calculated as the 

linear slope of log-transformed gut pigment content over the entire 180 min.



 
 

 

 

 

 

Table 5.4 Calculated average and maximum values for ingestion rate and feeding impact for Melanoides tuberculata at St Lucia 

Estuary Mouth, the Mpophomeni Stream and Lake Nhlange. Average (± SE) available microphytobenthos (MPB) biomass, potential 

daily MPB consumption and per-capita availability of MPB at each site are also given.  

Site Ingestion rate Feeding impact MPB biomass  Daily MPB 

consumption 

Per-capita 

available MPB  

 (mg pigm.ind-1 d-1) (mg pigm.m-2 d-1) (mg pigm.m-2) (%) (mg pigm.m-2ind-1) 

St Lucia Estuary 

Mouth 
0.17 48.30 436.82 ± 213.72 11.06 1.52 

 0.67 193.19    

Mpophomeni 

Stream 
1.91 128.0 415.14 ± 76.46 30.83 6.20 

 13.37 896.02    

Lake Nhlange 1.05 109.86 173.25 ± 35.08 63.41 1.67 

 4.75 494.39    
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5.4 Discussion 

Melanoides tuberculata has been reported to consume periphytic biofilms 

(Vasconcelos et al. 2013) as well as detritus and microalgae (Coat et al. 2009). 

However, this is the first report on the rate at which M. tuberculata is able to 

consume available MPB. Remarkably, this species was able to consume over 60% 

of the total available microalgal biomass in one of the three different systems (Lake 

Nhlange) investigated in this study. There was, however, a large degree of variability 

in the feeding dynamics of M. tuberculata from the different habitats. 

 5.4.1 Differences in the feeding dynamics between populations 

Food availability and quality of resources: 

The consumption of benthic microalgae by M. tuberculata was not directly related to 

the biomass of available MPB. However, when considering the variation in per-capita 

available MPB between sites there is a clear trend in relation to gut pigment content 

(G). Population density has the potential to influence ingestion rates of deposit-

feeding gastropods, as the result of interference competition through space limitation 

and an increase in the frequency of interactions between individuals (Blanchard et al. 

2000). These effects were, however, not recorded for snails at natural densities 

(Barnes 2001). Lower gut pigment content measured at high population density 

(when per-capita available MPB was low) at the St Lucia Estuary Mouth was related 

to a lower ingestion rate and subsequently a lower potential impact on available 

stocks. However, a high pigment consumption/digestion efficiency coupled with a 

fast gut passage time resulted in a high calculated ingestion rate at Lake Nhlange. 

Under these conditions when the total available biomass of MPB was lower, which 

also resulted in a low per-capita availability of MPB, the potential feeding impact of 

snails was in fact very high. 

As M. tuberculata is a generalist deposit feeder, the lower ingestion rates measured 

at higher population densities may be the result of these individuals consuming a 

lower proportion of photosynthetic material. Detritus was indeed recorded in the gut 

contents from a large percentage of the snails examined from all three habitats. The 

constituents of particulate detritus can differ significantly among habitats (Yee & 

Juliano 2006). However, detritus is a nutritionally poor food source for gastropods in 
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comparison with benthic microalgae (Levinton et al. 1984). In the mangrove habitat, 

M. tuberculata may be fulfilling their energetic requirements by feeding 

predominantly on sediment enriched with organic detritus and microbes, which are 

common alternatives to photosynthetic microalgae for deposit feeding gastropods 

(Sheldon & Walker 1997). 

The nutritional quality of food, as well as the physical structure and complexity of 

food particles, have been related to variations in gut passage time and the efficiency 

with which individuals consume/digest pigments within the gut (Taghon & Jumars 

1984). Gut passage time is generally positively correlated with this 

consumption/digestion efficiency (Hawkins et al. 1990). Therefore, a long gut 

passage time could be indicative of either poor food quality or high structural 

complexity of the food consumed. Similarly, different algal groups are digested in the 

gut at different rates and efficiencies by gastropods (Brendelberger 1997). In the 

case of M. tuberculata from the Mpophomeni Stream, filamentous Cladophora was 

recorded in the gut contents from some individuals even though they were collected 

from outside the patches of this alga. Although microalgae were most commonly 

found in the guts, the incorporation of Cladophora potentially leads to higher 

consumption/digestion efficiency in these snails. Therefore, although the gut 

passage time was longer for M. tuberculata from the Mpophomeni Stream, their high 

efficiency contributed to a faster ingestion rate and thus to a significantly larger 

potential feeding impact on available MPB. 

Environmental variation: 

The variation in feeding dynamics observed for M. tuberculata from different habitats 

is potentially driven by a range of environmental conditions. Temperature is 

positively correlated with ingestion rates in gastropods (Foster et al.1998; Sanford 

2000). As temperature drives metabolic processes, it would be expected also to 

influence gut passage time and consumption/digestion efficiency. The fastest gut 

passage time (estimated from kmax) and highest consumption/digestion efficiency 

were recorded from Lake Nhlange where environmental temperature was indeed the 

highest. The calculated ingestion rate was not, however, directly correlated with the 

temperature differences between habitats. Ingestion rates were in fact highest under 

the highest environmental salinity, which was recorded at the Mpophomeni Stream. 
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The feeding activity of benthic invertebrates generally varies within optimal ranges of 

salinity (Irlandi et al. 1997; Pascal et al. 2008). Although M. tuberculata is considered 

to be a predominantly freshwater species, it has been repeatedly reported from 

estuarine habitats and the species has a broad salinity tolerance (da Silva & Barros 

2015). The relationship between salinity and ingestion rate may therefore determine 

the extent to which M. tuberculata is able to affect benthic assemblages following 

introduction. 

Substrate type and, in particular, grain size determine the surface area available for 

colonization and thus influence the biomass of MPB in aquatic habitats (Cahoon et 

al. 1999). Sediment particles are also indirectly ingested by grazers (Levinton et 

al.1984) with implications for digestion/consumption efficiency within the gut 

(Broekhuizen et al. 2001). A third of the individuals examined from the Mpophomeni 

Stream contained sediment particles within their guts. However, for M. tuberculata, 

sediment was most frequently found in the gut contents of individuals collected from 

the sandy habitat at Lake Nhlange. A fast gut passage time for these snails may 

therefore facilitate fast removal of indigestible particles.  

Finally, a difference in the predation pressure ateach of the sites could also be 

driving the observed variability in feeding dynamics by influencing foraging 

behaviour. Freshwater snails are sensitive to the cues of their predators and often 

exhibit a range of avoidance strategiesthat influence their behaviour (Covich et al. 

1994; Chivers & Smith 1998; Dalesman et al. 2006). Predation can therefore 

influence habitat use as well as foraging patterns and feeding rates (Turner 1996; 

Premo & Tyler 2013; Dalesman et al. 2015). At the Mpophomeni Stream, M. 

tuberculata is known to be predated upon by the freshwater crab Potamonautes 

sidneyi Rathburn, 1904 (Peer et al. 2015b). However, at the St Lucia Estuary Mouth 

and Lake Nhlange the deeper water would facilitate predation by molluscivorous 

fishes, as has been reported in Zimbabwe and Lake Malawi (Chimbari & Madsen 

2003; Evers et al. 2011). A specific study is therefore needed to quantify how 

different predators influence the behaviour of M. tuberculata and thus determine the 

role of predation in regulating foraging behaviour for this species. 
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 5.4.2 Evolutionary significance of variation in feeding dynamics 

The large degree of variation in feeding dynamics recorded for M. tuberculata 

suggests that traits related to feeding may be plastic and therefore that they may 

differ between environments. However, this can only be concluded following a 

specific experimental investigation, which was beyond the scope of this study. 

Phenotypic plasticity arises when individuals of a similar genotype express different 

traits depending on environmental conditions (Scheiner 1993). This is often difficult 

to assess in natural populations, except in the situation of clonal species in which 

populations tend to be dominated by closely related individuals (Jackson 1986). In 

the case of M. tuberculata, which reproduces through ovoviviparous 

parthenogenesis, populations may indeed be genetically similar (Myers et al. 2000). 

The existence of genetically distinct but highly plastic morphs within this species 

(Samadi et al. 1999) complicates this scenario. Although certain traits may be 

expected to be plastic, there may be genetic differences between morphs that have 

experienced different selective pressures.  

Differences in physiology and other traits that would influence competition have not 

been directly compared between African and Asian morphs of M. tuberculata. 

However, at the time of their study, Genner et al. (2004) reported that morphs of 

Asiatic origin presently occur in areas of Lake Malawi that were previously occupied 

by native African morphs. This suggests that Asian morphs have displaced their 

African counterparts. Within the iSimangaliso Wetland Park, M. tuberculata has been 

displaced by the alien invasive Tarebia granifera (Miranda & Perissinotto 2014), with 

the exception of those at Lake Nhlange. Individuals of M. tuberculata from Lake 

Nhlange also behave differently from those from St Lucia Estuary Mouth (Raw et al. 

2015). A shared Asian evolutionary origin between T. granifera and certain M. 

tuberculata morphs may explain these variations.  

Globally, M. tuberculata has been introduced to many subtropical and tropical 

locations such as the southeastern United States (Karatayev et al. 2009), the 

Caribbean (Pointier et al. 2011) as well as areas of South America in Brazil, 

Argentina and Paraguay (De Marco 1999; Peso et al. 2011). The invasion success of 

M. tuberculata has largely been attributed to advantageous functional traits including 

wide physiological tolerance of desiccation (Facon et al. 2004), temperature (Mitchell 
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& Brandt 2005) and salinity (Weir & Salice 2012). If traits relating to feeding are 

indeed plastic, this would be advantageous to the success of M. tuberculata as an 

invasive species. The variation in feeding dynamics suggests that these snails utilize 

resources at different rates depending on their availability. However, individuals 

exhibit a degree of trophic plasticity as indicated by the various gut content items. As 

such, M. tuberculata has the ability to occupy a relatively broad trophic niche. 

