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Kurzfassung

Theoretische Modelle von in der Natur existierenden komplizierten Systemen erlauben es, Hypo-
thesen zuachst nicht am realen System, sondern an einem Modell zu testen. Im Vergleich zur
Durchfuhrung von realen Experimenten haben diese theoretischen Experimente die Vorteile einel
totalen Kontrolle von Messfehlern und verursachen oftmals uaf3&mnordnungen geringere Kosten.
Das realistische System kann nicht komplett durch theoretisch#ico Modelle beschrieben wer-

den, denn diese vereinfachen Systemeigenschaften, um eine theoretische Behiametioagpt erst

zu ernbglichen. Dadurch ergibt sich jedoch dieilichkeit, die im System relevanten Mechanismen

zu identifizieren.

Viele Modelle benutzen Kontinuumsbeschreibungen von Konstituenteneigenschaften, um das Systet
mit ordinaren oder partiellen Merentialgleichungen zu beschreiben. Im Gebiet der Gewebemodel-
le erfreuen sich gerade im Hinblick auf einen eventuell monoklonalen Ursprung von Krankheiten
wie Krebs agentenbasierte Aitge grolRer Beliebtheit, denn in diesen Modelénsn wird jede Zel-

le individuell im Modell repasentiert und somit lassen sich die Nachkommen einer einzelnen Zelle
individuell verfolgen. Im Hinblick auf die grol3en Zellzahlen ialteren Organismen werden agenten-
basierte Modelle beitigt, welche mit vergleichsweise geringen numerischen Aufwarigsgjelerden
konnen. Ein bekannter Ansatz besteht darin, dignliche Dynamik der Zellen auf einem Gitter zu
modellieren, indem eine Zelle durch einen odér, fidhere gewinschte Aufbsungen, auch durch
mehrere Gitterpunkte approximiert wird. Der Zustand der Zellen auf dem Gigert sich durch
lokale Wechselwirkungsregeln. Diese Ate fihren allerdings oft zu numerischen Gitterartefakten,
welche durch stochastische Wechselwirkungsregeln reduziert weinhgrehk. Die Verbindung von
Modellparametern mit messbaren Observablen wird dadurch jedoch nochmals erschwert. In Hinsich
auf die Bewertung der Ergebnisse von darauf basierenden Modellen taucht auch die Frage auf, ob d
intrinsische gitterbasierte Reggentation die Ergebnisse eventuell axtht. Diese Frage kann nur

mit Modellen beantwortet werden, welche diesg&drung aufgeben.

Die vorliegende Arbeitiihrt numerische Methoderif die Konstruktion von gitterfreien Modellen
zellularen Gewebes ein. Um die Anwendbarkeit zu demonstrieren, werden sie auf verschiedene biolo
gische Modellsysteme angewandt und auch teilweise mit kontinuumsbasierten Methoden verglicher
Unter der Annahme von kontaktvermittelten Zell-Zell-Wechselwirkungen kann mit Zuhilfenahme der
Nachbarschaftstopologie die Zahl der zu betrachtenden Wechselwirkungen deutlich reduziert wer
den. Die regudre Delaunay-Triangulation stellt dabei eine Methode dar, solche Topolofjizere

zu erstellen: Das Objekt wird durch eine Kugel i@&gentiert, deren Nachbarschaft mit anderen Ob-
jekten (Kugeln) durch die Delaunay-Triangulation definiert ist. Objekte, welche in der Triangulation



nicht verbunden sind, haben auch keinen Kontakt untereinander und die entsprechenden Kontakt-
wechselwirkungen fissen nicht béicksichtigt werden. Zur Delaunay-Triangulation kann, analog

zur Wigner-Seitz-Zelle, geometrisch eine duale Konstruktion, die Voronoi-Zerlegung, igmgeer-

den. Diese duale Konstruktion edglicht es auch, geometrische Korrekturen des Zellvolumens bei
mehrfacherUberlapps zu berechnen. Die Modellierung von lebendem Gewebe stellt jedoch deutlich
erhdhte Anforderungen an die benutzte Delaunay-Triangulation: Die Zellbewegung erfordert die Un-
terstitzung kinetischer Punktmengen, und Prozesse wie Zellteilung und Zelltod korrespondieren mit
dem Einfigen bzw. Entfernen von Kugeln aus der Triangulation. Eine Triangulation, welche dies si-
multan leistet, wurde im Rahmen dieser Arbeit erstmals erstellt: In dieser Implementation wird die
Anderung der Nachbarschaftstopologie durch eine Folge von elementaren topologischen Transfor-
mationen repsentiert. Gleichfalls werden in der vorliegenden Arbeit verwendete Algorithmen zum
Einfugen bzw. Entfernen von Objekten diskutiert. Von besonderem Interesse ist hierbei ein neuarti-
ges Kriterium zur Berechnung der maximalen Schrittweite, welches in den kinetischen Algorithmen
Anwendung findet. Die durchschnittliche algorithmische Kompédter Kontakt-Erkennung durch

die Delaunay-Triangulation ist dominant bestimmt durch den verwendeten kinetischen Algorithmus
und skaliert damit linear mit der Zahl der betrachteten Objdktedalistische Modellapplikationen.

Da die Dynamik von Zell-Zell-Kontakten nicht genau verstanden ist, wirdi@imhbelebte Materie
etabliertes Kontaktmodell (JKR-Modell) diskutiert unir fseine Anwendbarkeit auf Gewebesimu-
lationen modifiziert. Dies beinhaltet die Erweiterung durch dissipative und stochastisatte. Km
Gegensatz zur Langevin-Gleichung wird jedoch auch Zell-Zell-Reibung und Reibung mit &tation
Randbedingungen mit einbezogen, so dass die Bewegungsgleichungen erheblich komplexer werden.
In dertUberdampften Naherungnk ~ 0 konnen diese auf die Form

AQD)X(1) = b(t)

gebracht werden, wobei der Vektbft) sowohl konservative als auch stochastische Wechselwirkun-
gen, und die MatrixA(t) die dissipativen Kifte entlalt. Da die Matrix A(t) dinn besetzt undir
physiologische Parameter auch positiv definit ishiken iterative Methoden wie die der konjugierten
Gradienten benutzt werden, um das System ngthund, nach zeitlicher Integration mit adaptiver
Schrittweite, somit nach der zellularen Kineki) aufzubsen.

Die Ubertragung von Informationen aller Art im Gewebe wird jedoch nicht nur durch Kontaktwech-
selwirkungen, sondern auch durclffdndierende Substanzen bewerkstelligt. Im einfachsten Fall han-
delt es sich z. B. um die Busion von Nahrstdfen. Aufgrund des riesigen Gi8enunterschieds
zwischen einzelnen Moléken und Zellen knnen difundierende Signal- und atrstdfe durch



iii
Reaktions-Difusions-Gleichungen der Form

% = V[D(x, )Vu(x, t)] + Q(X, t)

hinreichend beschrieben werden. Dabei beschréhtt) die raumlich und zeitlich heterogene Dy-
namik des diundierenden Faktord)(x,t) den im Allgemeinen von den lokalen Bedingungen
abhangigen &ektiven Difusionskoéizient undQ(r,t) die lokale Aufnahme- bzw. Produktionsra-

te des diftundierenden Faktors. Die diskretisierte Version solcher partiell§ei@ntialgleichungen

lasst sich auf einer Rechteck-Diskretisierung durchldieergang von Ofterentialquotienten zu Dif-
ferenzenquotienten erhalten urithft auf die losung dinnbesetzter Gleichungssysteme mit speziel-
ler band-diagonaler Struktur. Diese Arbeit diskutiert verschiedene numerische MethodérsangL
dieser Gleichungen, welche im Rahmen der Modellkonstruktion erstellt und verglichen wurden. Das
beinhaltet sowohl bisungen iir das volle zeitaldngige System als auch di@$ung im Gleichge-
wicht, d. h. fr % ~ 0. Um eine konsistente Verbindung mit gitterfreien agentenbasierten Model-
len herzustellen, werden die lokalen Konzentrationen an den Zellzentren durch lineare Interpolatior
zwischen den Gitterpunkten berechnet. Dieses Vorgehen kann nur angewendet werden, wenn die G
terkonstante des Diskretisierungsgitters auf Bereiche oberhalb der typischebZekgngescknkt

ist.

Der Zellzyklus wird im Modell durch interne diskrete Zastle der Agenten re@sentiert, d. h. in
Abhangigkeit des internen Zustandesamaern die Agenten ihre Eigenschaften. Das Modell unter-
scheidet dabei zwischen M-Phasea;@hase, 85,-Phase und einer &&Phasejiber deren Dauer die
Gesamtzellzykluszeit gesteuert wird. Ztdich kbnnen die Modellagenten nekrotisieren, was im Mo-
dell durch ein Ende der &hrstdfaufnahme und eine — vaigerte — Entfernung der Agenten aus der
Simulation realisiert wird. An einzelnen biologischen Systemen wird das Modell weiter spezifiziert.
Multizellulare Tumorspéroide sindn vitro Systeme von unsterblichen Zell-Linien, welche in dreidi-
mensionaler Kultur sgdrische Zellpopulationen formen. Aufgrund deshxstdfmangels im Inneren

der Splaroide bildet sich in der Regel eine typische, durch Schichten bestimmte Struktur heraus:
Ein nekrotischer Kern ist umgeben von einer nichtproliferierenden Zellschicht, welche wiederum von
eineraufReren Schicht proliferierender Zellen umgeben ist. Eine solche Struktur findet man auch in
vielen avaskularen Tumordan vivo, weshalb multizelllidre Tumorspéroide ein beliebtes experi-
mentelles Modellsystem darstellen, um z. B. défel& von Chemotherapeutika unter realistischeren
Bedingungen zu testen. Das Wachstum der Tuma@unsptie folgt anénglich dem erwarteten expo-
nentiellen Verlauf, flacht dann jedoch ab urid &€inige Zell-Linien wird sogar eine&®igung beob-
achtet. Diese Abweichung vom exponentiellen Wachstum ist jedoch nicht allein durch die Verarmung
an Nahrstdfen bedingt, sondern auch durch andere Faktoren. In dieser Arbeit wird gleichfalls der
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Beitrag durch die Kontaktinhibition der Zellteilung untersucht. Durch Variieren der experimentell
nicht oder nur schwer erreichbaren Modellparameter kann die Abweichung zwischen Modellvorher-
sage und experimentellen Messungen im Sinne giiddts minimiert werden. Die so erhaltenen
Modellparameter stellen eine Modellvorhersage dar.

Um das Wachstum dieser Sipleide im Modell zu untersuchen, werden in einem agentenbasierten
und einem kontinuumsbasierten Modell die Prozesse der Nekrose und Kontaktinhibition als verlang-
samende Faktoren in der Wachstumsdynamik dea&pthe diskutiert. Dabei wird das kontinuums-
basierte Modell so analog wiedglich zum agentenbasierten Modell konstruiert. Als nekroseindu-
zierend werden zwei ffundierende dhrstdfe betrachtet, Sauerstand Glukose, was die simultane
Losung der beiden Reaktions{lisionsgleichungen impliziert. Mit einem einfachen Ansaker

die Abhangigkeit der Nekrose von den lokaleraiNstdtkonzentrationen gelingt es, mit ansonsten
gleichen Parametern vier Wachstumskurven bei verschiedeabrstédtkonzentrationen modellun-
abhangig zu reproduzieren. Das agentenbasierte Modell hat den Vorteil désAnf des Zellzyklus

und der besseren Beschreibung der Zellkinetik, welche im Kontinuumsmodell durch einen nicht-
linearen (positiven) Ofusionsterm charakterisiert ist. Zudem liegt die betrachtete Systdagon
10°...10° Zellen an der Grenze des mit agentenbasierten Modellen berechenbaren, was starke Verein-
fachungen der Bewegungsgleichungen erfordert. Beide Modelle approximieren die experimentellen
Wachstumskurven mit a@hernd gleicher Quaét, so dass auf dieser Ebene keine Diskriminierung
zwischen den Modellen aglich ist. Auf der Ebene der morphologischen Daten, d. h. déf3&r

des nekrotischen Kerns und der anderen Schichten, ist aber sehr wohl eine Modelldiskriminierung
moglich. Das agentenbasierte Modell erlaubt zudem eine Saturation des Wachstums, was im speziel-
len konstruierten kontinuumsbasierten Ansatz nicbghch ist.

Um einem realistischen Modellif das Tumorwachstum vivonaherzukommen, wird das agentenba-
sierte Modell auf die Beschreibung der Epidermis angepasst. Diese ist ein mehrschichtiges verhornen-
des Plattenepithelgewebe und bildet die obere Schicht der menschlichen Haut. Die vorherrschenden
Zelltypen sind Keratinozyten, Melanozyten, Merkel-Zellen und Langerhans-Zellen. Die Epidermis
lasst sich histologisch in mehrere Schichten unterteilen. Das aus nur einer Zellschicht bestehende
stratum germinativungrenzt direkt an die Basalmembran. Hier teilen sich Keratinozyten, von denen
ein Teil in der Basalschicht verbleibt, der andere Teil jedoch die Basalschichsseund zunstra-

tum corneunaufsteigt. Wahrend dieser Passage durchlaufen die Keratinozyten mehrere Zellteilungen
und einen Dfferenzierungsprozess, welcher sich auch histologisch verschiedenen Schichten zuord-
nen Asst. Dieser Prozess besteht in einer speziellen Form des Zelltodes, der Kornifizierung (auch
anoikis) genannt wird: Das Zytoplasma verliert Wasser, die Zellen verflachen sich und formen polari-
sierte Bindungen. Schliel3lichden sich diese Bindungen an der Olgeffle auf und die kornifizierten
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Keratinozyten verlieren den Kontakt. Es ist bekannt, dass die Struktstiddésm corneungine wir-
kungsvolle Barriereir viele diffundierende Substanzen darstellt. Die Melanozyten befinden sich im
Normalfall an der Basalschicht. Krebsartig entartete Melanozyibenén ein Melanom bilden.

Im Modell wird nur zwischen drei Zelltypen mit verschiedenen Eigenschaften unterschieden: Kerati-
nozyten, deren Stammzellen in der Basalschicht und Melanozyten. Mit verschiedenen Eigenschafte
der korrespondierenden Agentetrinen die Hekte verschiedener Parameter im Modell auf die Ko-
existenz von verschiedenen Zelltypen untersucht werden. Die kleinere betrachtete SySeeunogr
10°...10* Zellen erndglicht es indes, die Bewegungsgleichungen ohne weitéleeNingen zu be-
handeln. Im Modell wird eine moderierende (verlangsamende) Funktion von grof3en extrazellularen
Wasserkonzentrationen auf die Proliferationsrate der Keratinozyten und deren Stammzellen angenon
men. Da erst durch den Aufbau einesi#zienderstratum corneunder Verlust von Wasser durch die
Hautoberfache eingeimmt wird, hat das Abtragen dieser Schicht im Modell die Folge einer prolife-
rativen Antwort. Diese wird z. B. auch in tape-stripping Experimenten beobachtet. Allerdingsik

mit dem Modell keinerlei Aussageiber die Art des moderierenden Faktors gemacht werden, denn
auch andere éfundierende Faktoreniwden zu formal identischen Modellgleichungéimifen.

In der vorliegenden Arbeit wird auch der Einfluss einer variierendenasidim von Melanozyten

zur Basalmembran auf das Wachstum wvorsilico Melanomen untersucht. Diese Frage ist stark
verbunden mit dem Veditnis der Proliferationsraten von Melanozyten und Keratinozyten im Modell.
Es stellt sich heraus, dass in einigen Bereichen des Parameterraumes stochastisolgerseinen

sehr groRen Einfluss habetihen, zum einen durch die Variation der Anfangsbedingungedds
Tumorwachstum, zum anderen aber auch auf das Wachstum des Melanoms selbst.

Die Ubertragbarkeit der Modellresultate auf reale Systesegh stark von der @tigkeit der ver-
wendeten Mherungen und der Relevanz der untersuchten Mechanismen ab. Die Schwachpunkt
der verwendeten Modelle werden daher in der Arbeit diskutiert, um eine sinnvolle Einordnung zu
ermbglichen. kir weitere Untersuchungen werden Verbesserungsvé@gelgemacht und einige ex-
perimentelle Signaturen hervorgehoben, welche in Experimenten falsifiziert weddeerk Diese
Arbeit schliel3t mit einer kritischen Betrachtung der verwendeten numerischen Algorithmen, Modelle
und der Philosophie. Die selbst entwickelten bzw. selbst implementierten Algorithmen wurden ver-
schiedenen numerischen Tests unterworfen, was im Anhanghalisher erhutert wird.

In experimenteller Hinsicht unterstreichen die Resultate die Notwendigkeit eines klar definierten ex-
perimentellen Modellsystems, an welchem Modelle falsifiziert und unbekannte Modellparameter fi-
xiert werden nnen. In theoretischer Hinsicht bergen agentenbasierte gitterfreie Methoden das Po-
tential, Artefakte von gitter- bzw. kontinuumsbasierten &en aufzudecken.
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Abstract

Different numerical approaches and algorithms arising in the context of modelling of cellular tissue
evolution are discussed in this thesis. Being suited in particulaff@atice agent-based models, the
numerical tool of three-dimensional weighted kinetic and dynamic Delaunay triangulations is intro-
duced and discussed for its applicability to adjacency detection. As there exists no implementation
of a code that incorporates all necessary features for tissue modelling, algorithms for incremental
insertion or deletion of points in Delaunay triangulations and the restoration of the Delaunay prop-
erty for triangulations of moving point sets are introduced. In addition, the numerical solution of
reaction-dffusion equations and their connection to agent-based cell tissue simulations is discussed.
In order to demonstrate the applicability of the numerical algorithms, biological problems are studied
for different model systems:

For multicellular tumour spheroids, the weighted Delaunay triangulation provides a great advantage
for adjacency detection, but due to the large cell numbers the model used for the cell-cell interaction
has to be simplified to allow for a numerical solution. The agent-based model reproduces macroscopic
experimental signatures, but some parameters cannot be fixed with the data available. A much simpler,
but in key properties analogous, continuum model based on reacttosidn equations is likewise
capable of reproducing the experimental data. Both modelling approaches fiakieglpredictions

on non-quantified experimental signatures.

In the case of the epidermis, a smaller system is considered which enables a more complete treatment
of the equations of motion. In particular, a control mechanism of cell proliferation is analysed. Simple
assumptions dgtice to explain the flow equilibrium observed in the epidermis. In addition, fiieete

of adhesion on the survival chances of cancerous cells is studied. For some regions in parameter
space, stochastidfects may completely alter the outcome.

The findings stress the need of establishing a defined experimental model to fix the unknown model
parameters and to rule out further models.
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Chapter 1

Motivation

1.1 The Benefit of Theoretical Models

Models are theoretical representations of phenomena.

This infers that they are formal representations of human beliefs.

Since — in contrast to the realistic system — theoretical models can be controlled completely, they
provide a favourable alternative to the realistic system for testing hypotheses.

In some parts of science one has the ability to establish experimental models: Simplified and well-
understood systems that are designed to resemble more complicated systems. In contrast, this the
will deal with theoretical models, in particular with certain mathematical models in biology.

Usually, a mathematical model is defined by a set of variables, that describe the state of the system,
set of equations, that establish relations between the variables, and a set of parameters, that allow
vary the relations between the variables in a discrete or continuous way.

There is some concensus about how mathematical models can be classified (compare subsection 2.
These classes of models are usually not disjoint:

e Deterministic modelsalways yield the same results if restarted with the same initial conditions,
whereasstochastic modelswill produce a diterent outcome.

e Dynamic modelsdo account for the full time evolution of a system, wherstic models
only account for a single state, for example the long-time limit.

e Technically, mathematical models can as well be divided limear models that use linear
differential equations to describe the evolution of their variablesnantinear modelswhere
nonlinear equations are applied.
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In addition, models can be distinguished by the degree to which they use available information on
the system. Some systems for example consist of many constituents with similar properties, where
it is impossible and sometimes unnecessary to model every constituent separately. In other systems
however, the properties of individual constituents may be very important and accordingly, the degree
to which this is reflected in the model varies strongly. In some cases, models can be considerably
simplified by averaging over individual properties. For example, in thermodynamics one is not in-
terested in the specific momentum or position of every single particle, but rather in the evolution of
average quantities. For many systems in physics this model simplification has been very successful.
However, it must be said that fundamental prerequisites of this procedure — indistinguishability of
the constituents and large constituent numbers — are not always given in cell tissues, where to a first
approximation cells can be viewed as the smallest functional unit. In such systems, a too extensive
averaging of constituent properties may lead to the destruction of important properties. In the class
of agent-based models, where every constituent is represented individually, the main model simpli-
fication is the simplification of individual properties. The large amount of information that can be
produced by agent-based models is paid for by strong computational requirements. However, the
goal of understanding such systems is well worth ftfiere

The current hypotheses on cancer evolution for example, point to a monoclonal origin of this disease
[1]. Especially in the initial stages of tumour growthvivo, the individual properties of the tumour

cells play an important role, as in this stage the fate of a single cell may determine life or death.

In addition, models that solely represent cells by average quantities have sometfiicettids to

explain simple processes such as cell sorting or cell movement. Here, agent-based models can be
used to reveal the shortcomings in the averaging approach and thereby contribute to an improvement
of over-simplifying models. For example, the kinetics of the cellular distribution is often modelled

by a mere dtusion approach, which is only valid in the limit of low cellular density and passive

cell motion. If the cell density is large, the elastic and adhesive cell properties dominate the cellular
kinetics.

A model is much easier controlled than the original experimental system. For example, in mathemat-
ical models, the experiments can be set up with much Iest @nd the system can be prepared to
defined initial states. The experimental error is under control and in addition, usually the solution is
obtained much faster than with real experiments. These advantages have led to a widespread appli-
cation of mathematical modelling in nearly all fields of natural sciences. Provided, the mathematical
model does not contain intrinsic logic errors or errors within its solution, significant progress can be
achieved in the following way:

e The most important results can be established by using a mathematical model that fails to
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predict experimental data correctly even though in its design all currently available knowledge

has been included. This outcome leads to refinement of theories and finally to progress, if an
improved theory is in agreement with the experiment. Thus, in this way a model can be used as
a tool to find human misconceptions. In on-going iterations of comparing simulation outcomes

to experimental results, a model is improved by including new underlying mechanisms. On

the contrary, a model that is in full agreement with the experiment does not contribute at all to

understanding the underlying mechanisms, since the knowledge that has been included in th
design process has not been falsified and no new information about underlying mechanisms ha
been gained.

¢ Nevertheless, even in cases where mathematical models reproduce experimental data with su
ficient accuracy, further knowledge can be gained. In this stage, models can be used to establis
reasonable estimates of parameters. In addition, the model can be used as a tool to reveal erro
in experimental setups.

The existence of unexpected and nontrivial behaviour arising in complex systems made of simple
constituents is calle@Emergence This term is popularly circumscribed by “the whole lot is more
than just the sum of its constituents”. The evolution of cellular tissues is currently hardly understood.
It is not clear whether this can be attributed to the missing knowledge about its constituents or to
missing dfects arising from Emergence.

1.2 Goals of this study

This work is aimed at constructing and improving mathematical models to understand the evolution
of cellular systems, in particular tissues:

1. Currently, to a large extent technical aspects determine the limits of modelling. Therefore,
special focus should be laid on the details of the used numerical approaches. This includes th
development of software for the solution of partiafdrential equations as well as for specific
large ordinary systems.

2. In order to have the possibility of revealing shortcomings of averaged modelling approaches,
agent-based models should be constructed. To go beyond the widely-used lattice approache
an df-lattice model is favoured. This would normally increase the computational complexity
by orders of magnitude. Therefore, the weighted Delaunay triangulation shall be discussed as
a tool to detect cellular adjacencies. This requires the implementation of such a triangulation
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as independent software that provides — unlike the present triangulation softwardfj2iente
functions for cellular movement, proliferation and cell death simultaneously.

3. The numerical methods must be tested and cross-checked to exclude numerical or conceptual
artifacts as far as possible.

4. For diferent cellular systems, mathematical models — based on established mechanisms — have
to be constructed. This includes the application of agent-based modelling to tumour growth as
well as a comparison to a corresponding continuum model. In addition, modelling approaches
to epidermal tissue shall be discussed.

1.3 Conventions> Notation

The Einstein sum convention will be generally used in this thesis, if confusion is not possible: Indices
occurring twice within a term are summed up automatically with the limits on the summation indices
arising from the context. Whenever confusion is possible, indices denoting Cartesian coordinates are
denoted by Greek letters, whereas indices denoting elements of other vectors will be given as Latin
letters.

If referenced as a whole, vectors are denoted in bold symbols, whereas vertices — if supplemented with
weights — will be denoted bold with hats. The nabla oper&t® understood as a vector containing

the derivatives with respect to the Cartesian coordinates.

An overview of the used symbols and abbreviations can be found on page 167. Definitions in the text
will be denoted in bold letters.

CPU times given refer to a333 GHz AMD Athlon processor with 1 GByte of RAM. The source
code has been compiled using the GNb+gcompiler (version 3.3) with compiler optimisation set.



Chapter 2

Introduction

2.1 Mathematical models in biology

Mathematical models can be classified as indicated in figure 2.1. Models where the state of the syster
is entirely characterized by using continuous variables are tecametthuum models Usually, their
evolution is characterized by partialfidirential equations (termedknsity dynamic9 or ordinary
differential equations (termgubpulation dynamics) that yield a continuous solution. In the other
group, the internal state of the system is at least partly characterizéiddrgte variables If some

of these variables are discretised on a lattice, the model belongs to the ctadkilair automata?,
whereas inoff-lattice modelsnone of the state variables is discretised on a lattice. In the context
of tissue modelling, both of the latter sub-classes have representatives that base their dynamics c
the boundary of a cell (see e. g. the Potts model [5] for cellular automata or [6] foff-dettawe
counterpart) or on its centre (see e. g. regular cellular automata [#]-tatiice models [8]), where

the centre-based models usually use less degrees of freedom.

A quite complete review of continuum models — both based on population or on density dynamics can
be found in [9, 10]. Among these, probably the study of population models has the longest history.
Inspired by observations in daily life, Leonardo of Pisa (called Fibonacci later on) as early as 1202 self
up a model to predict the population dynamics of rabbits. If one starts with a single immature pair of
rabbits, the number of rabbit pairs in his model is given by a sequence of numbers that later becam
known as the Fibonacci sequence [9].

More realistic population models (incorporating theeet of growth saturation for limited resources)
have been set up in the 1 @entury. For example, the logistic growth equation was set up in 1838 by

1There exist other definitions of cellular automata [3, 4].

5
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tissue models

population
dynamics

cellular
automata off—lattlce ]

. models

Figure 2.1: Hierarchy of mathematical models in biology.fi@rent classification schemes can be
applied and hybrid forms exist. Dashed lines indicate correspondence via simplifications, whereas
solid lines indicate subsets. Relative heights indicate varying degrees of computational complexity.
Representatives of the models indicated red are discussed in this thesis.
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Malthus

d—N =rN(t) [1— w] ,

dt K 2.1)

whereN(t) is the number of individuals at timg r is their proliferation rate, an¥ is the carrying
capacity of the particular environment. The above equation is widely used to make predictions for
population numbers.

In medicine, an additional growth law has found wide-spread application. It is given by the Gompertz
equation published in 1825 [11] as a demographic model

[

N—] N(), (2.2)

dN = aexp(-pt) N(t) = BIn ND

dt

where (withN* = Ny exp{a/B}) the relative growth rate depends on time (or the population number)
itself. The Gompertz equation has the solution

NCOMP(t) = N, exp{% |1- e-ﬁt]} : (2.3)

which can be derived by separation of variables. Interestingly, the Gompertz model fits the growth
processes of many populations, individuals, and even the growth of many avascular tumours remark
ably well [12, 13, 14, 15].

The population dynamics model (2.1) has been extended by Fisher [16] and Kolffi¢tyéfan 1937

to incorporate the spatial distribution by combining it with th&ulion equation

on |:1_ n(x, t)] ’

— = DV2n(x, 1) + r(x,t) 7

= (2.4)

wheren(x, t) describes the population density, dds a difusion constant thatfkectively includes

the mobility? of the individuals.

Since in the last century computational techniques have evolved significantly, nowadays more com:
plete models are in use. In some of these models, individuals are not described in an approximat
way as by continuum approaches, but as individual agents. However, in contrast to early approache
such as the one by Fibonacci, they are capable of incorporating many interacting agents. In the lat
1940s John von Neumann introduced the concept of cellular automata [18].

In [19] cellular automata are characterized as “(discrete) models of spatiotemporal dynamical sys-
tems, namely discrete in time, space and state space”. The most famous cellular automaton has be

2The term motility will be used as referring to active cell movement, whereas mobility does not result from individual
action. For specific cases, random motility may as well be described byfthsidin equation.
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introduced in 1970 by John Horton Conway with what was termed “Game of Life” [20]. This cellular
automaton produces complicated patterns emerging from simple interaction rules. Stephen Wolfram
[3] and Andreas Deutsch [4] give reviews of cellular automata. For cell tissues, the concept of cel-
lular automata can be applied to centre-based models, where every lattice site is assigned to a single
cell (see e. g. [7] for a model on tumour growth) or to boundary-based models, where a single cell
can be distributed on several lattice nodes [5]. For many practical applications however, it is quite
complicated to draw connections from physically measurable quantities to the parameters of cellular
automata. In addition, many cellular automata have to cope with lattice artifacts and the stochas-
tic counter-strategies often employed make this connection even ntcailtli For this reason, the
off-lattice models have been developed, for an overview see e. g. [21]. In these models, the cells
do not reside on a lattice, but arbitrary coordinates are allowed. In addition, they do not interact by
automaton rules, but via physically motivated interactions. These models can be subdivided in centre-
based models (e. g. Voronoi tessellations [22, 23]) or models that describe the dynamics of the cell
membrane [6, 24] as well.

2.2 Construction of an ff-lattice model

For of-lattice agent-based models of cellular tissue, the calculation of cell-cell interactions will con-
tribute significantly to the computational time. A simple problem that may arise within this context is
the calculation of a measure for contact area.

