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A new chiral SU(3) Lagrangian is proposed to describe the properties

of kaons and antikaons in the nuclear medium, the ground state of dense

matter and the kaon-nuclear interactions consistently. The saturation prop-

erties of nuclear matter are reproduced as well as the results of the Dirac-

Brückner theory. After taking into account the coupling between the omega

meson and the kaon, we obtain similar results for the effective kaon and an-

tikaon energies as calculated in the one-boson-exchange model while in our

model the parameters of the kaon-nuclear interactions are constrained by

the SU(3) chiral symmetry.
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The properties of kaons/antikaons in nuclear and neutron matter have attracted con-

siderable interest since the pioneering work of Kaplan and Nelson [1], who first proposed

the occurrence of kaon condensation at several times normal nuclear density. Consider-

able theoretical effort has been devoted to investigate such medium effects on kaons and

antikaons in dense matter [2–9]. Recent data by the Kaos collaboration [10] on K+ and

K− production in relativistic heavy-ion collisions, which seems to exhibit a substantial

enhancement of the K− yield, stimulated further activity [11]. Among the various models

proposed, the chiral SU(3) Lagrangian seems to be particularly useful, since the kaon

is essentially a pseudo-Goldstone boson. The effective Lagrangian of chiral perturbation

theory used in Refs. [1,3] reads

LKN = − 3i

8f 2
K

ψ̄γµψK̄
↔

∂µ K +
ΣKN

f 2
K

ψ̄ψK̄K. (1)

Here the iso-spin dependent terms have been dropped since the problem will be discussed

in symmetric nuclear matter. The second term of the above equation stems from the

explicit breaking of chiral symmetry. Usually, only the linear order of current-quark mass

is taken into account, which leads to fK = fπ = 93 MeV [12]; therefore, in the following

fK in Eq. (1) is replaced by fπ. The amplitude of the KN sigma term has not yet been

determined unambiguously. Two different choices, ΣKN ≈ 2mπ and ΣKN = 450 ± 30

MeV, have been proposed, in accordance with the Bonn model [2] and with lattice gauge

calculations [13], respectively. The kaon and antikaon effective-masses and -energies in

static nuclear matter can be easily derived from Eq. (1)

m∗2
K = m2

K − ΣKN

f 2
π

ρS , (2)

ωK,K̄ =

√

√

√

√m∗2
K +

(

3

8f 2
π

ρB

)2

± 3

8f 2
π

ρB. (3)

The minus sign in Eq. (3) corresponds to the antikaon energy. ρS and ρB are the scalar

and the vector (net) baryon density, respectively. Since chiral perturbation theory has no

direct relation to the ground state properties of the dense matter, one usually uses [5] the

ρS and ρB vacuous as calculated by the relativistic mean-field theory of Walecka model
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[14], i.e., a non-chiral Lagrangian, or simply set ρS = ρB [1], in order to evaluate Eqs. (2)

and (3). Therefore, the self-consistency of the theory is lost.

A different approach, based on the chiral SU(3) Lagrangian, is the coupled channel

model [8,9]. By including the Λ(1405) as a K−p quasi-bound state, the model gives

a strong, non-linear density dependence of the K− potential, which changes sign from

positive to negative values at low density (around 0.1ρ0, where ρ0 is the ground-state

nuclear matter density). This trick allows for an attractive potential of antikaons without

violating the low density theorems. Once the density exceeds 0.2ρ0, the repulsive effect

of the Λ(1405) is neglected - it is predicted that the Λ(1405) melts in the dense medium,

in analogy to a Mott phase transition (for an alternative analysis see, however, Ref. [15]).

However, this model does not take into account the saturation properties of the system.

Both pion, nucleon and hyperon masses are kept constant in these calculations, at different

densities. Up to now, a consistent calculation based on a chiral Lagrangian, which can

simultaneously describe both the kaon-nuclear interactions and the ground state of the

dense matter, has not been performed yet.

This is the aim of the present work. It addresses these problems in a novel chiral

SU(3)-symmetric Lagrangian [16]. In addition to the ground-state saturation properties

of nuclear matter, the whole density dependence of the mean fields as predicted by the

Dirac-Brückner theory [17] are considered as a further constraint to the model. This will

turn out to be rather important for the investigation of the kaon and antikaon properties

at higher densities. The chiral SU(3) Lagrangian reads

L = Lkin +
∑

W=X,V,u,Γ,A

LBW + Lvec + L0 + LSB. (4)

Here Lkin is the kinetic energy term, LBW gives the various interaction terms of the

different baryons with 4 lowest (spin-0 and spin-1) meson-multiples and with the photons.