Therefore, the invasion success of M. tuberculata may in part be attributed in the 

ability of this species to exploit a range of resources at variable rates. 

 5.4.3 Comparisons with other globally invasive species 

High densities of invasive gastropod species such as Potampopyrgus antipodarum, 

T. granifera and M. tuberculata are considered competitive threats to native species 

when food resources are limited (Rader et al. 2003; Appleton et al. 2009; Moore et 

al. 2012). Generally, although deposit feeders are effective at reducing MPB 

biomass, it is very seldom that consumption rates exceed the rate of MPB biomass 

generation (Pratt et al. 2015). Furthermore, MPB assemblages are highly variable in 

terms of biomass and species composition across different spatial scales 

(Underwood & Kromkamp 1999). It is therefore difficult to make reliable estimations 

of grazing pressure without using a dedicated in situ mesocosm approach. However, 

some estimates can be comparable, if the dynamics of MPB are also presented. Our 

results show that the daily consumption of available MPB by M. tuberculata is higher 

than what has been reported for the closely related T. granifera by Miranda et al. 

(2011) (63.4% and 35%, respectively). In contrast, P. antipodarum is potentially able 

to consume up to 75% of the daily available gross primary production (Hall et al. 

2003).  

Although ingestion rates are typically highest at low population densities, when per-

capita resource availability is high, grazing impact on available algal stocks by P. 

antipodarum has also been positively correlated with primary productivity within 

areas of their introduced range (Riley et al. 2005). Similarly, for T. granifera, grazing 

impacts were positively correlated with available MPB biomass (Miranda et al. 2011). 

In contrast, a high grazing impact was recorded for M. tuberculata at Lake Nhlange, 

which is oligotrophic (Begg 1980), as the result of a fast ingestion rate and relatively 

high population density. It may be that snails from Lake Nhlange have higher 
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ingestion rates in order to maximize consumption of limited food resources. At Lake 

Nhlange in particular, Miranda et al. (2011) reported that T. granifera only consumed 

up to 27.4 % of the available MPB biomass (37.3 ± 25.7 mg pigm.m-2) while present 

at a density of 282 ± 66 ind.m-2 . In comparison, at a density of 104 ± 34 ind.m-2, M. 

tuberculata was estimated to consume 63.4 % of available MPB (173.25 ± 35.1 mg 

pigm.m-2). This possibly suggests that under conditions of low per-capita resource 

availability T. granifera has a higher carrying capacity within this oligotrophic habitat. 

This may be contributing to the disappearance of M. tuberculata from other water 

bodies within this biogeographic region following the introduction of T. granifera 

(Miranda & Perissinotto 2014). 

5.5 Conclusion 

The success of M. tuberculata following introduction and establishment is expected 

to be the result of a combination of traits. In this study, we found that the feeding 

dynamics of M. tuberculata was variable between populations from different habitats. 

This may be an important factor contributing towards the invasion success of this 

species, as it is able to utilize available resources at different rates. It is evident that 

these results should be complemented with a stable isotope analysis to determine 

both immediate and long term contributions of various food resources to the diet of 

M. tuberculata in different aquatic habitats. However, as microphytobenthos is 

generally the most important basal resource in aquatic environments, the in situ gut 

fluorescence method provides a good estimate of the potential impact of grazing 

snails.   
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Chapter 6: Resilience of Cerithidea decollata in St Lucia 

 

Raw JL, Perissinotto R, Adams JB (In review) Resilience of Cerithidea decollata 

(Gastropoda: Potamididae) to environmental change and limited connectivity in subtropical 

estuarine mangroves. Wetlands Ecology and Management. 

 

6.1 Introduction 

Ecological resilience is a major component of numerous theoretical concepts and 

models that have been developed in an effort to incorporate complexity into 

understanding the potential effects of anthropogenic global change on natural 

systems. The concept of ecological resilience, as originally coined by Holling (1973), 

is related to the amount of disturbance that an ecosystem can withstand before self-

organized processes and structures are changed. Resilience can also be considered 

in terms of the time it takes for an ecosystem to return to a stable state after a 

disturbance (Gunderson 2000). Investigating the resilience of an ecosystem can 

therefore provide important information with regards to natural thresholds and how 

these may be perturbed by anthropogenic activities (Grimm & Berger 2016). 

Ecological resilience can also be estimated in relation to natural disturbances, as is 

evident in the persistence of certain ecosystems through millennia despite fluctuating 

trends in global climate and sea level (Moritz & Agudo 2013). Mangrove forests are a 

prominent example of such an ecosystem, as the modern genera have been 

established at least since the Middle to Late Eocene (Ellison et al. 1999). The 

persistence and stability of mangrove forests has been attributed to a number of 

adaptations that enable a few woody plant species to colonize the interface between 

terrestrial, estuarine and marine environments and thus provide a unique habitat to a 

large number of organisms that have become adapted to these conditions (Alongi 

2008, Nagelkerken et al. 2008).  

The notable ecological resilience and stability of mangroves is predicted to allow 

these ecosystems to persist to some degree even through contemporary 

anthropogenic global change (Alongi 2015, Ward et al. 2016). However, it is 

expected that this will come with a cost of reduced ecological integrity (Alongi 2015) 
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and that the future occurrence of mangroves will be severely limited to certain 

regions (Lovelock et al. 2015). The regional and local attributes that will determine 

the persistence of mangrove trees under predicted global change have been 

identified as those that influence sediment accretion, allow for landward migration 

and enhance sediment distribution as well as propagule dispersal (McLeod & Salm 

2006). Factors influencing the resilience of the associated mangrove fauna have 

been identified by comparing the assemblages of planted and natural mangrove 

stands (Pagliosa et al. 2016). The colonization of planted mangrove sites by 

characteristic faunal species has led to their presence being used as a qualitative 

indication of successful rehabilitation (Bosire et al. 2008). Unfortunately, recent work 

by Pagliosa et al. (2016) has shown that although the fauna may re-colonize planted 

sites, the ecological resilience is not comparable to that of natural mangroves. This 

occurs as a result of stressors that are generally related to hydroperiod, nutrient 

inputs as well as soil chemistry (Pagliosa et al. 2016), as they have a significant 

impact on the mangrove macrofauna that drive ecosystem processes (Cannicci et al. 

2008, Lee 2008). Conservation of ecologically functional mangrove ecosystems 

therefore requires an integrated approach towards identifying areas that will allow 

establishment or persistence of the trees as well as the associated fauna. 

Estuarine areas can promote the persistence of mangrove ecosystems if these 

environments are able to offer ample supplies of freshwater and sediment, have 

available low-lying retreat areas, and experience a tidal range that promotes 

thorough flushing (Gilman et al. 2008). However, as they are coastal ecosystems, 

estuaries are also vulnerable to a number of threats associated with anthropogenic 

activities, climate change, and extreme events (Crain et al. 2009, Jennerjahn & 

Mitchell 2013). Furthermore, as estuarine environments are characteristically 

dynamic and variable, it has been challenging to quantify their responses (Elliott & 

Quintino 2007) and thus their potential to provide suitable areas for mangroves to 

persist in under global change scenarios (Quisthoudt et al. 2013, Godoy & Lacerda 

2015). Research has therefore focussed on monitoring mangroves that currently 

occur in estuaries and investigating their resilience and responses within these 

dynamic environments (Hoppe-Speer et al. 2013, Costa et al. 2015, Asbridge et al. 

2016). The responses of mangrove fauna to factors associated with global change 

have also been investigated, but studies have generally been focussed on distinct 
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threats such as increased temperature (Chapperon & Seuront 2010) or nutrient 

enrichment by wastewater (Cannicci et al. 2009). Monitoring estuarine macrofauna 

has however provided important insight to the responses of assemblages, in terms of 

productivity and biomass, to environmental change (Currie & Small 2005, de Paz et 

al. 2008). The responses of mangrove macrofauna to environmental variability 

should therefore be included in studies that aim to assess the resilience of estuarine 

mangroves. 

The St Lucia Estuary, which is located on the northern coast of the KwaZulu-Natal 

coast of South Africa, provides a unique opportunity to investigate the responses of 

estuarine mangrove ecosystems to dynamic fluctuations that are driven by both 

natural and anthropogenic factors. As it is the largest estuarine lake on the African 

continent (Cyrus et al. 2011), it is also the most extensively researched system in 

southern Africa (Whitfield & Taylor 2009). The St Lucia Estuary is therefore 

considered as an important model for estuarine ecology and conservation as the 

large amount of research and long term monitoring has provided valuable 

information on many aspects that are globally applicable (Perissinotto et al. 2013b). 

The St Lucia Estuary has been characterized by extensive management programs 

that have attempted to maintain the ecological functioning of the system in response 

to both natural and anthropogenic impacts (for a detailed review see Whitfield & 

Taylor 2009, Taylor 2013). The most notable impacts have occurred as a result of 

the natural sub-decadal flood-drought cycle that can be exacerbated by 

anthropogenic activities that influence flow (Perissinotto et al. 2013a, Stretch et al. 