A reasonable estimate of this quantity may for example be given by the circle uniquely defined by
the intersection of two non-identical spheres. If one uses no means of accelerating the adjacency
detection amongst a set &f spheres, the corresponding calculation time will scale quadratically
with the number of spheres. If the inter-spherical adjacency topology however is already known, for
every sphere only a subset of other spheres has to be tested. The Delaunay triangulation is a tool
well-suited for calculating and storing the adjacency relations within a set of spheres (see figure 2.2).
Here, the Delaunay triangulation will be used as a numerical tool that has the potential of aiding in
decreasing the runtime offelattice agent-based simulations. There extitent libraries provid-

ing support for two-dimensional Delaunay triangulations. In addition, there are libraries constructing
three-dimensional Delaunay triangulations for a given set of spheres [2]. Though these libraries sup-
port insertion and removal of spheres (also termigaamic) in the system, the use of these functions

for moving spheres [25] is ifgcient [26] (compare appendix A.1). Within the context of collision
detection [27], moref&cient routines are applied to a set of moving spheres, but these algorithms do
not support the removal of spheres (pureilyetic algorithms). This however is an essential property
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Figure 2.2: Numerical advantage of the Delaunay triangulation for the detection of adjacencies.
The naive calculation time of sphere-sphere contact (black) would scale quadratically in time. If a
valid Delaunay triangulation is provided, the inter-spherical contacts can be calculated in linear and
substantially shorter times (red). If one considers morecﬂ’léir(ﬁ) spheres, then even time neces-
sary for Delaunay construction (green) is shorter than naive calculation of inter-spherical contact.
However, as during the time-course of agent-based simulations the cell positions will change in a
continuous way, the intercellular adjacencies will do likewise. The time to restore the Delaunay
property in a triangulation in which the spheres have moved by 10% of their average distance is
given in blue. Therefore, the calculation time to maintain a kinetic Delaunay triangulation and
compute the intercellular contact surfaces (blue and red) is still orders of magnitude smaller than
in the naive approach if more tha}(103) spheres are considered.
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necessary for the modelling of cellular tissues. Since currently no library simultaneously supporting
insertion, removal and movement of spheres is provided [25], a numerical implementation of such
a triangulation that is suitable for adjacency detection [26] will be described within this thesis. In
the following section it will be discussed, how to create and maintain Delaunay triangulations. In
addition, further advantages of the Delaunay triangulation will be illuminated.

The remaining sections in this introducing chapter will describe further necessary ingredients of an
intrinsically consistent modelling approach towards cellular tissues.

2.3 Kinetic and Dynamic Delaunay triangulations

2.3.1 Definitions

As Delaunay triangulations are — at least for their two-dimensional representation — a well covered
topic in the literature, the reader is referred to textbooks such as e. g. [28] that cover all fundamental
definitions and properties of Delaunay triangulations. In this chapter, only the definitions necessary
for this thesis will be given.

In accordance with the notation in the literature [29, 30] the teemex (or point) denotes a posi-

tion in d-dimensional space. Furthermore, the temgighted vertexdenotes a point supplemented

with a weight. An-simplex in R with n < d is the convex hull of a s€f of n + 1 affinely inde-
pendent vertices, which reduces in the three-dimensional case to tetrahedra (3-simplices), triangles
(2-simplices), edges (1-simplices) and vertices (0-simplices). Then, ex&@mgplex has a uniquely
definedn-circumsphere.

These ( < d)-simplicesoy — formed by the convex hull of a subdétc T — will be calledfacesof T.

Since in this section a three-dimensional realisation will be discussed, the corresponding 3-simplices
will be shortly denoted by the tersimplex.

A collection of simplicesK is called asimplicial complexif [29]:

e The faces of every simplex iK are also inK (the set is closed),

e If or € K ando 1 € K, thenot Nor = orq1. (The intersection of two simplices is at most a
face of both, the simplices are “disjoint”.)

In numerical calculations with kinetic vertices the above criterion can be destroyed: A vertex might
move inside another simplex thus yielding twaimplices whose intersection is againrasimplex.

This situation will be referred to as amvalid triangulation . On the contrary, a valid triangulation is
defined as follows [29]:
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If Sis a finite set of points iiRY, then a simplicial comple( is called avalid triangulation of S if
e each vertex oK isin S,
e the underlying space &K is conv(S).

The number of simplices containing a particular vertex as endpoint will be denoted tgdheeof
this vertex in a triangulation. Furthermore, the terms tetrahedralization and triangulation will be used
synonymously in three dimensions.

2.3.2 Elementary Topological Transformations

To an existing triangulation iit? several elementary topological transformations — also céllfesi—

can be applied, of which a detailed discussion can be found in e. g. [29, 31]. These transformation:s
do not change the position of vertices. In contrast, they change the triangulation topology. They rely
on Radon’s theorem [29, 32] (see figure 2.3 for a three-dimensional illustration):

Let X be a set ofl + 2 points inRY. Then a partitiorX = X; U X, with X; N X, = 0 exists
such that conv{;) N conv(X,) # 0.

The radon patrtition is unique if the sEtis in general position— meaning that every subsetXfwith
at mostd + 1 elements isfanely independent. In three dimensions this simply means that

e NO two points are identical,
¢ no three points lie on a common line,
¢ no four points lie on a common plane.

In this thesis however, this definition of “general position” is extended by the further property that no

d + 1 points may lie on a common sphere [30, 33].

From the Radon partition iR® one finds that there are four possible ways of triangulating five points

in three dimensions, two for every partition in figure 2.3. The elementary flips transform between

these possible triangulations without changing the vertex positions.

For the case of figure 2.3 left panel the two possible flips are shown in figure 2.4. The flip changing
the triangulation from 1 to 4 simplices corresponds to adding a vertex to an existing triangulation.

Note however, that in practice the inverse transformation may not always be applicable, since the
configuration of one vertex in figure 2.4) being the endpoint of exactly four simplices (as is the
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Figure 2.3: lllustration of the Radon partition in three dimensions. There exist two possible parti-
tions into two sets (marked blue and red) of the 5 pokitB, C, D, E in three dimensions such that
their convex hulls (marked with dashed lines) interseeft: In (a) the pointe (blue) lies within

the simplex formed by A, B, C, D). Right: In (b) none of the vertices lies within the simplex
formed by the other ones.

D D

Figure 2.4: Possible triangulation of five points in three dimensions (insertion case).
The vertex E has been marked blue and edges that are invisible from all directions
have been drawn with dashed lines. In the case (a) one has exactly four simplices:
(A,B,C,E),(A,B,D,E),(A,C,D,E), (B,C, D, E), whereas in picture (b) the unconnected ver-
tex E lies within the simplex A, B, C, D). Switching between the two configuration corresponds

to adding (1— 4) the vertexE to an existing triangulation or deleting it (4 1), respectively.

Note that for these operations to be possible, the gimiust lie within the simplexA4, B, C, D).
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case in figure 2.4 left panel) is rarely ever present in a triangulation. In addition, in three dimensions
there exist polyhedra (for example Sctnardts polyhedron [34]) that do not admit a decomposition
into simplices having only the polyhedral boundary points as endpoints. Additional points (called
Steiner points) need to be introduced to obtain a tetrahedralization of these polyhedra [35]. These
problems complicate the deletion of vertices from three-dimensional triangulations [36].

The second partition in figure 2.3 right panel requires a more careful evaluation (see figure 2.5). The

Figure 2.5: Possible triangulation of five points in three dimensions (connection case). In (a) there
are two simplices: A, B, C, D), (A, B, C, E), sharing the common triangl&( B, C), whereas pic-

ture (b) consists of three simplice&\ (B, D, E), (B, C, D, E), (C, A, D, E). The simplices have

been taken apart for clarity and the dotted lines have been drawn to connect the identical points
(drawn in like colours). Edges invisible from all directions have been drawn with dashed lines.
Note that the flips can only be performed, if the polyhedrang, C, D, E) is convex, since other-

wise the flips will result in overlaps with additional neighbouring simplices (not shown here).

flip 2 — 3 replaces two simplices by three simplices and thereby automatically creates a connectior
between previously unconnected vertices. In adjacency detection, this corresponds to establishin
a neighbourship relation. The flip 3> 2 reverses the operation. Note that these flips can only be
performed if the polyhedron formed by the five point®ihis convex, otherwise the operation would
yield overlapping simplices in the triangulation. The convexity &f B, C, D, E) in figure 2.5 can

be tested by checking if for every edge B andB, C andC, A there exists a hyperplane which has

the remaining three point®, E, A/B/C) on the same side [29, 30, 37], which becomes evident in
figure 2.3 right panel. In the following, theftirent flip operations will be shortly denoted by the
transformation operatorg,4, Fa1, 23, andFz,.
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2.3.3 The Delaunay Criterion

Every tetrahedronv(, v», Vs, V4) in R® has a uniquely defined circumsphere, if the four vertigese
in general position. Then, the position and radius of the circumsphere can be derived from the four
sphere equations

(m-v)?’=R, i=1,...,4, (2.5)

wherem defines the position anfd,, defines the radius of the sphere (see figure 2.7 left panel). This
gives rise to the central definition of this section:

TheDelaunay triangulation is a triangulation where all the simplices satisfy Brapty-
Circumsphere-Criterion, that no vertex of the triangulation may lie inside the circum-
spheres of the triangulation simplices.

Thus, the Delaunay triangulation is uniquely defined if the vertices fulfil the extended general position
assumption [33] (see figure 2.6).

Figure 2.6: Example of a two-dimensional Delaunay triangulation. Vertices (red) are connected

to simplices that fulfil the Delaunay criterion. In this example, there are two locations where

a different triangulation (dashed lines) would also fulfil the Delaunay criterion, as the extended
general position assumption is not fulfilled: In these locations, four points reside on the same
circle (green).
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The Delaunay criterion can be extended towards a more general concept: By extending the Euclidea
distance measure to vertices with weights, one defines the orthogonal distance betwérnu,)
andy = (y, wy) as

(%, 9) = (X = y)* — wx — wy, (2.6)

which sacrifices positive definiteness. For positive weights> O these vertices can be associ-
ated with balls situated at having the radiufy = +/wy. Two weighted verticex and § are
then calledorthogonal if 7(X,y) = 0 in equation (2.6). Consequently, tbethosphere of a set
of n weighted vertices is defined as the set of all weighted points being orthogonal rioveait
tices. For example, in three dimensions the orthospherg R2,) of the four weighted vertices
Uy = (v1, RE), U, = (v2, R3), U3 = (v3, R3), Uy = (va, R9) is defined by the four equations

(m, —v)* =R, +RE. (2.7)

Naturally, for equal weight® = Rspnere this definition reduces to the normal circumsphere criterion
(25) withR2 = R2 | + Rgphere The naming “orthogonal” results from the fact that the orthosphere
intersects the spheres associated with the vertices perpendicularly (see figure 2.7 right panel). Cons
guently, the extended criterion reads:

Theregular Delaunay triangulation is a triangulation where all the simplices satisfy the
Empty-Orthosphere-Criterion, implying that no weighted vertex of the triangulation
may lie inside the orthospheres of the triangulation simplices.

The simplest method to determine whether a weighted vartérs outside or inside the circum-
sphergorthosphere of a simplex, B, C, D) is to solve the associated four sphere equations (2.5) or
(2.7) in the weighted case. However, this problem can be solved riaiesetly by adding one more
dimension [27, 30, 32, 38]. In this ansatz, the coordinaté®"iare projected onto a paraboloid in
R™1 via

A=(Awn)=An.... Ajwa) > A=A, ALY R —wal. (2.8)

In the three-dimensional case, the four poiats B*, C*, D* thus define a hyperplane &kf. If E is
within the circumsphere of4, B, C, D), thenE™ will be below this hyperplane iR* and above other-
wise. Consequently, the in-circumsphere-criterio®frreduces to a simple orientation computation
in R4, as is illustrated for a one-dimensional example in figure 2.8.
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Figure 2.7: Two-dimensional illustration of circumspheres and orthosphérfs. Circumsphere
(dashed blue) of a 2-simplex R?. Right: Orthosphere (dashed blue) resulting from the same
vertices, supplemented withfiBrent positive weights); = Rz (green circles). The orthosphere
intersects perpendicularly with the vertex spheres.

By virtue of this lifting transformation one finds [27]

in_ortha sphere[@, B, C, D), E] = oriented*, B*,C*, D*, E*)

Ac A A K+N+A-—wa 1
B« By B, B2+B2+B2-ws 1

= sign| C, Cy C, C2+C2+CZ-wc 1 (2.9)
D« Dy D, D2+D2+D2-wp 1
Ex B, E, E2+E2+E2-we 1
Ac-Ex A-E, A-E, (AA+A+A-w))-(E+E;+E;-we)

_ sign B«—Ex By-E, B,—E, (B2+BZ+B2-ws)—(E2+E2+E2-wg)
Ci—Ex C-E C,—-E (Ci+CZ+Cl-wc)-(E2+EZ+EZ-we) |’
D«-Ex Dy—E, D,—E, (D?+D2+DZ?-wp)-(EZ+E2+EZ-we)

where a positive sign is to be taken as #irmative answer, if the simplex; B, C, D) is positively
oriented in three dimensions.

Obviously, for numerical implementations, the error induced by numerical inaccuracy will become
important if the determinants in (2.9) are close to zero. Therefore, the exact arithmetics as proposed
by [39] had been extended to a form supporting weights [40], which has been used within this thesis
(see appendix A).

The lifting transformation therefore gives rise to &elient viewpoint of Delaunay triangulations: An
n-dimensional Delaunay triangulation is determined by the boundary of the convex hull of the lifted
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Figure 2.8: lllustration of the lifting transformation in one dimensioheft: Reduction of the
insphere criterion in one spatial dimension to an orientation computation in two dimensions. All
points are projected onto a paraboloid in two dimensions. Then, the question wiMetgezen
border-less points) is within the circumsphere (brown line) of txe®,) (red border-less points)

is equivalent to asking whetheP{, P}, V") is positively oriented (blue trianglesRight: For
power-weighted triangulations, the weights (indicated by the coloured bars arattig) shift the
vertices df the paraboloid by the squared radius (exemplified for the v&tenly). This example
demonstrates that a weighted vertex may lie within the normal circumsphere of a simplex, but not
within its orthosphere. For this example, neithMgrnor V, lie within the weighted circumsphere

of (P]_, Pz).
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vertices inn + 1 dimensions.

Within this thesis, the following definition of adjacency will be used: Two vertices are callpaent

if they are endpoints of the same simplex (i. e., if they are connected in the Delaunay triangulation)
and two simplices are adjacent if they share a common face. Natural adjacency for a set of spheres
is defined by the weighted Delaunay triangulation and the involved veiingdices will be called
(mutual)neighbours

2.3.4 Implementation and Data Structure

Unlike in two dimensions, where a constant number of vertices implies a constant number of simplices
[28] — regardless of their relative position, in three-dimensional kinetic triangulations the number of
simplices will change even for constant numbers of moving vertices. Therefore, kinetic triangulations
in three dimensions will requirdigcient support for insertion and deletion of simplices. Furthermore,
since in addition the number of vertices is allowed to change for dynamic triangulations, the same
holds true for the vertices. A list provideffieient access for both operations.

The main elements of a vertex are a position and a weight

V = (double x, doubley, double z double ). (2.10)

Within the numerical implementation, foffeciency reasons a vertex as well contains vectors of ad-
jacent neighbour vertices and adjacent simplices, that are dynamically updated. Since the informa-
tion of the triangulation is completely stored within the vertices, it would normalfficauto store
the simplices as pointers on four vertices. However, the walking strategy employed for point loca-
tion (compare subsection 2.3.7) requires fiiilceent access that simplex-simplex-adjacency is stored
within the simplices as well [41]. Therefore, in this implementation a simplex in addition contains
information on its neighbours
~ ptr

~ptr \~ ptr \~ ptr t t t t
S:(Vl ,V2 ,V3 ,V4 ,Spr Spr Spr Spr

Lopp> ~"2,0pp’ ~ 3,0pp’ 4,0pp) ’ (2'11)

WhereS![fgpIO denotes a pointer to the adjacent simplex opposite to v&ftexrurthermore, for @i-
ciency the simplices contain a placeholder for a point denoting its weighted centre and a set of flags
denoting the Delaunay status of its faces to avoid superfluous calculations of the Delaunay property.
Note, that in order to avoid many orientation calculations, the used implementation automatically
constructs its simplices in a positively-oriented way.

The triangulation has been implemented in the object-oriented programming languadd ]} as

an independent class that is capable of triangulating balls. These balls can be connected with in

principle arbitrary objects, which opens a wide range of applications: The triangulation may be used
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for adjacencycollision detection of cells, grains, atoms or other objects that can be approximated
by a spherical shape. In the context of this thesis, these objects are biological cellsfbfadtice
agent-based simulation.

In addition, the class provides test functions, calculations of (weighted) Voronoi volumes and contact
surfaces, etc.

2.3.5 Delaunay Maintenance for kinetic vertices

Within the context of adjacency detection between a number of moving agents, any triangulation will
have to cope with the fact that adjacencies may change. Reconstruction of the triangulation using th
incremental construction (see subsection 2.3.6) would be a method with a poor algorithmic scaling.
If only a small subset of vertices is moving, a simple method handling them would be to delete
them at their old position and to perform an insertion at the new position [25, 43], which necessarily
requires insertion (subsection 2.3.6) and deletion (subsection 2.3.8) to be implemented first. Sinc
these operations would involve too many simplices, a miteient approach has been chosen here:
Evidently, in the case of moving vertices the Delaunay criterion may be violated, i. e., after the vertices
have moved one may end up with a triangulation where some vertices reside within the (weighted)
circumspheres of the simplices. Even worse, if the vertices move too far, e. g. if one vertex moves
inside another simplex, the triangulation will become invalid (contain overlapping simplices), com-
pare subsection 2.3.1 and figure 2.9 right panel. In the present implementation, this must be avoide
by either computing a safe maximum stepsize [26] (see subsection 2.3.8) or by simply keeping the
displacements safely small. Within this thesis, the first approach has been chosen.

Therefore, the problem to be solved is that after vertex movement one is left with a valid triangulation
which possibly violates the Delaunay criterion.

Reconstructing the whole triangulation is usually not an option for large data sets. The elementary
topological transformations in subsection 2.3.2 however can be exploited to restore the Delaunay
criterion. Since neither vertices will be added nor deleted in this subsection it is evident that the flips
F14 and¥F,; are not necessary. This however will bé&eient for for weighted triangulations, as vertex
movement might lead to trivial (unconnected) vertices that are not endpoints to any simplices. In
this thesis, such cases are not considered, since they correspond to physically unrealisable situatio
anyway: If the sphere associated with a vertex is not completely covered by the spheres of othe
vertices (realistic case), the vertex will be connected in the triangulation [27]. If only two spheres
are involved, this would correspond to a small sphere that is completely covered by a larger one.
Consequently, the transformations2 3 and 3— 2 will suffice to transform the given triangulation
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into a Delaunay triangulation [27, 29, 30]. Note that the application has to ensure that the vertex
trajectories satisfy the above conditions (for a possible solution see subsection 2.5.2). With a glance
at figure 2.5 one can see that inded effectively creates a neighbourship connection, whereas the
flip 3, destroys it. Therefore, routines have been implemented to check either the complete list of
simplices or only a small subset for violations of the Delaunay criterion. The simple data structure
enables a convenient calculation of the flip criteria in three dimensions. The main advantage of the
flip algorithm is that it is — in average — linear in the number of simplices, which is linear with the
number of vertices in most practical applications. The list of simplices is iterated through to check
every simplex (calledctive simplexin this context) for flipping-possibilities with its neighboutbé
passive simplices Thus, for every simple$ in the list the following tests (in the given order) are
performed

1. The operatiorf,; is performed or§ and its passive neighbour simpli(i = 1,2, 3,4) if
¢ the neighbour pairg, N;) violates the Delaunay criterion, i. e., the opposing vertex of the
neighboum; lies within the circumsphere & (andvice versd) and
¢ the five points in the union of the two simplices lie on the boundary of the convex hull of

the associated polyhedron.

The first condition implies the invalidation of the Delaunay criterion, and the second condition
is necessary to ensure for convexity of the simplex pair. Technically flices in the last
criterion to check whether for all edges of the common triangle [without loss of generality
(Sa, Sg, Sc)] there exists a hyperplane containing the edge that has the sSim@ic&s (Sc, Sp)

and Sa, Sg, <, N‘opp) on the same side [29, 30] (see figure 2.9 left panel).

2. If no flip 23 has been performed, the algorithm checks the neighbouring simplex triples for
F32. The operatior¥s; is performed ors and its neighboursl; # N; if

e the simpliced\; andN; are mutual neighbours and

e the neighbour pairs3, N)), (S, N;) and (\;, N;) mutually* violate the Delaunay criterion.

Note that in three dimension the first condition already ensures for convexity of the set of five
points.

3Note that Delaunay invalidity ofg, N;) automatically implies Delaunay invalidity ofN(, S), since an algebraically
equivalent determinant has to be computed.
q p
4Due to algebraic equivalence itfiiges to calculate the violation of the Delaunay criterion just once.
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3. If aflip operation has been performed, the new simplices must be inserted at the end of the lis
of simplices to be checked again. In contrast, if neither the operafigynsor 3, have been
performed, it could either be the case that the simplexDelaunay-valid (which is the normal
case) or that &3 operation has been impossible due to a non-convex point configuration. At
this stage, such non-convex configurations are detected and following a practitioners approacl
the corresponding active simplex is spliced to the end of the list.

The algorithm terminates as the end of the list of simplices is reached. Afterwards either all simplices
fulfil the Delaunay property or in rare cases it is possible that the algorithm ends up with a non-
flippable configuration. In this case, the Delaunay property is recovered by complete reconstruction.

N

Figure 2.9: Three-dimensional non-flippable and invalid triangulations of five points. Edges that
are invisible from all directions have been drawn with dashed lihe$t: For one edge (green)

of the common triangle (blue) there exists no hyperplane having both simplices on the same side.
Therefore, the configuration cannot be transformed by flips without changing the occupied volume:
If an ¥>3 operation would be performed, overlaps with neighbouring simplices (not shown here)
would result.Right: If for kinetic vertices the step-size is not limited, a vertex (blue) may move
into another simplex. As in the data structure simplices are realised as references on vertices, this
results in an invalid triangulation (dashed lines).

Recall however, that for these flips to be possible, all simplices must be disjoint (the intersection of
two simplices may at most be a triangle), i. e., the triangulation must be valid (compare figure 2.9).
The flips as introduced here however only relate to valid triangulations and do not change the volume
occupied by the simplices. Therefore, they cannot be used to recover from such a situation [27]. By
computing a maximum stepsize for the vertex kinetics, such situations can be avoided (compare suk
section 2.3.8). It is the task of the application using the module to ensure for that. Note that — though
internally all vertex movements are performed in an asynchronous manner — the implementation sup
ports a synchronous update of vertex movements for external applications.
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2.3.6 Incremental Delaunay Construction

In Delaunay triangulations the insertion of one new vertex can change the whole triangulation, but
this only holds true for some extreme vertex configurations [28]. In practice fitbet ©f adding a
new vertex to a Delaunay triangulation will nearly always be local.

A valid Delaunay triangulation witim vertices can be supplemented with a new vertex lying within
its convex hull by the following algorithm (see figure 2.10):

1: ldentify all invalid simplices in the triangulation.
{These contain the new vertex within their circumsphere.

2: Collect the external faces of the invalid simplices.
{Those are the triangles facing valid simpliges.

3: Replace the invalid simplices by new ones formed via combining the external faces with the new
vertex.

Evidently, the validity of the simplices not contained in the list defined by step 1 of the algorithm
will not be harmed, as only one vertex is added. In addition, the circumspheres (orthospheres) of the
created simplices (third step) cannot contain vertices of the external faces, since these lie exactly on
the orthospheres. Note however, that for weighted triangulations vertices might be disconnected by
this procedure, if they are not part of the external faces but belong to the list of invalid simplices.
Here, such cases can be detected and the vertex can be rejected, before any changes are performed.
In addition, for weighted triangulations the simplex containing the new vertex within its convex hull

is not necessarily invalid, since its orthosphere does not generally contain the complete simplex,
compare figure 2.7. If no orthosphere contains the new vertex, then this case corresponds to the case
of a vertex unconnected to the triangulation — the vertex is trivial and would therefore be unconnected
in the triangulation.

In the case of vertex acceptance the result of this procedure is a Delaunay triangulationtwlith
vertices. Note that for the above-mentioned extreme cases the list of invalid simplices would contain
all simplices of the triangulation.

This incremental algorithm is calld8owyer-Watson Algorithm [44, 45]. Once all the invalid sim-
plices have been found, its computational cost is very low (linear with the total number of invalid
simplices). At first, it actually dftices to find the one simplex which contains the new vertex within

its convex hull — the remaining simplices can be found by iteratively checking all neighbours for
violating the Delaunay criterion with the new vertex (compare figure 2.10).

The algorithm shown in figure 2.10 is slightlyfi#irent from theGreen-Sibson Algorithm [44],

which needs the simplex containing the new vertex as an input. Then the elementary topological
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Figure 2.10: Two-dimensional illustration of the Bowyer-Watson algorithm. In this example, a
new vertex (large red point) is inserted into an existing triangulation (not all simplices are shown).
Most of the simplices remain valid (shaded region), but 3 simplices (dashed lines) contain the new
vertex within their circumspheres (dotted lines). These are replaced by 5 new simplices (solid
lines) formed by the new vertex and the external faces (lines in two dimensions). The resulting
triangulation automatically fulfils the Delaunay criterion.

transformatiornf4 (see figure 2.4) is performed with this simplex and the resulting triangulation (that
possibly violates the Delaunay criterion) is transformed to a Delaunay triangulation by performing
o3 and¥3; flips (figure 2.5), until all simplices fulfil the Delaunay property (see subsection 2.3.5).

These construction algorithmsfidir from the face expansion approach [40], where the triangulation

is constructed starting from a single vertex by expanding the faces of the previous triangulation with
unconnected vertices. The face expansion ansatz has a non-favourable scaling, but displays a fe
performance for small vertex numbers.

The initial triangulation can be represented by an artificial large simplex which contains all the data
to be triangulated within its convex hull. Therefore, the convex hull of the points to be triangulated is
contained within the artificial simplex, i. e., the boundary of the convex hull of the total triangulation
is static. In the framework of kinetic proximity structures this has the advantage that one does not
have the problem of maintaining the convex hull of moving points. The initial simplex must therefore
be large enough to contain the data within its insphere throughout the full time evolution of the
simulatior?.

50ne choice for such an initial simplex is a ¢Bonfiguration, where the carbon atom resides at the origin and the
four hydrogen atoms are the endpoints of the artificial simplex.
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2.3.7 Localisation of Simplices

The incremental insertion algorithm requires an initial simplex that contains the new vertex within its
(weighted) circumsphere. Such a simplex can be found by locating the simplex that contains the new
vertex within its convex hull. Many implementations of Delaunay triangulations perform a walk in
the triangulation, for an overview of filerent walking strategies see e. g. [46]. Note that points can

be located by using the triangulation construction history (e. g. using the so-called history dag [47] or
Delaunay tree [44]) as well. However, within this thesis kinetic triangulations will be used, where the
length of a history stack could not be controlled.

Therefore, a stochastic visibility walk [46] to locate a simplex containing a point will be discussed.
Starting with an arbitrary initial simpleRA and a new vertex to be inserted in the triangulation, in
the normal visibility walk one of the four neighbour simplicesAis chosen using the following
criterion:

1: for all four vertices_; 34 Of the simplexA check with the new vertek
Are the verticess; andV on different sides of the plane defined by the other three verige?
{An equivalent question is: Are the vertices mutually invisible if the plane is non-transparent?
if yesthen

Jump to the simplex opposite &
end if
If no neighbour simplex is found, the vertexs contained within the simpleX {and the destina-
tion is thus reachgdr the walk has left the triangulation.

For a valid triangulation, the walk can only leave the triangulation if the new vertex lies outside the
convex hull, which has been excluded by assumption.

Obviously, the algorithm can takeftérent pathways (see figure 2.11) since there may be more than
one neighbour fulfilling the criterion. Which path is actually chosen, depends on the order of testing
the four vertices of the simplices. Due to numerical rouh@orors the normal visibility walk —

that does not contain any stochastic elements — may loop when triangulating regular lattices (such as
cubic, ...) that violate the general position assumption. Such situations can be avoided by using the
stochastic visibility walk, where the order of the vertices to be checked is randomised. The stochastic
visibility walk terminates with unit probability [46].

The complexity of the walk is directly proportional to the length of the path — measured in units of
traversed simplices. Far uniformly distributed vertices for example, the average total number of
simplices will grow linearly ) with the number of vertices, whereas one can expect the average
distance between two arbitrarily selected simplices to growniké Once the invalid simplex has
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been found, the average remaining complexity for the incremental insertion will be in average constan
(in n). Therefore, one can expect the overall theoretical complexity to behaveritké+ gn for
uniformly distributed points (compare appendix A.1) and in higher dimensi@sen'**/9 + gn [26,
48]. The algorithms with the best known scaling have an expected complexityrdbgn) [29, 33],

Q .
o
[ ) [ ) ® [ )
[ ) ° ®
°® [ ) e ©
® Q0 (@)
O .....
° o\ / 7 [ | -
(@) (@)
° . o
A (@)
Qo /O (©)
@
® ® >

Figure 2.11: Two-dimensional illustration of the stochastic visibility walk. Not all simplices are
shown. Starting from the hatched initial simplex, the algorithm finds a way towards the invalid
cross-hatched simplex that contains the new vertex (large point). As indicated by the smaller
coloured points, the algorithm may takefdrent pathways towards its destination, if the stochastic
version is chosen. The time necessary for the walk algorithm is proportional to the number of
traversed simplices.

but for the purposes of kinetic triangulations the incremental construction algorithm is needed just
once and therefore its actual performance is not dominantly important.

Obviously, the éiciency of the algorithm strongly depends on a good choice of the starting simplex.
The method can therefore be improved by checking whether the new vertex lies within a certain
subregion which means preprocessing, or it can be sped up by initially using larger stepsizes, e. g. b
using several triangulations of subsets of vertices [49]. Alternatively, one can choose the closest verte
out of a random subset of the triangulation to find a good starting simplex [50]. The last method does
not require the maintenance of an additional triangulation in the case of kinetic vertices. In many
practical simulations, some neighbourship relations may already be known when building the initial
triangulation. The implementation in this thesis expects the vertices to be included in order, such tha
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successive vertices are very close to each other in the final triangulation and therefore chooses the
starting simplex in the walk algorithm as being the last simplex created if no other guess is given.
Especially for processes as cell proliferation, the choice of a starting simplex is evident: New cells
can be created by cell division, which corresponds to the insertion of a new vertex close to an existing
one. Consequently, one always has a nearly perfect guess for the starting simplex in these cases.

