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Abstract

Local thermal and chemical equilibration is studied for central AqA collisions at 10.7–160 AGeV in the Ultrarelativis-
Ž .tic Quantum Molecular Dynamics model UrQMD . The UrQMD model exhibits strong deviations from local equilibrium at

the high density hadron–string phase formed during the early stage of the collision. Equilibration of the hadron–resonance
matter is established in the central cell of volume Vs125 fm3 at later stages, tG10 fmrc, of the resulting quasi-isentropic
expansion. The thermodynamical functions in the cell and their time evolution are presented. Deviations of the UrQMD
quasi-equilibrium state from the statistical mechanics equilibrium are found. They increase with energy per baryon and lead
to a strong enhancement of the pion number density as compared to statistical mechanics estimates at SPS energies. q 1999
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The main goal of relativistic heavy ion experi-
ments at AGS Brookhaven and SPS CERN is to
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dation.

study the properties of strongly interacting hot and
dense matter. The description of high energy nuclear
Ž .as well as hadronic collisions may be achieved
today only in terms of phenomenological macro-
scopic and microscopic models. Macroscopic mod-

w x Žels, like the well-known thermal 1–3 see also
w x. w x Ž w x.4–7 and hydrodynamic 8,9 see also 10–13
models use the energy density ´ , net baryon number
density r and pressure P to describe the localB
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properties of a system. To complete the set of hydro-
dynamic equations one postulates local thermody-

Ž .namical equilibrium LTE and employs the equa-
Ž . Ž .tion of state EoS PsP ´ ,r as driving term.B

Ideal fluid dynamics then leads to the entropy con-
servation law expressed in the form srr sconstB
Ž Ž . .sss ´ ,r is the entropy density . The applicabil-B

ity of LTE concepts to nucleus–nucleus collisions
Ž .AqA remains an ad hoc assumption which should
be justified by microscopic dynamical model analy-
sis. The question is still open despite of the intensive

Ž w x .investigations e.g. 14–17 and references therein .
In contrast to the hydrodynamic approach, the

various Monte Carlo microscopic hadron-, string-,
w xparton-cascade models 18–22 are based on assump-

tions about the interaction mechanisms between the
constituents. No prerequisites of LTE are introduced.
Microscopic models of nucleus–nucleus collisions
exhibit, however, a huge number of elastic and in-
elastic rescatterings. For example, ;1200 baryon–
baryon, ;3400 meson-baryon and ;2500 meson-
meson collisions are found for PbqPb at 160 AGeV
w x23 . Elastic collisions should drive the system to
local thermal equilibrium whereas inelastic collisions
drive the chemical equilibration. The hydrodynami-
cal picture of AqA collisions can emerge from
microscopic models. Thus, the approach to the LTE

Žmust be checked and the EoS at different stages of
.AqA collisions extracted by means of microscopic

models. Here, we employ for such analysis the Ultra-
Ž .relativistic Quantum Molecular Dynamics UrQMD

w xmodel 18 , which reproduces nicely experimental
spectra for mesons and baryons from 10 to 200
AGeV. Hadron matter equilibration has been studied
with UrQMD simulations in a box with periodic

w xboundary conditions in 24 . Results of simulations
of heavy ion collisions were reported for AuqAu at

w x w x10.7 AGeV in 25 , see also 26 for lower energies.
The present paper extends the analysis of relativistic
heavy ion collisions to the energy region between
AGS and SPS. New observable effects caused by the
increase of the energy per baryon are predicted.