2013). This results in large scale regime shifts from hypersaline to freshwater-

dominated phases as well as the persistence of largely non-tidal conditions as a 

result of limited marine connectivity (Whitfield et al. 2013). A strategic monitoring 

program has therefore been implemented since 2010 with the specific aim to 

investigate the responses of mangroves within the St Lucia Estuary to these 

environmental fluctuations and provide information relating to their resilience 

(Hoppe-Speer et al. 2013, Rautenbach 2015, Adams & Human 2016). These studies 

have provided valuable information with regards to the resilience of the mangrove 

trees within the St Lucia Estuary. It is therefore evident that the resilience of 

mangrove fauna that have key ecological roles should also be considered. The 

overall aim of the present study was therefore to provide a complementary 



 
 

 
106 

assessment for the responses of a dominant mangrove faunal species over the 

same time period.  

Cerithidea decollata (Linnaeus, 1767), commonly known as the climbing mangrove 

whelk, has a widespread distribution along the East African coastline from Kenya to 

South Africa (Reid 2014). As a benthic deposit feeder, C. decollata contributes 

towards the recycling of carbon and transferral of benthic primary production to 

higher trophic levels (Bouillon et al. 2004b, Kruitwagen et al. 2010). It is also one of 

the few species that has been recorded to persist within the mangrove habitats of the 

St Lucia Estuary through previous regime shifts (Perissinotto et al. 2014) and is 

therefore considered to be resilient. The occurrence of C. decollata within the 

mangroves of St Lucia has been broadly correlated with sediment moisture (Hoppe-

Speer et al. 2013). However, as this species undergoes planktotrophic development 

(Reid 2014), connectivity with the marine environment should also be considered as 

an important factor that enables its populations to persist (Madeira et al. 2012).  

The objectives of this study therefore were: 1) to compare the density of C. decollata 

from mangrove sites within St Lucia that differ in terms of marine connectivity; 2) to 

determine whether the relative level of the lake (as a proxy for flood or drought 

conditions) has a significant impact on the populations of C. decollata; and 3) to 

determine which local environmental variables, if any, are significantly related to the 

density of C. decollata within the St Lucia Estuary.  

Assessing the relationship between C. decollata and environmental conditions has 

the potential to provide insight to the use of this species as a bioindicator for the 

health of mangrove habitats in estuaries that are impacted by regime shifts, 

particularly in relation to freshwater inflow and marine connectivity. This study also 

provides information on the resilience of this mangrove species in relation to large 

scale environmental variability associated with an estuary. 
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6.2 Materials and Methods 

 6.2.1 Study sites 

The St Lucia Estuary (Figure 1.4) contains a variety of habitats and thus supports 

complex ecological networks and high biodiversity, it has therefore been assigned as 

a Ramsar Wetland of International Importance and is situated within the 

iSimangaliso Wetland Park, South Africa‟s first UNESCO World Heritage Site (Porter 

2013). Mangroves (Avicennia marina and Bruguiera gymnorhiza) are present within 

the lower reaches of the estuary and have been reported to cover an area of 571 ha 

(Rajkaran & Adams 2011). The average height of A. marina trees in the St Lucia 

Estuary has been reported around 600 mm, while the average height of the B. 

gymnorhiza trees is approximately 300 mm (Rajkaran & Adams 2011). 

The monitored sites that were selected for comparison in this study were determined 

by the presence of Cerithidea decollata. A comprehensive assessment and 

comparison of the population structure of the mangrove trees at the different sites 

has been presented by Adams & Human (2016). The sites were all situated within 

the lower reaches of the estuary but were variable in terms of their potential for 

connectivity with the marine environment. The Back Channel site (28°23‟44.28‟‟ S, 

32°25‟6.59‟‟ E) is located within the artificially constructed channel that connects the 

Mfolozi River with the St Lucia Estuary. This site experiences exposure to seawater 

at spring high tide when the mouth of the Mfolozi is open to the Indian Ocean 

(Hoppe-Speer et al. 2013). The Shark Basin site (28°22‟6.01‟‟ S, 32°25‟23.72‟‟ E) is 

located within a freshwater seepage area on the northern bank of the St Lucia 

Estuary. This site exhibits limited influence from the marine environment, however 

intrusion of saline water from the main body of the estuary can occur. The 

Honeymoon Bend site (28°23‟12.60‟‟ S, 32°24‟14.65‟‟E) is the furthest upstream and 

is located along the main water channel of the Narrows. Four randomly selected 

quadrats (25 m2) (see Hoppe-Speer et al. 2013) were sampled at each site in each 

year. In order to capture the variability within each site, the quadrats were 

qualitatively classified as “Dry”, “Waterlogged”, “Submerged”, or “Flooded” on each 

sampling occasion. 

Data for this study were collected in 2010, 2013, 2014 and 2015 as part of a long 

term monitoring program for the mangrove habitats of the St Lucia Estuary. The St 
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Lucia Estuary is dynamic and as a result of the geomorphology of the catchment, it is 

sensitive to factors that influence water inflow (Stretch et al. 2013). As a result, each 

sampling occasion represented a different relative water level and salinity for the 

estuary (Figure 6.1). 

 

 

Figure 6.1 Estuary Mean Water Level (EMWL) and salinity measured for the St 

Lucia Estuary over the period of Jan 2010 to May 2015. EMWL was calculated 

following Lawrie & Stretch (2011) by calibrating water level measurements taken at 

the Bridge which crosses the lower Narrows region. Arrows indicate sampling 

occasions. 
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 6.2.2 Sample collection and processing 

Sediment characteristics 

Samples of surface sediment were collected in triplicate per quadrat using an auger. 

The samples were retained for further processing in the laboratory. This included the 

measurement of sediment moisture content, sediment organic matter and sediment 

conductivity (Adams & Human 2016).  

After the removal of visible detritus and debris, the sediment was divided, weighed to 

approximately 15 g and placed into crucibles. These were then oven dried (100 ° C, 

48 h) and subsequently re-weighed (Black 1965) so that sediment moisture was 

calculated as: 

𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%) =   
 𝑊𝑒𝑡 𝑚𝑎𝑠𝑠 − 𝐷𝑟𝑦 𝑚𝑎𝑠𝑠 

𝑊𝑒𝑡 𝑚𝑎𝑠𝑠
  𝑋 100 

Sediment organic matter was measured in a similar manner. Each crucible was 

weighed before (M1) and after (M2) placing approximately 10 g of sediment in it. The 

crucibles were then placed in a muffle furnace (600 °C, 8 h) for combustion (Briggs 

1977) and then cooled to room temperature before being re-weighed (M3). Organic 

matter was subsequently calculated following Adams & Human (2016) as: 

𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟  
 𝑀2 − 𝑀3 

 𝑀2 − 𝑀1 
  𝑋 100 

Sediment conductivity was measured following the method of Barnard (1990). This 

entailed air drying the sediment and then suspending it in 100 ml of distilled water. 

The solution was then filtered (Whatman No. 1) and the conductivity of the filtrate 

was measured using a hand-held conductivity meter (CyberScan, Eutech) calibrated 

at 20 °C.  

Gastropod abundance 

The abundance of C. decollata was estimated on each sampling occasion by 

counting the number of individual snails present on each tree within the respective 

quadrats. Generally, C. decollata climbs up the trunks of mangrove trees, in order to 

avoid submergence by the incoming high tide (Vannini et al. 2006). However, the St 

Lucia Estuary is largely non-tidal and the long term absence of tidal exchange has 
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resulted in a breakdown of these typical rhythmic migrations. This has been shown 

to be the case for snails that inhabit high shore regions that are only reached by the 

highest spring tides (Vannini et al. 2008). It was therefore assumed to be just as 

likely to find individuals on the substrate as on the tree trunks. As the number of 

snails counted was confounded by the number of trees within each quadrat, snail 

density was calculated to take this into account as follows: 

𝑆𝑛𝑎𝑖𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑛𝑎𝑖𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑜𝑛 𝑤𝑕𝑖𝑐𝑕 𝑠𝑛𝑎𝑖𝑙𝑠 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑝𝑒𝑟 25𝑚2 𝑞𝑢𝑎𝑑𝑟𝑎𝑡
 

 6.2. 3 Statistical analyses 

A two-way ANOVA was performed (fixed factors: Site, Year) to test differences in 

density of C. decollata at St Lucia. “Year” was considered a fixed factor as it 

represented the relative water level and salinity on each sampling occasion (Figure 

6.1). After running the ANOVA, Tukey-HSD post-hoc comparisons were 

subsequently used to identify significant pair-wise differences. The parametric 

assumptions of normality and homoscedasticity were tested using Shapiro Wilk‟s test 

and Levene‟s test respectively. These univariate statistical analyses were performed 

using the packages “car” (Fox & Weisberg 2014) and “agricolae” (de Mendiburu 

2016) in R v 3.2.5 for Windows (R Development Core Team 2016).  

The environmental variables (sediment moisture, sediment organic matter and 

sediment conductivity) were compared between sites and sampling years using 

multivariate analyses. Principal Components Analyses were therefore used to 

visualize the data which were first log(x+1)-transformed and normalized. A 

multivariate resemblance matrix was then generated using Euclidean distances. The 

resemblance matrix was used in a two-way permutational MANOVA (PERMANOVA, 

(Anderson 2001). This tested differences in environmental variables between sites 

(fixed factor, three levels: Back Channel, Shark Basin, Honeymoon Bend) and years 

sampled (fixed factor, four levels: 2010, 2013, 2014, 2015). Pair-wise tests were 

used to determine spatial trends (only differences between sites in each year) in 

environmental variables as well as trends in relation to estuary water level and 

salinity (only differences between years for each site). Multivariate comparisons of 

environmental data were performed in PRIMER v 6 (Clarke & Warwick 2001), using 

the PERMANOVA+ add-on (Anderson et al. 2008).  
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Finally, a linear regression model was developed to relate the density of C. decollata 

to the environmental variables. All continuous environmental variables, their potential 

ecologically relevant interactions, as well as the categorical factors were considered 

as predictors. The model was developed following Zuur et al. (2009) using the 

package “nmle” (Pinheiro et al. 2016) for R v 3.2.5 for Windows (R Development 

Core Team 2016). After preliminary data exploration, a log(x) transformation was 

applied to the variable “Conductivity”. To allow for heterogeneity between sites, an 

identity variance structure was applied to the factor “Site”. A general least squares 

regression was therefore selected as the appropriate model type. The optimal model 

was selected using the “MuMIn” package (Barton 2016) based on the corrected 

Aikake Information Criterion (AIC) for small sample sizes (Hurvich & Tsai 1991). The 

model was validated using the appropriate plots of the residuals to assess normality 

and homoscedasticity, with reference to the expected values as well as the 

explanatory variables (Zuur et al. 2009).  
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6.3 Results 

 6.3.1 Environmental variability 

There were significant differences in the measured environmental variables 

(sediment moisture, sediment organic matter, sediment conductivity) when 

comparing between sites and years sampled (Table 6.1). 