2.3.8 Incremental Vertex deletion

In many problems (e. g. mesh generation) the deletion of vertices from a Delaunay triangulation is
not of great importance, since there is no great advantage other than a negligible gagienoy.
However, if the triangulation is used for example for proximity structures or data interpolation, vertex
deletion may become important. Within the context of this thesis, vertex deletion corresponds to the
removal of agents from the system — usually as a consequence of cell death.

Several algorithms have been developed to manage the deletion of vertices in two dimensions
[51, 52, 53]. There exist some fundamentdfeliences between the two-dimensional and the higher-
dimensional case. Simply removing a vertex together with its incident simplices leaves a star-shaped
hole in the triangulation, which is not necessarily convex. Unlike in the two-dimensional case, where
a star-shaped polygon always admits a triangulation which can be transformed by flips into the De-
launay triangulation [51, 52] in three dimensions a general star-shaped polyhedron may not admit a
tetrahedralization without insertion of artificial points. The simplest example for such a polyhedron
is Sclonhardt’s polyhedron [34], reported among others in [36, 54]. However, it has been proven in
[55] that the holes emerging in unconstrained Delaunay triangulations via removal of vertices with
their incident simplices will always possess a tetrahedralizition

Another approach for deletion is given in [56], where the triangulation construction history is used to
reconstruct the triangulation without the corresponding vertex. For the same reasoning as before, this
approach is not favourable for kinetic triangulations.

Deletion via Vertex-Merging

The basic idea of this approach is to move the corresponding vertex towards its nearest neighbour
in several steps, each followed by a sequence of flipsand 73, restoring the Delaunay property,
until the simplices between the two vertices are very flat and can be removed from the triangulation

6This does not generally hold true for constrained Delaunay triangulations [36], i. e., triangulations where the boundary
of the convex hull is fixed to a given (not necessarily convex) shape.
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without harming its validity [26]. Thus, the problem of vertex deletion is mapped to the problem of
Delaunay maintenance for kinetic vertices. Figure 2.12 illustrates the idea of the algorithm.

(a) (b)

Figure 2.12: Two-dimensional illustration of vertex deletion from a Delaunay triangulation (not

all simplices are shown)Left: The vertex to be deleted (green point) is moved in several steps
followed by flips restoring the Delaunay property towards its closest neighbour (blue point), until
the inner simplices (shaded region) can be safely deleted. The area within which the green vertex
can move without invalidating the triangulation is marked in light grieyght: Afterwards, the

two vertices are simply merged and the remaining opposing simplices are connected as neighbours
(green dashed lines). This corresponds to the last step and therefore the Delaunay criterion is
finally restored by using flips.

The main questions to be answered all reduce to the problem of the stepsize. How far can a verte
v; be moved into a certain directiok without invalidating the triangulation, i. e., without creating
overlapping simplices? Such overlapping simplices can be created if the vepenetrates one of

the planes defined by the opposite faces of its incident simplices (compare figure 2.12 left panel).
If overlapping simplices occur, the orientation of at least one of the simplices incideftwib
change. Consequently, one can derive a stepsize criterion by demanding that the orientation of th
simplices incident tos; does not change sign. One can define the pseudo-orientation of a simplex
Si = (AV, BO, c® D) as follows:

AD AD AD 1 o

Vo = oo b o q|T|A B BY-CY BY-DY . (2.12)
X y z AD _gh gl _ch g _ph
DY b DY 1 o
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where after the second equality the terms have been reordered, such that the vertex to be moved —
without loss of generalityA — is in the first column. In fact, this is — up to a factor gf61- the

signed volume of the simple®;. Now suppose thaf is moved along the direction df, i. e.,

A— A" = A+ A with 2 > 0 andA = (Ay, Ay, A;). For the algorithm the vectax will point to the

next neighbour ofA. Then the new pseudo-orientation is obtained via

o | A B-cl B0-D
VO =0 42| A, BS)_CS) BS)_DS) , (2.13)
A, BY-cf BY-Df

If the orientation of the simpleS; = (A, Bi, Ci, D;) is not allowed to change, this produces a constraint

onAa
(%)
A BY-cP BY-DY
abs| A, BY-C{ B -D)
Y y y
p. BY-cl BY- DY

A< Am = (2.14)

In order to secure the validity of the triangulation, this check has to be performed for all simplices
incident to the moving verteR, i. e., with

A< A= min A7 (2.15)
Sc: Aes K
k : M\eSk

one has an overall measure of the maximum step sizA of the direction ofA. If A™® > 1,
then the vertex can simply be moved along the complete pgth\({, A;) without invalidating the
triangulation, whereas it™® < 1 the vertexA can only be moved by a fractiam\ : o < A™*. Note
that technically, the determinants in equation (2.14) can be rewritten as the orientation of a virtual
simplex, such that adaptive precision arithmetics [39] can be applied in the control of the step-sizes.
If one definesA” to be the nearest neighbour Af these vertices will in three dimensions have at least
three simplices in common, if they do not reside directly on the boundary of the convex hull of the
triangulation. A subset of the simplices incidentAccan be defined as the set of all simplices that
are incident toA, but not toA’. For these, one can define the quantit¢stin analogy tol via

AResT = . Aer;lkir: A, A (2.16)
The simplices incident to botlA and A’ will change their orientation in the last step, since their
volume vanishes wheA and A" merge. However, since these simplices are deleted anyway, their
orientation does not need to be maintained within this last step. The orientation of the simplices



2.3. KINETIC AND DYNAMIC DELAUNAY TRIANGULATIONS 29

incident toA but notA’ (described byl32s.) however, needs to be maintained, since these simplices
will not be deleted afterwards. Therefore, the quanii$§z should be the criterion for the last vertex
step, wheread™® accounts for the maximum length of the previous steps.

The algorithm for deleting a verteX can be summarized as follows:

1: Find the nearest neighbour vertexAf
2: repeat

3. setA=A"-A

4

determinel™® = min A,
Sk . AESk
_ max .
5. determinelgest = min A,
Sk : AESk AA ¢Sk

6: if ARgsr < L.0then
7 moveA — A + aA™*A with a < 1,
8: update the simplices surroundigwith flips to restore Delaunay property
9: endif
10: until ARE<; > 1.0,

11: delete the simplices incident to boghand A’,

12: replaceA by A’ in all simplices surroundind,

13: set the correct neighbourship relations in these simplices,
14: update the simplices incident & with flips.

A problem can be posed by rounding errors in equation (2.14): If the numerator becomes very smal
— 1. e., if one has simplices with an extremely small volume or very skinny simplices,Atinegay

tend to assume very small values. Rounding errors are then likely to happen. This problem can be
weakened by using exact arithmetics [57] when computing (2.14).

Deletion via partial Re-Triangulation

The previous algorithm relies on the method of moving vertices and needs many operations (flips) un:
til the simplices can finally be deleted from the triangulation. More important, the numerical rounding
errors may pose a problem for realistic applications. Therefore, for the applications within this thesis
a different approach — as presented in [58] — has been chosen. This approach can be summarized
follows:

1: delete the corresponding vertex,

2: collect the external faces of its incident simplices,

3: delete the incident simplices,

4. recompute the local Delaunay triangulation — constrained by the external faces.
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Note that in the case discussed here, the constrained Delaunay triangulation can always be computed
without adding artificial vertices, since the constraining faces fulfil the Delaunay property [55].

The CPU time necessary for the successive deletion of 5000 vertices with the partial re-triangulation
method is with 1.0 s slightly smaller than the 1.2 s [26] necessary for deletion of the same number via
vertex-merging.

2.3.9 The Geometric Dual

The most general Voronoi tessellation (sometimes called Dirichlet tessellation, too) of a set of gener-
ators{c} in RY is defined as a partition of space into regi®fis

Vi = {xeR": P(X,¢) <P(XC) Vj#i}, (2.17)

where®P(x, ¢) is a distance measure betweeandc;.

In the simplest case of unweighted Voronoi tessellations this weight function reduces to the normal
euclidian distancé(x, ¢;) = |x — ¢]|. In other words, the normal Voronoi cell around the generator

¢ contains all points ifR? that are closer ta; than to any other generatoy. Voronoi tessellations

can be constructed like the well-known Wigner-Seitz cell in solid state physics [59], but fortunately
there are much morefecient ways to construct the Voronoi tessellation. Note that this partition is

— unlike the Delaunay triangulation — always uniquely defined even for point sets that do not fulfil
the extended general position assumption. Voronoi tessellations have many interesting applications
in practice [28], since they can be used to describe influence regions.

For weighted point$Ci} = {(c;, wi)}, the orthogonal distance measure as defined in equation (2.6) will
be used with unweighted poinisto define the weighted Voronoi cell — sometimes called Laguerre
cell [27] or radical plane construction [60]:

Vi = {xeR": (x-6)’-w S(X_Cj)z_wj Vj#il. (2.18)

In two dimensions, (weighted) Voronoi cells are convex polygons (see figure 2.13). In addition, the
boundaries of these polygons are perpendicular to the connection lines between the generators. This
finding generalises to arbitrary dimensions: The boundaries betweed-tlivoensional Voronoi re-

gionsV; andV; as defined in (2.18) reduce to the equation fat-al)-hyperplane, since the quadratic
contributions cancel. In addition, the corresponding hyperplane will be perpendicular to the line con-
necting two neighbouring Voronoi generators. Therefore, per definition the Voronoi cells around those
generatorZ; that are situated on the boundary of the convex hull of the poitZseE,, ..., Z,} will

extend to infinity and thus will have an infinite volume.
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In three dimensions, the intersection of two boundary-planes defines a boundary line and the inter
section of three boundary-planes defines a corner of the three-dimensional Yioagnerre cell. If
one supplements the three equations defining a Voronoi corner

(X-c)’-w = (X-C)* - w2,
(X-C)-wy = (X-C3)*— w3,
(X—C3)*—ws = (X—Cg)*— wy (2.19)

by the definition of a weight belonging to the corner paint (x — ¢1)? — w1, one can (with using
thatw; = R?) show that the system of the resulting four equations is equivalent to the system (2.7). By
identifyingx = mandw = RZ , the fundamental duality between Voronoi tessellations and weighted
Delaunay triangulations is revealed:

If the Voronoi generators are equal to the Delaunay vertices, the corners of the (weighted)
\Voronoi regions are the centres of the Delaunay-simplex circumspheres (orthospheres).

This finding holds true in any dimension, for a two-dimensional illustration see figure 2.13. Conse-
guently, two Voronoi generators sharing a common boundary of the Voronoi regions will be connected
in the dual Delaunay triangulation. Disconnected vertices in the triangulation correspond to empty
Voronoi regions. Thus, it becomes visible that a vertex that is not completely covered by the spheres
of other vertices will always be connected in the weighted Delaunay triangulation: The associated
sphere contains at least one point that is not contained in the spheres of other vertices. This point wil
belong to the associated Laguerre region [27], which is therefore non-empty.

In this work, the geometric duality with the Delaunay triangulation will be exploited by generating
the Delaunay triangulation and computing the dual only if necessary.

The introduction of influence regions extends the definition of proximity between vertices: Two ver-
tices aredirect neighbours (in the sense that their influence regions touch) if they share a common
face in their Voronoi diagram or — equivalently — if they are direct neighbours in the dual Delaunay
triangulation (see figures 2.13 and 2.14 right panel).

Further possible choices for weight functions can be found in [28, 61], but these do not have the
advantage of planar contact surfaces. This thesis is restricted to the weights as introduced. In additior
this particular choice has the advantage that the Laguerre tessellation or its geometric dual — th
weighted Delaunay triangulation — is suitable for contact detection betwéeneditly sized spheres

[27].

Within the framework of growth models [31]flalattice tissue simulations [6, 23, 24, 62] and the so-
lution of partial diterential equations on irregular grids [63, 64], not only the neighbourship relations
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Figure 2.13: Duality between Delaunay triangulations and Voronoi tessellatiba&: The blue

region denotes the normal Voronoi cell belonging to the central generator (red points). The centres
of the circumcircles (dotted lines) mark the corners of the Voronoi cells. Note that the Voronoi
contact surface between two generators does not necessarily intersect the connection lines between
the generators (leftmost poinRight: Same point configuration as left, but here a weight£ Rz

radii of the large coloured disks) is introduced. Still, the duality between weighted Delaunay
triangulations and weighted Voronoi tessellations holds: The centers of the orthospheres (dotted
lines) mark the corners of the weighted Voronoi cell (blue polygon). The orthospheres intersect
perpendicularly with the weight circles.

in the Delaunay triangulation but in addition the corresponding Voronoi cell volumes as well as the
contact surface between two Voronoi cells will become important.

In the used implementation, the Voronoi contact surfaa@ﬁo’? are calculated as fol-
lows:
1: Pre-compute the centers of the orthospheres of all simplices in the triangulation.
{This increasesficiency by avoiding superfluous calculations if the Voronoi contact areas of
adjacent cells are to be calculated.
2: For the contact polygon constituted Bf weighted centres; of the simplices incident to both
neighbouring vertices, define the central point via

1 N
2= > .. (2.20)
i=1

{Recall that the connection line between two neighbouring vertices may not always intersect with
the Voronoi contact surface, compare figure 2.13.
3: Subdivide the polygonal Voronoi contact region into triangles incideatand sum their areas.
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Figure 2.14: Relation of spherical and Voronoi contact surfaces in two and three dimen$mms.

left: In a two-dimensional representation, the position of the Voronoi contact surface (lines) is
identical with the position of the spherical contact surface (further spheres shaping the Voronoi
cells are not shown here). The set intersection of sphere and Voronoi volumes is indicated in
darker colours.Bottom left: In a three-dimensional configuration the position of the Voronoi
contact surface (grey) coincides with the position of the sphere overlap surface. The position of
further spheres shaping the three-dimensional Voronoi cells is indicated by the greenRigints.

This can be exploited to yield an improved contact surface estimate in dense systems consisting of
differently-sized spheres (two-dimensional illustration), where multiple sphere overlaps can occur.
The set intersection of sphere and Voronoi volume is indicated green.
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The total volume of the Voronoi cell is then calculated similarly from the contact surfgf&s

VYOR — Z %AI_\J(Oth ’ (2.21)
JENN(i)

whereh; represents the distance of the contact surface with neighbloom the centre point of the
Laguerre cell, which is calculated by the arithmetic average of the corner points as well.
The above calculation will fail at the boundary of the triangulation. However, as the boundary is given
by an artificial simplex, it will never be referenced in practice.
The numerical complexity of the volume computation is linear with the number of simplices sur-
rounding the vertex, whereas the complexity of contact surface calculation between two generators
grows linear with the number of simplices incident to both generators. Such algorithms have been
tested using a Monte-Carlo simulation.

2.4 The Finite-Djferencing Scheme

2.4.1 Spatial discretisation

Though the analytical solutions of partialfidrential equations (PDES) arefférentiable, their nu-
merical representation will be discrete in both time and space. Within the fiffexatice-approach,
the spatial discretisation can be performed as follows: The computational domain under considera-
tion is divided into disjoint volume element4. Within these volume elements, one locally defines
spatially averaged quantities via

u(t) = if u(x, t)dx, (2.22)

Vi Jv

whereu(x, t) denotes the quantity which is described by the PDE. The spatial derivatives occurring in
the PDE can then be transformed into finit&eliences, i. e.,

ou(x, t) Ui (t) = ui(t) X — X

0X  lavinav, IXir — Xil - |Xir — Xi| ©

(2.23)

wherex; denotes centers of the volume elem¥&nt Higher-order derivatives can be discretised in

this way as well. For rectangular lattices, symmetry properties can be used to improve spatial accu-
racy. For other discretisations, Gauss’s theorem can be employed on the volume elements to reduce
the order of the derivatives. The generfieet of this spatial averaging is that the original PDE is
transformed into a system of coupled ordinarffetiential equations (ODES). This system is — after
discretisingy; in time, if necessary — transformed into an algebraic linear system, which can be solved
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by iterative methods (compare e. g. appendix B). For the examples of readtiosiaii equations
(RDEs) and continuum mechanics, the discretisation procedure will be performed explicitly in the
following sections.

2.4.2 Reaction-Diffusion Equations

Reaction-difusion equations (RDEs) are PDEs of the general form
ou
o
whereu(x, t) describes the local concentration of a soluble substance (or the local tempe2tary),
the local diftusion measure (or thermal conductivity), a@¢k, t) stands for a reaction term (or a heat
sourcésink). Note that the diusion measurB(x, t) is not necessarily a scalar [65], though within this
thesis only scalar tiusion will be considered. For example, within the context of tissue modelling,
u(x,t) may represent the local concentration of nutrient, whereas the sinkQéxnt) is associated
with the nutrient consumption by the cells.
If the reaction volumed, do not change in time, one can average equation (2.24) as described in
equation (2.22) to obtain (using Gauss’s theorem)
ou = 1 5@5 D(x,t)Vu(x,t) - df + Q(t), (2.25)
otV JJa,
where for rectangular lattices in three dimensions the iridex{i, j, k} is a triple of indices, each
denoting the spatial position in one dimension. The algebraic structure of the numerical discretisatior
depends on the specific geometry under consideration. For some specific examples the modes
discretisation are given below:

= VI[D(x,t)Vu(x, )] + Q(x, 1), (2.24)

e If one uses the Voronoi (Laguerre) tessellation [63] (compare equation (2.18) in sub-
subsection 2.3.9) as the definition of volume elem&htequation (2.25) reduces to

% -2 Z A (Uy—w)Dy; +Q, (2.26)

Vi JENN() X =Xl

whereV, is the volume of the Voronoi (Laguerre) céllandJ € NN(1) denote the next neigh-
bours of celll with generatorx, arising from the (weighted) Delaunay triangulation. Conse-
guently, the termg\; denote the contact area of the adjacent Voronoi (Laguerre) retjiemd

J. Linear interpolation on the connection lines between the generatbranafJ yields for the
diffusion codicient

1
Di; =Dy = zD

1
> +

(X3 = Xi)? ’ EDJ - (X3 = Xi)? (2.27)

oo "2



36 CHAPTER 2. INTRODUCTION

at the position of the Voronoi boundary defined by equation (2.18). This reduces to the simple
arithmetic average in case of equal weighfs= w;.

e For problems with spherical symmetry, the system (2.25) reduces tdfectieely one-
dimensional system, which can for constant lattice spacitrgbe discretised on concentric
shells [66] as

au 1A Aii- 1
-l 4003000

+Qi(t), (2.28)
Aja = dr[Ro+ (i £1/2)Ar]?,
V, = 4—3” |(Ro +iAr + Ar/2)% - (Ry +iAr — Ar/2)°]

= 4_§ [3(Ro +iAr)? Ar + Ar®/4] (2.29)

(Uir1 — W) % (Di + Dis1) -

whereA ;.1 denote the contact surface between shedisdi + 1 andV; the volume of that
shell, respectively. The teri, denotes the smallest radius of the volume under consideration,
i. e., itis set to zero for most applications.

e For the simplest and most common case of rectangular grids in three dimensions with lattice
constant\x, Ay, Azone can improve the accuracy by directly discretising (2.24)

AU, jk (Di+1,j,k - Di—l,j,k) (Ui+1,j,k - Ui—l,j,k) Uirzjk — 2Ui jk + Ui—1jk
_ = + > + Di,j,k >
ot 4AX AX
(Di,j+1,k - Di,j—l,k) (Ui,j+1,k - Ui,j—l,k) Ui jrik — 2Ui jk + Ui j 1k
+ Di,j,k
4AY? Ay?
(Di,j,k+1 - Di,j,k—l) (ui,j,k+l - ui,j,kfl) Uijk+l — 2Ui,j,k + Ui jk-1
+ + Di,j,k
ANZ AZ
+Qijk (2.30)

which is second-order accuraie space [67]. The above equation is only valid for the volume
elements not residing on the boundary of the reaction volume. There, the boundary conditions
(for example Dirichlet or von-Neumann) have to be discretised independently.

"The discretisation of the second derivatives can be derived by using a virtual grid with halved lattice constants.
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The general handling of equations (2.26), (2.28) and (2.3Bgrdiin the way how their right-hand-
side is discretised. All these equations can be written as

ou

a—t' = Lu +Qt), (2.31)
where L is a linear operator describing the geometry arftlidional properties of the system. Dis-
cretisation in time is introduced by

ou Ut
_— - — 2.32
at At (2.32)
with u*? = u(t + At) andu = uy(t). This definition is symmetric arourtd+ At/2. Depending on at

which time the right hand side is evaluated, one distinguishes between three numerical schemes:

1. The simplest possibility is an explicit scheme (Forward-Time-Centred-Space, FTCS), which is
realised by evaluating the right hand side at timee.,

umt = {1 + AtLMU] + ALQD, (2.33)

which has the advantage that the solutigh+ At) can be readily obtained from(t) with-

out necessitating matrix inversion. However, already for constafusitbn codicients a von-
Neumann stability analysis [68] on rectangular grids shows that this solution scheme becomes
numerically unstable if

DAt DAt DAt 1
+ - > =,
AX2 A2 A2 T2

(2.34)

a constraint which is known &ourant-condition. Numerical instability implies that the nu-
merical errors will increase exponentially in time, which is a serious limitations for practical
applications. As the Courant condition involves both spafia) @nd temporalAt) resolutions,

one can either decrease the timestep or decrease the spatial resolution to obtain correct nume
ical solutions with the FTCS method. In addition, it is evident from (2.33) that the solution is
only first order accurate in time.

2. Numerical stability can be recovered if one applies a fully implicit scheme (Backward-Time-
Centred-Space, BTCS), i. e., by evaluating the right hand side of (2.31) at tim& one
yields

{1 - AtL™H et = u) + AtQT, (2.35)
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which is still only first order accurate in time. However, one can show by von-Neumann stability
analysis, that this scheme is unconditionally stable, i. e., timesteps larger than allowed by the
Courant condition do not lead to an exponential increase of the numerical errors. Note that the
existence ofL on the left hand side necessitates the inversion of a sparsely populated matrix.

. The best choice is to combine the advantages of explicit and implicit methods by a simple

average, i. e.,
A A A
{1 - Etzz“”} = {1 . EU;} i (@) (2.36)

which is a sparsely populated linear system that can be solvefi*foby knowledge oi?, Q7
andQ*!. This method is known as therank-Nicholson scheme[68] and by von-Neumann
stability analysis [68] one can show for the fre@asion case that it is unconditionally stable.

In addition, it is second order accurate in time, since here both the left and right-hand sides
are centred at timg, + At/2. The resulting system is tri-diagonal in one dimension, which
enables a fast and simple algorithmic matrix inversion. This however does not hold true in
higher dimensions. In this case, approaches such as operator splitting [68] can help to reduce
sparse matrices to several tri-diagonal ones. For the example of two dimensions, the way how
to employ thealternating-direction implicit method (ADI) is demonstrated explicitly in [68].

The basic idea is to divide each timestep into several sub-steps. Within each sub-step, a single
dimension is treated implicitly, whereas the other dimensions are treated explicitly. In two
dimensions, this procedure preserves unconditional stability, whereas in three dimensions the
updating scheme from [68] can be generalised itk £, + L, + L, to (with reaction terms
omitted)

At At At
{]]_ _ §‘£2+1/3} uﬂii/3 {I]_ + ELS + E‘LQ} unj,k’

At At At
{]1 _ §£3+2/3} uirj}ii/3 {1 + §£2+1/3 + §£2+1/3} uirjﬁm’

At At At
{1 - §£9+1} Vit {1 L §£;+2/3} uee, (2.37)

which replaces a sparse system by three tri-diagonal ones. Unfortunately, the above splitting
scheme sacrifices numerical stability@at/Ax? > 1/2 (see appendix C.1.1). Therefore, the

full sparse system (2.36) has been solved directly. Numerically, this has been achieved by the
iterative biconjugate gradient method (compare appendix B.2).
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The FTCS scheme and the ADI as well as the full CNS scheme have been implemented and teste
(see appendix C.1.1).
If one is only interested in steady-state values of the numerical solution of equation (2.24), i. e., in the
case

ou
i V [D(x,t)Vu(x,t)] + Q(x,t) = 0, (2.38)

the problem #&ectively reduces to a Poissonian one
VID(X)Vu(x)] = —Q(x) or Lu =-Q. (2.39)

Three numerical methods for obtaining the solution of the above equation have been implementec
and tested (see appendix C.1.1):

1. The by far most ficient method — both in computational time and numerical accuracy — is
a rapid method based on the Fast Fourier Transform (FFT) that has been extended from a 2
dimensional example in [68] to three dimensions. However, it can only be applied if

o the difusion codicient is constant and

¢ the computational domain is rectangular.

It is based on the idea of Fourier-expanding both the solution and the reaction rates (compare
appendix C.1.1). Thereby, equation (2.39) is reduced into a diagonal algebraic system for the
Fourier codicients, which can be solved immediately. By using the inverse Fourier transform,
the solution is obtained. This procedure is sped up extremely for large numbers of gridNhodes
by using FFT, which has an improved complexityhfog N versusN? for the normal Fourier
transform [68]. As a small drawback, the use of the FFT restricts the number of grid points in
every dimension tcN?”d =2"+1withne{l1,23,...}.

2. Afurther gficient method that can handle variabléasion codficients is the Multigrid method
that has been extended from an example in [69] to non-constfinsidn codicients. It still
requires that

¢ the computational domain is rectangular.

The scheme as implemented uses Gauss-Seidel relaxation [68] and increases convergence
averaging the solution from finer grids to coarser grids, solving the system exactly on the coars-
est grid, and finally interpolating from the coarse grids down to the fine grid again. For the sim-

ple averaging and interpolation chosen here, this approach restricts the number of grid points
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in every dimension as before m,g”d = 2"+ 1. For simplicity, this procedure of averaging

and interpolating has only been performed once from the finest grid down to the coarsest grid
and up again. Since this procedure resembles the shape of the latter V, this scheme is called
V-cycle-multigrid [68]. The V-cycle method has good performance only when the initial guess
for the solution is close to the analytic solution.

. The above methods are still restricted to rectangular geometries. Other simple geometries can

in principle be realised by the Multigrid method and even using a rapid method if a system
of eigenfunctions is known, but in order to have one tool generally handlfifigreint geome-

tries, the linear system arising from (2.39) has been solved iteratively by a biconjugate gradient
method as provided in [68] with the routiti@bcg (compare appendix B.2). This approach
allows for

¢ varying difusion codicients,
e varying geometries,
e arbitrary grid resolutions in every dimension,

e arbitrary boundary conditions.

2.4.3 Continuum Mechanics in solids

The discrete element method can as well be applied to more complicated equations, which will be
demonstrated in this subsection. The elastic parameters of this theory can be used for an approximate
description of cellular compressibility later on.

Linear elastic solids that are constrained by boundary forces obey — in equilibrium — the following
equations [70]

Po® = f ; xeV,
o = p° ; X eav, (2.40)

where thef® denote force volume densities that act in the interior of the solid (such as e. g. gravity or
forces induced by thermal elongation) gofddenote the force surface densities acting at the boundary
of the solid — parametrised by the components of the normal veetoFor small deformations, the
symmetric stress tensot* is assumed to be linearly related with the strain tensor [70]

E v
o _ ap oo saff 2.41
v 1+V(U t1 Y0 ) (2.41)
1(0U® 9uUs
u® = é(axﬁ + M). (2.42)
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The quantityU“ describes the-component of the local deformation vector from the equilibrium
value (where one has neither boundary nor any internal forces), whereas the elastic properties of th
solid are characterized by the quantitesandv. The Young modulug is generally defined as the

ratio of stress versus strain and describes by how much a piece of material deforms in the direction o
a forceF . acting perpendicularly to the boundary of the material

AL F,
Ec—=_2% 2.43
L A’ (2.43)

compare also appendix C.1.3. As the stralryL is dimensionless: has the dimension of pressure.
Typical values range from kPa (cells) over GPa (wood, bone) to 200 GPa (steel). However, solids
subject to external forces do usually not only express longitudinal deformations, but also transversa
ones. The ratio of the deformation in transversal versus the deformation in longitudinal direction
is described by the Poisson modulus For no transversal deformation one has- 0, but most
realistic solid materials have Poisson moduli between 0 and 0.5: bone #1d&$32 [71], steel has

v = 0.33. The case of = 0.5 corresponds to an incompressible medium (compare appendix C.1.3).
By inserting the above definitions into (2.40) one obtains a PDE for every componént of

}aua+auﬁ i( E)+6U‘Ti vE
2 o " axe | oxe\1+v])  dx7 axe \(1+v)(1-2v)
+ E_ou + E I fe XxeV
21+ v) 0xBoxt ~ 2(L+v)(1 - 2v) Oxooxe ’
E [(oU® oUF Ev ou”
n n = p? oV, 2.44
2(1+7) ( e " ox ) T A -2) ox P Xe (2.44)

where the fractions of the elastic dheients in the first line are often called Lame ffozents [72].
Using the short-hand notation

B E(1-v)
LEY = Tryas2y
Ev
HED S T
E
g(E, V) = m , (245)

and by sorting the terms in (2.44) by the order of the derivatives, one obtains (with sums worked out
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explicitly)
{fl (0°)% + g Z (aﬁ)2 + (07 f) 8” + Z (6°9) aﬁ} ue
B#a B#a
+ /; {% (f + ) 0%0° + (aﬁg) 0" + (0° fz)aﬂ} Us = f xeV,
{fln“a“ + gz n[‘aﬁ} u® + Z {gnﬁa“ + fzn‘*aﬁ} U = p° X € V. (2.46)
B*a B+a

In three dimensions, where on a rectangular lattice with lattice congtantsy, andAz, the local de-
formationU® is discretised on volume elemenis asUj,, the partial derivatives can be represented
inside the volume as

0ur Y~ Ui 20 Yiaju” it Bl (2.47)
Ox 2AX %2 Ax?
aZU(t Uﬁ—l,j+1,k + Uiq_l,j—l,k - Ui(z.l,j—l,k - Uia—l,j*'lsk
. , (2.48)
AXoy 4AXAy

and likewise for the other directions. The existence of mixed derivatives implies that the diagonal
neighbours in a rectangular lattice contribute as well. In addition, at the boundary of the volume, the
derivatives cannot be expressed in a centred way. Instead, the derivative can only be computed using
the allowed interval (within the reaction volume), see figure 2.15 left panel. Thus, the PDEs (2.44)
are transformed foN lattice sites into an algebraic system

AU = f (2.49)

of dimension BIx3N, where terms withJ i in (2.47) contribute to the diagonal entriesd{compare
appendix B.3). If the boundary conditions are properly set (thus allowing a solution), this linear
system can be solved with the iterative biconjugate gradient method as provided with the routine
linbcg in [68] (compare appendix B). In three dimensions, the derivatives lead to a maximum of
22 of-diagonal entries, compare figure 2.15 right panel. At the boundaries, one would formally
obtain 14 df-diagonal entries from equation (2.46) and no entries on the diagonal. However, in aid
of the diagonal entries, the number df-diagonal matrix elements on the boundary is reduced, since
depending on the position of the volume element on the boundary at least one direction is constrained
such that the derivatives cannot be expressed in a centred way.
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Figure 2.15: Discretisation of derivatives for a rectangular lattideeft: Derivatives for points

in red can be centred in any direction, whereas for points in green one direction is constrained in
this two-dimensional illustration. For points in blue, both directions are constrained. Dashed lines
indicate the volume elements, within which averaging is performed, whereas the solid lines denote
the boundary of the computational domain. Mixed second derivatives lead to connections with the
diagonal neighbours (arrows with dark colours, requires Moore neighbourhood), whereas first and
second derivatives with respect to a single variable only require the adjacent cells to interact (ar-
rows with light colours, von-Neumann neighbourhood). With increasing grid resolution, arbitrary
shapes can be approximated (yellow poiRtght: In three dimensions, one obtains from equation
(2.46) up to 22 references to the next neighbours. Here, only a cross-section perpendicular to the
directiona is shown. For the second derivativesWf one has to access the 6 direct neighbours
once (not shown). Then, the mixed second derivativas$’éf require 8 references to the diagonal
neighbours (green points). Finally, the first derivativesJ6f® require 8 references to the direct
neighbours (blue points).