2. UrQMD analysis of AHA collisions

Here, UrQMD model simulations are performed
Žand analyzed for central impact parameter zero,

.bs0 AuqAu collisions at energy 10.7 AGeV and
PbqPb collisions at 40 AGeV and 160 AGeV. We
briefly call them AGS, ‘‘CERN’’, and SPS, respec-
tively. Note that first experiments on PbqPb colli-
sions at 40 AGeV have been done in CERN during

w xthe 1998 fall run and will be extended in 1999 27 .
The formation of hot and dense matter expected in
these reactions is studied here. We fix a cubic cell of
volume Vs5=5=5 fm3 in the geometrical center
of the AqA system. The total momentum of this
cell is close to zero during the whole time evolution
of the AqA reaction. The geometry of the system
yields no preferable direction for the collective mo-
tion. The cell size should be small enough to avoid
large collective flows inside the cell during the ex-
pansion stage. On the other hand it should be large
enough to have sufficiently many particles inside the
cell to guarantee reasonably small fluctuations for
particle observables in the UrQMD simulations and
reasonably small finite-size effects in the statistical
model analysis. We fix the same cell size, 5=5=5
fm3, which satisfies simultaneously both above re-
quirements for all three reactions, at least for times
tG2.5 fmrc after contact, when the fastest pre-equi-
librium particles will have left the scene.

We start by analyzing the time evolution for
different physical quantities of the cell in the center
of mass frame of AqA, which is also roughly
because of the fluctuations, the proper rest frame of
the cell considered. Time ts0 corresponds to the
moment when the two Lorentz contracted nuclei just
touch each other. The maximum overlap for the
freely streaming nuclei is expected roughly at t(
R rg sR P2m r s , i.e. at about 2.5, 1.5,(A cm A N NN

and 0.8 fmrc, respectively.
The primary energetic nucleon–nucleon collisions

still yield a strong momentum anisotropy for parti-
cles inside the cell. During this entire highest energy
density phase the widths of the velocity distributions

Ž .in the longitudinal z- direction, s , are much largerz
Ž .then the widths in the transverse x-, y- directions,

s and s , for each hadron species, respectively.x y

However, the individual anisotropies inside the cen-
tral cell gradually disappear with increasing time and
the widths, s and s ss , become nearly equal.z x y

The shape of the momentum distributions, dN rdpi z

and dN rdp ,dN rdp , for different particle speciesi x i y

‘‘i’’, which are quite different in the initial reaction
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stage, become approximately equal at tG t . For alleq

three bombarding energies we have found t (10eq

fmrc for the central cell. The isotropy of the hadron
distributions in the central cell appears at tG10
fmrc as a result of the many hadron rescatterings
and due to the rapid escape of fast andror non-
scattered particles from the cell. The isotropy of the
momentum distributions for all hadron species is one
necessary prerequisite for LTE.

The largest values of ´ and r in the centralB

reaction zone are reached earlier, at t- t . Duringeq

this non-equilibrium stage the matter in the cell
consists of a large fraction of non-formed particles
Ž .produced mainly in string excitations . These parti-
cles are not thermalized and exhibit a strong momen-
tum anisotropy. Hence, the physical interpretation of
this non-equilibrium early hadron–string phase of
the reaction should – in the present approach – not

Ž .be carried out in a statistical mechanics model SM ,
although it has become popular to analyze string
decays in terms of thermalrstatistical model: Becat-
tini has demonstrated that the fragmentation even of
eqey events leads to roughly statistical distributions
with, however, nonequilibrium strangeness abun-

w xdances 28–30 .
The values of ´ and r in the central cell foundB

in the UrQMD simulations for AGS, ‘‘CERN’’ and
Ž .SPS reactions at tG t are shown in Fig. 1 a . Foreq

ts10 fmrc the fraction of non-formed particles is
20–30% and goes to ‘‘zero’’ rapidly. The hadron–
resonance phase in this central cell at tG10 fmrc
and its thermal and chemical equilibration is the

Ž .subject of the present study. Fig. 1 a shows that the
energy per baryon in the cell, ´rr , is approxi-B

mately equal to 2, 3 and 5 GeV for AGS, ‘‘CERN’’
and SPS, respectively. It decreases by 10–20% dur-

Ž .ing the expansion stage t y t see below .eq f

The total number of particles in the cell becomes
small at ‘‘large’’ t and the system gradually ap-

Ž .proaches its ‘‘freeze-out’’ collisions cease stage.
The UrQMD-cell calculations are stopped at ts t ff

20 fmrc. The analysis of the LTE-issues is restricted
to this time interval, t F tF t . The values of t areeq f f