 

Table 6.1 PERMANOVA output showing significance of main effects and interaction 

between “Site” and “Year” as categorical predictors of environmental variables 

(sediment moisture, sediment organic matter, sediment conductivity) measured at 

mangrove sites within the St Lucia Estuary. 

PERMANOVA df SS MS F p 

Site 2 83.857 41.928 30.858 0.001 

Year 3 61.393 20.464 15.061 0.001 

Site x Year 6 62.252 10.375 7.636 0.001 

Residual 115 156.26 1.359 - - 

Total 126 378 - - - 

 

 

Pair-wise comparisons (Table 6.2) between the sites for each year showed that in 

2010 environmental conditions were similar between the Back Channel and Shark 

Basin. However, environmental conditions were significantly different between these 

two sites and those at Honeymoon Bend. In all other years sampled the 

environmental conditions were significantly different (p< 0.05) between all sites 

(Table 6.2). 

 

 



 
 

 

 

 

 

 

Table 6.2 Pair-wise comparisons illustrating spatial trends for environmental variables measured at different sites (BC: Back 

Channel; SB: Shark Basin; HB: Honeymoon Bend) in each year at the St Lucia Estuary. Comparisons were determined using 

PERMANOVA and grouping observations of “Site” by levels of the factor “Year”. 

Pair-wise 
comparisons 

2010 2013 2014 2015 

BC : SB 
 

t = 1.584, p = 0.104 t = 2.833, p = 0.001 t = 11.044, p = 0.001 t = 3.007, p = 0.001 

BC : HB 
 

t = 9.657, p = 0.001 t = 7.389, p = 0.001 t = 11.752, p = 0.001 t = 4.615, p = 0.001 

SB : HB t = 2.754, p = 0.007 t = 2.216, p = 0.025 t = 6.790, p = 0.001 t = 3.898, p = 0.002 
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Environmental conditions were also variable when compared between different years 

for each site (Figure 6.2). The Principal Components (PC) scores allowed a 

characterization of each site over all sampling occasions in terms of the measured 

environmental variables (Table 6.3). The first PC (PC 1) explained more than 70 % 

of the variation in the data at the Back Channel, but only 50 % of the variation for 

Shark Basin and Honeymoon Bend (Table 6.3). The loading of the environmental 

variables (sediment moisture, sediment organic matter and sediment conductivity) on 

PC 1 was also different between sites. The highest loading on PC 1 for the Back 

Channel was associated with sediment conductivity, while for Shark Basin and 

Honeymoon Bend it was sediment moisture (Table 6.3). 
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Figure 6.2 Principal Components Analyses (PCA) illustrating temporal trends for 

environmental variables (sediment moisture, sediment organic matter, sediment 

conductivity) measured at mangrove sites of the St Lucia Estuary at A: Back 

Channel; B: Shark Basin; and C: Honeymoon Bend. Data were first log(x+1)-

transformed and normalised before applying the PCA. 
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Table 6.3 Principal Component loadings for sediment moisture, sediment organic 

matter and sediment conductivity for each mangrove site sampled in the St Lucia 

Estuary. The eigenvalue and percentage contribution of each Principal Component 

to the variation in the data are also provided. Principal components were calculated 

for each site across all years that were sampled. 

 PC 1 PC 2 PC 3 

Back Channel    

Moisture content 0.510 0.804 -0.307 

Organic matter -0.576 0.584 0.572 

Conductivity -0.639 0.115 -0.760 

Eigenvalue 2.11 0.67 0.22 

% variability 70.3 22.2 7.5 

Shark Basin    

Moisture content 0.678 -0.068 0.732 

Organic matter 0.589 -0.546 -0.596 

Conductivity 0.440 0.835 -0.330 

Eigenvalue 1.63 0.91 0.46 

% variability 54.2 30.3 15.5 

Honeymoon Bend    

Moisture content -0.638 0.039 0.769 

Organic matter -0.534 -0.742 -0.405 

Conductivity 0.555 -0.669 0.494 

Eigenvalue 1.7 0.78 0.52 

% variability 56.7 26.0 17.3 

 

 

 6.3.1 Variation in gastropod density 

Considering “Site” and “Year” as categorical predictors of snail density, the 2-way 

ANOVA showed a significant interaction between these factors (F6,35 = 2.978, p = 

0.019). This is evident when considering the change in snail density at each site 

measured on different sampling occasions (Figure 6.3). 



 
 

 

 

Figure 6.3 Box-plot of the mean density (thickened line) of Cerithidea decollata at mangrove sites (Back Channel,Honeymoon 

Bend, Shark Basin,) of the St Lucia Estuary measured in different years. Boxes and error bars represent 25, 75 and 95 % 

Confidence Intervals of the mean. Trends for each separate site are indicated by Tukey post-hoc groupings (p > 0.05) using lower 

case letters. Shading is used to assist visual separation of sites. 
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Tukey-HSD post-hoc tests were used to compare snail density at each site for 

different years. These comparisons showed that the population at Shark Basin was 

the most stable (Figure 6.3). In contrast, C. decollata was most variable at 

Honeymoon Bend, with the density of snails in 2010 and 2013 being significantly 

different from each other, as well as from both 2014 and 2015 (Figure 6.3). There 

were no clear trends when snail density was compared between sites within the 

same year (Figure 6.3). Tukey-HSD post-hoc tests also showed that snail density 

was not significantly different (p > 0.05) between: the Back Channel and Shark Basin 

in 2010 and 2015; Shark Basin and Honeymoon Bend in 2013; and the Back 

Channel and Honeymoon Bend in 2014. 

 6.3.3 Relationship between gastropod density and environmental variability 

There was considerable variability in the environmental conditions and snail density 

between different sites as well as in relation to lake level. It was therefore difficult to 

directly infer any trends or whether any particular environmental conditions were 

driving snail density at different sites and on different sampling occasions. Snail 

density was first considered in relation to the qualitative category assigned to each 

quadrat at the time of sampling (Figure 6.4). This visualization provided further 

support for the variability that exists between sites.  

 

 

Figure 6.4 Calculated density of Cerithidea decollata in relation to the qualitative 

category (Flooded, Submerged, Waterlogged, Dry) assigned to each specific quadrat 

on respective sampling occasions at Back Channel, Shark Basin and Honeymoon 

Bend mangrove sites of the St Lucia Estuary. 

 

Back Channel Shark Basin

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2010 7.72 13 3.96 12.13 2010 0 5.57 15.62 9.94

2013 2.33 2.78 1 0 2013 3 5.35 12.81 18.98

2014 1 1 1 4.38 2014 14.80 5.22 21.39 6.97

2015 12.60 3.86 2.33 4.36 2015 29.50 7.62 5.75 1

Honeymoon Bend

Q1 Q2 Q3 Q4 Flooded

2010 13.38 25.75 19.82 11.43 Submerged

2013 14.07 10.93 14.43 5.33 Waterlogged

2014 2.55 2.92 1.80 2.13 Dry

2015 2.33 0 1.33 0
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The formation of a global model incorporating all possible predictors that could be 

statistically tested for significance was applied to investigate the drivers of snail 

density. The qualitative category assigned to a quadrat (“Dry”, “Waterlogged”, 

“Submerged”, or “Flooded”) at the time of sampling was not included in the model 

because as a factor it was shown to be a proxy for sediment conductivity, sediment 

moisture and sediment organic matter (positive correlations, R2> 0.5). The model 

selection process therefore found that snail density could best be described by the 

following generalized least squares model, fit by REML (restricted maximum 

likelihood estimation): 

𝑦 =  −2.43𝑥 + 13.12 

where y is Snail Density and x is the log(x)-transformation of sediment conductivity. 

This model also took into account the deviation in variance between sites (Table 

6.4). 

 

Table 6.4 Summary of optimal generalized least squares model for density of 

Cerithidea decollata at the St Lucia Estuary. 

Coefficients Value 
Std 

Error 

df 
t p Correlation 

(Intercept) 13.120 2.677 - 4.901 0.0001 - 

log(Conductivity) -2.432 0.840 - -2.894 0.0061 -0.951 

Residual - 3.669 41 - - - 

Total - - 43 - - - 

Variance function Different standard deviations per site 

Site 1 1.000      

Site 2 2.325      

Site 3 2.240      
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The variability of sediment conductivity measured at the different sites on each 

sampling occasion is illustrated in Figure 6.5. The trends in sediment conductivity are 

comparable to those recorded for the density of C. decollata (Figure 6.3), when 

considering that the model allowed for variability between sites. At the Back 

Channel, high sediment conductivity in 2014 corresponded with lower densities of C. 

decollata. In contrast, at Honeymoon Bend the highest snail density was recorded 

when sediment conductivity was also high, in 2010. At Shark Basin both sediment 

conductivity and snail density were relatively stable. 