2.5 Cellular Interactions

2.5.1 Mechanical Cellular Properties

Many cellular constituents (see figure 2.16) contribute to the mechanical properties of the cell. Ad-
hesive properties are mediated by the receptor and ligand molecules distributed on the cell surfac
[73], whereas the repulsive features arise from the combined action of nucleus, cytoplasm, and cel
membrane [74]. Obviously, the cell is a complicated multi-component system. According to [75], the

mechanics of the cytoplasm can be approximately described by viscoplastic gel properties on large
scales. Via the cytoskeleton the cell nucleus is connected to the cell membrane as well. These cor
stituents yield the rigid cell structure at equilibrium. The cell membrane can presumably be describec
as elastic for small deformations.

2.5.2 Contact Models

In view of the sophisticated cell composition, models with a small number of parameters have only
been able so far to approximate the cellular behaviour in a simple way [8, 76, 77]. The dynamics
of solids in contact is a dlicult problem, as already the local geometry at the contact region will

strongly influence the involved forces. Most models applied in practice are not motivated by underly-
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Figure 2.16: Sketch of a typical eucaryotic cell [75]. Adhesion is mediated by receptor and ligand
molecules distributed on the cell surface. Actin filametfsaively increase the viscosity of the
cytoplasm, whereas microtubules connect the cell membrane with the viscoelastic nucleus.

ing assumptions on the material properties but rather mimic the realistic behaviour. In principle, these
contact models all fulfil two basic conditions:

1. They exhibit strong repulsive forces for large overlaps and
2. they have a bound state for small overlaps.
For example, the Lennard-Jones potential
V(X) = AX® + Bx?, (2.50)

wherex denotes the distance, has been successfully applied in physics to model the interactions of
atoms [78]. AsA, B, a, andB are parameters, the Lennard-Jones model has enough intrinsic freedom
to approximate even the interaction of macroscopic systems such as e. g. grains [27].

Viscous and plasticity féects can be incorporated by constructing a model from mechanical ana-
logues: In this approach, simple mechanical elements such as the dashpot and the spring (see fig-
ure 2.17), are connected to a mechanical network. These diagrams define a set of linear ODESs, which
can be solved to obtain the solution as a function of time. Thus, it is possible to incorporate vis-
cous (Kelvin element) and viscoplastic (Maxwell elemeffi¢es in cellular contact interactions, see

e. g.[79, 80]. These models however require a large set of parameters and facing the large uncertainty
about inner-cellular elastic or dampening constants they must be used as fit models since currently
these parameters cannot be measured independently.
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Figure 2.17: Basic elements of mechanical networkseft: A Maxwell element consists of a
dashpot and a spring in series, which leads to viscoplastic behaviour: After external forces have
acted, the system does not necessarily relax to its initial posi&aht: In contrast, for a Kelvin
element these are connected in parallel, which only leads to viscous behaviour: The system will
always relax to the same equilibrium position. By using more complicated circuits, a good agree-
ment with rheologic measurements can be achieved.

Another approach would be to derive the elastic and viscous constants of a mechanical network fron
a microscopic model of the cell. If one only considers the contribution of the cytoskeleton, a popular
ansatz is the explanation of cellular properties by tensegrity structures [81, 82] — an acronym derivec
from “tensional integrity”. Such structures can be envisioned as a combination of rigid elements
(usually bars) that are connected by elastic cables, where pressure and tension cooperate to stabili
them. A complete model involving all these elements for every cell would exceed the capabilities of
multicellular simulations.

Here, another approach to treat the adhesive and elastic interactions will be followed: Based on the as
sumption that cells can be approximated by a uniform and isotropic material, the theory of continuum
mechanics — compare subsection 2.4.3 — can be applied. Note, that here the additional constraint «
only small relative deformation enters. In this case, the elastic equilibrium forces between two solids
i and j in contact (compare also figure 2.19) can be derived from equation (2.40) using the method
of Greens functions: Assuming that the contact surface between the spheres is situated=rOthe
plane, one has [70]

U (xy) = f f Gup(X— Xy~ Y)ps(X.y) dX dy . (2.51)

wherepg(X', y’') denotes the pressure field acting on the contact surfacé gnslthe Greens function.
Due to the given symmetry, only thrEecomponent of the Greens function
1-v2 1
GAXY) = 2.52
Ay) = T (2.52)

is of interest. The above Greens function is derived from the solution of the equilibrium equations
(2.44) in the simplified case of a homogeneously elastic medium (characterigedruly) filling the
halfspacez < 0 subject to the point-like forcE,(x,y) = Fod(X)é(y) [70]. In the present case one has
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to consider two objects with fierent elastic properties and thus, one obtains the relative deformations

i/ _ l/J P(X,Y) dx d 253
U/l (xy) = g ff T Oy Y, (2.53)

whereE;;; andy;,; denote the Young modulus and the Poisson modulus of the solids, respectively. If
only forces normal to the contact regions act, the surface of contact will be flat. If in addition the origin
of the coordinate system is placed in the centre of the contact region and if the local deformations are
not too large, the deformation field at the contact surface can be approximated by an ellipsoidal
parametrisation. Consequently, the relation

Bux? + Boy? + UY(x,y) + Ul(x,y) = hyj,, (2.54)

whereh;; denotes the overall indentation due to the load, must hold throughout the contact region
(compare figure 2.19 left panel). The constaBits are related to the radii of curvature of the surfaces
in contact [70, 83]. Comparing the resulting integral equation for the unknown pressure distribution

1 1- V pZ(X/’y,) —h. — 2 _
[ ] f f = dX dy = hyj — B — Byy? (2.55)

d X)? +(y—y)?
with the mathematical identity

ff J () - (&) ><o|y—”""bj2 [2- 5 — ofl dt (2.56)
(X=X)2+(y-y)> -2 ) J@rn+or '

(¥ /a)2+(y' /b)?<1

one finds that both right hand sides are quadratic formsandy. Consequently, a solution for the
integral equation is given by the pressure distribution

o0 = 51 (3) (3 @57

where the normalisation constant results from integration over the ellipsoidal contact surface. From
the mathematical identity, this choice of the pressure distribution is certainly not unique, but it leads
to the unique analytical solution of the system (2.40). In the special case of two spheres in contact
with (unperturbed) radiR andR; the contact ellipse becomes circular and one obtains

1(1 1 1
B =B, = — 2.58
=37 w) = (259
whereR;; is the dfective curvature. Thus, one finally derives from comparing théicoents for the
total repulsive elastic Hertz force

FHertz — R]]/ZK'J hﬁ/z ) (2.59)
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The elastic properties are combined in theffioentK;;, which has the dimension of pressure

1 3[1—vi2 1—vj2]

K, 4

+

2.60

This contact problem had initially been solved by Heinrich Hertz in 1882 [84] and does not include
effects of adhesion. Note that it can be applied to a sphere in contact with a plane as well by setting
one radius to infinity.

In [85] Johnson, Kendall and Roberts (JKR) showed that the contact raglissenlarged (in com-
parison to the Hertz contact problem) in presence of adhesive forces. They introduced an apparel
Hertz loadF2PP, and a corresponding apparent Hertz indentat®®f which would yield the same
contact radiusy; in the purely elastic Hertz model. For adhesive spheres however, the contact radius
a; will already occur at indentatiorts; smaller tharhi™. In [85] it is assumed that this correction
arises from an additional pressure distribution

(xy) = 2 (1 X+ VZJ_W (2.61)
Pad(X, Y 271'6\12] 3121 ’ .
which results in a constant displacement over the contact area for the Boussinesq problem [83], bu
corresponds to a negative adhesive total fdfgg < 0. The normalisation constant is calculated
analogously to equation (2.57). Thus, the combined pressure is positive (repulsive) at the centre o
the contact region but becomes negative (tensile) at the boundary. This implies the enlargement c
contact radius in JKR theory in comparison with purely elastic Hertz contact and has been observec
using optical interferometry [85]. Then, the total stored elastic energy as well as the mechanical
potential energy of the load applied can be calculated. If one additionally assumes that the surfac
energy is uniformly distributed on the contact surface, one obtains

Uadn = —76;8] (2.62)

with the energy density; denoting the combined free surface energy density of both spheres. From

minimizing the total energy one then finds in equilibrium an equation connecting the realistic contact
surface radius;; with the net JKR-force between the two spharaad | [83, 85, 86]

Ri'

3 Y

(FijR + 3rej R + \/67T€ij R F¥R + (3ne; Rjj)z) (2.63)

i]

and for the corresponding indentation

& 2 [6rajay
hi = _Z i 2.64
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The JKR theory has been verified experimentally for materials such as rubber and is used within the
context of cell-cell interaction [75] as well. It is known to fit the behaviour of strongly adhesive
materials very well [83]. One obtains for the JKR force in dependence of the contact radius

Kja] ———

For numerical purposes a direct load-displacement relationship would be more favourable, since the
indentatiorhy; is much simpler to calculate than the actual contact raajjusn addition, there are pa-
rameter regimes, where equation (2.64) admits two solutigiier a given indentation. This becomes
obvious if one defines the functiogg(a) = —h;; + & /R; andg,(a) = (2/3) /6re;a;/K;, and exam-

ines their intersections in dependencegr{see figure 2.18 left panel). Numerically, the two roots of
equation (2.64) in the delicate ambiguity case can be found using a defined algorithm: For negative
virtual overlapsh;j, two valuesa.”j"”/max can be found for which the functiof(a) = g,(a) — g.(a) is
negative by setting(a{}‘i”/ma") = hj;. In addition, one can show that the functib(e) has a positive
maximum in this regime am{}‘ea“. With the knowledge of two existent roots, the bisection method
[67] can be used on the interva{w"”, a{}‘ea”] and[a{}‘earl a{‘j“ax]. A major problem however is that these
solutions correspond to formation and disruption of contact. Therefore, the time-evolution of cell-cell
distance determines which branch is of interest and would thus have to be tracked for every individual
cell pair.

Note that the JKR model does not include viscofiscats, these will be added independently in sub-
section 2.5.4.

For relatively small adhesion however, i. &;/(Ki;R;j) < 1, one can simplify equation (2.64) by
neglecting the second term on the right hand side. This yields

aj ~ JhijRij, (2.66)
or
i~ mhy R (2.67)

for the JKR contact surface, respectively. Equation (2.66) can be inserted into equation (2.63) to
obtain an approximate load-displacement relation for the JKR force

hi; 3/2 hi: 3/4
FiJjKR ~ [K”R‘ZJ(R'—JJ) —1[67'(6inin-3](§]]) ], (2.68)

compare figure 2.18 right panel. This expression will be used as the JKR-force further-on.
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Figure 2.18: Ambiguity of the full JKR model. The figures refer &®&; = 2.5 um. Left: The
functionsg: (a) (coloured) andj,(a) (black) have been plotted versais-or clarity, all other indices
have been dropped. Valuesaat the intersections (marked by the ellipses) of both functions are
roots of equation (2.64). If the indentatibrinegative intersection af;(a) with the ordinate axis)

is smaller than the minimum valug,i, = —3Rﬁ/3 [7T€ij/(6Kij)]2/3, no solution can be found (red).

If hij = hmin, ONe has one solution witi" = [nein?j/(GK)]l/3 (green), and itmin < hij < 0, two
solutions can be found (blue). For positiig, one always has only one solution (orange). The
region of two solutions fog; = 0.0001uN um™t is marked by the brown dashed lines at 0 and
—hmin. Note that for small adhesion (dashed black curve), the solution of (2.64) and the solution
of the approximate equation (2.66) (orange intersection with the lower horizontal line) are close
togetherRight: Full and approximate JKR forces versus the virtual ovelnjppThe ambiguity of

the JKR model (red line, region marked by vertical dashed lines) in the case of negative overlaps
corresponds to the formation or loss of contact.
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The JKR-force is negative (adhesive) for small virtual overlaps and becomes positive (repulsive) for
larger overlaps. In figure 2.18 right panel it is visible that in the full model, there is even interaction
for negative overlaps. This property is neglected in the approximate version. Note that the minimum
JKR force (maximum adhesive force) is — independently on the approximation used — given by

3
SHE _Eﬂfinija (2.69)

which is independent of the elastic properties and thus allows an estimajefroin cell-binding-
rupture experiments such as e. g. [87, 88]. For the the approximate model, an interaction potential
can be defined witld;; = |x — x;| via

avJKR avJKR 1 avJKR

R = = = = 2.70
! ad; ’ ohj Ry oh /Ry’ (2.70)
where the corresponding potential is given by
2 hij 32 4 hij 4
ViJjKR(hij/Rij)= EK”RSJ(R,_J) -3 BﬂEinin%(ﬁ-j) : (2.72)

as is illustrated in figure 2.19. The quantity/R;; describes the relative position of both spheres. It
is related with the orthogonal sphere distance for the spligreér;, R?) andf; = (r;, RJ?) in equation
(2.6) via

n(fi, 7)) = (m)z RZ — 2(m -~ )RR-, (2.72)
Rj) Rij :
compare figure 2.20 left panel. In contrast to the Lennard-Jones potential (2.50), the JKR model has
been derived from underlying physical assumptions, i. e., its parantet@nslv can in principle be

determined from independent experiments.
The normal JKR-theory as introduced above has several shortcomings.

1. It neglects the polarized structure of the cytoskeleton [76], since it is based on the assumptions
of a homogeneous elastic solid. To incorporate théexs into a more realistic theoretical
model, one would have to consider a multi-component system, which is currently out of reach
for multicellular simulations.

2. As its underlying theory [70] is only valid for small deformatidRgR;; < 1, equation (2.63)
will be subject to the same constraints. Since a complete sphere overlap has never been observed
in reality, in the simulations where strong forces occur (e. g. due to additional constraints [89]),
a modified interaction potentis(x) = f(x)V’¥R(x) has been used with

() S S <x<
f(X) = {(Xd—zxm)(xd—])-() Xd—2Xm Xm_else_xd , (273)
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Figure 2.19: lllustration of the JKR interaction modelTop left: Two spheres in contact can
approximately be described with the JKR-potential (right). The virtual sphere oveylispequiv-

alent to the displacement of the spheres under load and can be calculdtgd-vi+R; —|x; — Xj|.

Bottom left: lllustration adapted from [85]. In real-world scenarios, the spheres will evidently de-
form. Due to short-ranged adhesive forces, the pressure distribution at the contact surface is only
positive in the centre, whereas it becomes negative at the boundaries. This leads to an enlargement
of JKR contact surfaces (contact radag in comparison to pure Hertz theory (contact radius

ap). Right: The existence of adhesive forces gives rise to bound states (minimum at dashed lines).
Their position and depth strongly depends on the parameateasdK;;. Note that the potential

does not diverge dtj/Rj = 2+ 2min{R,, R;}/maxR, R;} (complete overlap). The curves on the

right have been computed using the following (physiological) vakjes- 1000 PaRjj = 2.5 um.
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Figure 2.20: Sphere overlaps and modification of the JKR-potentiaft: Meaning of the di-
mensionless sphere distartgg/R;j. For clarity, the indices have been dropped, i. e., all quantities
refer to two specific sphera@sand j. For vanishing overlap, one obtaihg/Rj = 0, whereas

for the case when the smaller sphere is placed exactly on the boundary of the larger one one
hashij/Rij = 1+ Rmin/Rmax With Rnin = min{R;, Rj} andRnax = maxR;, R;}. In this regime,

JKR theory is not valid anymore. Matching has been performdg; &®; = 1, where one has

n(fi, fj) = sz Right: For this reason, the JKR interaction (solid curves) has been supplemented

with a pole at complete sphere overlap (dotted curves). In the physiological regime, the JKR po-
tential is unchanged. Parameters have been chosen as in figure 2.19.

which is diferentiable continuous at= X, and diverges ax = x4. As matching poini,, = 1
and as point for divergencg = 2 + 2Ryin/Rmnax (Minimum and maximum radius) have been
chosen (compare figure 2.20).

. The original result (2.63) has been derived as a pure two-body interaction [85], which is as well
the case for its purely elastic precursor [70, 84]. However, for many adhering spheres already
for small individual deformations additional forces will come into play, since

¢ the spheres are pre-stressed and

¢ the circular contact regions may overlap.

This will critically depend on the current adjacency topology which makes an analytical ap-
proach infeasible. A simple manifestation of this fact is that also for incompressible cells
(v = 1/2) the cell volume is not conserved for multiple overlaps. For numerical ease and
due to missing estimates in this thesis the following (practitioners) approach has been chosen:

Below the target cell volume’itf‘jrgetthe cell experiences additional — isotropic — forces due to
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compression of the cytoplasm. Then, the resulting additional repulsive force can be written as

FOmP — A B L [1- 2.74
1) A'J [3(1_ 2Vi) Vitarget + 3(1_ 2Vj) V}arget ’ ( )

whereV;,; denote the current cellular volumes (compare subsection 2.5.3).

4. Whereas the used forces do only depend on the relative cellular positions, a more realistic
scenario would have to include hysteresikeets, as adhesive intercellular bonds form after
contact. Within some of the simulations, this has been modelled by makimme-dependent,

i. e,

&(t) = 50 |CremC () + CPOCEw)| - (2.75)

where the 0< Cirfjd"g(t) < 1 represent the normalised receptor or ligand densities on the cell
membranes, respectively, agtlis the maximum adhesion energy.

5. The JKR-model neglects dampening forces that will evidently occur in realistic systems
[90, 91]. As in the case of the Kelvin element, these will simply be added separately (com-
pare subsection 2.5.4). In the derivation of the JKR model it has been assumed that only forces
perpendicular to the contact surface act. However, cell-cell friction will lead to shear deforma-
tion, which is neglected here.

Clearly, the JKR-model does not correctly represent the mechanics of the cytoskeleton. For norma
cellular deformations, one might expect other than purely elastic responses for larger time-scales
since the cytoskeleton in general reorganises [75]. Thi#feete may be incorporated by using me-
chanical networks such as in [92]. However, for such a model, the underlying parameters should bg
derived either from experiments or motivated from microscopic properties of the cytoskeleton. Thus,
the modified JKR ansatz presented here should be interpreted as a simple approximation for elasti
and adhesive forces in a multi-component system only exhibiting key properties such as divergence
at complete cellular overlaps, an adhesive bound state for small overlaps, modified interactions fol
multi-particle overlaps, and possibly time-dependent elastic and adhesive parameters.

2.5.3 Cell volume

In order to be consistent with the spherical cell shape, the volume of a free cell of RatBudirectly
deduced from the cell radius. For bound cells, the cell volume is corrected by subtracting the volumes
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of the spherical segments [67] occupied by the neighbouring cells via

Vi= TR-T S (3R ), (2.76)

JENNG)

whereh; denotes the height of the spherical segment occupied by neighboyrscelh that one has
hi; = hi + h;. One should be aware that this volume correction represents an approximation:
If there are multiple overlaps of the virtual (undeformed) cell boundaries, the occupied subtraction
volume will be over-estimated. By the example in figure 2.14 right panel this is illustrated in two
dimensions, where volume is represented by area and multiple virtual overlaps exist. Multiple virtual
overlaps may exist in three dimensions as well. In fact, the volume as defined above can become neg-
ative for extreme (non-physiological) configurations. Even the non-overlapping Voronoi tessellation
does not yield a correct estimate of the cell volume, since the Voronoi volume is not bounded for cells
residing on the convex hull of the cell population, compare equation (2.18). There, and also in regions
where the cellular packing is not dense, the Voronoi tessellation volumes obviously overestimates the
actual cell volume.
A way to combine both the limits of densely and sparsely populated cell tissues consistently within
a single concept would be to define the cell volume as the set intersection of the (weighted) Voronoi
cell volume and the sphere volume via

veel — {x eRP: (x—r-R<(x-r)-R Ve NN() A (x-r)s< R?} @.77)
compare figure 2.14. This concept has not yet been realised in the numerical implementation. How-
ever, even the above definition has a significant shortcoming, if combined with the JKR model: The
cell boundary defined by equation (2.77) is not consistent with the boundary following from the JKR
model: Though the position of the contact area is the same in the JKR model and in equation (2.77),
the size of the contact areas istdrent. This is due to the cell deformation in the JKR model. In con-
sequence, this would lead to a wrong estimate of the cell volume. For numerical calculations, a second
obstacle is given by the relatively tedious calculation of the volume in (2.77): The actual subtraction
volume that is occupied by neighbouring cells has to be calculated from the occupied steradian. This
value in turn can be obtained from the geometry of spherical triangles using the L'Huilier equations
[67], which involve many trigonometric functions implying a computationally expensive evaluation
(compare e. g. [60] for a related problem).
Therefore, for the simulations in this thesis where the cell volume is of importance, it has been deter-
mined from equation (2.76).
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2.5.4 Equations of Motion

For N cells with positionsx;(t) and radiiR; subject to cell-cell as well as cell-medium and cell-
substrate interactions, the equations of motion arising from the intercellular forces can in the referenc
frame of motionless medium and boundaries be summarized as [79]

mx = Fi+ ), Fﬁ‘Z[Y?’“ D F"ﬁ} D A=K, (2.78)

JENN() B JENB(i) JENNG) B

whereq, 8 € {0, 1, 2} denote the Cartesian coordinates anc {0, 1,..., N — 1} the cellular indices.

The terming NN (i) denotes all cells having contact with cel- a set containing these cells with
direct contact can be provided by the Delaunay triangulation module introduced in section 2.3. In
contrast, NB(i) denotes the boundaries in contact with gellSince for most problems few and
static boundary conditions will be given, these are hard-wired in the computer code for every specific
problem individually.

One should note that above equation will in general have to be accompanied by an equation descrik
ing the torque [27, 93], which is only taken into accoufiieetively here by the energy dissipation via
drag forces. With the strong cellular bindings existent in tissue, torque could only lead to macroscop-
ically spinning tissues. However, since most tissues are attached firmly to static boundaries, torque i
neglected here.

The first termF{" on the right-hand side of (2.78) includes deterministic and stochastic forces on a

single cell (for example crawling forces on a substrate and stochastic forces due to random colli-

sions with molecules), whereas the second terpn - i includes the intercellular two-body forces
JENN()

(e. g. JKR-force or random intercellular forces). The third tE@ ¥+ Z Z % |5 incorpo-

B IENB()
rates cell-medium as well as cell-boundary friction. Finally, the fourth teE Zy“ﬁ (¥ - %)
jENNG) B

includes cell-cell friction.

A usual choice for cell-medium friction is the well-known Stokes-relation
¥ = 6mR 6", (2.79)

which is to a good approximation valid for drag forces on a sphere in a fluid with visop§].
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The friction codficients and two-body forces fulfil the following conditions:

)’ﬁ'g — ytjliﬁ,

Fio= —F§ : (Newton'’s third axiom)

g

Yy o= : (isotropy),

=0 : (no self-friction). (2.80)

The drag forces expressed by the friction fEi@gents may be divided in perpendicular drag forces
(acting in the direction of the connection line) and tangential (shear) drag forces. The perpendicular
drag forces are predominantly determined by the dampening properties of the cytoskeleton, whereas
the tangential drag forces result from the breaking of cell-cell bindings due to movements tangential
to the contact surface [76]. If for the cell-cell interaction a purely elastic model (without dampening)

is assumed, the perpendicular drag forces should vanish. Assuming that the intercellular drag forces
are proportional to thefective contact area between two celénd |

1 . _
AT = A5 |G + GO (2.81)
and to the tangential projection of the velocityfdrences, the friction cdigcients take the form

W= RS e (- ).

Iy = APl + 7P . (2.82)
with the intercellular tangential and perpendicular projectors

Py =0 —ninG. P =i, (2.83)
and the cell-boundary projectors

Pl =0 =iy, P =nin;. (2.84)

In the above projection operatons; represents the normal vector pointing from cetbwards cell

j (compare figure 2.21), whereary denotes the normal vector of the bounddrat the contact
point with celli. Therefore, their action on any vectarprojects the vector into its tangential or
perpendicular part

nj - (Pa)=0.  nj-(Pj.a)=n;-a. (2.85)

The projection operators (2.83) automatically obey the symmetries demanded in equation (2.80) on
the friction codficients.
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Figure 2.21: Two-dimensional illustration of intercellular drag forces. Th#&atential velocities
between two cellsandj (green) in contact may give rise tdidirent drag forces, one proportional
to the tangential part of the velocityftkrence (brown) and one proportional to the perpendicular
part (blue).

Cells nearly always move in highly dissipative environments. This has the (in view of the numerical
solution fortunate) consequence that the cellular movement is highly overdamped [92, 95, 96]. In the
overdamped approximatiom§ ~ 0), equation (2.78) can be cast into the following form,

Z{VEBJFZVZJ-BJfZFﬁ? 5ik—7iﬁ}5€=Ff’+ZFﬁ- (2.86)
j J j

ks
From the properties of the friction cfieients it is evident, that the above linear system is symmetric
and in addition diagonally dominant as longas + ZF;’J" >0 ¥i, a, which holds true if the

viscosityn in equation (2.79) does not vanish, as all cJIiagonaI entries in the projection operators (2.83)
and (2.84) are positive. In addition, it should be noted that the system will under normal circumstances
be sparsely populated, since the friction ffi@éents vanish for all cells not being in direct contact.

An iterative method such as the method of conjugate gradients — compare appendix B.2 — can b
used to find the solution of equation (2.86). Technically, one will be interested in the positions at
time t + At starting from knowledge of the positions at timmeThe new positions can be obtained

by discretising the time derivative via = [X(t + At) — x(t)]/At and using the method of conjugate
gradients to solve fox(t + At). Note however, that the stochastic forces may depend on the timestep
sizeAt (see appendix C.2.3).

So far the cellular radii have been assumed to be constant. If one simply uses time-dependent rad
[77] — as is done within this thesis — one assumes that the cellular ability to grow is not directly
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affected by other processes, i. e., the direct back-reaction of the force distribution on cell growth is
neglected.

An example including cell-cell and cell-boundary friction is illustrated in figure 2.22. Indeed, for
this special example all non-isotropic friction ¢beients vanish exceptls, yer, yas, yar, Tl T
Consequently, for this example the system (2.86) would assume the form

Figure 2.22: Two-dimensional example for the calculation of drag forces. The dotted lines de-
note the weighted Delaunay triangulation of the set of spheres. Only spheres with cell-cell contact
(overlap, marked green) will contribute to intercellular friction (constants marked in blue). Con-
tacts with external boundaries (overlap, marked orange) will contribute to cell-boundary friction.
Spheres that are not connected in the Delaunay triangulation will not overlap, whereas the inverse
conclusion is not valid.

To+7y0+7Yi3+7mu O ©) —Yo03 —Y04 Xo Fo
@) Y1 O @) @) X1 Fi
o O vy2+7vy23 ~Y23 0 X2 =] F2 |,
—Yo3 O  —y23  ys+7Yo3+ya Y34 X3 Fs
—Yo4 ) ) —Y34 La+vya+yoa+ys )\ X4 Fa
(2.87)

where in three dimensions the symb®&sand x; denote vectors iR® and Yii» vi» andI’; denote

3 x 3 matrices. The symbdD denotes identically vanishing matrices. This system is sparsely pop-
ulated, which is a great advantage for iterative methods, since the number of necessary multiplica-
tions scales with the number of non-zero matrix entries — provided a sparse storage scheme (compare

8Note that the degree of sparseness will increase further for larger systems, as the average nuffidegoinal
neighbours will become independent on the system size.
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appendix B.1) is used. For the applicability of iterative schemes such as the method of conjugate
gradients it is more important that the system is symmetric and irreducibly diagonally dominated as
long asy{ + I“i“ﬁ >0 v i, . This sufices to guarantee the positive definiteness required by
the conjugate gradient algorithm, since any makix (A)ij, which is symmetric (i. e.A; = Ay),
irreducibly diagonally dominant (i. el&i| > 3. |A;j| and for onek one hagAul > 3. |A«j|), and
has only positive diagonal entried;(> 0) is always positive definite:
A symmetric matrix can be diagonalised using an orthogonal transformation, which implies real
eigenvalues. Using diagonal dominance and the positiveness of all diagonal entries, one has

Az DAl i, (2.88)

j#

where one can use the Gerschgorin circle theorem to deduce that all eigenvalues of thé\ muarix
non-negative. In addition, the determinant will not vanish. This implies that the eigenvalues are all
positive, which is equivalent to positive definiteness.