Lvec generates the vector meson-masses through interactions with the spin-0 mesons, and

L0 gives the meson-meson interaction potentials which includes the spontaneous breaking

of chiral symmetry and trace anomaly. Finally, LSB introduces an explicit symmetry

breaking of U(1)A, SU(3)V , and the chiral symmetry. The main feature of the model is

3



that the baryon masses are generated by the scalar condensates while their splitting is

realized through SU(3) symmetry breaking for these condensates. The model is described

in [16]. Considering SU(3) generators up to quadratic order, the Lagrangian for nuclear

matter reads

Lkin = iψ̄γµ∂
µψ +

1

2
∂µσ∂

µσ +
1

2
∂µζ∂

µζ +
1

2
∂µχ∂

µχ− 1

4
ωµνω

µν , (5)

LNX + LNV = −ψ̄ [gNωγµω
µ +mN ]ψ, (6)

Lvec =
1

2
m2

ω

χ2

χ2
0

ωµω
µ + g4

4 (ωµω
µ)2 , (7)

L0 = −1

2
k0χ

2
(

σ2 + ζ2
)

+ k1

(

σ2 + ζ2
)2

+ k2

(

σ4

2
+ ζ4

)

+ k3χσ
2ζ

−k4χ
4 +

1

4
χ4ln

χ4

χ4
0

+
δ

3
χ4ln

σ2ζ

σ2
0ζ0

, (8)

LSB = −
(

χ

χ0

)2

(f1σ + f2ζ) , (9)

and the kaon interaction is described by

LKN = − 3i

8f 2
K

ψ̄γµψK̄
↔

∂µ K +
m2

K

2fK

(

σ +
√

2ζ
)

K̄K − igωKK̄
↔

∂µ Kωµ. (10)

Here σ, ω are the scalar and vector field and ζ , χ are the strange scalar field and the gluon

field, respectively; f1 = m2
πfπ, f2 =

√
2m2

KfK− 1√
2
m2

πfπ, mN = m0− 1

3
gS

8 (4α−1)(
√

2ζ−σ),

m0 = gS
1 (
√

2

3
σ +

√

1

3
ζ). The omega-kaon coupling is introduced through considering the

vector field as a gauge field. The vacuum condensates of the scalar fields σ0 and ζ0

generate the masses of the various hadrons. They are constrained by the pion and kaon

decay constants: fπ = −σ0, fK = −(σ0 +
√

2ζ0)/2. If the equality σ0 =
√

2ζ0 is satisfied,

the model regains the SU(3) symmetry. The parameters of the model are σ0, ζ0, χ0,

gNω,
∑4

i=0 ki, δ, g4 and gS
1 , gS

8 , α. Ten of these are determined by the SU(3) vacuum

and the 18+8 hadron masses, three parameters, i.e., the vector coupling constant gNω

and g4 plus the ”gluon condensate” χ0 are used to fit the saturation properties of nuclear

matter. This yields two sets of parameters denoted as C1 and C2. These two parameters

sets differ in the strange condensate ζ . C1 allows for an explicit ζ-dependence of mN ,

while C2 excludes such a dependence. The corresponding saturation properties are (1)
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C1: m∗/mN = 0.612, E/A(ρ0) = −15.99 MeV, K = 276.3 MeV; (2) C2: m∗/mN = 0.641,

E/A(ρ0) = −15.93 MeV, K = 266.2 MeV. Both C1 and C2 have a saturation density

ρ0 = 0.15 fm−3 and fπ = 93.3 MeV, fK = 122 MeV, mπ = 139 MeV, mK = 498 MeV.

The parameters of the kaon-nuclear interactions, Eq. (10), are constrained by the chiral

Lagrangian itself. gωK = gρππf
2
π/2f

2
K , and gρππ = 6.05 from the ρ0 → π+π− decay [18].

The results do not depend on the KN sigma term. ΣKN is computed in the present model

[19].