 

 

Figure 6.5 Average (± SD) sediment conductivity measured from mangrove sites 

(Back Channel, Honeymoon Bend, Shark Basin) in the St Lucia Estuary in different 

years.  
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6.4 Discussion 

The resilience of mangrove trees in response to factors associated with 

contemporary global change has been increasingly highlighted (Gilman et al. 2008, 

Ward et al. 2016). However, a limited number of studies have simultaneously 

reported on the responses of associated mangrove fauna to these stressors (Ellison 

2008). This study has therefore provided a complementary assessment for a 

dominant mangrove gastropod in an estuarine system where the resilience of the 

mangrove trees has already been assessed. As C. decollata is known to be adapted 

to variable habitats, the responses recorded in this study are able to inform on some 

of the limiting environmental thresholds. The responses of C. decollata to local and 

long term environmental change within the St Lucia Estuary indicated that this 

species is resilient to relatively large fluctuations and variability in factors associated 

with the dynamics of the estuary.  

 6.4.1 Interpreting responses to changes in marine connectivity and estuary 

water level 

Adams and Human (2016) reported that the persistence of mangrove trees within the 

St Lucia Estuary was most significantly influenced by the water level of the estuary. 

Mangroves are sensitive to changes in inundation duration and frequency (Ball 

1988), as both prolonged inundation or extensive emersion are detrimental to the 

established trees as well as to any potential propagule recruits (Delgado et al. 2001, 

Hoppe-Speer et al. 2011). Significant die-back of mangroves occurred in the St Lucia 

Estuary as a result of prolonged inundation, as indicated by the flooded quadrats 

between 2013 and 2014 at Honeymoon Bend. Superficially, the responses of C. 

decollata appear to be similar to those of the mangrove trees as there was a 

significant decline in density at Honeymoon Bend in 2013 and 2014. However, the 

mangrove trees were reported to respond well to changes that had occurred at the 

Back Channel during this time as there was successful recruitment of seedlings 

(Adams & Human 2016). In contrast, the density of C. decollata recorded at the Back 

Channel was significantly lower in 2013 and 2014. Furthermore, while C. decollata 

remained stable at Shark Basin during the monitoring period, there was an increase 

in the percentage of dead mangrove trees recorded at this site in 2013 due to the 

loss of a seedling cohort (Adams & Human 2016). This mismatch in recorded 

responses may reflect true differences between the resilience of the trees and the 
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snails to environmental changes, however, discrepancies may also result from 

different response times to these changes.  

Cerithidea decollata exhibits an innate behavioural response to changes in water 

level and this behaviour can be modified over a relatively short period of time 

(Vannini et al. 2008). Interestingly, Cockcroft & Forbes (1981) noted that C. decollata 

is able to survive submergence in seawater for at least two weeks. The vertical 

migration by C. decollata has therefore been described as a predator avoidance 

strategy (Vannini et al. 2006). Cerithidea decollata is mostly predated upon by 

mangrove brachyurans, with strong evidence of predation by Epixanthus dentatus 

(White, 1848) reported by Vannini et al. (2001). This species is predominantly 

nocturnal and ambushes its prey on the subtrate or on the roots of the mangrove 

trees (Cannicci et al. 1998; Vannini et al. 2001). Other potential brachyuran 

predators include the pilumnid Eurycarcinus natalensis (Krauss, 1843) and the 

portunids Thalamita crenata Rüppell, 1830 and Scylla serrata (Forskål, 1775) which 

are significant threats during high tide (Vannini et al. 2006). 

The climbing behaviour of C. decollata has also been described as a mechanism to 

cope with physiological stress (McGuinness 1994). Vertical migrations by 

Cerithideopsis scalariformis have also been linked with parasite avoidance (Belgrad 

& Smith 2014). It might therefore be expected that a higher density of snails would 

be recorded on the trees when the relative water level was higher, resulting in 

flooding of the quadrats. While this did occur at the Back Channel, the same trend 

was not recorded at Honeymoon Bend or Shark Basin. We expect that fewer C. 

decollata were recorded on the trees at the Back Channel site in 2013 and 2014, as 

increased marine connectivity and the influence of a tidal regime would drive a 

migration to the substrate. This is likely, as C. decollata are able to establish their 

rhythmic migration after exposure to between 5 and 6 consecutive high tides 

(Vannini et al. 2008) and by this time a canal had been constructed along the beach 

to establish a connection between the St Lucia Estuary and the Indian Ocean via the 

Mfolozi River (Whitfield et al. 2013).  

As the construction of the beach canal coincided with a natural regime shift towards 

a freshwater-dominated phase in the St Lucia Estuary between 2012 and 2014 

(Whitfield et al. 2013), it is not possible to attribute the fluctuations in water level 
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measured at the Bridge to either tidal movements or increased river inflow. The 

location of the site selected at Honeymoon Bend along the main channel of the 

Narrows made these quadrats particularly susceptible to changes in the water level 

during this period. At this site, flooded quadrats did not correspond with higher 

densities of C. decollata. It is currently unknown whether prolonged inundation of the 

mangroves would drive these snails to forage on submerged sediment or whether 

they remain inactive on the trunks of the trees until their death. This complicates the 

interpretation of the further decline in snail density at this site in 2015, when low 

water levels resulted in the quadrats becoming dry. Dry sediment conditions are 

expected to be detrimental to mangrove gastropods as low sediment moisture 

content is directly related to physiological stress (Iacarella & Helmuth 2011), and 

furthermore does not support regeneration of their benthic algal food sources 

(Underwood & Paterson 1993). Hoppe-Speer et al. (2013) did report on the total 

absence of C. decollata from mangrove sites in St Lucia that were completely dry. 

However, dry sediment conditions in some quadrats did not prevent the persistence 

of C. decollata at the Shark Basin site, for instance. The stability of this site has been 

attributed to the local freshwater seepage acting as a buffer to the potentially 

extreme fluctuations experienced in other areas of the Narrows (Taylor et al. 2006, 

Hoppe-Speer et al. 2013, Adams & Human 2016). It is clear that these conditions 

ameliorate potential stressors to C. decollata at this site, as it appears to be largely 

unaffected by changes in the water level of the estuary. 

 6.4.2 Sediment conductivity as a predictor of Cerithidea decollata density at 

the St Lucia Estuary 

There is clearly an overwhelming amount of variability associated with the different 

mangrove sites in the St Lucia Estuary. One component that was not included in the 

model was sediment granulometry, as the data were not available for all sites on 

each sampling occasion. Adams & Human (2016) have reported that sediment 

composition was variable during the sampling period. There was overall a decrease 

in the percentage of sand at the Back Channel in 2013 and 2014. A similar trend was 

reported for Shark Basin and Honeymoon Bend in 2014. As a result, higher clay 

content was measured at all three sites in 2013 and 2014. Silt content was reported 

to remain relatively stable (Adams & Human 2016). Although the variability of this 
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physical attribute could have influenced the results of the model, it is likely that this 

variable would have been correlated with sediment conductivity. 

It is important to consider whether instantaneous sampling can provide a meaningful 

assessment of trends between biological and physico-chemical parameters in such a 

dynamic estuarine system (Legendre & Demers 1984). In the case of mangrove 

trees, an annual sampling event can provide meaningful data as the responses that 

are recorded (growth, seedling recruitment and die-back) can inform on relatively 

long term trends (Schmitt & Duke 2014). However, the results of this study suggest 

that this time frame may be insufficient to capture the responses of C. decollata to 

environmental change. For example, in 2010 the sampling event coincided with an 

unseasonably high rainfall event (Hoppe-Speer et al. 2013) and thus quadrats 

sampled at both Honeymoon Bend and the Back Channel were categorized as 

“Flooded”. However, this time period in fact represented the end of a long drought 

phase (Whitfield et al. 2013) during which the Narrows region remained relatively 

stable and thus able to support high densities of C. decollata. Subsequent 

categorization of “Flooded” quadrats at Honeymoon Bend did not correspond with 

high snail density, as already discussed. The ideal recommendation is therefore to 

improve the sampling design by increasing sampling frequency to capture potential 

seasonal variability and have a better resolution of responses to extreme events. 

However, this is often a logistical constraint, particularly if: 1) the study is focussed 

on monitoring mangrove trees that respond over longer time periods; and 2) the 

study area is remote and the sites are not easily accessible. In an attempt to 

compensate for this, it was possible to use an alternative approach to examine the 

trends in snail density. This was achieved by identifying a physical variable that is 

related to snail density at the time of sampling, but also provides some indication of 

the prevailing environmental conditions. The use of mathematical models to describe 

biological observations in relation to the environment has become an invaluable tool 

in ecology to resolve complex patterns in order to understand the key processes that 

drive ecosystems (Underwood et al. 2000, DeAngelis & Mooij 2005). This approach 

was therefore used to understand the density trends of C. decollata in the St Lucia 

Estuary. 

The model selection process was able to resolve the complexity, and the final 

optimal model described snail density as a function of sediment conductivity with the 
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described relationship being variable between sites, as is clearly evident from the 

results in this study. Sediment salt-load in the St Lucia Estuary is highly variable and 

is significantly influenced by both large scale events, such as floods and droughts, as 

well as by local factors, such as groundwater intrusion and bioturbation (Bate & 

Taylor 2008). Therefore, the relationship between snail density and sediment 

conductivity is driven by different processes at the different sites. For example, high 

sediment conductivity (and low snail density) measured at the Back Channel site in 

2014 was the result of an increased flow of seawater via Mfolozi River (Adams & 

Human 2016). In contrast, high sediment conductivity (and low snail density) 

measured at Honeymoon Bend in 2015 was likely the result of evaporation of the 

water column resulting in the deposition of salts (as suggested to occur by Bate & 

Taylor 2008).  