2.5.5 The cell cycle

Without representations of internal cellular states, the model would merely calculate the mechanica
interaction between a number of adhesive and elastic spheres. Comparisons with experimental da
should be as simple as possible. Therefore, the position in the cell cycle has been characterized k
a discrete variable, which determines the actions of the cellular agents. Within the models discusse
in this thesis, the following internal states are distinguishegplase, $G,-phase, M-phase, §5
phase, necrotic, cornified. The states of the cell cycle are illustrated in figure 2.23. It is assumec
that during G-phase, the cell volume grows at a constant rate. e., the radius increases according
toR = (47rR2)_1 rv, until the cell reaches its final mitotic radi®&™. The volume growth rate, is
deduced by assuming that the cellular volume doubles durirgh@se

2r (R™)’

S S 2.89
v 3‘1'(31 ( )

whererg, can be deduced from the minimum observed cycle tifffeand the durations of the/G,-

phase and the M-phase. Afterwards, no further cell growth is performed. At the end of-fitea&e,

a checkpointing mechanism is performed where the cell can switch gfmh&se. The nature of this
checkpointing mechanism has been chosen depending on the current application within this thesis
Possible choices include:

¢ the actual cellular compression [76],
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Figure 2.23: Agent-based model realisation of the cell cycle. During cell division, cells reside
in the M-phase forM_ Afterwards, the cell volume increases at a constant rate in theh@se,

until the pre-mitotic radiu®™ has been reached. At the end of theihase, the cell can either
continue the cell cycle or enter they@hase, if the necessary conditions are fulfilled — here ex-
emplified by the critical valug °™. The §G,-phase lasts for a time®©2, after which mitosis is
initiated deterministically. The necrotic state (not shown) can be entered at all times in the cell
cycle.

e the cellular tension [77],
e the local nutrient supply,

e the local concentration of toxic substances etc.

After this checkpoint, the cell can either enter thehase or the 85,-phase. During the S-phase,

the DNA for the new cell division is synthesised, whereas duripigpkase the quality of the produced

DNA is controlled. As this thesis deals with the distribution of cellular tissues on a more macroscopic
level, within the current implementation the S-phase aggpase are not distinguished. At the be-
ginning of the phase the individual phase duration is determined using a normally-distributed random
number generator [97] with a given mean and width. After this individual time has passed, the cells
deterministically enter mitosis.

At the beginning of the mitotic phase — which lasts for about half an hour for most cell types — a mother
cell divides and is replaced by two daughter cells. As a modelling assumption, the initial direction of
mitosis can either be chosen randomly [77] (see subsection 2.5.6) or also oriented [76]. For isotropic
tissues such as multicellular tumour spheroids (MTS), the first assumption led to acceptable tissue
morphology, whereas for oriented tissues, an initial orientation of mitosis due to polarized cells might
be expected. Afterwards, the daughter cells are left to their initially dominating repulsive forces
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(2.68). As in the $G,-phase the individual duration of the M-phase is determined using a normally-
distributed random number generator. The daughter cells enter tippase thus closing the cell
cycle. Note that this model does nofffédrentiate between the internal phases of mitosis such as
interphase, prophase, pro-metaphase, metaphase, anaphase, and telophase.

During G-phase, the chosen critical parameter (e. g. cellular volume, tension, etc.) is monitored.
Cells then re-enter the cell cycle where they left it if the conditions that led to entrance int@-the G
phase are relaxed. Similar to thgGs-phase no growth is performed. Therefore, within this agent-
based model, the fierence between the/G,-phase and the ggphase is that the duration of the

first is determined by the normally distributed individual time that can be derived from experiments,
whereas for the duration of the latter the temporal evolution of the critical mechanism chosen for
Go-induction is the determining factor. Consequently, if the critical mechanism is limited space, the
cells in G-phase can serve as a reservoir of cells ready to start proliferating as soon as there become
enough space available, which is common to many wound-healing models [76]. In chapters 3 and ¢
two different critical mechanisms will be specified.

Intuitively, cells enter necrosis at any time as soon as for example the nutrient concentration at the
cellular position falls below a critical threshold. Within this thesidfadtient mechanisms for the
induction of necrosis will be discussed (see subsection 3.4.1). Naturally, necrotic cells do not con-
sume any nutrients. In addition, they do decay and expel their content into the surroundings [98].
In the model this fact is simply represented by removing these cells from the simulation (compare
subsection 3.2).

Note that the stochastic elements involved in the dynamics of the discrete cellular states are the di
rection of mitosis and the durations of the M-phase af@,S$hase. If applied, the first is required

by the local assumption of isotropy, whereas the latter is required by the fact that proliferating cells
having a common progenitor desynchronise rather quickly (usually after about 5 generations [99]):
For these small systems &(25) cells mechanisms such as nutrient depletion or contact inhibition
cannot explain the desynchronisation. It is an empirical fact that times observed in macroscopic bi-
ological systems underly significant stochastic deviations. Therefore, these stochastic elements ha\
been inserted in the durations of the cell cycle stations.

2.5.6 Proliferation

Within the model, a cell will divide deterministically when the end of th&5g phase has been
reached. As discussed before, the initial direction of mitosis can be chosen randomly from a uni-
form distribution on the unit sphere [97]. Note however, that since within dense tissue the cellular
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movement during the M-phase is not only determined by the mitotic partners but by the surrounding
cells as well, the fective direction of mitosis may generally change during M-phase. The radii of
the daughter cells are decreas®® = R™2-Y3 to ensure conservation of the target volume during
M-phase and the daughter cells are placed at the distﬁneeZR(m)(l — 2713) to ensure that in this

first discontinuous step the daughter cells do not leave the region occupied by the mother cell (see
figure 2.24). From a numerical point of view, this has the advantage that the surrounding cells are
not immediately disturbed by the mitotic cells. It should be kept in mind that in reality mitosis is a
more continuous process. Furthermore, depending whether one has a symmetric (e. g. in MTS, see
chapter 3) or an asymmetric cell division (e. g. in the basal layer of the epidermis, see chapter 4), the
daughter cells either have the same orféedent cell type as the mother cell, respectively. One should

N
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Figure 2.24: Cell configuration during mitosisLeft: At cell division, the radii of the daughter
cellsR® (solid circles) are smaller than the radius of the motherR®0 (dashed circle) to ensure
conservation of the target volume during M-phase. For symmetric cell division, both daughter
cells have the same cell type, whereas for asymmetric cell division cell tyfies dihe region

of possible contact loss with further neighbours (not shown) is marked in light Rigiat: The
resulting repulsive forces drive the cells apart quickly. An adaptive timestep control ensures that
the daughter cells do not lose contact with each other during M-phase. Note that the initial direction
of mitosis will in general change due to interactions with additional neighbouring cells (not shown
here). Further intercellular contact may be lost with cells residing perpendicular to the direction of
mitosis.

be aware that at this stage the forces derived from a physically-motivated/@ldisésive model such

as e. g. the JKR-model (2.68) cannot represent the actual mitotic separation forces, since for the con-
siderable initial overlap = R™(253 — 2) = R (4 — 2%/3), these elastic theories have been applied far
beyond their region of validity (compare section 2.5.2). The chosen procedure represents &trade-o
between a good agreement with reality and model simplicity. To increase agreement with realistic
mitosis, it would be possible to set up a more accurate model of cell division that includes conserva-
tion of the actual cell volume during bell-shape mitosis. This however would imply the introduction

of a new dynamic theory which is not backed by quantitative experimental evidence.
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It is visible in figure 2.24 left panel that in the initial step of mitosis, the contact to neighbour cells
(residing df the mitotic axis) may at least temporarily be lost. In dense tissue, such contacts will be
re-established, as the local topology will change to relax mechanical tensions. There is experimen
tal evidence that for EMT/&o tumour spheroids, cell-cell contacts may be lost during mitosis [100].
Consequently, the potential loss of neighbours during mitosis might be regarded a physiological prop-
erty of the model.

With the simple model chosen, it must be kept in mind that with a fixed timestep width, the strong
initial separation forces could lead to instantaneous separation of the daughter cells in the numerice
solution. This technical problem is avoided by an adaptive timestep, which must be applied in the
numerical solution of equation (2.86). This timestep is chosen small enough, such that a definec
maximum spatial stepsize is not exceeded. Even with an adaptive timestep, the initial separation o
mitosis will still happen on a timescale shorter than in reality. One should keep in mind that the
relative shortness of the M-phase in comparison with the complete cell cycle leads to a small fraction
of cells being in the M-phase at a given time. Therefore, one can expect the consequences of thi
simplifying assumption to be relatively small.

2.5.7 Model application

For biological applications, the model as introduced in the previous subsections is not specific enough
Though it is intrinsically consistent, it does not grasp the variety for exampletefent cell types.
Therefore, the model properties proposed in this section should be interpreted as a basic frameworl
upon which further approximations (to enable a computational treatment) and specifications (to ap-
proach a biological model system) can be applied. The more specific models applied in the following
chapters refer to this section as the basic model. Consequently, the basic limitations of the presente
model apply to the discussion in the following chapters as well.

It is evident that agent-based models relying on an intrinsic spherical cell shape do not reflect the
variety of cellular shapes in reality. This does not have to restrict the model to applications, where the
unperturbed cell shape is approximately spherical. In addition, one can consider biological problems
where one can suspect that cell shape and functional mechanisms under consideration are not cause
connected.
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Chapter 3

Multicellular Tumour Spheroids

Having the currently widely-accepted hypothesis of monoclonal origin of cancer in mind [101], agent-
based models evidently bear an advantage in comparison to continuum approaches, since they allo
to track the fate of individual cells. In addition to the cellular automaton approach applied usually
[7, 102], an dt-lattice approach allows for continuous cell positions [103, 89]. In these models,
the extent to which cellular interactions have to be replacedflgctve rules is smaller than in
corresponding cellular automata. Consequently, the model parameters for physical interactions can
in principle — be directly measured in independent experiments. The drawback of agent-based — an
in particular df-lattice agent-based — models is their enormous computational complexity. Therefore,
they should not be preferred generally but only after a detailed examination of their use in the choser
application. In this chapter, two modelling conceptf-{attice agent-based and continuum) will be
applied to experimental data on multicellular tumour spheroids (MTS). Unlike sometimes done for
continuum models that link the instantaneous cell distribution to the corresponding nutrient levels
[104, 105], the cellular population density will be treated as a dynamic parameter. In addition, both
the distributions of the oxygen and glucose concentrations will be analysed simultaneously.

3.1 Limitations on cell growth

Healthy cells in eucaryots do not follow the exponential growth law, which is expressed in other or-
ganisms such as bacteria in presence of favourable growth conditions. Instead, ffallgrdiated

cells usually do not proliferate at all. The large cell numbers encountered in our organism are pro-
duced by populations of asymmetrically-dividing stemcells. There exist many control mechanisms
that ensure that ffierentiated cells do not proliferate. For example, the endings of the chromosomes
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are protected by telomeres. These telomeres lead to an upper bound on the number of cell divisions,
since in dfferentiating cells they are shortened with every division. In absence of the telomere pro-
tection, complete failure of the DNA transcription is implied and thus the proliferation cycle is halted.
The resulting theoretical boundary for cell proliferation has been estimated to be about 50 cell divi-
sions [101]. However, for cells with a diameter of A and the specific density of water, this would

still correspond to 590 kg of cell mass! Clinically manifest and stationary tumours are much smaller
which implies that further control mechanisms — leading to loss of cancerous cells — must be at work:
It is known that after the initial malignant mutation, many tumour cells are not able to complete the
cell cycle [101]. However, some immortal tumour cell lines seem to divide indefinitely — at least they
exceed the theoretical boundary of 50 cell divisions by far. Consequently, not only the primary con-
trol mechanisms but in addition the shortening of the telomere endings must be severely disturbed in
these cell lines. A corresponding enzyme — telomerase — has been discovered in stemcells and some
immortal tumour cell lines. The immortality of tumour cells would normally lead to an exponential
growth law. Within culture of solid tumours however, this exponential growth law is observed only
initially:

1. In two-dimensional (monolayer) culture, proliferation of cells in the interior becomes inhibited
—though these are adequately supported with nutrients. Cells situated at a free boundary of the
population will always have enough space and nutrients to follow the normal course of the cell
cycle. If there is not enough space available, cells cease to proliferate — a phenomenon termed
contact inhibition [76, 106]. In unconstrained populations then only a subpopulation continues
to proliferate, which leads to polynomial growth only [77].

2. In three-dimensional spheroid culture, the cells in the interior of the spheroid cannot be sup-
ported adequately with nutrients. Here, the process of contact inhibition is cooperating with
the lack of nutrients emerging in the interior of the cell population [107]. Usually, this lack of
nutrients causes cells to undergo apoptosis or necrosis — processe#énan gnany aspects
[98] but in terms of population dynamics result in the same outcome: cell death. Hence, cell
growth is limited further and even complete saturation of spheroid growth has been observed
[108].

The final stages of spheroid growth exhibit a typical pattern in the cross-sections: A core consisting
of mainly necrotic cells is surrounded by a viable layer of quiescent (non-proliferating) cells, which
in turn is surrounded by a layer of proliferating cells [14] (see figure 3.1). This general appearance is
found for many avasculan vivo tumours as well. For many medical applications, MTS constitute a
popular experimental model system, since they are closely mimicking avascular tumours within living
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tissues [109, 110]. This opens the possibility to test theceof e. g. chemotherapeutic agents under
conditions close to thim vivo system.
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Figure 3.1: Typical morphology ofn vitro [14] andin silico [66, 77] MTS.Left: Cross-Section
through a three-dimensional MTS, taken from [14]. The inner necrotic core is surrounded by a
layer of quiescent cells, which in turn is surrounded by a layer of viable cells — the bar represents
250 um. Middle: This qualitative picture can be reproduced in an agent-based model [77], cal-
culated for 0.28 mM oxygen and 16.5 mM glucose concentrations, and cell diameterguof. 10
Right: In a continuum model [66] cellular dynamics is represented by partitdrdintial equa-

tions. For diferent modelling assumptions (black and red), the radial distribution of cell densities

yields the same qualitative picture (dashed curves mark viable cell densities, whereas dotted curves
denote necrotic cells).

Even such a simple experimental model represents a highly-coupled system of many involved factors
As there are evident fierences in object sizes@(um) for cells, O (nm) for nutrient molecules —

and nutrient molecules do not move actively, the dynamics of the nutrients can be well-described
by RDEs using ffective difusion codicients and reaction rates [66, 103, 105, 111]. The dynamics
of the cellular movement however is not fully understood at present. Agent-based models provide
many possibilities to test hypotheses on cellular kinetics and the cell numbers observed ifREMT6

spheroids (in the order of 20.. 1P cells [107]) are at the feasibility limit of current agent-based
models.

3.2 An agent-based approach : Model details

3.2.1 Dynamics of cells

Within agent-based approaches to cell tissue, every cell is interpreted as a separate entity interactir
with its neighbours. For the calculation of the dynamics of these entities, the model has been built or



68 CHAPTER 3. MULTICELLULAR TUMOUR SPHEROIDS

the basic description given in subsections 2.5.4, 2.5.5, and 2.5.6. In addition, owing to the large cell
numbers encountered in MTS, the following simplificatispecifications have been performed [77]:

1. Intercellular friction has been assumed to be small in comparison to cell-matrix friction, i. e.,
with the assumptior)rﬁ’3 ~ 0 the equations of motion (2.86) become diagonal in the absence of
boundaries. Note that for systems@(loe) cells the solution of the complete system would
become virtually impossible in reasonable time by using the method of conjugate gradients
(compare figure B.2 in the appendix for at most 40000 cells). However, in order to preserve
the fact that cells having many bounds to their next neighbours will experience stronger drag
forces than free-floating cells, the diagonal entries in the dampening matrix have been modified
according to

yi"”’ = §?|6mR +y" Z - (1— ;F-| ”)—A'fz( ) (c{ecc'j'@l + c:'gcgec) , (3.1)
JENN() !

where the first term represents the usual Stokes friction terms Ryitlenoting the radius of

celli), andA;j(t) denotes the contact surface between aedisd j. The model parametefm®
determines the degree of intercellular friction. With this choice, movements leading to cell
separation are suppressed strongest, whereas for movements of cells towards each other one
has no additional friction. Note that despite the occurren@&’ahis is not an isotropic choice,

since the net force on a single céll = 3 Fj; directly contributes to the calculation of the
friction codficient. This is in direct cojﬁll':/r/;(tlj)iction with with equations (2.86), as there the net
differential velocity determines the magnitude of the drag forces.

2. As a contact model a simple linear combination of the purely repulsive Hertz model [70, 84]
and an adhesive contribution scaling linearly with tffe&ive contact surface has been chosen

3/2
hi (1) _ aaPi(®
312 17 1 1 2

Fij = +
Z(Ei + Ej) Ru_(t)+m

(Cireccljig " C:igCEeC) , (3.2

where the first term is as well yielded from the JKR-model (2.63) in the special case of vanishing
contact surface energy, = 0, and the second term is the simplest possible choice motivated
by the assumption that the adhesive forces are proportional tdfdatiee contact surface. The
force is positive (repulsive) for large virtual overlaps, and negative (attractive) for small virtual
overlapsh;.



3.2. AN AGENT-BASED APPROACH : MODEL DETAILS 69

3. For the calculation of the intercellular contact surfaces the pure sphere contact area may vyielc
a wrong estimate of actual contact surfaces (compare subsection 2.3.9). Therefore, as an ir
proved measure for intercellular contact, the minimum of the sphere and the Voronoi contact
surfaces has been chosen to calculate the intercellular contact surfaces in equations (3.2) ar
(3.2)

_ . Sphere A\« i
Aij = m|n{ ¥ ; .joronm} . (3.3)
This yields reasonable estimates for intercellular contact surfaces both in the low-density and
the high-density limit (compare subsection 2.5.3).

4. The possible cellular states are given by M-phasepliase, $G,-phase, G-phase, and
necrotic. No distinction between necrosis and apoptosis has been made.

5. In the agent-based model [77], the criterion for enteriggp@ase has been chosen to be the
sum of the normal tensions”™, whereas in some other applications [89] the free cell volume
as defined in subsection 2.5.3 has been chosen. Both choices result in the coffeabn e
that in overcrowded regions cell growth will be halted. Whether cell sense the acting normal
tensions or whether they sense their admitted volume should be discriminated in microscopic
experiments.

With using these approximations, the system (2.86) becomes diagonal, i. e., if no additional boundary
conditions are imposed, one has
. Yy Fe
o PO jANG . (3.4)

o 6mR +ym X l( ——Fi'n”)w(cfecc'-ig+c!igcr.e°)
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In general, the force terms may contain additional random forces. Thereby, both passive cell move
ments (resulting from Brownian motion) and random active cell movements will contribute. For the
chosen example of EMTRo tumour cells, only passive random motion (compare appendix C.2.3)
has been assumed. Via the Stokes-Einstein relation
D= il
6mmR

(3.5)

the difusion constant for passive random motion can be estimated. The corresporftlisguli
constants lead to rather small cellular displacements. Nevertheless, at the boundary of growing tumot
spheroids this might lead to separation of cells on the proliferating front. However, it has turned
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out during the simulations that after some time the proliferation-driven tumour front will generally
overtake cells that have separated due to random movements. In addition, it turned out that the
stochastic nature contained in the mitotic direction and the duration of the cell cycle obviofiisigsu

to yield isotropic tumour spheroids. Therefore, the agent-based simulations on tumour spheroids have
been performed without explicit stochastic forces, unless otherwise noted.

3.2.2 Nutrient consumption and Cell Death

The nutrient uptake rates can in principle depend on the cell type, the local concentration of both
nutrients, the existence of internal cellular nutrient reservoirs and many other factors. However, few
information about the dependence on determining factors is known: Many rates in the literature [104,
112] are average values given in units of mol per seconds and volume of tissue, since these data
are obtained from whole cell populations without regard to the individual cell size, position in the
cell cycle and other factors. There is evidence for a dependence of the nutrient uptake rates on the
local nutrient concentration [113]. For example, when dealing with a single nutrient, quite often a
Michaelis-Menten-like concentration-dependent nutrient uptake rate
I maxUnut

Fut = m (3.6)
isassumed [99, 111, 114, 115]. This however means the introduction of a further parameter that may
be dfficult to fix depending on the data available. The values obtained;foin the literature for
oxygen-dependent proliferation ([116},, = 0.0083 mM) point into the direction that the oxygen
consumption rates are within the range of saturation for the data in [107], since in the agent-based
simulations [77] the local oxygen concentration has always been considerably tar§ey4( mM
throughout the spheroid volume). For simplicity, constant cellular oxygen and glucose uptake rates
have been assumed for non-necrotic cells in the present model.
Depending on the cell type and on the local nutrient concentrations cells undergo apoptgsis and
necrosis when subject to nutrient depletion [107]. For simplification, in this application necrosis has
been chosen as the dominant pathway to cell death andfdetseof apoptosis have been neglected,
though there is experimental evidence that these processes are linked with each other [98]. Necrotic
cells tend to decay, thereby expelling their contémtvivo this leads to processes such as inflamma-
tion, whereas inn vitro experiments their content is passed into the fluid phase: The pressure of this
fluid phase is assumed to be equilibrated at all times throughout this thesis, therefore its existence does
have no further consequences than the removal of necrotic cells. These are removed randomly from
the simulation with a rate"*“. The dfect of apoptosis in the simulation would be similar, though
apoptotic cells do not break apart like necrotic cells but shrink and afterwards dissolve into small
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apoptotic bodies [117]. Thus, for the overall outcome of the total growth curire vitro systems

— where macrophages lysing these apoptotic bodies are not included — insignificant changes can &
expected by including apoptosis into the model.

With the computer simulation model fiBrent hypotheses on which critical parameters may influence
the onset of necrosis can be tested: First, the possibility that there exist critical concentrations for the
two nutrients separately has been tested. However, in this case either the glucose or oxygen cor
centration dominantly limit the cell population dynamics. This does not reproduce the experimental
data, since low oxygen and large glucose concentrations can result in similar population dynamics a
large oxygen and low glucose concentrations [107] and when both nutrients are kept at the minimun
values, the overall growth dynamics is even more suppressed. Therefore, both nutrients have to b
considered to be limiting in the special cases. This is further underlined by the fact that the growth
curves for one of the nutrient concentrations being kept constant depend strongly on the concentre
tion of the other nutrient. In addition, there could be other processes such as necrotic waste materiz
inducing apoptosis anor necrosis [7, 105], which will not be considered here. The simplest ansatz
fulfilling this condition is the product of both nutrient concentrations as a critical parameter.

Here, only the case oh vitro (avascular) tumour growth is considered and therefore it is assumed
that the transport of nutrients is performed passively lfiydion. The difusion through tumour tissue

and through the culture medium is described by RDEs

8u0x/g|uc
ot

v/ [DOX/g|UC(X; t)Vuox/gIUC(X’ '[)] _ rox/gIUC(X; ), (3.7)

whereu®/9(x, t) describes the local oxygen or glucose concentrafi89“(x; t) the local éfective
oxygen or glucose €usion codficient (which depends implicitly on time via the cellular positions)
andr®/9(x: t) the local oxygen or glucose consumption rate. Though formally equation (3.7) admits
negative nutrient concentrations (even at low concentrations negative sink terms may in principle
exist), this can never happen in reality (provided the timestep is not too large): Cells will enter necrosis
(thereby stopping nutrient consumption) if the local nutrient concentrations become too small. As
the reaction rates depend on the cellular viability, they become implicitly dependent on the nutrient
concentrations (see subsection 2.5.5).

Since the dtusion codicients of oxygen and glucose are 6 orders of magnitude larger than typ-
ical motilities obtained for random cellular movement, the pseudo-steady-state approximation has
been applied for the RDEs of the nutrients [104, 111, 115, 118]. This included the recalcula-
tion of the nutrient concentrations from the time-dependent cellular positions at fixed timesteps of
Ay = 500 s in the steady-state approximation. The pseudo-steady-state approximation is justified fol
timestepsAt,: ~ 500 s, because the associatefiugion lengthLp = V6DAtny for At,, = 500 s
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and the smallest occurringftlision codficient (glucose in tissue) is with 560m larger than the
largest spheroid radius (38@m) observed during the agent-based simulations. This implies that
after At,, the steady-state will be nearly reached (if not already present from the beginning, com-
pare appendix C.2.3). However, this argument does not consider that during th&ttimehe cell
position and number changes. The error contribution arising from the cellular mobility can be ne-
glected, since cellular movement is much slower thafusiion of nutrients in this example. An upper
bound on the error contribution arising from cell proliferation can be estimated as follows: Since for
large tumour spheroids cell division is desynchronised, the number of created cells will behave as
AN/N = (At u/Tmin), If growth retardation fects like contact inhibition are absent (worst case esti-
mate). With constant cellular nutrient uptake rates, this ratio directly translates to the change of the
sink termsr/9U¢(x: t) in equation (3.7). Consequently, the timg,,; should be chosen considerably
smaller than the characteristic length of the cell cycle as well (compare table 3.1 on page 89).

As the numerical discretisation of (3.7) will be discrete on a rectangular lattice (see subsection 2.4.2)
and the cellular positions are continuous, tri-linear interpolation has been used to determine the local
nutrient concentration at the position of a cell

ulr(t),t] = Uooo(1— )1 - A)(1- 1)
+U100/lx(1 - /ly)(l - /lz) + UOlO(l - /lx)/ly(:L - /lz) + UOOl(l - /lx)(1 - /ly)/lz
+Up10dxAy(1 = A7) + Urg1dx(1 — Ay) Az + Up11(1 = Ax) AyAdz + Ur1adxdyds, (3.8)

where the time-dependeni (t) denote the concentration on the lattice nodes of the cuboid contain-

ing r and the implicitly time-dependent,,,, [r(t)] denote the normalised coordinates relative to the
cuboid front left bottom corner. Likewise, the cellular reaction rates — given in mot'cefl — are
distributed amongst the eight corners of the cuboid after being renormalised by the cuboid volume.
Note that tri-linear interpolation yields a continuous, but not a continuousigrdntiable function.

In order to describe processes such as some forms of chemotaxis [7, 119, 120], where cells sense con-
centration gradients without temporal integration of the local signal [121, 122], a higher-order spline
must be used that is continuouslyfdrentiable.
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3.3 A continuum modelling approach : Model details

3.3.1 Dynamics of Cells and Nutrients

A continuum model that is closely related to the agent-based model discussed previously can be give
by the following partial diferential equations of the RDE type [66]

0Cox
at" = V[Dox(r; ) VCox(r, )] = 20xCun(r, 1),
—= = V[Da(ri)VCy(r. )| = AgCus(r.1).
oC,
= = VIDean(ri)VCus(r. 1] + @ [Cre: Cuo] Cun(r. ) = B Cox. Cai| Cun(r. 1.
oC
atnc =V [Dcell(r; t)VCnc(r, t)] +ﬁ [COXa Cgl] va(r, t) - )/Cnc(l’, t) ’ (3'9)

whereCo(r, t), Cqi(r, t), Cup(r, t), Cnc(r, t) represent the concentrations of oxygen and glucose, and the
densities of viable and necrotic cells, respectively. ThefmmentsDoyq(r; t) represent theféective
diffusivities of oxygen and glucose. As in real tissue the presence of cells and extracellular matrix
significantly changes theffective difusion codficients for the nutrients [65] (compare table 3.1 on
page 89) — this has been incorporated into the model by assuming the simple linearised relationship

H20 _ CnetCuwp HO _ nytissug) - thresh
D [C n C ] _ Dox/gl Cthresh (DOX/g| Dox/gl) . CnC + va < C (3 10)
ox/gl nc vb Dtissue . else .
ox/gl )

WhereDgf/(;I andD{>*:*are the measuredfllisivities in water and tissue, respectively, and the cellular
threshold concentration is just the inverse cell voluDi&sh = 0.74/V.ei, where the correction fac-

tor 0.74 arises from the maximum cell packing density that could be achieved with the agent-basec
model of section 3.2 if hard spheres are considered. The choice of a linear dependence on the ce
lular density is the simplest dependence that approximates theoretical investigations [123, 124] fol
heterogeneous media. Therefore, thudivities for oxygen and glucose become implicitly space
and time-dependent, as the populations of necrotic and viable cells evolve. Many authors in the lit-
erature use non-variableffiision constants for the dynamics of nutrients. For small molecules such
as oxygen, this approach is well justified but for glucose, tlfision codicients within water and
tissue may vary by nearly one order of magnitude (compare table 3.1 on page 89). Note that in the
agent-based approach, intermediate values for tfiesibn codicient are not included. However,

in the numerical discretisation, also in the agent-based approach the solution is obtained by linearl
interpolating the dtusion codicients between neighbouring volume elements (see subsection 2.4.2).
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The cellular dffusion codicient D is a rough measure for describing cellular mobility: For ex-
ample, when starting from mass balance equations of the fgrm V(vC) = R(r,t), whereC is a
concentrationy denotes the flux velocity arf(r, t) the local net production rate [125], one recovers
the law of difusion by assuming that the velocity is directly proportional to the gradient of concen-
trationv = —DVC. In a simple ansatz theftlision codicient may be influenced by the total cellular
densityC,, + C,c. In analogy to a model for animal dispersion [9], the relationship

DceII[va + Cnc] = DO

cell

(CVb * C”C)m (3.11)

has been chosen here, where> 0 is assumed. In case > 0 the above choice ensures that

the net difusion codficient will increase if the cellular concentration exceeds the dense packing (thus
effectively modelling intercellular repulsion) and that it will decrease if the total cellular concentration

is very small (approaching intercellular adhesion). Naturallynies O the normal dfusion constant

is recovered. Note however that the above choice fails to correctly reproduce adhesion: It is — in
contrast to other theoretical approaches [115, 126, 127] — positive definite which implies that the flux
is always directed towards regions of lower concentrations.