Ž .estimated by two different criteria: ´ t s´ s100f
3 Ž . f ŽMeVrfm and r t sr s0.5r r is the totaltot tot 0 tot

particle number density, r s0.16 fmy3 is the0
. Ž .ground state nuclear density . The first second

criterion leads to the following estimates of t : 18f

Ž .Fig. 1. a : The evolution of baryon density, r r r , and energyB 0

density, ´ , predicted by UrQMD model in the central cell of
Ž .AuqAu collisions at 10.7 AGeV AGS , PbqPb collisions at 40

Ž . Ž .AGeV ‘‘CERN’ and 160 AGeV SPS at times t y t , wherei f
Ž . Ž .t s10 fmrc, and t s18 AGS , 16 ‘‘CERN’’ and 18 fmrci f

Ž .SPS . Within this time interval the energy per baryon is nearly
Ž . Ž .constant for all three energies: ´ r r s2 AGS , 3 ‘‘CERN’’ , 5B

Ž . Ž .AGeV SPS . It decreases by 10–20% at ts t . b : The same asf
Ž . Ž .a , but for the m ,T -plane. The values of baryon chemicalB

potential, m , and temperature, T , are obtained by SM fit.B

Ž . Ž . Ž .17 , 16 16 and 18 20 fmrc for AGS, ‘‘CERN’’
and SPS reactions, respectively. The ‘‘initial’’ non-
equilibrium stage, t- t s10 fmrc, with high en-eq

w xergy density, has been studied in 31,16 and more
w xrecently in 32–34 . The ‘‘final’’ kinetic stage t) t f

of particle freeze-out and subsequent resonance de-
cays is to be studied separately.

3. Comparison with SM of ideal hadron–reso-
nance gas

UrQMD events of AqA collisions at AGS,
‘‘CERN’’ and SPS are analyzed below. The follow-
ing procedure is applied. The ensemble average of
the energy density, ´ , net baryon density, r , andB

net strangeness density, r , in the central cell areS

calculated for t F tF t . The contributions of botheq f

formed and not yet formed particles are included.
Then the SM of the ideal hadron–resonance gas is
taken with the same 55 baryon and 32 meson species
and their antistates as in the UrQMD model. Thus,
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the UrQMD string contributions to ´ , r , r areB S

contained in those of the not-yet-formed particles.
Therefore, string degrees of freedom should not be
included in the SM.

The thermodynamical parameters of the SM sys-
tem – temperature T , baryochemical potential mB

and strange chemical potential m – are extracted atS

each time-step of the UrQMD evolution. For each
particle species ‘‘i’’ we assume the Boltzmann dis-
tribution function

m yEi i
f sexp , 1Ž .i ž /T

Ž 2 2 .1r2where E s p qm is the particle energy andi i

m is the chemical potential presented asi

m sb m qs m , 2Ž .i i B i S

Žwith possible particle species ‘‘i’’ charges b s0,"i
.1; s s0,.1,.2,.3 . The electrochemical poten-i

w xtial considered in Refs. 35,36 is neglected.
The UrQMD values of ´ , r and r serve asB S

input to the SM, where these values are inserted in
the l.h.s. of the following equations:

´s ´ , r s b n , r s s n . 3Ž .Ý Ý Ýi B i i S i i
i i i

Here the particle number densities, n , and energyi
Ž .densities, ´ , on the r.h.s. of Eq. 3 are calculatedi

as:
`di 2n s p dp f , 4Ž .Hi i2 32p " 0

`di 2´ s p dp E f . 5Ž .Hi i i2 32p " 0

Here d is the spin-isospin degeneracy factor of thei
Ž .hadron species ‘‘i’’. The sums in Eq. 3 are taken

over all hadron–resonance species presented in the
UrQMD. Quantum statistical effects are not included
in the present analysis. Note, however, that these
effects are small for the T and m values consideredi

Ž .below. The only visible difference about 10% be-
tween quantum and classical descriptions can be
observed in the pion yields.