A field shift to new variables, φ and ξ, is performed (σ = σ0 − φ, ζ = ζ0 − ξ) and

χ = χ0 is set (the variation of the gluon condensate in the nuclear medium is negligible

[16]). Then the following field equations of the scalar and vector mesons in static nuclear

matter are obtained after some straightforward algebra

(

k0χ
2

0 − 12k1σ
2

0 − 4k1ζ
2

0 − 6k2σ
2

0 − 2k3χ0ζ0
)

φ+ (12k1σ0 + 6k2σ0)φ
2

− (4k1 + 2k2)φ
3 +

2δ

3
χ4

0

1

σ0 − φ
− 2δ

3σ0

χ4

0 − 4k1φξ
2 + (8k1ζ0 + 2k3χ0)φξ

+4k1σ0ξ
2 − (8k1σ0ζ0 + 2k3χ0σ0) ξ = −gNσρS, (11)

(

k0χ
2

0 − 12k1ζ
2

0 − 4k1σ
2

0 − 12k2ζ
2

0

)

ξ + 12 (k1 + k2) ζ0ξ
2 − 4 (k1 + k2) ξ

3

+
δ

3
χ4

0

1

ζ0 − ξ
− δ

3ζ0
χ4

0 − 4k1φ
2ξ + (4k1ζ0 + k3χ0)φ

2 + 8k1σ0φξ

− (8k1σ0ζ0 + 2k3χ0σ0)φ = −gNζρS, (12)

m2
ωω + 4g4

4ω
3 = gNωρB. (13)

The effective-mass and -energy of the kaon K and the antikaon K̄ are given by

m∗2
K = m2

K +
m2

K

2fK

φ+
m2

K√
2fK

ξ, (14)

ωK,K̄ =

√

√

√

√m∗2
K +

(

3

8f 2
K

ρB + gωKω0

)2

±
(

3

8f 2
K

ρB + gωKω0

)

. (15)

Here the coupling strengths gNσ and gNζ are given by

gNσ = −




√

2

3
gS

1 +
1

3
gS

8 (4α− 1)



 , (16)

gNζ = −




√

1

3
gS

1 −
√

2

3
gS

8 (4α− 1)



 . (17)
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In principle, one can implement additional terms on the Lagrangian with more than one

time derivate acting on the kaon field (i.e., the so-called off-shell terms), for example,

∼ Tr(uµu
µB̄B). These terms are not included in the present work.

Fig. 1 displays the binding energy of the system (a) and the scalar and vector potentials

of the nucleons (b) as a function of the Fermi momentum. The results of the chiral

effective Lagrangian with the C1 and C2 parameters as well as the relativistic mean field

theory with the linear [14] and non-linear (TM1) [20] parameterization are compared

with the prediction of the Dirac-Brückner G-matrix theory [17]. It can be seen that the

results of the linear Walecka model deviate from the Dirac-Brückner theory evidently.

However, C1, C2 and TM1 can reproduce the results of the relativistic G-matrix theory

nearly perfectly up to the normal density. This explains why the description of finite

nuclei is rather convincing in these effective models [20,16]. At higher densities, the

results of C1 and C2 are closer to the prediction of the Dirac-Brückner theory than TM1.

Both C1 and C2 follow the results of the G-matrix calculations closely up to four times

normal density although the parameters have not been fitted to the results of Ref. [17].

Therefore, the novel chiral SU(3) Lagrangian [16] yields reasonable results for dense matter

ρ ≤ 4ρ0. These results provide a sound self-consistent basis for the investigation of kaon

and antikaon properties in the nuclear medium.

Fig. 2(a) depicts the kaon and antikaon effective-masses as calculated from this SU(3)

chiral model with the parameter set C2 (the results of parameter set C1 are nearly indis-

tinguishable from that of C2). The results of the Kaplan-Nelson model are also plotted for

two different KN sigma terms, ΣKN = 2mπ and ΣKN = 450 MeV with the mean fields

provided by Eqs. (11)-(13) (parameter set C2). The density dependence of the scalar

fields as computed with the parameter set C2 is given in Fig. 2(b). From now on, let us

denote the Lagrangian of Eq. (1) model I and that of Eq. (4) model II, respectively. For

model I, the effective mass of the kaon decreases nearly linearly with increasing density,

with a slope determined by ΣKN . For model II m∗
K first decreases with increasing density,

but then it approaches saturation, consistent with the finding of the one-boson-exchange

(OBE) model [5]. One can easily understand the different behavior of two models from
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Eqs. (2) and (14): In Eq. (2) the m∗
K depends linearly on ρS (which is, in turn, ap-

proximately equal to ρB). In Eq. (14), the m∗
K is related to the scalar fields. To obtain

the Dirac-Brückner results displayed in Fig. 1, a highly non-linear relation between the

φ, ξ and the ρS is asked for, as can be seen from Eqs. (11) and (12). Fig. 2(b) shows

the saturation of the scalar fields at high densities. Consequently, the m∗
K saturates after

ρB ≈ 2ρ0, it never tends to zero. Neither kaon nor antikaon condensation occur in the

chiral SU(3) model. In fact, antikaon condensation could occur only if the condensates

of the scalar fields, σ and ζ , would vanish in the medium. This would constitute a chiral

phase transition. Note that antikaon condensation may occur in model I depending on

the values of ΣKN as well as on the mean field [5] used in the calculations.