With equations (3.9) it is tacitly assumed that the nutrient uptake rates of viable cells are independent
of the cellular status and the local nutrient concentrations and hence, the congtgnshould be
interpreted as cellular nutrient uptake rates that have been averaged over the whole ensemble of cells
presentin a MTS. The céiicienta [C, C\p] denotes the cellular proliferation rate. To compare with

the agent-based model, it should reflect at least the phenomenon of contact inhibition. One of the
simplest functional dependencies fulfilling this requirement is given by the continuous function

amax Cnc + va S CthreSh
[Cre, Cub] = @ [Che + Cup] = CoM-(CrctCu) . (othresh o C.p. < COfit (3.12)
(01 nc> “»vb] — @ nc bl = a’max Ccrit_cthresh . < nc"‘ vb = > .
0 : else

whereamay is the largest cellular proliferation rate for the chosen cell type (compare table 3.1 on
page 89). Note that this isftierent than in the agent-based approach, where the sum of the normal
tensionT® was considered as the quiescence-inducing factor. The coi@taman be related to
agent-based models [76]: The criterion that cells can proliferate only if they are not compressed by
more than a factoK®™ < 1 is equivalent to defining

Cthresh
Kcrit ’

cet = (3.13)

where 0< K < 1 is a free parameter which denotes the compression factor below which cells are
contact-inhibited. Note that in contrast to other approaches, where the compression only decreases the
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global growth rate indirectly byféectively transporting cells from overcrowded regions into regions
with a net negative growth rate [125, 126, 128], here the compression directly acts on the proliferation
rate.

In order to account for the emergence of a necrotic core, the transition from the viable cell state to
the necrotic cell state should be determined by the local concentrations of nutrients. In order to be
consistent with the agent-based attempt and following the arguments in subsection 3.2.2, the loce
product of both concentrations has been chosen as the critical parameter inducing necrosis:

Bmax : Cox* Cq < Pt

3.14
0 : else ( )

B [Cox, Cgl] =B [Cox : Cgl] = {
whereBmax is a maximum transition rate afiRf™ denotes the minimum nutrient concentration product
to sustain cellular life functions without triggering necrosis or apoptosis. Note that it is assumed
that necrosis is a faster process than cell proliferation, which impliegthat> amax should hold.
More important, for necrosis to be able tffextively reduce the cell number, the inequality must
hold strictly, since for cell concentrations below the threshold |8%&t"the dfective death rate in
necrosis-inducing regions is determinedyx — amax. ASSuming a necrosis duration of roughly 3
hours [129] and a minimum cell doubling time of 15 hours [107] one would otain~ 6.5-10° s
versusamax ~ 1.3-10° st. As in the agent-based model (compare subsection 3.2.2), the pressure
of the fluid phase is assumed to be equilibrated and therefore the removal of necrotic cells result:
into the sink termyC, for the necrotic cell population, with being the necrosis removal rate. In
order to enable comparisons with the agent-based approach, the valnasobeen chosen identically
(compare table 3.1 on page 89 and the discussion in subsection 3.4.4).

3.3.2 Solution of the model equations

Since the coféicientsa andg in (3.9) depend on the concentrations themselves, it is obvious that
even form = 0 the model equations constitute a nonlinear system which may give rise to nontrivial
dynamics. Some model parameters — compare table 3.1 on page 89 — can be used as fit parameters
experimental MTS data. This is especially interesting for the nutrient uptakelgatesd A, and the
critical compressiok™, since these parameters can hardly be accessed directly in experiments. In
addition, diferent hypotheses on the functional dependenceaidgs as well asm can in principle

be tested to be in accordance with experimental data.

Since mostn vitro tumour spheroids are approximately spherical [14, 110, 130], spherical symmetry
has been assumed in all equations, which simplifies the numerical solution of equations (3.9) consid
erably. It is possible however, to extract simple characteristics of the model analytically from direct
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examination of equations (3.9): The only back-reaction of the nutrients to the population of viable
cells is mediated via the death r@teSince in (3.14) a non-continuous dependence has been assumed,
the dynamics of the viable cel3,, will decouple from the nutrient concentrations in spatiotemporal
domains wherg = 0. In accordance with the (ideal) experiment, one will usually start with initial
conditions, where there is an identically vanishing population of necrotic cells, a very localised dis-
tribution of viable cells, and nutrients in abundance. In this regime, the death vatevanish. In

case oim = 0 and approximating the Laplace operator for large radii, the equation for the viable cells
can then be rewritten as

dCw _ #*Cyo
= = gz T LGl (3.15)
with t* = DIt and f[Cy) = (@[Cub]/DY,;)Cup. Sincef[C,, = 0] = 0 and f[Cy, = C*] = 0,

above equation will asymptotically exhibit travelling wave solutions (see [9] and references therein)
for large radii with velocityy = 2D2  1/f'(0) = 2\/amaxD?,,, Which is reproduced in the numerical
solution (see figure 3.2). Note that this wave velocity is obtained as well if cell death is admitted: The
death rateg will not contribute to the velocity of the advancing wave front because there the nutrient
levels are comparably large. Instead, it will lead to a temporally-exponential decrease of the viable
cell density within regions through which the wave has passed.

In case ofm > 0 the situation is more flicult: Considering the dynamics of viable cells in the same
regime (¢ = amax andg = 0) one obtains (under radial symmetry and for large radii) in travelling-

wave coordinates [9, 111, 131] an ordinary nonlineéiiedential equation

0
Dce”a'max ( Cw

m-1
V2 cmresh) [CCu + MGy,Cly] + CM*(Cupr + Cu) = 0, (3.16)

whereC’ denotes dferentiation with respect to the travelling wave coordirate™(r — vt). Equa-

tion (3.16) has no obvious analytical solution. The general structure however suggests that in the
vicinity of m = 0 no singularities occur and therefore one can expect that the solutions will exhibit a
continuous transition. This is well reflected in the numerical solution (figure 3.2)mEo0 a travel-

ling wave is found as well, but the wave front is steeper and the apparent wave velocity is decreased
considerably.

The existence of a travelling wave solution with constant amplitude and width already implies that
the system (3.9) will not exhibit a steady-state in terms of the number of viable cells

Nyp(t) = 4n f r2Cu(r, t) dr, (3.17)

since the radial volume element would still lead to polynomial growth.
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Figure 3.2: Travelling waves in the continuum approach [66]. The concentration of viable cells
resembles travelling waves — here calculated for situations where the cellular dynamics decouples

from the existence of nutrientfax = 0) With max = 1.28- 10° s71, D2 | = 0.001xm? s7, and

K¢t = 0.9. Curves advancing from left to right represent densities of viable cells after 4.63 days,
9.26 days, 13.89 days, 18.52 days, and 23.15 daysmFo10 (bold black lines), the asymptotic
analytical wave velocity is 18 um day* [9], which is found in the numerical solution as well.

It can be shown by a stability analysis of (3.16) that the concentration must reach the critical cell
densityC®™, that has been marked together with the threshold cell de@gityn < C™ by dashed
horizontal lines. Fom = 2 (dashed red lines), the apparent wave velocity of the numerical solution
decreases considerablywte: 9 um day . In addition, the cells tend to aggregate leading to more
localised distributions, which is reflected by the steeper decaying cell front.
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For the numerical solution, a sphere with radius of %00 — divided into 100 concentric shells of
constant thicknesar — and Dirichlet boundary conditions for all populations has been considered
(for the details of the numerical discretisation see subsection 2.4.2 or [66]). The choice of Dirichlet
boundary conditions for the nutrient concentrations is motivated by the experiment [107], where the
measured nutrient concentrations outside the spheroids remained approximately constant between the
periodic refills of nutrient. Dirichlet boundary conditions for the cell populations emerge naturally in a
multiphase approach [115] as well. However, with the stationary boundaries employed here, it should
be verified that the assumption of vanishing Dirichlet boundary conditions for the cell populations
does not make a flerence to no-flux von-Neumann boundary conditions in the observed time-range

of 25 days, i. e., essentially that the cell population does not interact with the boundary. This ap-
proximation is only valid for the small cellularfiiusion codicient, since larger éiusion codicients

lead to an increased velocity of the advancing tumour front. As already argued in subsection 3.2.2,
the pseudo-steady-state approximation (compare appendix C.1.2) has been applied for the RDEs of
the nutrients. The volume integral (3.17) of all densities yields the total cell numbers for viable and
necrotic cell populations or the total number of glucose and oxygen molecules in the reaction volume,
respectively. This opens the possibility of comparison with an experimental signature.

3.4 Results

Some parameters have been fixed from values from independent experiments (see subsection 3.4.4)
and based on observations on MTS with ElyR6 cells [107], several computer simulations with the
agent-based and the continuum model have been performed. fiéreice to experimental growth
curves has been minimized by applying a deterministic multi-dimensional fitting procedure [68] to the
models (see appendix C.3), but owing to the long runtime of the agent-based model, this procedure
was only successful for the continuum approach. Following the assumption that whole spheroid
populations were grown from single tumour cells (monoclonality of spheroids), all simulations have
been started with a single cell in a localised (stepwise) distribution, such that the density was non-
vanishing in the innermost volume compartment only. Note that within the continuum approach, this
over-extrapolation of continuum theory to few initial cells did not lead to significant errors for the
chosen discretisation, as these initial deviations from the agent-based approach were small, compare
figure 3.3. From the culturing conditions described in [107] it is not clear whether the spheroids
started from single cells. In fact, it is highly probable that tumour cells already aggregated before
spheroid formation. Nevertheless, this would mainly correspond to a shift in time — as can be verified
in the models — since the initial conditions can still be safely assumed to exclude processes such as
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contact inhibition or nutrient depletion. Using the models from sections 3.2 and 3.3, growth curves
have been calculated forftkrent nutrient concentrations andfdrent hypotheses on nutrient uptake,
necrosis induction, and cellular mobility. The simulations have been compared with four series of
experimental data, where fourfiirent combinations of oxygen and glucose concentrations have been
investigated. Naturally, within one set of simulations all parameters but the nutrient concentrations
have been kept fixed. The fitting procedure has been started fftenethit parameter sets and the best
minimum has been kept.

3.4.1 Population Dynamics

The overall cell number is a parameter which can be quantified experimentally by either indirectly cal-
culating cell numbers from observed tissue volumes or directly by extensive automated cell-counting.
In [107] the cell number has been determined directly for moderate cell numbersféerdrdi con-
centrations of oxygen and glucose. Qualitatively, one can see that for all the simulations the initial
exponential growth phase soon enters a crossover to a polynomial growth. Within the model this
crossover is due to two distinct mechanisms — contact inhibition and nutrient depletion — which lead
to the similar outcome that after a certain time dominantly the spheroid surface will contribute to the
proliferation, i. e.,

Z—':' =aN?3, (3.18)
which has the polynomial solutioN(t) = N [1 + Bt + B2/3 +,83t3/27] with 8 = a/N)°. Apart
from the fact that necrosis is evidently more likely when nutrients are rare, the mechanisms cannot b
clearly distinguished with a glance at the total growth curves in figure 3.3.
The total cell numbers in figure 3.3 demonstrate that the assumption of the nutrient concentratior
product being a critical candidate for necrosiffises to explain experimental data within the level of
their own uncertainty. This is independent of the model chosen and thus can be considered a robu:
feature. Unfortunately, no error bars are given in [107] and the experimental data scatter consider
ably even on a logarithmic scale. The visudtelience between agent-based and continuum models
reflects beyond inherent modelfi@girences also the fact that due to the long runtime the automated
minimization procedure (compare appendix C.3) can be applied to agent-based models with limitec
success only. In addition, it is found that for the continuum model the possibility of leavama fit
parameter does not significantly improve the quality of the fit. The correspondtiegetices become
visible in other experimental signature such as the spheroid morphology (compare figure 3.6). Note
that none of the model approaches displays a saturation of growth. However, such a saturation is nc
clearly indicated by the quantified experimental data as well.
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Figure 3.3: Number of viable cells per spheroid [66, 77] forffdrent nutrient concentrations.
Comparison of the agent-based modeb(row) and diferent versions of the continuum model
(bottom row) to experimental data (symbols, reaffl ioom [107]). Nutrient concentrations corre-
spond to the conditions in the experiment. The simulations (solid lines) have been started with a
single cell (or the closest realisable cell distribution in the continuum case). For small cell num-
bers, the discreteness of the agent-based model is visible by the initial discontinuities in the cell
numbers. For the continuum model, dashed lines (visible for low nutrients) indicate the special
variant withm = 0, whereas for the solid linea has been varied as a fit parameter.



3.4. RESULTS 81

Since the mechanism of contact inhibition leads to cells resting irather than cells entering necro-

sis the diferences can be analysed in the cell cycle distribution in figure 3.4 (compare also figure 3.6
for the PDE model). In figure 3.4 it is evident that for 0.07 mM oxygen and 0.8 mM glucose concen-
trations (upper left panel) the nutrient starvation is the dominant limiting factor to cell cycle inhibition,
since there are nearly no cells in-hase and the majority of cells is necrotic. In the case of nutri-
ent abundance (0.28 mM oxygen and 16.5 mM glucose, figure 3.4 lower right panel) however, the
majority of cells resides in gsphase during days 6-23, which is an indication for contact inhibition
being the dominant reason for the crossover, as is also assumed in other models [76]. This is as we
confirmed by the cross-sections of the computer simulated tumour spheroids (figure 3.5). Thougt
in the case of nutrient abundance necrosis sets in much later, the number of necrotic cells rises at
much stronger slope and it is to be expected that necrosis will displace the contact inhibition as the
major cause for surface-dominated growth after 25 days (with overall rougHlg™cells involved,

the simulations become very extensive and memory-consuming). Such a displacement of dominatini
mechanisms is already visible for some intermediate nutrient concentrations. For example, in the cas
of 0.07 mM oxygen and 16.5 mM glucose concentrations (figure 3.4 top right panel) the number of
cells in G-phase first rises to reach its maximum after 10 days and afterwards decays in combinatior
with a strong rise in necrotic cells. Such a behaviour is not observed in the regime of large oxygen anc
low glucose concentrations, where necrosis and contact inhibition set in simultaneously and nutrien
starvation is the main limiting factor (figure 3.4 bottom left panel). This is due to the considerably
decreased glucosefilision codicient in tumour tissue, whereas thé&dsion codicient of oxygen is

nearly the same in tissue and water. Consequently, the already low glucose concentration of 0.8 mN\
at the boundary drops rapidly when the number of tumour cells increases, since new glucose suppl
diffuses very slow from the outside.

The reduced PDE model does not resolve the internal states of the cell cycle. However, in figure 3.¢
it is visible that for low nutrient concentrations contact inhibition is not existent, whereas for large
nutrient concentrations contact inhibition dominates necrosis as the cause for growth retardation. Thi:
is in qualitative agreement with the agent-based approach. However, in contrast to the agent-base
model, the PDE model hardlyftierentiates between cases where only one nutrient is limited.

3.4.2 Tumour Spheroid Morphology

To estimate the quality of a mathematical model one has to find experimentally accessible parameter:
This is especially diicult when thinking about tissue morphology, since very often the patterns are
hard to quantify in terms of numbers. It is evident that the spherically-symmetric continuum model
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Figure 3.4: Cell cycle distributions for agent-baseudsilico MTS [77]. Depending on the external
nutrient concentrations, significantfidirences mark the dominance offdient mechanisms to

limit the cell cycle. The nutrient concentrations have been chosen as follmpdeft: 0.07 mM
oxygen, 0.8 mM glucosd&op right: 0.07 mM oxygen, 16.5 mM glucosBpttom left: 0.28 mM
oxygen, 0.8 mM glucoséBottom right: 0.28 mM oxygen, 16.5 mM glucose. Fits to the regions

of exponential growth (dashed lines) — marked by the complete absence of necrotic and quiescent
cells — reproduce the shortest observed cycle time within statistical fluctuations depending on the
random number generator seed. The initial oscillations in the sub-populations in the cell cycle
stem from the fact that the cells divide synchronously at the beginning. Their frequency is the
inverse cell cycle time. After each cell division, the daughter cells draw new duration times for the
S/Gy-phase and the M-phase from a normal distribution (compare table 3.1 on page 89), which
leads to a dampening of the oscillations and finally to complete desynchronisation of cell division.
The occurrence of contact inhibition or necrosis increases the dampefeng since the advance
through the cell cycle is disturbed. In the case of few nutrients (top left), contact inhibition does
not play a role as there are no quiescent cells.
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will produce nothing but spherically-symmetric morphologies. However, further parameters such as
spheroid size, thickness of the viable rim etc. can still vary. Qualitatively, the typical spheroid mor-
phology (proliferating rim, quiescent layer, necrotic core) is well reproduced in the case of nutrient
abundance by both models (figures 3.5 and 3.6). In addition, both models predict that in the case o
nutrient starvation there is virtually no layer of quiescent cells, as contact inhibition is not of impor-
tance in this scenario. Note however, that this would Ifiedint if quiescence is induced by nutrient
limitations: In this case, the necrotic core would always be surrounded by a layer of quiescent cells.
For both models it is evident that the size of the layers depends on the boundary concentrations. |
addition, it depends on the nutrient consumption rates affigsiliities of oxygen and glucose within

the tumour tissue.

Due to the removal of necrotic cells with rag&*“, the cellular density within the necrotic core is
considerably decreased in comparison to the viable layers in both the agent-based model (figure 3.t
and in the continuum model (figure 3.6). In the agent-based model, this is reflected in the decline of
the cell tensions in the necrotic core (bottom row of figure 3.5). FHdewrtint situations, namely in

vivo tumours, sometimes large pressures of the fluid phase in the necrotic core have been observe
(private communication with Prof. Dr. Peter Walden, ClaBerlin). This is neglected in the current
model, since the pressure of the fluid phase is assumed to be equilibrated.

Note that in the spheroid cross-sections (figure 3.5) it is evident that — if oxyge¢orajidcose are
limited — a relatively small number of cells with constant nutrient uptake rat@seas to drop the
nutrient levels under the critical threshold thus leading to the onset of necrosis and the absence of
layer of quiescent cells in the end of the simulations (compare figure 3.4). This wouldére ol

for a model with concentration or cell-cycle dependent nutrient uptake rates. In the first case the
absolute value of the nutrient concentration gradients would be decreased thus giving rise to a broade
viable layer which — in turn — could allow for the existence of a quiescent layer. In the second
case the intermediate emergence of cellular quiescence would as well decrease the absolute val
of the nutrient concentration gradient towards the necrotic core, which would prolong and possibly
stabilise the existence of a quiescent layer also for nutrient-depleted configurations. Therefore, ir
order to distinguish between nutrient uptake models, the tumour spheroid morphology is an importan
criterion, whereas the simple total growth curve is ndlisient to make quantitative predictions about

the mechanisms at work.

Interestingly, the spheroids in figure 3.5 are fairly round, especially for the case where nutrients are
provided in abundance. This is due to the stochastic nature of the mitotic direction which forces initial
differences to average out after some time. The general growth characteristics is hardly sensitive t
the specific order of the stochastic event#fé@lent instantiations can be created by restarting the code
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with equal parameters butftBrent seed values for the random number generator) — the growth curves
initially display slight diferences but recombine soon (data not shown). This is in agreement with
many spheroids observed in the experiment [107] and in other computer simulations [103]. However,
the spheroids are less spherical for extreme nutrient depletion, since firstly the small cell number
yields less stochastic events that contribute to the averaging and secondly the emergence of localised
holes in the necrotic core is not counterbalanced by a strong mainly isotropic proliferative pressure
from the proliferating rim — as is the case for large nutrient concentrations. The deviations from the
spherical form as sometimes observed in experiments [98, 110] can have the additional reason that
in the experiments the spheroids might be heteroclonal while all cells in the simulation are assumed
to be monoclonal: A spheroid developing from geneticallfeding subpopulations might display
anisotropic growth.

Figure 3.5: Cross-sections ah silico MTS in the agent-based model [77]. The cross-sections
correspond to the configurations after 23 days. Nutrient concentrations from left to right are given
by 0.07 mM oxygen with B mM glucose, M7 mM oxygen with 16 mM glucose, 8 mM
oxygen with 08 mM glucose, and.28 mM oxygen with 166 mM glucose. The spheroid sizes

are indicated in figure 3.6 as wellop row: Shown is the cellular status (necrotic cells painted
grey, quiescent cells yellow, mitotic cells in red, cells ig-g@hase green, and cells iflGy-phase

blue, respectively)Bottom row: Displayed is the cellular tensioff"™ (free cells in blue, strongly
compressed cells in red). The removal of necrotic cells in the necrotic core leads to a relaxation of
the cell tensions in the model.

For the agent-based model, there are considerable steeetices between spheroids with nutrients
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in abundance and spheroids with low nutrient levels. This is in good qualitative agreement with ex-
perimental data. To this degree, this behaviour is not found by all variants of the continuum approach
For example, fom = 0O the velocity of the travelling wave solely depends on the celluldusion
codficient and the maximum proliferation rate (compare figure 3.2) and therefore it is equal between
test runs with dierent nutrient concentrations. Consequently,nfoe 0 the calculated spheroids
have the same macroscopic size for all nutrient concentrations, as is confirmed in figure 3.6: Half
of the maximum spheroid cell density is reached at a radius ofy3806- regardless of the nutrient
concentration. In this model ansatz, thé&eliences in the overall cell number result from the local
density amplitude only. The assumption= 0 is therefore in direct contradiction with (unquanti-

fied morphologic) experimental data and the corresponding agent-based approach. One might expe
from figure 3.2 that if one allows for a variabldidision exponentn > 0 in the continuum model, the
effective velocity of the travelling waves should decrease considerably. However, in figure 3.6 this is
not the case except in the case of poor nutrient support: In this case the spheroid grows to a radiu
of 300 um, whereas in case of nutrient abundance the spheroid front can be found am338H

cases where only one nutrient is limited, the spheroids are negligibly smaller with roughpyn870

In this respect one should keep in mind that neitimetor the cellular dfusion constanb?,, have

been fixed in this scenario. Therefore, in order to fit the overall cell numbers to experimental data,
the cellular dffusion constant must necessarily increase: The local cellular density is bou@ft! by

and the only way to harbour enough cells within the tumour spheroid is to increase the velocity of
the propagating wave. Consequently, it does not come as a surprise, that the macroscopic sphero
sizes in the scenarios where the threshold concentr@i®"is reached do not ffer very much.

The diference becomes manifest only in the case of nutrient starvation, where contact inhibition does
not play a role at all. Here the resulting sizéféiences of the spheroids reproduce the results of the
agent-based model (figure 3.5) much better. Still, it must be said that the spheroidff@rendes

in the agent-based model have not been fitted directly to experimental data, for which a quantifica-
tion of these morphologic parameters would be necessary. A possible improvement resulting from
the choice ofm > 0 is the more sharply-pronounced transition at the spheroid boundary, since this
agrees much better with experimental observations and the agent-based model (compare figure 3
left panel). However, it should be kept in mind that the procedure of obtaining the cross-sections of
spheroids is rather invasive, as for example their fixation results in a shrinkage of 10-20 % [107]. One
may speculate that cells only bound loosely to the spheroid may be removed by fixation.

In case of nutrient starvation, the cellular concentrations of both models never reach densities tha
might induce contact inhibition and the only mechanism inhibiting cellular growth is necrosis (com-
pare figures 3.4, 3.5 and 3.6). In all other test configurations, the cellular density of the continuum
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model (figure 3.6) locally exceeds the threshold concentralitif®" Cells residing within regions,
where the cellular concentration lies ab@®&®s" have a decreased proliferation rate and are there-
fore interpreted as quiescent within this continuum model. Consequently, both contact inhibition and
necrosis play an important role in all other scenarios. The first initially dominates if nutrients are
provided in abundance, whereas the latter dominates if nutrients are rare. Note thafeitenck

in comparison with the previous definition of quiescence in the agent-based model (subsection 3.2)
consists of two facts: Firstly, here afidirent — volume-related as in [76] — criterion for quiescence
has been chosen. Secondly, in contrast to the agent-based model definition this criterion is continu-
ous, i. e., proliferation is only diminished betwe@i®s"andC.;;. Consequently, one may question
whether this model feature correctly represents contact inhibition: If in the continuum approach the
dependence is made discontinuous by setGff" = C;; then — provided initially the cell den-

sity is always belowC™"s"— one will not observe cellular densities ab&@®&°®s" since even a slight
overpopulation results in a vanishing growth term and is worn away fiysitbn or death terms.
Consequently, one would not encounter contact-inhibited cells in the continuum model at all in this
case.

Within the time frame of the experiment and the given nutrient concentrations, the model will always
predict the emergence of a necrotic core as soon asfiaisat number of cells has developed. As
quiescent cells consume nutrients as well within this model, it can be expected that the number of
quiescent cells will always be outgrown by necrotic cells after some time. Note that the present con-
tinuum model poorly dterentiates between the scenarios where only one of the nutrients is restricted:
For both scenarios, a thin contact-inhibited layer followed by a large necrotic core is predicted. In
contrast, in the agent-based model, contact inhibition is more pronounced when glucose is provided
in abundance and oxygen is restricted in comparison to the case where more oxygen than glucose is
provided. So far however, the quantitative experimental signature is too podfarediiate between

the models in this aspect.

3.4.3 Distribution of nutrients

The stoichiometry of the clean combustion of glucosgdGO0s+60, — 6H,0+6CO, would require

the molar nutrient uptake rate of oxygen to be 6 times the molar glucose uptake rate. However,
for tumour tissue this cannot be the case as it is well-known that in the direct vicinity of tumours
the concentration of lactic acid increases considerably which is a direct evidence for the incomplete
combustion of glucose.

Since the evolution of the nutrients is coupled to the cellular distribution, the concentration of nutrients
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Figure 3.6: Cell densities for dterent nutrient concentrations in the PDE model [66]. Results refer

to the distributions after 23 days. The black bold lines denote simulations where the expdaesnt
simultaneously been determined as a fit parameter, whereas the red thin lines represent simulations
with m = 0. The cellular threshold concentratiGf"s"has been marked by the horizontal dashed
orange line. Within each panel, the two vertical dashed green lines denote the approximate size
of the necrotic core (left line) and the complete spheroid (right line) in the agent-based model
(compare figure 3.5), which has been estimated using the largest distance of a necrotic or viable
cell from the spheroid centre, respectivelpp Left: Cellular concentrations for 0.07 mM oxygen

and 0.8 mM glucose concentrations. As the concentrations never @& contact inhibition

does not play a role within this scenariiop Right: Cellular concentrations for 0.07 mM oxygen

and 16.5 mM glucose concentrations. A thin layer of partially contact-inhibited cells emerges.
Bottom Left: This is similar for 0.28 mM oxygen and 0.8 mM glucose concentrati@attom

Right: Cellular concentrations for 0.28 mM oxygen and 16.5 mM glucose concentrations. The
spheroid exhibits a thick layer of contact-inhibited cells.
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will fall wherever viable cells consume nutrients (figure 3.7). The distribution of nutrients has been
calculated with the pseudo-steady-state approximation (compare appendix C.1.2), which enforces the
immediate reaction of the nutrient concentration to the cellular positions. The region of steepest
concentration descent coincides with the localisation of viable cells, i. e., with the sink terms. This
relation is found in both models and for both nutrients. Due to the larg&rstbhn codficients of
oxygen, the gradients of the oxygen concentration tend to be smaller (not shownn Fdr the
gualitative appearance in the PDE model hardly changes: Due to the slightly increased glucose uptake
rates (see table 3.1 on page 89) the baselines are a bit lower than in figure 3.7.
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Figure 3.7: Plot of the glucose and oxygen distributioniseft: In the continuum model with

radial symmetry, the glucose concentration has been calculated for 0.28 mM oxygen and 16.5
mM glucose boundary concentrations andeing determined as fit parameter. During tumour
growth, the concentration of glucose drops as soon as the density of viable cells reaches significant
concentrations. The region of steepest descent coincides with the travelling localisation of viable
cells (rescaled population density shown after 23 days, thin full liReyht: This is similar in

the agent-based model (after 23 days, same boundary conditions, numbersudenetbere the
oxygen concentration displays spherical symmetry (transparent isosurface at 0.1 mM) for large
spheroids as well.

3.4.4 Parameter Sensitivity

The growth curves shown in figure 3.3 have been calculated using the parameters in table 3.1 on page
89. Generally, one can say that in order to correctly fit the global cellular growth curves, a necrotic
core always emerges. The emergence of a necrotic core is not an intrinsic ingredient of the models
— there are local minima in the parameter space that did not exhibit a necrotic core in the observed
time range, but these parameters did not fit the data with acceptable quality. Therefore, it is a robust
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parameter value [66] ‘ value [77] ‘ remark
mitotic phaser(™ - (L0+0.25) h [132]
S/Gy-phaserS/©2 - (5.0+2.0) h [132]
cell elastic modulug - 1000 Pa [133]
cell Poisson number - 0.5 [134]
adhesive ca@icient f2d - 1.0- 104 uN um2 [88]
ECM viscosityn - 5.103 kg um st [76]
adhesive frictiony™& - 0.1 kgum—2st [76]
oxygen difusivity Dz 24400 ym?s1 24400 ym?3s1 [135]
oxygen difusivity DU 175Q0 um?s™t 17500 um?s™t [136, 137]
glucose dffusivity D;zo 6910 um?st 6910 um?st
glucose diusivity D‘g‘fs 1050 um?s™t 1050 um?st [138]
cell proliferation @max = 1.28-10°s71 7Mn = (150+2.0)h | [100, 107, 113]
threshold densitgtesh 1.41-10°8 ym=3 Reell = 5 um
necrosis removal rate 2.0.106s1 2.0-106s1
contact inhibition criterion|  K° = (0.64 + 0.28) (0.69) TCt = 600 Pa [76, 106], fit
oxygen uptake rat@ox | (219 +5.1) (200) amol celt's™t | 20.0 amol celtls™? [113, 139], fit
glucose uptake ratéy (34.0 + 9.3) (400) amol celt's™* | 95.0 amol celtls™t | [112, 113, 139], fit
nutrient producPe't (0.040+ 0.003) (Q045) mM? 0.025 mM fit
exponenm (0.73+0.37) (00) - fit (fixed)
cell diffusion constanb?®,, | (2.7 +1.4) (0.9)-103 um*st | (10-10*um?s™) | [76, 77, 120], fit
NEcrosis rat@max (113+7.7) (79)-10°s?t - fit

Table 3.1: Best fit parameters for agent-based and continuum models of MTS. Model parameters
that have reproduced the best fit to experimental growth curves in figure 3.3. The first section
contains parameters exclusively used in the agent-based model, the second section parameters used
in both models, and the last section parameters used in the continuum model. The uncertainties in
the first column have been estimated by calculating the projection of the hyperellipsoids of constant
Ax? (subjectively defined by an increase)df by 5% for acceptable fit quality) to the parameter
axes. For the values in the first column in parenthesis, the expamkas been fixed ton = 0.