Sediment salinity has been considered as a driving factor of community composition 

for deposit-feeding meiofauna (Whitlatch 1981, Ingole & Parulekar 1998). However, 

studies that focus on deposit-feeding gastropods generally consider water salinity as 

a primary factor that influences feeding activities (Hylleberg 1975, Chaparro et al. 

2008). This is preferable for physiological tolerance experiments, as the salinity of 

fine sediments in estuaries is relatively stable in comparison to fluctuations in the 

water column (Chapman 1981). However, as the St Lucia Estuary undergoes 

periodic drought periods, the salt load of the sediment can be significantly high 

following evaporation - an excess of 2 million tonnes of salt was estimated to be 

contained within sediments to a depth of 20 cm during the drought period of 2002-

2006 (Bate & Taylor 2008). Furthermore, overtopping from the marine environment 

as a result of Cyclone Gamede in 2007 was estimated to have introduced an 

additional 12 million tonnes of salt into the St Lucia Estuary (Bate & Taylor 2008). As 

C. decollata is able to occupy a wide range of habitats besides mangroves, such as 

salt marsh, salt pans, and creeks in fully marine or brackish conditions (Reid 2014) 

this species appears to have a relatively broad tolerance to water salinity. However, 

the physiological effect of consuming sediment that has excessively high salt content 

has not been investigated for C. decollata. Generally, species that inhabit high 

salinity environments have evolved a range of hypo-osmostic regulatory 

mechanisms to survive in these stressful conditions (Herbst 2001). As estuaries are 

increasingly facing threats related to reduced freshwater inflow (Alber 2002), 
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changes to the hydrodynamics of these systems may be inevitable (Gibson et al. 

2003). If estuaries are considered to be potential refuge areas for the colonization of 

mangroves, it is essential to consider the potential physiological challenges that may 

be encountered under different scenarios. 

 6.4.3 On the resilience of Cerithidea decollata 

The resilience of mangrove fauna has largely been considered in relation to their 

tolerance to increased environmental temperatures and the physiological stress 

associated with desiccation (Chapperon & Seuront 2010, Alongi 2015). Tropical 

species are considered to be particularly at risk because predicted temperature 

increases in equatorial regions are expected to be beyond their physiological limits 

(Tewksbury et al. 2008). Populations that occur at the edge of a tropical species‟ 

distributional range may therefore be critical for contributing towards persistence and 

potential range expansion (Hardie & Hutchings 2010). However, as marginal 

populations tend to be fragmented they are also expected to be susceptible to edge 

effects, including reduced genetic diversity as a result of limited gene flow (García-

Fernández et al. 2012). This can however be advantageous, if local adaptation 

results in an enhanced potential to deal with environmental fluctuations beyond 

those experienced by populations at the centre of the distributional range (Eckert et 

al. 2008).  

The results of this study have shown that C. decollata is able to persist through 

relatively large fluctuations of environmental conditions in the St Lucia Estuary. This 

may indicate local acclimation or plasticity (Hofmann & Todgham 2010), however C. 

decollata does reach its southern range limit on the South African coastline (Reid 

2014). There is also evidence for genetic variation between southern, central, and 

northern populations of C. decollata along the east African coastline between Kenya 

and South Africa (Madeira et al. 2012). Along the high energy South African 

coastline, mangroves and salt marshes are limited to occurring in sheltered estuarine 

areas (Steinke 1999). As C. decollata occurs in both these habitat types in this 

region, it is not unlikely that this species has become locally adapted to conditions 

that are characteristic to these estuarine habitats. One of the most prominent 

characteristics of estuaries along the east coast of South Africa is that they are 

naturally temporarily open-closed systems that only have an established connection 
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with the marine environment when rainfall increases the flow and causes a breach 

(Whitfield 1992). This has been identified as a major factor that has limited the 

distribution and expansion of mangroves in this region (Saintilan et al. 2014), as 

closure of the estuary mouth results in rising water levels that in turn causes 

mangrove die-back through persistent inundation (Hoppe-Speer et al. 2015). 

However, the distribution of C. decollata extends beyond that of mangroves along 

the South African coastline as it has been recorded from salt marsh habitat within the 

temperate Knysna Estuary (Hodgson & Dickens 2012). The occurrence of C. 

decollata as far south as Knysna (34°04‟38‟‟S; 23°03‟33‟‟E) has been attributed to 

recent trends of rising sea temperatures as a result of climate change (Whitfield et al. 

2016). This further highlights the potential resilience of this species and indicates 

that future research should focus on identifying specific tolerance ranges to 

conditions that are expected to prevail in estuaries under global change scenarios, 

such as increased temperature, higher sediment salinities and prolonged periods of 

inundation or limited connectivity to the marine environment. 

6.5 Conclusion 

Estuaries have been prioritized as areas that could provide suitable habitat for 

mangroves under predicted global change. It is therefore important to understand the 

responses of mangrove species to environmental conditions that could be 

experienced in estuaries under global change scenarios. The results of this study 

have shown that the responses of mangrove trees and the associated fauna to these 

environmental conditions can be variable and an integrated approach towards 

monitoring the resilience of these ecosystems is required. Furthermore, C. decollata 

has a wide tolerance for fluctuating environmental conditions beyond those that 

generally occur in estuaries that have a permanent connection to the marine 

environment. This study provides further support for the resilience of this species 

and indicates that further work should focus on investigating the specific tolerance of 

key mangrove species to conditions that they might experience in dynamic estuaries.  
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Chapter 7: General Discussion 

 

 

Anthropogenic global change in relation to climate, land use, and resource utilization 

has defined the focus of ecological studies at least since the Millennium Ecosystem 

Assessment (Alcamo et al. 2003). Marine and coastal ecosystems in particular have 

been identified as vulnerable to anthropogenic threats and thus effective 

management plans that focus on sustainability have been prioritized at a global scale 

(Crain et al. 2009, Visbeck et al. 2014, Rickels et al. 2016). Research has shown that 

many of these ecosystems are generally resilient and this has been related to their 

ecological complexity in the form of multiple interactions at different scales that 

collectively maintain ecosystem stability (Peterson et al. 1998, Hughes et al. 2005). 

As many processes in these ecosystems are interdependent and interactions can be 

nonlinear, it is possible for relatively small changes to facilitate regime shifts or 

collapses (Levin & Lubchenco 2008). Ecosystem-based management therefore aims 

to sustain the production of goods and services by using a multisectoral and 

multidisciplinary approach that considers ecological processes at multiple scales 

from a long term perspective (Lubchenco 1994, Turpie et al. 2008, Sherman 2014). 

By considering ecosystems from a holistic perspective, rather than as a collection of 

separate species, ecosystem-based management goals are able to incorporate 

ecological complexity and the dynamic characteristics of natural systems (Slocombe 

1998).  

To provide support to these ecosystem-based management approaches, general 

concepts, theories and models that incorporate ecological complexity have been 

prioritised for development by recent research efforts (Crowder & Norse 2008, 

Grimm & Berger 2016). However, understanding large scale processes requires a 

basis of ecological research that explains the underlying patterns (Underwood et al. 

2000). Research that provides new ecological information for data-deficient species, 

ecosystems, or regions is therefore valuable, as it can be used to determine suitable 

indicators of ecosystem state (Levin et al. 2009, Ward et al. 2016). This research 

project has therefore contributed towards this call for the generation of new scientific 
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knowledge by providing basic ecological information for species that occur in 

threatened coastal ecosystems within a data-deficient region.  

7.1 Conceptual synthesis, summary of the research and contribution to new scientific 

knowledge 

The key research questions for this project were focused on three ecological themes: 

trophic linkages and resource partitioning, resource utilization rates, and ecological 

resilience.  

Trophic linkages, in the form of food webs, identify pathways through which energy 

and matter are transferred within ecological communities (Paine 1988). Classical 

food web theory was developed around the argument provided by MacArthur (1955), 

who described community stability in relation to the number of trophic links as well as 

the number of species within the community. The relationship between food webs, 

species diversity, structure and stability has since become one of the most 

extensively debated and revised aspects in the field of ecology (May 1973, Paine 

1980, Hastings 1988, Hall & Raffaelli 1993, Tilman 1999, Link 2002, Dunne 2006). 

Most recently, ecological research has focussed on determining whether the strength 

of trophic interactions influences community stability (Berlow et al. 2004, Rooney & 

McCann 2012). Food web models are however focussed on predation and rarely 

consider the importance of non-trophic interactions, such as facilitation and 

competition (Dodds 1997, Chase et al. 2002, Berlow et al. 2004). Other extrinsic 

factors, such as disturbance, environmental stress, productivity, and recruitment, 

also influence food web structure by regulating distribution and abundance (Dayton 

1971, Bertness & Callaway 1994, Polis & Strong 1996, Post 2002a). The partitioning 

of primary resources among basal consumers should also be considered in food web 

models, as competition for these resources can structure the assemblages of both 

primary producers and primary consumers (Tilman 1982, Schoener 1983, Hooper 

1998, Berlow et al. 2004).  

In Chapters 2 and 3, a stable isotope approach (δ13C and δ15N) was used to 

investigate resource partitioning and to identify trophic linkages between different 

primary sources and mangrove gastropods. In the case of Terebralia palustris at 

Kosi Bay (Chapter 2), the diets of juvenile and adult snails were distinctly different. 