The time evolution of the T and m values in theB
Ž .cell is shown in Fig. 1 b . It is also presented in the

Ž . Ž .r ,T -plane in Fig. 2 a .B

The hadron pressure is given in the SM by

`
2d pi 2P T ,m ,m s p dp f . 6Ž . Ž .Ý HB S i2 3 3E2p " 0 ii

Ž .Fig. 2. a : The evolution of baryon density, r r r , and SMB 0

temperature, T , in the central cells of the three reactions in
Ž . Ž .question at times t y t . b : The same as a , but for thei f

Ž . Ž .´ , P -plane. The ratio P ´ r´ is nearly constant for all reac-
Ž . Ž . Ž .tions: 0.12 AGS , 0.14 ‘‘CERN’’ and 0.16 SPS .

LTE of the hadron matter in the cell manifests itself
in the isotropy of the microscopic pressure compo-

w xnents 26,37 :

1 p2
h� x , y , z4micP s , 7Ž .Ý� x , y , z4 1r22 2V 3 m qph Ž .h h

where V is the volume of the cell, p represents theh
Ž .particle momentum and the sum in Eq. 7 is taken

over all hadrons h in the cell. A strong difference
between longitudinal, P mic, and transverse, P mic sz x

P mic, components of the microscopic pressure tensory

is observed at the initial anisotropic non-equilibrium
stage of AqA reactions. At ts t the microscopiceq

pressure in the cell becomes isotropic and approxi-
Ž .mately equal to the ideal gas SM pressure 6 :

P mic ' P mic (P T ,m ,m . 8Ž . Ž .Ý k B S
ksx , y , z

This leads us to conclude that the hadron–resonance
Ž .matter in the cell – during the time interval t ,t –eq f

Ž .can be described in terms of the EoS 6 , which in
turn corresponds to the grand canonical SM equilib-
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rium. This gives a justification for using the hydro-
dynamical evolution approach. The ratio of the pres-
sure to the energy density shows a measure of

Ž w x.hydrodynamical effects in the system see, e.g. 38 .
This ratio in the cell remains approximately constant

Ž .during the whole expansion stage t ,t and in-eq f
w Ž .xcreases slightly with E see Fig. 2 b :lab

Pr´(0.12 AGS , 0.14 ‘‘CERN’’ ,Ž . Ž .
0.16 SPS . 9Ž . Ž .

Ž .The entropy density sss T ,m ,m can be calcu-B S

lated from the thermodynamical identity

1
s' ´qPym r ym r . 10Ž . Ž .B B S ST

The entropy per baryon srr in the cell for t F tB eq

F t is nearly constant and increases with E :f lab

srr (12 AGS , 20 ‘‘CERN’’ , 38 SPS .Ž . Ž . Ž .B

11Ž .

Therefore, the hadron–resonance matter evolution in
the cell is similar to an ideal hydrodynamic expan-

Ž .sion during the time interval t ,t .eq f

4. Non-equilibrium effects

The results of the previous sections support a LTE
picture in the central cell for t F tF t . It is formu-eq f

lated in terms of the ideal gas thermodynamical
functions with their hydrodynamic-like evolution.
Now we turn to the study of spectra for individual

Ž . Ž .particle species. In Figs. 3 a – c we show the com-
parison of the UrQMD particle spectra in the cell at
ts t s10 fmrc with ideal gas Boltzmann distribu-eq

tions

d3N dN
s3 4p pE dEd p i i

Vd B m qS m Ei i B i S i
s exp exp y .3 ž / ž /T T2p "Ž .