If widths are given, the values correspond to one standard deviation. Note that the cellular radius
of 5 um as assumed in the agent-based model directly corresponds to the value uSEgSor

if maximum cellular packing density of 74% is assumed. Similarly, the minimum cycle time and
the maximum proliferation rate are inter-related. Citations in the right column contain evidence
supporting the particular choice of parameters. For detailed explanations see the text.
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feature — independent of the choice of the model and can be considered a qualitative prediction. The
model is not equally sensitive to changes of the parameters:

Since parameters of the agent-based model such as the length of the M#fhagd the $G,-phase

7(8/G2) do not directly #ect the overall cycle time™", but the length of the Gphase in this model

and thereby the growth velocity of single cells, their over&ket on the total population dynamics

is rather small. Instead, these parameters control the relative distribution of cells in the cell cycle.
In addition, their widths combine to a normal distribution of tHEeetive cycle time and thereby
control the dampening of the oscillations in figure 3.4 in absence of contact inhibition or nutrient
depletion. For a reliable estimate of these parameters an analysis of the cell cycle distribution would
be necessary.

The elastic and adhesive parameters of ENRGtumour cells might dier from those relevant in

the agent-based simulation, where incompressibility has been assumed with choeshg. For
example, assuming reduced Poisson raties0.3 and cell elasticities of ~ 750 Pa [76, 116], one

may obtain deviations in the elastic forces in (3.2) in the range of up to 50 percent. The adhesive
constantfdis a rather unknown parameter as well. It can can be estimated from the elastic constants
by comparing the visual appearance of cell doublets (see e. g. [88]) with the equilibrium distance
resulting from equation (3.2). As with all biological systems, considerable variance even within
single cell types can be expected [116, 133, 134, 140]. However, with moderate changes in these
parameters, the growth characteristics for the overall cell number does not vary strongly: With the
given friction parameters, the cellular tensions relax on a shorter timescale than the cell cycle time
(compare equation (3.2) and figure C.7 in the appendix).

The combined viscosity of the extracellular matfighosen here corresponds to that of viscous honey,
whereas the typical surface-related friction fméenty™* has been estimated in [76] from indepen-

dent experiments [141]. As with the adhesive and elastic parameters, these friction parameters deter-
mine the relaxation time for cellular interaction. As long as these relaxation times are much smaller
than the cell cycle time, little influence can be expected.

The difusion codicients of the nutrient@ﬂfj/g',*jf evidently influence the nutrient distribution. Within
physiological windows [136, 138] however, the model is robust against changes of these parameters.
Note that the dfusion codicient for oxygen is nearly the same in tissue and water. For the continuum
approach it turned out that the assumption of a spatially uniform oxydershity hardly made a dif-
ference in comparison to varying oxygertdsivity [66]. Therefore, the approximation of assuming

a constant oxygen flusivity [111, 115] is well justified. This does not hold true for glucose, as can

be expected from the largeftérences of the €fiusion constants in water and tissue.
The proliferation rate of the continuum model is related to the shortest cycle time of the agent-based
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approach viaIn Z amaxrmin. IN[107] aninitial cycle time of 17 h has been obtained using a Gompertz
fit [compare equation (2.2)] to the spheroid volume. This fit had been applied to already existing small
spheroids that may exhibit growth retardatidteets. Therefore, it does not come as a surprise that
the cell doubling times obtained from [113] range between 13 and 17 hours. Naturally, the initial
evolution of the cell numbers (figure 3.3) critically depends on the cycle time. Note that the deviation
given forr,, results from the quadratically added standard deviation€"bandr>/%2. In the model,

it is necessary for the desynchronisation of proliferation.

Similarly, the threshold densi@""s"and the free cell radiuR are inter-related (see subsection 3.3).

In the continuum model however, a dense packing has been assumed by including the correctio
factor 0.74 into the definition oE™s" which does not have to be realised neither in reality nor in
the agent-based model. The consequences of such a misestimate are inter-related with the conte
inhibition parameters (see below).

The removal rate of necrotic celjshas been fixed to the same value for both models here. If —in
the agent-based model — adhesidf) is not much stronger than the value given, this rate mainly
determines the density of the necrotic core. Since the fit is done to the number of viable cells and
since these are only weakly coupled to the density of necrotic cells, its quality is hardly sensjtive to
over several orders of magnitude. This is illustrated by the bottom row in figure 3.5, where the tension
in the necrotic core is relaxed due to removal of necrotic cells. For very strong intercellular adhesion
however, where growth saturation may actually be obtained within the agent-based model (compar
subsection 3.4.5), this parameter determines the total size of the necrotic core and thus the size of tf
whole spheroid as well. In addition, if the parameter is set to vanish, no necrotic cells will be removed
and one can expect intercellular tensions to persist within the necrotic core.

In both models, the contact inhibition (represented by the critical comprek$ibim the continuum

case or the critical normal tensidif™ in the agent-based approach) strongly influences the growth
curve when nutrients are supplied in abundance. The value that is obtained as fit parameter in th
agent-based model is considerably larger than that which one would obtain from the corresponding
normal tension of an isotropically compressed sphereryia E/[3(1 — 2v)](AV/V) (with E = 750

Pa,v = 0.33, andAV/V = 0.1 in [76]). Since a dterent cell type is considered here, these model
parameters cannot be compared directly. In part, the discrepancy between the agent-based models
this thesis and the one presented in [76] may be due to the Voronoi surface correction in equation (3.3
— surfaces tend to be smaller than the sphere surfaces used in [76] — which leads to generally large
normal tensions. However, the continuum model points to stronger cell gravitv(~ 0.35 > 0.1)

than in [76] as well. As argued before, the dense packing might neither be realised in realistic MTS
[107] nor in the agent-based model. Still, when combining the compression of the continuum model
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with the elastic parameters of [76], one obtains an inhibition tensiad (@50 P3, which is much

closer to the value df°™ in the agent-based model than to the corresponding isotropic compression as
defined above. Finally, in the original experimental investigation [106], a much larger cell tolerance
than in [76] regarding compression is obtained for fiedent cell type. One should keep in mind

that both the continuum model and the agent-based model in the overdamped approximation do not
correctly describe the distribution of pressure. For strongly compressed tissue, it will rather obey a
wave equation involving secondary time derivatives.

The fit to the growth curves is very sensitive i@, Aox, andPgi;. Though these parameters have

the same order of magnitude for both models, the glucose uptakag éteby a factor of 2 to 3
smaller in the continuum model. It is not surprising, that a smaller glucose uptake rate than in the
agent-based model must come with an increased nutrient threBHbIdb fit the experimental data.
However, the continuum model — started with the parameters of the agent-based model — does not
produce a fit of similar quality (data not shown). Th&elience may be a consequence of thedent

cell density distribution in both models, which is due to the replacement of cellular adhesion and
repulsion by an fective difusion codicient. A clean combustion of glucose would require the ratio

of oxygen and glucose uptake rates to be around 6 : 1 — in the agent-based model this is actually
contradicted with ratios of about 1: 5. In the continuum model, this surprigtiegtas still existent,

but less pronounced with a ratio of 1 : 2. However, it is well known that tumour cells do not cleanly
combust glucose thereby leading to acidification of the tumour environment. Experimental estimates
concerning a dierent cell line point to a ratio of 1 : 1 [112], whereas [139] reports a ratio of 1 :

4 for EMT6E/Ro cells. Generally, uptake rates of both oxygen and glucose will depend on the local
nutrient concentration and thereby indirectly on the ENR® spheroid size under consideration.

The absolute value of the cellular glucose consumptionigteompares with experimental data on
EMT6/Ro spheroids [139] — wherg, = 156+ 53 amoj(cell s) (n=6) have been measured — and

with other tumour cell lines [130]. Wehrlet al. [139] report the original experimental uptake rates

in [142] to be in the range aly = 90 amol(cell s). These values support the glucose uptake rate
found in the agent-based model. A value for the consumption of oxygen is given in [139], where
Adox = 40 amoj(cell s) is reported. Generally, the late stages of spheroid growth depend critically
on the nutrient-related parameters. In summary, the resulting parameters for nutrient uptake rates are
well within the range observed in the literature [114, 118], but some considerable variances within the
literature exist. Apart from the fact that ofterfldirent cell lines are analysed, the additional problem
exists that the values in the literature are usually volume-related uptake rates that have been fitted to
experimental data. Equally important however, is the strong dependence of nutrient uptake rates on
further conditions such as nutrient concentration, position in the cell cycle, metabolite concentration
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etc.

In the continuum model, the quality of the fit to the overall cell number can be increased slightly by
varying the exponenn as a fit parameter. However, the model is very sensitive to the celldfar di
sion constant via the cell density distributidb?,, is automatically tuned to obtain a similar apparent
wave velocity (regardless of the valueraf, which manifests itself in a threefold® , for m= 0.73 in

cell
comparison tan = 0. This underlines the sensitivity of the fitting procedure (compare appendix C.3).
By determining these mobility parameters with an independent experiment, and by fixing the rather
approximate parameters for mechanical cell interaction in the agent-based model one would have
possibility of model falsification. This however should rely on a well-defined experimental model.
The fact that the resulting flusion constants are more than one order of magnitude larger than the
typical diffusion constants from stochastic forces in the agent-based model should come as no sur
prise, as cellular movement in the agent-based model is dominated by elastic and adhesive interactic
forces, whereas in the continuum model random cellular movements account for all cell mobility.
The necrosis transition ra,.x mainly determines the spatial width of the region where viable and
necrotic cells coexist and has little impact on the produced cell number over several orders of magni:
tude. Therefore, the fact that the derived necrosis transitiorBsate- implying transition durations
of roughly 2 hours — is well within the expected range must be interpreted as a direct consequence
of choosing this value as a starting position for the fitting procedure rather than a prediction of the
model.

Since the movement-related parametarand D2, are used in (3.11) to mimic elastic and adhesive
cellular properties, one can state that the agent-based model has an advantage in this respect, sinc
inherently incorporates parameters with a physical meaning. However, the existence of a continuun
model with similar results proves, that on this macroscopic scale (by comparing the total cell num-
bers) a discrimination is possible neither between the PDE models of constant and vaitysigiti

nor between continuum and agent-based models. In the present example of MTS, in addition the
morphology must be compared. This is only possible if it is given in quantitative form, i. e., reliable
measurements including error estimates of relative sizes of the quiescent layer, the necrotic core ar

the proliferating rim under well-defined initial conditions.

3.4.5 Saturation of growth

A complete saturation of the cell number or spheroid size — as observed in [107] and others [108]
— cannot be reproduced in the computer simulations with the parameters in table 3.1 on page 8¢
The large scatter of the data in the case of nutrient depletion (figure 3.3 left panel) does not exhibit
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a clear saturation within 25 days, which is not reached in the other configurations anyway. For the
explanation of a growth saturation the nature of the additional mechanism remains controversial. For
example, in [108] anféective movement of cells towards the necrotic core has been observed leading
to the assumption of a chemotactic signal secreted by necrotic cells. The corresponding computer
simulations in [7] did lead to saturation. Here, a simpler hypothesis may be tested:
In the spheroid cross section (figure 3.5), macroscopic holes are visible within the necrotic core —
created by the removal of necrotic cells from the simulation. Once such a hole is established, it even
tends to grow, since the intercellular adhesion is of short range only. An increase of the adhesive
normal forces could inevitably couple the proliferating ring to the necrotic core which finally leads
to growth saturation: In such a system, the volume loss generated by removing necrotic cells with
ratey must be balanced by a movement of proliferating or quiescent cells from the outer layers into
the necrotic core. Consequently, the cell density will then not exhibit fluctuations, which results in a
spatially uniform distribution of cell tensions in the necrotic core. In addition, the outward component
of the proliferative pressure on the outer layer is counterbalanced by the increased cellular adhesion
as well. Then a growth saturation is inevitable: As in the late stages of spheroid growth the cellular
birth rate can be assumed to be proportional to the spheroid siRfage: «N%2 and the rate of cell
removal is proportional to the number of necrotic cells residing in the centre, the total cell number
can be described by

c;—':' = aN?3(t) - B[N(t) - yN*3(t)| (3.19)
with a, 8,y being positive constants. Via combining the terms wWitH® one can see that above
equation resembles the growth law of Bertéligri12]. The solution of this equation reaches the
steady statél,, = (% + y)g, which is stable fop > 0. Therefore, in this regime the nutrient depletion
is the dominant factor limiting tumour spheroid growth.
It turned out that an increase of adhesive normal forces by a factor off&te 0.0003 uN/um?
sufices to close the visible holes completely and led to growth saturation in the observed time range.
This may be due to displaced equilibrium distances resulting from equation (3.2), which induce mul-
tiple virtual overlaps at intercellular contact regions. Thereby, the removal of a single necrotic cell
may significantly influence the surrounding cells. A lower bound for the equilibrium distance can be
obtained by using the virtual spherical contact surfA,§°€ereoccurring in equation (3.2). Then, for
the two spheres with radR,;,; the equilibrium distancdﬁq can be derived by using; = R + R; — d;

and
sphere 7T 1 ( i ')2
o =§{F§?+Rf—§d?ll—1— (3.20)
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in equation (3.2). The equilibrium distance has to obey

(R-RY)" eq)?
o VRR|R R S - 3]
=5 3 : (3.21)
i VRR/ (R +R; - d)

which can be solved numerically fdﬁ.q (see figure 3.8 left panel). Note that the actual equilibrium

=
o

R; =5 pm, IJR=5pm
—— R=5pm, Ij?z 3.9685 pm
R, =3.9685 pm, JR: 3.9685 unj
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Figure 3.8: Lower bounds on the equilibrium distance for selected parametssft: For all
fad > 0, there exists a lower bound on the equilibrium distance. Horizontal dashed lines correspond
to contact distancesR( + R;), whereas vertical dotted lines correspond to the valueEdf=

0.0003uN/um? (left line) andf29 = 0.0001xN/um? (right line) that were used in the simulations.

All other parameters have been chosen as in table 3.1 on page 89. Note that for the left dotted line,
the lower bound on the equilibrium sphere distance is smaller than the sphere radii. However, since
the contact surface in equation (3.2) is improved using a Voronoi estimate, the actual distances will
be larger.Right: For extreme cases, removal of a vertex may establish sphere-sphere contact of
two vertices that had not been in contact before.

sphere distance will mostly be larger than the lower bound given in figure 3.8 left panel, since the
smaller Voronoi contact surface for dense packings could also be simulated by a smaller value of
fad Nevertheless, large overlaps will exist that enable a quick formation of cell-cell contact as in the
right panel of the same figure. Since the model is based on the intrinsic spherical shape, such larg
virtual overlaps may seem unphysiological. At least, they extrapolate the intercellular contact model
into regions for which it has not been intended. However, in reality the breakup of a necrotic cell is
a continuous process. The membrane of a necrotic cell will rupture and expel the cell content into
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the surrounding fluid phase. Thereby, the intrinsic cell shape will not be spherical anymore. If the
membrane is removed after some time as well, re-establishment of the contact may be possible.

A pseudo-Brownian cellular motion can either be incorporated by simulating a symmetric and
o-correlated stochastic force (see appendix C.2.3) or by adding to every coordinate a normally-
distributed cellular displacement of mean 0 and width = +V2Dcelst [143], with D! =~

0.0001 um?s! being an &ective cellular difusion constant. Generally, Brownian motion may lead

to the escape of cells at the boundary of the spheroid, which would make a complete growth satu-
ration impossible. Note that another candidate for a cell loss mechanism is shedding of cells at the
spheroid surface [144, 145]. For example, for EYR6 mammary tumour cultures, shedding rates

of 0 (200 cells mnT? h™ have been observed [100], which represents a significant source of cell
loss. Inin vitro culture, the separated cells are removed from the culture during replenishments of
the growth medium. Within the model, sucliexts are not included. However, for the time frame
usually observed in experiments, a pseudo-saturation of both cell number and spheroid radius could
be reproduced infé-lattice agent-based computer simulations [77]. Interestingly, during the period

of saturation, deviations from the spherical shape can emerge: The position of unstable intermediate
holes within the necrotic core is randomly distributed and gives rise to macroscopic deviations from
spherical shape on the spheroid surface. Therefore, an irregular spheroid shape can be explained by
individual durations of the necrotic process as well. All these mechanisms might be combined with
an involvement of metabolic waste products in the induction of necrosis.

Since in line with other continuum approaches [115, 131] saturation of growth can be explained
mechanically, the assumption of dfdising signal triggering a chemotactic response [7] is not neces-
sary. In the multi-phase continuum approaches, the mass balance equations are not reduced to simple
RDEs by preserving the attractive part of the cellular interaction. A reactidmstbn model with a
positive-definite dfusion codficient as in equation (3.10) is incapable of predicting a steady-state of

the cell numbers with realistic assumptions: If one assumes a spatially-heterogeneous steady-state to
exist, such that the cell concentration is localised, one can consider a region outside the spheroid that
extends to infinity. Within this region, the net cell production rate is non-negative. Then one obtains
via Gauss’s theorem for this regidh

Ny _ D(r)VC(r) - df + f Q(r)dV, (3.22)

dt ov \Y

whereNy is the number of cells withiV. The assumption of a steady-state demandsMbat 0,

which cannot be fulfilled, sinc@(r) > 0, D(r) > 0 andVC(r)-df > 0in the inner boundary a@fV by
assumption. At the outer boundary, no contribution can be expected, since it resides at infinity, where
the concentrations (and derivatives) vanish.
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3.5 Discussion

It has been demonstrated that the VorgDeiaunay hybrid model can very well be used to aid agent-
based tissue simulations. The introduced agent-based model is rich in features and therefore allows fc
many comparisons with experiments. It can easily be combined with established models on cellulai
adhesion and elasticity that rely on direct experimental observables.

Unlike previous models that only considered the influence of a single nutrient on the dynamics of
three-dimensional MTS [7, 103, 104, 111, 115], it has been possible to reproduce experimental growtt
curves with a single parameter set by considering the spatiotemporal dynamics of both the oxyger
and glucose concentrations simultaneously. In addition, the typical morphology could be reproducec
gualitatively.

With introducing a second similar model based on continuum equations, a comparison between the
two modelling approaches could be performed. It should be noted that the two models are not com
pletely analogous as for example the representation of contact inhibiffensdiNevertheless one can
discuss key properties of both models.

When considering macroscopic data such as growth curves, the simpler continuum model of the RDE
type did reproduce the experimental data with similar quality as the agent-based approach. In the
continuum model, the netffect of cellular interactions (adhesion, elasticity, and viscous friction)
could be combined in a density-dependent cellulfiiudion codicient, which leads to a qualitative
improvement in the reproduction of the macroscopic spheroid sizes in comparison to non-varying cel-
lular mobility. However, it turned out that the necessity to fit experimental data considerably changed
the dfective cellular difusion codficient. The description of cellular movement by merg&udiion
codficients presents a limitation of the continuum model. In many properties the continuum model
reproduces the analogous agent-based model qualitatively: For example, the emergence of a necro
core was necessary to fit the data correctly for all nutrient configurations. However, the dependenct
of spheroid size on the total cell number and thereby indirectly on the nutrient conditions was not
very pronounced whenever the cellular density reached threshold values. For real tumours howeve
one can — as also predicted by the agent-based model — expect the cellular density to reach the thres
old value, since cells tend to adhere. The present PDE model has not been able to reproduce th
gualitative éfect. In the agent-based model, a saturation of growth could be obtained by increasing
intercellular adhesive forces threefold, whereas the continuum model is not able to predict such ¢
steady state.

Since continuum models have the advantage of being computationally simple to solve, the first stey
towards more refined tissue models should be to analyse the phase space with a simple continuu
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approach. The agent-based models are advantageous because cellular properties that have been de-
termined from independent experiments (such as e. g. adhesion and repulsion) can be inherently in-
cluded to yield improved predictions. Conversely, with fisiently accurate experimental signature,

the model parameters can be adapted to achieve agreement with experimental observations. Since the
parameters offé-lattice agent-based models correspond to experimental observables, their estimation
can be regarded a quantitative model prediction.

One of the major diiculties of experimental systems on the level of cell tissues is their poor definition.

In the chosen example of MTS this is due to several reasons:

1. In order to obtain the cell numbers, spheroids had been destroyed during the measurements.
Therefore, a whole ensemble of spheroids had to be measured.

2. Since the monoclonality of these spheroids is not ensured, it ia pabri clear whether a
single spheroid might contain several species or whethegrdnt spheroids might belong to
different species with individual growth characteristics.

3. In addition, it cannot be controlled whether mutations changing the growth characteristics of
tumour spheroids take place during their culture. However, when considering culturing times in
the order of weeks, such mutations should be rare in cell lines that did not change fundamental
properties over years.

The used experimental data exhibit too much scatter to determine parameters with accuracy. There-
fore, more &ort must be spent in establishing a defined experimental system including a well-defined
cell line. With such a system, extensive measurements of the time evolution of growth curves and
morphologic parameters could be performed. A combined experimental and theoretical investiga-
tion of MTS of a single well-defined cell line is of urgent interest to discriminate betwegsrelt
theoretical models.

3.6 Towards a realistic tumour model

It can be questioned whether the presented model grasps essential feataregrofmulticellular

tumour spheroids. It can be said with certainty that it does not resemble many propeitiesvof
tumours. In view of thefects of surgery or chemotherapeutic agents, especially the case of a realistic
tumour model is of particular interest. Some extensions that need to be included to approach more
realistic systems (compare [15] and [146] for reviews) are summarized below:
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e Since only a single cell type has been considered, the model will have to be extended by tumoul
host interaction, which includes

competition with the surrounding healthy tissue (compare chapter 4) for space, nutrients,
and other factors,

interaction with cells of the immune system [120] and processes as inflammation,

secretion of angiogenetic factors and the process of tumour vascularisation [147],

invasion by tumour cell and metastasis [148, 149, 150, 151] etc.

e Many self-interactions of tumour cells have been neglected in the present model. In addition,
one would have to include

— the dfect of metabolic waste products and acidification of the tumour environment [152],
— plasticity of tumour cell properties [101] (for example, the process of fderdntiation),

— apoptosis and necrosis induced by further control mechanisms within the cell cycle [101],
— retardation #&ects in necrosis due to intracellular nutrient reservoirs,

— possible intercellular communication withfiising signals etc.

in an extended model.

A simultaneous treatment of all thesfeets within a single and with moderatéat manageable
model is currently out of reach. In order to identify physiological subregions, more information on
the included mechanisms is necessary. In addition, some mechanisms can lead to similar experiment
signatures, such that they cannot be distinguished clearly within the model [153].

A model however should be more than a mere tool of visualisation: With the inclusion of further
unknown parameters the volume of the parameter space will grow exponentially. In order to gain
predictive power, the allowed volume of the parameter space must be decreased. This could fo
example be achieved by studying the mechanism separately in controNéido experiments that
include for example the co-culture of tumour and host cells.
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Chapter 4

The Epidermis

The epidermis is a stratified squamous epithelial tissue. Epithelia are membranous tissues that al
composed of at least a single cell layer. In multicellular animals they cover the external and internal
surfaces of the organism. This chapter will deal withiusilico representation of the epidermis,
which serves as a protectivefter between the organism and the environment.

4.1 Introduction

The epidermis does not contain separate blood vessels and is therefore dependéitsiom aif
nutrients from the dermis below. It can be divided into several layers [154] (compare figure 4.1 left
panel):

The innermosstratum germinativunor stratum basalgbasal layer) is a monolayer, in which most

cell divisions occur. It is separated from the dermis below by a basal membrane, which Ifiéeda ru
structure at fingers, palms and soles of feet. A fraction of the cells created by cell division travels
upwards into thetratum spinosunwhere most cells are interconnected by desmosomes, which leads
to a spiny appearance. Within this layer, the process of cornification begins: The cytoplasm looses
water and is filled with keratin filaments. Within tlsératum granulosumcells die @ and their
shape flattens. This special case of cell death is calhexkis. Thestratum lucidumis a thin layer

that is dominantly expressed at hand and feet and functions as a barrier against all possible intruder
Completely cornified cells mark tregratum corneunwhich is clearly distinguishable from the layers
below. This layer does not contain viable cells and constitutedtaneat barrier for water and its
solutes. Note that the thickness of this layer varies strongly fteréint regions of the skin [154]. The
upper part of this layer, where the cellular material detaches due to dissolving intercellular contacts

101
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is calledstratum disjunctum

Within thein silico model, only three layers will be distinguished: The testmatum mediumvill be

used as a combination of all layers not belonging tcsth&um germinativuror thestratum corneum

The cell types encountered in the epidermis are keratinocytes, melanocytes, Langerhans cells, and
Merkel cells. Of these, the dominant fraction is constituted by the keratinocytes with roughly 75000
cells per square mm [155, 156].

Keratinocytes are produced in teatum germinativunby cell division. In order to maintain epi-
dermal homeostasis, in average one of the two keratinocyte daughter cells must leave the basal layer
and travel upwards. The keratinocyte remaining in the basal layer will be termed stemcell further-on.
The cell travelling upwards transforms — undergoing several transit cell divisions [157] — into a fully-
differentiated keratinocyte and reaches the surface after about 12 to 14 days. During this passage, the
keratinocytes follow the process of cornification.

Melanocytes migrate to the dermis during embryonic development. These dendritic cells are dis-
tributed within the basal layer, and their density is relatively constant between individuals and races
with approximately 2000 cells per square mm [154, 155, 158]. They adhere to the basal membrane
via hemi-desmosomes. The known purpose of melanocytes is to produce melanin and to provide it
to keratinocytes and hair with their dendrites — the connected cells are termed epidermal melanocyte
unit [154]. This pigment protects the skin from the ionisin@eets of electromagnetic radiation,

and it is accumulated above the keratinocyte nucleifeBences in skin colour mainly result from
different levels of melanin. Tumours arising from melanocytes are called melanoma. Since most
cancerous melanocytes still produce melanin, such tumours mostly have a characteristic black colour
(see figure 4.1 right panel). If they are diagnosed and excised via surgery at an early stage, the general
chances of total recovery are comparably large. This prognosis degrades rapidly for melanoma at
later stages. Therefore, the early and secure diagnosis of this disease is a challenging problem.
Langerhans cells are dendritic cells of the immune system. There is evidence that they collect antigens
via phagocytosis and present them on their surface after transforming to dendritic cells in the lymph
nodes.

Merkel cells are found close to some hair follicles in mammalian epidermis. Though there is no
definite function in skin known, it is believed that these cells play a role in sensation.

Since neither fects of the immune system nor the mechanisms of sensation will be studied here,
the latter two cell types will not be contained in timesilico representation and will not be discussed
further.

The difusional properties of the skin have important implications on medical treatment applied to this
tissue [159]. With an observed increase of the manifestation of melanoma [158], studies of melanoma



4.2. MODELLING ASSUMPTIONS 103

! N - ’ e
s Sy
P i

'” "b\\‘“

”J?" h\\}i" hln‘ Y

Figure 4.1: Section of human epidermis and top view on a nodular melanoma. Both pictures have
been adapted from [158Left: Section of human epidermis in 500-fold magnification. Indicated
from top to bottom are thetratum corneun{SC), thestratum granulosun{SGR), thestratum
spinosum(SS), and thetratum germinativuniSG).Right: Top view on a nodular melanoma.

development are of huge importance. Within this chapter, some simple questions will be addresse:
using an @-lattice agent-based approach.

4.2 Modelling assumptions

As in the case of section 3.3, the used agent-based model has been built on the basic description give
in subsections 2.5.4, 2.5.5, and 2.5.6. However, in contrast to the previous case of MTS, the full
equation for the cellular dynamics (2.86) has been solved.

In addition, the model displays specifications [160] that are introduced in the following subsections.

4.2.1 Proliferation and cell death

In contrast to MTS, dferent cell types are present in the epidermis. The model distinguishes between
three cell types: keratinocyte stemcells, keratinocytes, and melanocytes. It is assumed here that the
cells follow the cell cycle as depicted in figure 2.16 in subsection 2.5.5, fiat th several properties
discussed below.

The mitotic direction in cell divisions has always been chosen randomly on the unit sphere. In the spe-
cial case of stemcells dividing at the basal layer, the asymmetry in terms of the cell types is included
as follows: The daughter cell with the greater distance from the basal membrane is transformed to :
keratinocyte, whereas the other daughter cell stays a stemcell.
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The fact that in reality a stable flow equilibrium of the epidermis exists should translateito an
silico representation. It can be speculated that the decreasing concentration of nutrients provided in
the dermis constitutes a signal that may cause keratinocytes to cornify. However, the blood supply
provided in the dermis by far exceeds the metabolic demands of normal skin, it is necessary for the
temperature regulation instead. Therefore, other mechanisms on homeostasis should be analysed as
well. In tape-stripping experiments [161, 162] it has been observed that the removalstifatioen
corneumresults in prolonged hyperproliferation of keratinocytes of the skin. It has been proposed
that simply the local concentration of water may be a marker that causes the proliferative response of
the keratinocytes.

In contrast to the MTS in chapter 3, two pathways to cell death are considered here: Stemcells and
melanocytes enter necrosis as soon as the local nutrient concentration falls below a critical threshold.
In contrast, keratinocytes enter anoikis after completion of the cell cycle (i. e., after completion of
S/G,-phase) in the fourth generation. This assumption is motivated by the cellular pedigree concept
[157, 161], which assumes thatfidirentiating cells undergo an approximately constant number of
transient cell divisions before entering dfdrentiated (nonproliferative) state. Furthermore, healthy
melanocytes in the model are regarded as fulljedentiated cells that do not proliferate. A malignant
transformation however may cause melanocytes to proliferate.

There is strong experimental evidence that the removal of the protsttatem corneunmfluences

the proliferation turnover rate of the epidermis [161, 162]. In [161] it is hypothesised that an intraep-
ithelial diffusible signal might control proliferation. In this chapter, as a simple candidate for such a
signal the extracellular water content will be considered. Therefore, in the model the proliferation rate
of the keratinocytes and stemcells is influenced by the local water concentration. Since in the model
representation of the cell cycle (subsection 2.5.5) the overall cycle time can be controlled by the length
of theGy-phase, here the local water concentration has been as the critical mechanism. Keratinocytes
(and their stemcells) are assumed to egiphase after completion @&;-phase only if the local

water concentration is above a critical threshold. The duration oGgaphase is determined by a
normally distributed random number if the local water concentration does not fall below the critical
threshold before. Thus, a large water concentration may prolong the cycle time of keratinocytes and
their stemcells in the model. Note that further influences on the cell cycle (e. g. contact inhibition as
in chapter 3) are thus neglected here.