Analyses of the gut content showed that leaf litter only made a direct contribution to 
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the diet of larger snails, while juveniles consumed a variety of algal and detrital 

sources. Juveniles are predated upon (Vannini et al. 2001, Wells & Lalli 2003), while 

large adults are mostly protected by their thickened shells (Houbrick 1991). The 

results of Chapter 2 therefore indicate that different primary sources that are 

available in the mangroves are not equally transferred to higher trophic levels 

through T. palustris as a result of this partitioning. In contrast, the diet of Melanoides 

tuberculata (Chapter 3) generally reflected the availability of primary resources and 

therefore showed high levels of plasticity by including the filamentous algae 

Cladophora sp., detritus, and particulate organic matter that settled on the substrate 

from the water column. From a stable isotopes perspective, M. tuberculata can 

therefore be used to establish a suitable baseline for food web studies (Grey 2006). 

In comparison, the diet of Cerithidea decollata was restricted to microphytobenthos 

and sedimentary organic matter (Chapter 3). The role of mangrove gastropods as 

trophic links is therefore dependent on how these species utilize and partition the 

primary sources that are available to them in these environments. As discussed in 

Chapter 2, the importance of primary sources (besides mangrove leaf litter) to 

benthic invertebrate consumers, and higher trophic levels, has already been 

elucidated using stable isotope approaches (Bouillon et al. 2002, Bouillon et al. 

2004a). The results of these chapters are therefore corroborative, but also provide 

new information with regards to how these resources can be partitioned among key 

mangrove gastropods. 

Resource partitioning forms the basis of niche theory (Vandermeer 1972), a 

fundamental ecological concept that was first put forward following observations of 

species coexisting and utilizing the same resources by Grinnell (1924). Elton (1927) 

then described the niche of a species in relation to the abiotic environment and 

availability of food resources, and Gause (1934) provided empirical evidence that “no 

two species can occupy the same ecological niche”. Resource partitioning studies 

therefore focussed on elucidating the limits of interspecific competition (Schoener 

1974), as the concept was developed to relate species‟ responses to the 

evolutionary selection pressures of coexistence (Walter 1991). Recent research has 

considered resource partitioning as a mechanism that stabilizes species coexistence 

(Chesson 2000) and enhances overall resource consumption in communities (Finke 

& Snyder 2008).  
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Efficient resource utilization by coexisting species drives both regulatory and 

recycling processes in ecosystems, and therefore contributes towards stability and 

resilience (Chapin et al. 1997, Huxel et al. 2002). Although detrital pathways are 

often significant in many ecosystems (Wetzel 1995, Moore et al. 2004), studies on 

the trophic regulation of primary sources have chiefly considered the relationship 

between consumers and primary productivity (Yee et al. 2007). Primary productivity 

can be regulated directly by grazers or by the availability of nutrients and sunlight, as 

well as indirectly by predators through trophic cascades (Carpenter & Kitchell 1988, 

Huryn 1998, Borer et al. 2005, Kerimoglu et al. 2013). In shallow water ecosystems, 

the biomass of microphytobenthos (MPB) is often much greater than that of the 

phytoplankton (MacIntyre et al. 1996), and these benthic communities have been 

estimated to contribute as much as 50 % of the total primary production in estuarine 

environments (Underwood & Kromkamp 1999). At small spatial scales, benthic 

grazers exert a significant top-down control on MPB biomass (Pratt et al. 2015), and 

this potentially influences both inter- and intraspecific competition and resource 

partitioning (Blanchard 1991, Aberle et al. 2005).  

In Chapters 4 and 5, rates of MPB consumption were determined by quantifying the 

feeding dynamics for the dominant gastropod species in the mangroves at Kosi Bay 

and the St Lucia Estuary respectively. This research is the first to quantify ingestion 

rates, assimilation efficiencies and potential feeding impacts for both T. palustris and 

M. tuberculata. For juvenile T. palustris at Kosi Bay (Chapter 4), the consumption of 

MPB was temporally variable, and was influenced by daily tidal cycles. The results of 

Chapter 4 showed that the maximum potential grazing impact that could be exerted 

by T. palustris juveniles would not be limited by the total available MPB biomass. 

The flat and sandy geomorphology of Kosi Bay promotes the growth of MPB, which 

would be a preferable food resource as it has a higher nutritional quality in 

comparison to autochthonous detritus derived from the mangrove leaf litter (as 

shown in Chapter 2). However, MPB is an important resource to a number of 

macrofaunal taxa on the intertidal flats of estuaries and mangroves (Sommer 1999, 

Bouillon et al. 2004a, Peer et al. 2015a). The partitioning of MPB at Kosi Bay 

between different macrofauna species could therefore explain the results of 

Chapters 2 and 4, because although juvenile T. palustris do consume MPB, their 
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diets are seasonally variable and are therefore not completely dependent on this 

source.  

The feeding dynamics of M. tuberculata were also found to be variable (Chapter 5) 

but consumption of MPB was not related to the total available biomass of this 

resource. Grazing impact by M. tuberculata on MPB was highest when conditions 

were oligotrophic, which could indicate that this species prioritizes resources based 

on nutritional quality. As primary productivity of MPB can be limited by nutrient 

availability (Miller et al. 1996), when conditions were oligotrophic the biomass of 

MPB was relatively low. As a result, the potential daily consumption of MPB by M. 

tuberculata exceeded 60 % of the available biomass (Chapter 5). This could be 

interpreted as a top-down control of benthic primary production by M. tuberculata. 

Ingestion rates increased with higher per capita availability of MPB, which suggests 

that intraspecific competition may be driving the variability in feeding dynamics 

between populations of M. tuberculata. The results of Chapter 5 support those of 

Chapter 3, as they confirm that M. tuberculata exhibits a high degree of trophic 

plasticity, which may be an adaptive trait for this generalist deposit feeder.  

Generalist species are defined as having broad trophic niches or being tolerant to a 

wide range of environmental conditions (Richmond et al. 2005). Therefore, when 

conditions are variable or unpredictable, generalist species are expected to cope 

better than specialists because they have increased behavioural, physiological and 

phenotypic plasticity (Bergman 1988, Parsons 1994, Rutherford et al. 1995). The 

diversity of species‟ responses to disturbances is one of the most important ways in 

which biodiversity increases ecosystem resilience (Yachi & Loreau 1999, Elmqvist et 

al. 2003, Bernhardt & Leslie 2013), which is defined as the capacity of an ecosystem 

to maintain functioning, structure, and feedbacks following disturbance events (Folke 

et al. 2004). Ecological resilience also assumes that an ecosystem can be functional 

in alternative states, each of which is defined by a unique set of processes (Peterson 

et al. 1998, Gunderson 2000). Ecosystems with low biodiversity are therefore at 

higher risk of being perturbed by disturbances, as key ecological processes are 

maintained by a relatively low number of species (Peterson et al. 1998, Loreau et al. 

2001, Naeem 2002, Rosenfeld 2002, Hooper et al. 2005).  
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In Chapter 6, the population responses of C. decollata in mangrove habitats of the St 

Lucia Estuary were assessed in relation to fluctuating environmental conditions and 

disturbances. The St Lucia Estuary is renowned for its high biodiversity of benthic 

macrofauna (Nel et al. 2012, Peer et al. 2014, Perissinotto et al. 2014). However, C. 

decollata is one of the few species that has persisted in the mangroves through both 

hypersaline and freshwater regimes (Perissinotto et al. 2014). Cerithidea decollata is 

considered to be a generalist species as these snails have a wide salinity tolerance 

(Reid 2014) and can occur in temperate salt marsh habitats (Hodgson & Dickens 

2012). Elucidating the population responses of this species to unpredictable 

environmental conditions, therefore, provided important new information for a 

resilient key mangrove species. The results of Chapter 6 show that sediment 

conductivity is the best predictor of C. decollata density in the St Lucia Estuary. 

However, the tree-climbing behaviour of these snails allows escape from 

unfavourable water or sediment conditions, and therefore mitigates the effects for a 

certain period of time. This study provided important information for this species that 

can be used in assessing the resilience of the mangrove ecosystem in the St Lucia 

Estuary. 

7.2 Global relevance of the research projects’ findings 

This research project had a regional focus, on key mangrove gastropods from two 

estuaries on the eastern subtropical coast of South Africa. However, the gastropod 

species examined all have broad geographical distributions that extend beyond 

South African borders. Considering the two mangrove potamidids, T. palustris occurs 

in mangrove habitats across the entire Indo-West Pacific (Houbrick 1991) and C. 

decollata is distributed along the east African coastline as far as Kenya (Reid 2014). 

The distribution of M. tuberculata is the most extensive, as this species has a native 

range from East Africa to South East Asia, but has also been introduced to many 

areas in the New World where it has become invasive (Facon et al. 2003). South 

Africa therefore represents the southernmost global distribution limit for naturally 

occurring populations of all three gastropod species examined in this research 

project.  

The range limits of species can be defined ecologically in relation to their niche, but 

an evolutionary perspective of range limits considers local adaptation and gene flow 
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(Kirkpatrick & Barton 1997). If species at the edge of their range are able to adapt to 

novel habitats or conditions, this is considered to be a form of niche evolution (Holt et 

al. 2004). Range limits can therefore be considered as „testing grounds‟ and studies 

on edge populations can provide information with regards to whether the species 

could adapt to novel conditions or not (Sexton et al. 2009). Edge populations have 

therefore become the focus of many climate change studies that aim to determine 

the potential for range expansions in response to rising temperatures (Gibson et al. 