12Ž .
Ž .The parameters T ,m ,m in Eq. 12 are extracted byB S

Ž . Ž .means of the SM from Eqs. 1 – 5 . For AGS reac-
w Ž .xtions Fig. 3 a the shape and absolute normalization

of the UrQMD spectra are rather close to those given

Ž . Ž . Ž . q Ž . yFig. 3. Energy spectra of N v , L B , p ' , K % , K
Ž . Ž . 3
) and D w in central 125 fm cell of AqA collisions at 10.7

Ž . Ž . Ž .APGeV a , 40 AGeV b and 160 AGeV c at ts10 fmrc are
Ž . Ž .fitted by Boltzmann distributions, Eq. 12 lines , using the

T ,m ,m parameters given in Table 1.B S

Ž .by Eq. 12 . The different hadron species exhibit
Žthermal equilibrium the same inverse slope ‘‘tem-

.perature’’ and chemical equilibrium as it is required
by the SM. When the collision energy increases we
observe, however, significant deviations from the
SM picture. The meson spectra in the central cell at
‘‘CERN’’ and SPS show systematically lower in-
verse slope ‘temperatures’ in comparison to the T
values found from the SM. This is not the result of a

Žcollective flow effect which is negligible inside the
.central cell . The most dramatic non-equilibrium ef-

Ž .fect seen in Fig. 3 c takes place for pions at SPS
collisions. The pion inverse slope temperature is
smaller than the T values extracted from the ideal
gas SM. However, the pion number density in the
cell is larger than the SM result by a factor of two!
The observed strong chemical non-equilibrium ef-
fects for the pion sub-system requires the presence of
large positive pion chemical potential, m , instead ofp

m s0 as in an equilibrium SM treatment.p

Another important point of these results is the
incomplete thermal equilibrium in the cell. Let us
look again at the pions: At each time step in the
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Table 1
Temperature, T , baryon chemical potential, m , and strangenessB

chemical potential, m , obtained in the statistical model of theS

ideal hadron gas for the central cell of AqA collisions at AGS,
‘‘CERN’’, and SPS energies at ts10 fmrc

Energy, AGeV T , MeV m , MeV m , MeVB S

10.7 147 510 129
40.0 151 345 74

160.0 161 197 36.8

evolution of the system an essential fraction of the
pions escapes straight from resonance and string
decays, without rescatterings. These pions had no
chance to thermalize and reach a Boltzmann shape
spectrum through elastic rescatterings. The typical
number of elastic rescatterings per each newly pro-
duced pion is roughly 1.5 in the dense hadron–reso-
nance gas.

5. Conclusions

The equilibration of hadronic matter produced in
the central zone of heavy ion collisions at projectile
energies from 10.7 to 160 AGeV has been studied in
the microscopic UrQMD model. The following con-
clusions may be drawn.

1. There is a quasi-equilibrium stage of hadron–
resonance matter in the central cell of volume Vs
125 fm3 during the time interval from ts t (10eq

fmrc up to ts t (18"2 fmrc. Collective flowf

effects inside the central cell are negligible in com-
parison to the thermal motion during this quasi-equi-
librium stage. The energy per baryon during this
stage is approximately constant and equals 2, 3 and 5
GeV for AGS, ‘‘CERN’’ and SPS energies, respec-
tively. It decreases by 10–20% during the expansion
stage t y t .eq f

2. The macroscopic variables in the central cell
can be described in terms of SM model during time

Ž .interval t ,t . The ratio of the pressure to theeq f

energy density is approximately constant and equals
Ž . Ž . Ž .0.12 AGS , 0.14 ‘‘CERN’’ and 0.16 SPS . The

time evolution of thermodynamical variables is simi-
lar to an ideal hydrodynamic model. It corresponds

Ž .to a constant srr SrA -ratio, which equals srrB B
Ž . Ž . Ž .(12 AGS , 20 ‘‘CERN’’ and 38 SPS .

3. The UrQMD model predicts a local quasi-equi-
librium state of a hadron–resonance gas. This ap-
pears to be close to the SM equilibrium at AGS
energies. Here the spectra for all particle species are
in a good agreement with the SM equilibrium results.
At higher collision energies, however, we observe a
significant deviation of the UrQMD-cell results from
the SM equilibrium. These deviations appear at ener-
gies per baryon, ´rr , larger than 2 GeV and in-B

crease with rising E . At high energy per baryonlab

values, ´rr f5 GeV, typical for the quasi-equi-B

librium stage in SPS collisions, a strong enhance-
ment of a factor of 2 is observed in the pion number
density, which points to the necessity of including
finite pion chemical potentials to the SM analysis.
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