Fig. 3 compares the chiral SU(3) model calculations (with the parameter set C2) for

the kaon and antikaon effective-energies, with (solid lines) and without (dot-dashed lines)

the omega-kaon coupling, with the results of other models [1,5]. This is done up to 3ρ0,

where all these models should be least unreliable (than in the regime of extremely high

densities). In additional, an ”empirical” kaon dispersion relation [11] is also presented - it

resulted from ”fitting” the Kaos data [10] ofK+ andK− production in heavy-ion collisions

by means of a relativistic transport model [22] by adjusting the real part of the kaon and

antikaon optical potential, but ignoring the imaginary part (i.e., the in-medium scattering

cross sections and hyperon resonances). It can be seen that without the ω −K coupling

our model predicts a rather weak potential for the antikaon compared to the predictions

of other models. After introducing the ω−K coupling, the calculated effective energies for

kaon and antikaon are quite similar as obtained in the one-boson-exchange model [5]. The

effective kaon and antikaon energies are directly related to their optical potentials. The

chiral SU(3) model gives U K̄
opt = −98.7 MeV and UK

opt = 21.5 MeV at normal density. The

predicted K− optical potential is in accordance with the results of model I and OBE [5]

(between −70 and −100 MeV). It is close to the empirical value obtained by the standard

fit of K−-atomic data, which gives U K̄
opt = −85 MeV, but much weaker as compared to the

non-linear fit, which gives U K̄
opt = −200 ± 20 MeV [21]. At present, there exist no firmly

established empirical value for the UK
opt. An estimate based on impulse approximation

7



[4,5] gives UK
opt ≈ 29 MeV. Our results are in agreement with it.

In summary, we have employed a recent developed chiral SU(3) Lagrangian to inves-

tigate the properties of kaons and antikaons in the nuclear medium. The kaon-nuclear

interactions and the ground state of the dense matter are described consistently for the

first time within a chiral approach. The parameters of the kaon-nuclear interactions are

constrained by the SU(3) chiral symmetry. The saturation properties of nuclear matter

as well as the results of the Dirac-Brückner theory are well reproduced. Due to the highly

non-linear kaon interaction with respect to the density, the kaon/antikaon effective mass

is changed only moderately in the nuclear medium. After introducing the coupling be-

tween the omega meson and the kaon, we obtain similar results for the kaon and antikaon

effective energies as calculated in the one-boson-exchange model, i.e., the kaon feels a

weak repulsive potential while the antikaon suffers a strong attractive potential.
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FIG. 1. (a) The binding energy and (b) the scalar and vector potentials of the nucleons

calculated with the chiral Lagrangian (C1, C2) and the linear [14] and non-linear (parameter

set TM1 [20]) relativistic mean field theory. The dots are the results of the Dirac-Brückner

theory of Ref. [17]. The cross in (a) denotes the empirical value for nuclear matter saturation

(E/A = −16 ± 1 MeV, kF = 1.35 ± 0.05 fm−1). The scalar and vector potential at saturation

point (kF = 1.305 fm−1) calculated with the chiral Lagrangian are −364.3 MeV, 293.3 MeV for

C1 and −337.1 MeV, 268.4 MeV for C2, respectively.
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FIG. 2. (a) The effective masses of kaons and antikaons in nuclear matter versus the baryon

density at T=0. The solid curve represents the results of this work with the parameter set

C2. The dashed and dot-dashed curves are calculated from Eqs. (2) and (3) with the ρS- and

ρB-values as provided by Eqs. (11) - (13) (parameter set C2). (b) The density dependence of

the scalar fields as shown for the parameter set C2.

12



0.0 0.5 1.0 1.5 2.0 2.5 3.0

B / 0

100

200

300

400

500

600

700

(M
eV

)

K

K

OBE TM1
Ref. [11]

KN=450 MeV
KN=2m

without - K coup.
with - K coup.

FIG. 3. The energies of kaons and antikaons as a function of the density. The solid and

dot-dashed lines represent the results of this work with and without the ω − K coupling, re-

spectively. The short-dotted and short-dashed lines are calculated with the chiral perturbation

theory with the different KN sigma terms. The long-dotted lines are the results of Ref. [11]. The

long-dashed lines depict the results of the one-boson-exchange model with the TM1 parameter

set.
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