2009, VanDerWal et al. 2013, Chuang & Peterson 2016). This has led to the 

development of bioclimatic models that predict temperature-induced shifts in the 

geographic range of a species based on thermal tolerances (Pearson & Dawson 

2003, Xavier et al. 2010). However, in reality the ability of a species to expand to 

new suitable habitats is restricted by additional intrinsic and extrinsic factors. First, by 

the intrinsic traits of the populations that exist on the „expanding edge‟ (sensu 

Hampe & Petit 2005) which are related to dispersal, colonization, and resource 

utilization as they will influence establishment (Angert et al. 2011). Second, by the 

extrinsic rapid hydroclimatic fluctuations that individuals will experience while 

dispersing, colonizing and establishing in the new habitat (Chapperon & Seuront 

2010). It is therefore important to include available physiological and ecological data, 

that will inform on these responses, within predictive niche models of range 

expansion (Helmuth 2009, Kearney & Porter 2009, Cavanaugh et al. 2015). 

This research project has therefore provided useful and new ecological information 

for three key mangrove gastropods at their southern distribution limit that have the 

potential for poleward range expansions. As T. palustris has previously occurred as 

far south as the Mngazana Estuary (31°41‟26‟‟S; 29°25‟24‟‟E) (Macnae 1963), the 

potential for a poleward range expansion of this species is not limited by temperature 

tolerance. The recent range contraction along the South African coastline for T. 

palustris and its decline in mangrove habitats has instead been related to reduced 

food availability (Berjak 2011, Raw et al. 2014). This is a cause for concern, as 

populations at lower tropical latitudes are expected to be faced with increasingly 

stressful conditions associated with rising temperatures (Tewksbury et al. 2008). If 

southern mangrove habitats are also not suitable for T. palustris, this species could 

face a “squeeze” in its global distribution range (Raw et al. 2014). The results of this 

research project have highlighted the importance of resource diversity (Chapter 2) 
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and the variability of consumption rates (Chapter 3) for T. palustris. Any range 

expansion predictions for this speciesshould therefore also consider these specific 

trophic requirements when identifying new potential habitats for colonization.  

As discussed in Chapter 6, a poleward range expansion has already been recorded 

for C. decollata along the South African coastline (Whitfield et al. 2016). The 

temporarily-open closed conditions of many South African estuaries limit the 

occurrence of mangrove trees along the coastline (Saintilan et al. 2014). However, 

C. decollata also occurs beyond the range of the mangroves (Hodgson & Dickens 

2012). It is therefore clear that this species possesses certain generalist traits that 

have enabled this range expansion, and in particular to survive the dynamic 

conditions of estuarine environments. These include pelagic larval dispersal and a 

wide salinity tolerance (Reid 2014). The results of this research project have 

provided new information with regards to traits that would facilitate establishment in a 

new habitat, such as a non-restrictive diet (Chapter 3), or enable persistence in 

unfavourable conditions, such as resilient responses to changing environmental 

conditions (Chapter 6). Cerithidea decollata could therefore be considered as an 

opportunistic species. 

Similarly, M. tuberculata is a generalist species that occurs in a variety of habitats 

(de Kock & Wolmarans 2009) and its occurrence in the mangroves of the St Lucia 

Estuary is considered to be opportunistic (Perissinotto et al. 2014). Although South 

Africa does represent the southern distribution limit for naturally occurring 

populations of M. tuberculata (Appleton 1996; Brown 1994), invasive populations of 

this species have been reported to occur as far south as New Zealand (Duggan 

2002). Some mangrove areas of the St Lucia Estuary have been colonized by the 

closely related Tarebia granifera, which is native to South East Asia (Perissinotto et 

al. 2014). At the time that sampling was carried out for this project, M. tuberculata did 

not co-occur with T. granifera within the St Lucia Estuary. However, rising water 

levels and predominating freshwater conditions are likely to allow further expansion 

of T. granifera into new areas of the estuary in the near future (Miranda et al. 2010). 

Interactions between T. granifera and M. tuberculata are expected to lead to the 

displacement of the latter based on previous introductions of T. granifera to other 

water bodies in the region (Raw et al. 2013, Miranda et al. 2014, Raw et al. 2015).  
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Many of the intrinsic and extrinsic ecological and evolutionary factors that allow 

species to naturally expand their ranges in response to climate change also allow 

opportunistic species to colonize and establish in new habitats to which they have 

been either intentionally or accidentally introduced (Colautti & MacIsaac 2004). 

There has indeed been some debate regarding whether range expansions into 

adjacent habitats should be considered as a form of biological invasion (Thompson 

et al. 1995, Davis & Thompson 2000). Valéry et al. (2008) therefore argue that a 

conceptual definition of biological invasions should not be based purely on a 

geographical criterion, but should instead focus on the ecological aspects of the 

phenomenon. 

Different intrinsic and extrinsic ecological and evolutionary factors are considered to 

facilitate invasion success (Kolar & Lodge 2001, Colautti et al. 2014). Examples of 

intrinsic factors include species traits related to tolerance, reproductive capacity and 

niche breadth (Rosecchi et al. 2001, McMahon 2002, Raw et al. 2016a). As 

discussed in Chapter 5, the invasion success of M. tuberculata has been attributed 

to a number of specific traits. In this research project, trophic niche width (Chapter 3) 

and resource utilization rates (Chapter 5) have been identified as traits that enable 

M. tuberculata to inhabit different environments that are variable in terms of resource 

availability. Melanoides tuberculata is a successful invasive species (Pointier 2001, 

Facon et al. 2005, Karatayev et al. 2009, Peso et al. 2011, Weir & Salice 2012) and 

ecological research relating to its ability to establish and persist in new environments 

is therefore globally relevant. 

7.3 Conclusions & recommendations for further research 

Mangrove ecosystems are globally threatened (Duke et al. 2007, Giri et al. 2011), 

and within South Africa these habitats are prioritized for conservation as the national 

legislation recognizes their ecological and economic value (Turpie et al. 2002). 

Marine and coastal research in South Africa has therefore focussed on applied 

science that can be directly used to inform management (McQuaid 2010). However, 

a recent review of the global state of mangroves in response to factors associated 

with global change has highlighted that this region is data-deficient in this regard 

(Ward et al. 2016). In order to carry out these vulnerability assessments, basic 

ecological research must first provide relevant information in relation to ecosystem 
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functioning (Williams et al. 2008). Fortunately, there have been some recent 

advances to promote basic research in marine and coastal ecosystems of South 

Africa (Scott 2013).  

Recent ecological research has stressed the importance of ecological studies to 

disentangle observed responses and trends from the potential effects of factors 

associated with anthropogenic global change (Thuiller 2007, Quisthoudt et al. 2013, 

Flombaum et al. 2016). Research trends have therefore focussed on relating the 

responses of threatened or key species in certain habitats to these factors (Gilman et 

al. 2008, Moritz & Agudo 2013). This research project did not aim to directly relate 

any of the findings to factors associated with global change. However, the new 

ecological information developed through this research project is relevant and can be 

used to inform larger scale studies as already discussed. This project has highlighted 

the importance of carrying out basic ecological research for populations that occur at 

their distributional range limit, as a number of factors may cause responses to be 

different to those recorded for individuals at the centre of the distribution. The results 

of this project have also provided further support for the importance of gastropods as 

primary consumers in mangrove forests, a role which was previously attributed 

largely to the brachyurans. Finally as South African mangroves are subtropical, the 

diversity of the fauna is considerably lower in comparison to lower latitudes. 

Therefore, important functional roles must be carried out by a fewer number of 

species. This research project has therefore provided an assessment of how the 

dominant gastropods which do occur in these ecosystems contribute towards 

ecosystem functioning.  
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Recommendations for future research have been outlined in the specific chapters 

and are related to further ecological studies and linking the findings of this project to 

broader scale patterns and processes. In brief: 

 An important recurring theme was the significance of resource availability for 

the ecological roles of these deposit-feeding gastropods. As mentioned, the 

dynamic characteristics of estuaries that are only temporarily open to the 

marine environment influence this availability and should therefore be 

investigated as drivers of ecological functioning in mangroves.  

 One of the most pertinent aspects that should be further investigated is the 

regional range retraction of T. palustris, which could also potentially be 

explained by sensitivity to certain conditions (salinity regime, high 

sedimentation, prolonged inundation) experienced within temporarily open 

estuaries. 

 Resource partitioning and potential competitive interactions for MPB should 

be investigated for T. palustris and deposit-feeding brachyurans at Kosi Bay. 

This may provide insight into the biological drivers of T. palustris‟ regional 

decline.  

 The possibility that Asiatic M. tuberculata have become established in South 

Africa should be investigated using a molecular genetics approach. Specific 

ecological and biological comparisons between these morphs and those of 

African origin can then be carried out. 

 The occurrence of individual dietary specialization in M. tuberculata should 

also be determined. The South African populations could provide particularly 

interesting insight as to whether there is morphological plasticity or perhaps 

adaptive traits relating to radula morphology and whether this influences the 

feeding habits of the snails. There is also the opportunity to compare radula 

morphologies between African and Asian morphs of M. tuberculata.This could 

provide more direct evidence for dietary plasticity of this successful invasive 

species. 
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 The occurrence of M. tuberculata in the St Lucia Estuary should be monitored 

in relation to the predicted expansion of T. granifera. Continuous basic 

ecological work is important to track changes to these communities and 

provide insights for management actions directed at alien invasive species. 

 Monitoring of the C. decollata populations of the St Lucia Estuary should 

continue, as current management practices are aiming to restore marine 

connectivity and natural tidal regimes. This could have a significant impact on 

the occurrence of M. tuberculata in the mangroves if there is salt intrusion to 

the freshwater seepage areas. The disappearance of M. tuberculata could 

result in a shift in the resources utilized by C. decollata and a follow-up study 

may be required.  
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