Naturally, necrotic or cornified cells do not consume any nutrients. In view of the unknown details
of the cell loss process, an exponential decay of receptor and ligand molecules on the cell membrane
with a given ratey'°ss has been assumed, i. e.,

Cree0 = —alei (4.1)
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This choice resembles the dissolution of intercellular connections istth&im corneumin order

to minimize the perturbation of the equilibrium distance following from equation (2.68), this implies
a decreasing elastic modulus as well. The simple demand, that the equilibrium distance between tw
identical cells should not change, can be satisfied with

E = —2a/°SE; 4.2)

which follows from equations (2.60) and (2.75). A measure for the cellular binding strength can then
be defined from the sum of all binding energies with the next neighbours

a= ), aOA). (4.3)
JENN(i)

Assuming that cells with low binding are shed of from the skin surface, both necrotic and cornified
cells are removed from the simulation as soon as their binding strength falls below a critical value
& < €™. Note that this choice has the consequence that all non-viable cells without contact to other
cells (A; = 0) are removed instantaneously from the simulation. This is not a contradiction, since
cells without anchorage are assumed to be sl&ddhe realistic epidermis anyway. Though the
loss of receptors and ligands as well as decreasing cell elasticity may be reasonable assumptior
for cornified and necrotic cells, the overall time course may certairfferdconsiderably from the
above equations. Other forms of necrotic cell removal might also be plausible: For example, one
could think of removing non-viable cells randomly at a constant rate as was done in chapter 3. This
choice however did significantly disturb the layered structure ofsthegum corneumin this case,
holes in this protective layer emerged and did lead to sudden loss of water in the epidermal layer an
thereby to irregular proliferative behaviour and considerable oscillations in epidermal thickness. The
same problem occurred when assuming a (normally-distributed) cell-specific eigentime after which
non-viable cells were removed from the simulation.

4.2.2 Cell mobility

All cells are assumed to be subject to delta-correlated random forces (see appendix C.2.3). Note th:
these forces act on every cell separately, such that active cellular movement is not considered.

As the computational domain, a rectangular volume has been considered. The obvious anisotropy c
epidermal tissue translates to the boundary conditions on the cellular agents. The simplest possibilit
to resemble the basal layer is a static plane boundary with constant normal vector (without loss of
generalitye, is chosen here). Within the JKR model (2.63), such a boundary can be well implemented
by assuming contact with a cell of infinitely large radius. BHsoundary of the basal layer has been
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assumed to be of infinite elasticity. Since the elastic parameters enter additively in equation (2.60),
this choice slightly shifts the position of the basal layer but does not sensitively change the global
model behaviour. The corresponding adhesive anchorage in the basal layer has been made dependent
on the cell type. In order to minimize the boundafieets inx andy direction, periodic boundary
conditions on the cells could in principle be used. This however would necessitate a rather tedious
mirroring of cells close to the boundary and would in addition conflict with the boundary conditions
on the reaction-diusion grids. Therefore, here affdirent approach has been chosen: Every cell in
contact with ax or y boundary, is assumed to be in contact with a cell of similar type, size, receptor
and ligand equipment, etc. Thus, it interacts with a virtual mirror copy of itself, where the contact area
is situated within the boundary plane. In comparison to a planar boundary as is used at the bottom this
technical implementation has the additional advantage that special drag forces with a static boundary
need not be considered. In upgetirection there are no boundary conditions on the cells, but necrotic

or cornified cells that have lost intercellular contact are removed instantaneously from the simulation
(compare subsection 4.2.1).

Note that for an inx andy homogeneous cell distribution, the problem woufteetively reduce to

a one-dimensional one. However, the existence of fluctuations and of heterogeneously distributed
melanocytes destroys that symmetry.

4.2.3 Water and Nutrients

Though the theoretical foundation of thefdsion equation relies on vanishing self-interactions of the
described molecules (which can for example be assumed for small concentrations), it has been found
empirically that the distribution of water in the tissue can be described approximatelffisiai as

well [163]. However, it is known that the apparenffdsive properties of the epidermis vary extremely
within the diferent layers. For example, tlsratum corneunhas apparent ffusion codicients

of water that are three orders of magnitude lower than tlesive properties of the layers below

(see table 4.1 on page 120). Technically, this is reflected in the model by averagingfaseodi
codficients for the dferent cell types residing in a volume element of the reactidiiosglon grid.

Within the model, it is assumed that the net consumppiamduction rate of water by the cells van-
ishes. Consequently, it is assumed that the distribution of extracellular water can be described with a
normal difusion equation with spatially heterogeneoususiion codicients. In such an equation, the

units may be rescaled such that the water concentration can be expressed in fractions of the maximum
concentration at the basal layer.

The dynamics of nutrients such as glucog®eds in the aspect that sink terms have to be considered as
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well and thus, a full reaction-ffusion problem has to be solved for the nutrients. In order to calculate
the dynamics of water and nutrients, the problem has to be treated with time-dependent boundar:
conditions. Above the cell layers (dynamic thickness) the concentrations of water and nutrients have
been fixed to vanish. Technically, this has been implemented by setting the concentrations to vanish
all grid volume elements not containing any cellat the x andy boundaries, no-flux von Neumann
boundary conditions have been used, i. e., at these boundaries o ka8 ando,u = 0.

4.3 Results

The model parameters that have not been changed during the simulations can be found in table 4.
on page 120. As the computational domain, a rectangular volume of dimensiopsi20200 um x

400um has been considered. The initial conditions inithsilico experiment have been determined

as follows: A monolayer of keratinocyte stemcells has been distributed on the basal layer — following
the pattern of a perturbed square lattice. In addition, at the centre ctrdtem germinativuma

single (initially non-proliferating) melanocyte was added. Afterwards, the position of the cells in the
cell cycle was randomised uniformly to avoid initial artifacts. This configuration could for example
mimic a severely perturbed epidermis, where suddenly not onlgttheum corneuntout in addition

the stratum mediumvas removed. Consequently, a strong proliferative response should be expected.
After a steady-state flow equilibrium had been established (see subsection 4fBigntperturba-

tions have been performed. These include removal of all cornified cells (tape-stripping experiments)
and changes in the melanocyte properties (subsection 4.3.2).

4.3.1 Homeostasis control

The first question to be answered is whether the control mechanism of the water-concentration:
induced prolongation of the keratinocyte cycle time (compare subsection 4.2.1) can actually reproduct
the macroscopically observed flow equilibrium of skin iniailico model. In particular, the result-

ing flow equilibrium should be stable against perturbations such as complete removaktathen
corneunthat is performed for example in tape-stripping experiments [162].

It turns out that such a steady-state flow equilibrium exists and that it is stable for some regions in
parameter space (see figure 4.2).

INote that this requires that the grid resolution is low enough in order not to generate unphysiological sink terms in
intercellular cavities.
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Figure 4.2: Maintenance of an epidermal steady-state flow equilibrium [168}). Left: Distribu-

tion of cells in the cell cycle versus time. The vertical dashed lines indicate times where frames of
the cross-sections of the cell distribution (first row below) and the water concentration (bottom row
below) provide spatially-resolved informatiofop Right: Number of viable cells versus time for

two successive tape-stripping events. Simulations have been started figtlmi seed values of

the random number generator. The vertical dashed lines denote the respective times of the second
tape-stripping experiment, whereas the first tape-stripping has been performed at time 0 (vertical
solid line). Second row from below Spatial distribution of cells in the cell cycle (frames from

top left to bottom right). Cells ir5o-phase are encoded grey, whereas cornified cells are shown
brown. The remaining colours denote the other phases in the cell cycle. The horizontal diameter of
a single frame corresponds to 206. Bottom row: For every frame, the colours in the diagonal
cross-section encode the water concentration (blue for 0 % and red for 100 %). The transparent
isosurface encodes the critical water concentration.
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Starting from a monolayer of cells, the water concentration throughout the tissue (bottom row, left-
most frame) is very low such that no keratinocyte enters cell cycle prolongation. Thifeewtti® an

initial exponential growth phase (top left panel), where stemcells in the basal layer and also transit
amplifying keratinocytes — that have not yet reached their fourth generation — proliferate. After three
days the stemcells in the basal layer enter prolongation of the cell cycle (second row from the bot-
tom, leftmost frame). After four generations, cornification of the first keratinocytes begins, followed
by the rapid formation of a strongtratum corneunafter five days with a considerably decreased
diffusion codicient for water. This in turn leads to an increased water concentration strétem
medium(bottom row, second frame) and thereby a large fraction of non-cornified keratinocytes re-
siding in G-phase (second row from below, second frame): The initial exponential growth is halted.
Afterwards, the cell number decreases, since cornified keratinocytes arefShethe outer surface

of the stratum corneumThe dynamics equilibrates slowly. After 35 days, thesilico analogue to

a tape-stripping experiment has been performed: All cornified cells are suddenly removed from the
simulation. This leads again to a proliferative response. However, since this time the cornified layer
quickly re-establishes due to the abundant keratinocytes inglre<ervoir, the proliferative response

is considerably smaller than initially. Interestingly, the oscillations around the equilibrium value are
remarkably strong. In figure 4.2 second row from below it visible in the rightmost (latest) frame that
the cornified layer exhibits a small hole (blue cells) in gtietum corneumThrough such holes, a
considerable amount of water can be lost, which causes even distant keratinocytes in the model t
leave their cell cycle arrest (white cells changing to blue cells). This sensitivity of the model to small
water concentration changes leads to the strong perturbations of the equilibrium and to the sligh
upward tendency. The equilibrium thickness of the epidermis in the model corresponds to approxi-
mately 12Qum above the basal membrane and with the ground surface of 200:m? the resulting
equilibrium cell numbers do well correspond to values in the literature of 75000 cells per square mm
epidermis [156].

If the tape-stripping is performed twice (figure 4.2 top right panel), the relative magnitudes of the
proliferative responses display an interesting behaviour. Already in the first tape-stripping event (ver-
tical solid line) there is a considerable variance in the heights of the proliferative responses. This is
a mere result of dierent seed values in the random number generator. More important, the relative
magnitude of the secondary proliferative responses is generally smaller than in the first tape-strippin
events. In the subpopulations (not shown) it becomes visible that in the second tape-stripping, the
stratum corneums re-established much faster. This is due to the larger number of viable cells in
between the experiments in comparison to the number of viable cells before the first tape-stripping
experiment. These cells constitute a larger reservoir for cornification. Aftesttaeim corneum
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has been re-established, the water concentration increases quickly and the proliferative response is
halted. Especially for the case when the second tape-stripping experiment is performed at the peak of
the cellular response (blue curve), the time needed for restoration sfrdtem corneunis shortest,

which is reflected in the relative magnitude of the secondary response as well.

In addition, it is visible that with a decreasingls between the tape-stripping events, the relative
magnitude of the secondary proliferative responses decreases: For large distances (11.6 days, black
curve) the epidermis approximately reacts as strong as in the first experiment but with smaller dis-
tances between the experiments (red and green curves), the magnitude of the response decreases.
This has a dterent reason than the decrease between primary and secondary response: In the cell
cycle distribution (second row from below) right after a tape-stripping event (third frame) it is visible
that the basal layer dominantly remains ig-@hase. Since these are the cells that produce the ker-
atinocytes of the first generation, the overall cell reservoir of keratinocytes will — for the time of an
unprotected epidermis — decrease. The fieceis that the reservoir can regenerate duniiig and

the secondary proliferative response will be stronger with larger regeneration times.

4.3.2 Effects of melanocyte anchorage

In a second assay, the single melanocyte in the basal layer was turned cancerous after the flow equi-
librium was approached. Previously, the non-proliferating melanocyte was as firmly attached to the
basal membrane as keratinocyte stemcells, such that it did not separate during equilibrium forma-
tion. Note that in the model, the property “cancerous” is only reflected by suddenly allowing for
melanocyte proliferation. As in the model the cell cycle of melanocytes is not influenced by the local
water concentration, these cells have a competitive advantage in comparison to the keratinocytes. In
a first attempt, the degree of melanocyte anchorage to the basal membrane has been varied concomi-
tantly with the malignant transformation. It is known that most human melanoma cell lines display
decreased or no expression of cadherins and therefore exhibit a decreased ability to adhere [164].
One might think that a decreased basal adhesion of cancerous melanocytes would lead to a decreased
fraction of melanocytes bound to the basal membrane and thereby to a larger fraction of melanocytes
that is shed to regions where the nutrient supply falls below necrosis-inducing levels. Thus, the
total number of tumour cells should intuitively be sensitive to the basal anchorage. Starting from
experience with MTS (compare table 3.1 on page 89), the cycle time of the cancerous cells has been
assumed to be in the order of 15 hours. It turned out that with such short cycle times for melanocytes
and the turnover time chosen for the stemcells in the basal layer, the overall growth dynamics was
hardly dependent on the anchorage to the basal layer (see figure 4.3 left panel). Even with completely
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absent adhesion to the basal membrane, comparable numbers of tumour cells were found. The reas
is that with the given proliferation rate, exponential growth simply outperformed the epidermal flow

induced by the turnover at the basal layer. Consequently, the proliferation rate of the cancerou:s
cells has been reduced and new simulations were performed in combination with complete loss o
melanocyte basal membrane anchorage (see figure 4.3 right panel). There it is visible that there i
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Figure 4.3: Melanocyte growth after the malignant transformation [18Gft: Total number of
melanocytes (orange, including necrotic and viable melanocytes) and viable cells (black, including
stemcells, keratinocytes, and melanocytes) féliedint degrees of basal adhesion versus time —
expressed in units of the cancerous melanocyte cycle time. With the melanocyte cycle time set to
Tmel = (15.0 + 2.0) h and other parameters chosen as in table 4.1 on page 120, the basal anchorage
has no significantféect on the overall dynamics. Initially, the growth of melanocytes follows an
exponential growth, which is soon slowed down since the melanocytes reach distant regions from
the basal layer, where nutrients are provided scarcely. Since the number of viable cells already
indicates saturation, the total number of melanocytes will saturate eventually. A further increase
in the cell numbers can in reality be achieved by angiogenesis or by surface-dominated growth by
leaving the computational domaiiRight: With considerably slower melanocyte proliferation, a
parameter regime can be found where melanoma do not persist within the steady-state flow equi-
librium. Interestingly, in this case the period of coexistence of healthy skin and transformed cells
may be remarkably long, which — if transferred to reality — would give time for further malignant
transformations. In this parameter regime, the system is very sensitive to stochiastis, @s is
indicated in the disturbed order (some curves intersect). The damped oscillations stem from the
standard deviations of cell cycle durations (2.01 h in every run).

a region of melanocyte proliferation rates with considerable fraction of the melanocytes being shec
into regions distant from the basal layer, where the glucose concentration falls below life-sustaining
levels. In these regions, necrosis is induced. Interestingly, the number of melanocytes at 35 days afte
the malignant transformation is not a monotonously decreasing function of the cycle time (compare
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for example solid yellow and red dotted curves in figure 4.3 right panel). This is due to stochastic
effects:

The region between melanoma persistence and complete tumour hetsdeen examined fur-

ther by adjusting the melanocyte cycle timertg, = (44.44 + 5.56) h. Generally, one can see in
figure 4.4 bottom panels, that the usual spherical form one observiesvitno MTS (compare chap-

ter 3) is considerably deformed for this system to cylinder-shaped or cone-shaped. This is due to the
pre-existent flow-equilibrium of the surrounding tissue and tiiecéively one-dimensional flusion
problem. The shapes of these structures appear to be dynamically fluctuating in the model in these
initial phases. Note that the boundaries of the melanoma are rathesedi From the cross-sections

in figure 4.4 it may be hypothesised that the micrometastases sometimes observed around primary
melanoma in skin may correspond to branches of melanoma clones that have separated from the main
clone during the upward flow. For the whole epidermis it can be seen that its thickness increases in
those situations where considerable numbers of melanocytes develop. In the model, this is due to the
displacement of the surrounding keratinocytes, which are constrained in the perpendicular directions,
and also to the increased loss of water through tumour tissue.

Initially, a thin column of cancerous melanocytes is formed. Then, in some simulation runs (see
figure 4.4 bottom rows), the melanocytes can persist within the life-sustaining zone until their growth
velocity outperforms the upward-directed flow velocity and direct contact with the basal membrane is
re-established. Afterwards, in the middle of the column of cancerous cells the upward drag forces are
decreased, since for the interior cells there is no direct contact with keratinocytes moving upwards.
Using diferent seed values for the random number generator, several simulations with otherwise
equal parameters have been performed (coloured curves in figure 4.4 top panel). It turns out that
completely diterent outcomes may occur. Thereby, one should keep in mind that the stochastic
effects do not only result from stochastic forces, but from the randomly chosen mitotic directions
and the cell cycle durations as well. The initial phases are most important, as for the small cell
number in the initial melanoma growth phase stochadfieces do not average out completely. In

this first experiment, the fierent seed value did already lead téfelient configurations before the
malignant transformation, i. e., stochastiteets had already entered the initial conditions for the
cancerous melanocytes. To elucidate this context further, another series of simulations has been
performed, this time with equal initial seed values. On the contrary, in this second series the seed
value of the random number generators was resetierdnt values right at the time of the malignant
transformation. Thus, the initial environment of the cancerous melanocyte was the same in these
simulations. It turned out that the variance of the outcomes narrowed considerably (thin grey curves
in figure 4.4 top panel). Thus, it can be concluded that the variance in the initial environment of
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cancerous melanocytes contributes significantly to the final outcome in #ieco model. Note that
these secondary stochastiteets do not only include the spatial cellular position, but also the local
proliferative state and thereby the local upward flow velocity: The upward drag forces will be larger if
the cancerous cell is surrounded by many proliferating keratinocytes with a net upward flow velocity.

4.3.3 Model parameters

Reasonable dynamics has been achieved with the parameters in table 4.1.

The viscosity of the extracellular matrixdetermines the friction on loosely bound cells and — since
friction arising from the cytoskeleton was assumed to be small{ 0) — dominates friction in
directions normal to the cell contact surfaces. This contributes for example in proliferation and thus, in
addition the speed of cell division in M-phase is dependeni &s long as the mechanical relaxation
occurs on a shorter timescale than the cell doubling time, this does not have macrofeascon

the evolution of the tissue. When has the same order of magnitudejasit will dominate the
contribution inflicted by the viscosity. If the magnitude of the total drag force dbeienty® = y3 +y]

does not change, it turned out by comparing the three extreme cases (that=s0,y, = y and

y. = v,y = 0andy, =y, = y/ V2), that the diferences in the overall population dynamics are rather
small (not shown). It may be speculated that this is due to the fact that in the present calculations, the
relaxation speed has no direct back-reaction on the number of cells, as for example contact inhibitior
is not included. As here absence of perpendicular friction has been assumed, the tangential frictiol
codficienty, dominantly determines the speed of relaxation within the tissue. The chosen value led
to reasonable dynamics and has been estimated from [76].

The adhesion energy densig]'® determines the cell-cell equilibrium distance and the binding
strength, which was a marker for the removal of necrotic or cornified cells. Generally, this value will
in reality be time-dependent. For example, for cell-cell contact durations shorter than 30 seconds
average rupture forces of 20 nN have been measured [88]. AssinirgLO00 Pa andR; = 2.5 um

one would thereby find from equation (2.69) an adhesion energy densif{*of 0.0017uN um1.
However, then the equilibrium distances resulting from equations (2.63) or (2.68), respectively, are
inconsistent with the equilibrium distances in [88]. This indicates that neither the full JKR model
(2.63) nor its approximate version (2.68) is directly applicable to cells. For larger times, the discrep-
ancy becomes even worse. Therefore, the binding energy density has been derived from the observ:
equilibrium distance [88] solving (2.68) instead. With this procedure, the equilibrium distances are
in a physiological regime. Note that larger adhesion will lead to smaller equilibrium distances (lead-
ing to moderately increased contact surfaces and drag forces) but in addition to longer persistenc
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Figure 4.4: Primary and secondary stochastiteets on the initial stages of melanoma [160)p:

Total number of melanocytes (solid lines) and the necrotic cell subpopulation (dashed lines) after
the malignant transformation with melanocyte cycle timgg = (44.44.0 + 5.56) h and other pa-
rameters as in table 4.1. fierent colours correspond tofidirent initial seed values of the random
number generator with otherwise equal parameters. Complet@radit outcomes may occur.
Vertical dashed lines mark times where the frames of the cross-sections (below) have been ob-
tained. For seed value 4 (red), the melanocyte population is nearly extinct after 45 days, as nearly
all melanocytes are necrotic (curves combine). The curves in grey correspond to simulations that
have been started with initially equal seed values, which have been resffetmdivalues at the

time of the malignant transformatiofBottom cross-sections Time frames of thén silico evo-

lution of cancerous melanocytes (black) within an epidermal population containing keratinocytes
(light grey) and stemcells (yellow). The diameter of a single frame corresponds @200 he

colours do neither dierentiate between viable and necrotic melanocytes nor viable and cornified
keratinocytes, respectively. The first row corresponds to the seed value 1 (black curves in the top
panel), the second row to seed value 4 (red in top panel), and the last row to seed value 5 (green in
top panel). The existence of the flow equilibrium of skin leads to cylinder- or cone-shaped tumours.
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times of dead cells, which results in an increased thickness aftthum corneum However, due

to equation (4.1) this latterfiect only enters logarithmically. Even if the adhesion eneftyf and

the minimum anchorageé™” are decreased simultaneouslyfeliences in the numerical solution may
occur: This is due to the fact that for these reduced values, the equilibrium distance and the contac
distance are much closer together, such that the maximum spatial stepsize allowed in the numeric:
solution must be decreased.

The elastic parameteis andv; correspond to approximate physiological values for cells [76, 134,
140]. However, it is known that — depending on the cell type — significant deviations may occur.
With the given drag forces, mechanical relaxation occurs on a shorter scale than the cell cycle times
such that changes in physiological windows have only small macroscopic consequences. It should b
noted however that already for moderately changed Young modulidaretiuced Poisson moduli)

the equilibrium distance between cells will be shifted, which might decrease the maximum allowed
spatial stepsize in the numerical solution to avoid unphysiological losses of contact.

As has already been discussed in subsection 4.3.2, stochastic perturbations may have significant i
fluence on melanoma development in the model, both as primary (i. e., occurring after the malignant
transformation) and secondary (i. e., as variations of the initial conditidfexjte. Generally, these

can be divided in stochastic forces, randomly distributed mitotic directions, and randomly distributed
cellular cycle times.

Stochastic forces contribute to the detachment of cornified and necrotic cells, which do neither divide
nor advance through the cell cycle. Small variations in their streaigtrange the fluctuations in the
epidermal thickness around the equilibrium value. For completely absent stochastic forces, the exis
tence of a planar basal layer sometimes led to planar cell configurations, which is unfavourable for
the Delaunay triangulation (compare the general position assumption in subsection 2.3.2). Considel
ably larger stochastic forces have a strong influence on the thickness sifah@&n corneumsince
loosely bound cells are removed much faster and the protective layer is lost. Then, the probability
of water loss is increased and as a compensatory reaction the thickness of the epidermis increase
The thickness of the cornified layer will thus be strongly dependent on the receptor los85ates
follows from equation (4.1).

The values of the durations of M-phas®), the S/G,-phaser®®2 and the prolongation of the cell
cycle (% influence the relative distribution of cells within the cell cycle (compare figure 4.2 left
panel), whereas the sum of their squared widths primarily determines the speed of desynchronisatio
of cell division. This becomes important after the removal of all keratinocytes. Due to missing specific
data, these values have been adopted from chapter 3. The shortest observed cycle time determin
the proliferation time for keratinocytes if the water concentration is below the critical threshold. The
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system is most sensitive to thgBhase prolongation time*, which has been estimated from [162],
where the cell cycle time was found to range between 14 and 200 hours. Note that the large width of
this prolongation time was necessary to obtain desynchronisation of cell proliferation in reasonable
time. With a smaller width, the time for the establishment of a steady-state flow equilibrium and the
perturbations were much larger.

The simplest assumption of randomly distributed mitotic directions did not conflict with the layered
structure of the epidermis. This however does not refer to the model constraint that after asymmetric
cell divisions of keratinocyte stemcells, the daughter cell with the lazgemponent of the position
differentiates to a keratinocyte. Without this assumption, the basal layer would loose stemcells that
would eventually be shedtoat the outer surface.

The average cell volume of keratinocytes varies from 42% for cornified cells to 800um? for
stratum mediunkeratinocytes [165]. Therefore, with the intrinsic assumption of spherical shape, the
maximum cell radius has been fixedR" = 5.0 um, which influences the time-dependent target
volume. Note however, that within tregratum corneunthe cornified cells flatten considerably and
the intrinsic cell shape cannot be regarded as spherical anymore.

The glucose uptake rate for cancerous melanooifgﬁﬁ‘:ﬁ has been chosen considerably larger than

the glucose uptake rate of keratinocyﬂ%"g?. This is motivated by the assumption that cancerous
melanocytes have a considerably increased metabolism. The actual values are in the range observed
for tumour cells [139]. The minimum nutrient concentratibgfjc, below which for melanocytes
necrosis is induced, has been chosen to be in the order of 1 mM, since necrosis of tumour cells
becomes visible at these nutrient concentratianstro [107, 172]. The combination of melanocyte
nutrient uptake rate and minimum glucose concentration define a region, within which melanocytes

can survive.

The critical relative water concentrati@f]y has been adjusted to obtain a reasonable thickness of

the stratum mediunwith O (5) cell layers, as is reported for example in [162].

The apparent water flusivity DsHtggtge”" in stratum mediunas well as instratum corneunDa'™

has been estimated experimentally by various researchers. Though strong variances exist, all of them
predict a strong decline of the apparerttusion codicient [163, 168, 169]. The local waterftlision
codficients influence the gradient of water concentration: Laresion codficients correspond to

a small gradient. For an intastratum corneunthe water concentration is approximately constant
throughout thestratum mediunand then falls rapidly (compare figure 4.2 bottom row).

The same general features hold true for the gluco$esion codicient Dgﬁfc, which has specifically

been determined for the human skin [170]. The glucose concentration at the basalggg?éhas
been fixed to values that are normal for blood [171] for non-diabetic patients. However, it should be
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noted that in reality the blood glucose concentration varies significantly — for example after ingestion.
In the model, the low glucose concentration in upper layers of the epidermis strongly influences the
chances of melanoma survival.

In order not to loose stemcells at the basal layer migrating upwards strdtem corneunthe basal
adhesion energy for keratinocyte stemcells and non-proliferating melanocytes has been chosen to |
twice the maximum adhesion energy densit§*. This did sufice to disable detachment of these cells.

For cancerous melanocytes, the basal adhesion has been varied as discussed fiacefurading
keratinocytes, no basal adhesion has been assumed.

4.4 Discussion

With a more complete treatment of the equations of motion than in chapter 3, it has been demonstrate
that agent-based models can still be used for tissue simulations in the ordér. ofti® cells.

From a biological point of view, a @iusible substance can serve as a moderator on cellular prolifera-
tion in the epithelium. The model does not contradict that the extracellular water concentration may
be a candidate for such a moderator. However, since any offfiesitlle signal that is not consumed

or secreted by the cells themselves in the epidermis but is released at the basal layer and that has
considerably decreasedective ditfusivity in the stratum corneunwould lead to formally equiva-

lent model equations, other signals fulfilling these conditions would yield the same model behaviour.
Consequently, the moderating substance cannot be extracted from the model without quantitativ
comparisons. Simple assumptions on the moderating substance can explain the homeostasis of tl
epidermis, which is in the model stable against perturbations. The consequences of varying adhesiv
properties of cancerous melanocytes to the basal membrane have been studied. It turned out that the
are strongly interlinked with the balance of melanocyte and keratinocyte proliferation rates. In partic-
ular, it has been shown that in some regions of parameter space, stoctiastk @ay an important

role in thein silico representation of melanoma growth. In particular, the variance of the initial local
environment of cancerous melanocytes was found to have strong consequences.

It is the truth content of the used assumptions and the quality of the applied approximations that
determine the applicability of these results in reality. The model introduced in this chapter has a
number of shortcomings:

A significant macroscopic failure of the model is its inability to explain the reduced thickness of the
stratum corneumThis is due to the fact that the inherent cell shape is spherical, whereas cornified
cells flatten and form polarized adhesive bindings. In reality, this will lead to a greater stability of the
stratum corneunn comparison to the model, which would for example imply a smoother evolution
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around the steady-state flow equilibrium than exhibited in figure 4.2 left panel. Possibly, choosing
ellipsoids in contrast to spheres as the intrinsic cell shape [92] may provide an alternative. Another
possibility would be to use boundary-based models such as e. g. the extended Potts model [173],
which however should be carefully adapted to cellular processes and has the disadvantage of using
enormous computational resources due to the many degrees of freedom.

From the theoretical point of view, the model could be significantly improved by deriving a model
valid for the two-body contact of objects that admits non-normal forces acting and does not underlie
the constraints of only small deformations. In addition,ifovitro cell populations that are not fixed

to a substrate, theffects of torque may become important. Furthermore, ffects of cell shape
plasticity should be included to a greater extent. These refined theories however require much better
experimental resolution than currently provided. It appears questionable whether centre-based models
are able to cope with the increasing degree of complexity resulting from these improvements.

The basal layer has been approximated with a plane boundary condition in this article. As already
mentioned in subsection 4.1, the basal layer is known to have a corrugated structure (see figure 4.1
left panel). This would significantly enlarge the region where water and nutrients are provided in
abundance and thereby lead to a far greater cell reservoir that is able to start a proliferative response
in case of injury. It may be speculated that this is one of the reasons that led to the emergence of
ruffied basal layers the skin.

Technically, the stochastic elements within the simulations include the length of the individual sub-
states of the cell cycle, the stochastic forces acting on single cells and the randomly chosen direction
of mitosis. Note however, that though within the basal layer the direction of mitosis was chosen ran-
domly, only the upper cell dierentiated to a keratinocyte within the model. A more realistic model
assumption would use a loss of contact with the basal membrane as a signal of keratin@eyte di
entiation. Such a model would first densely populate the basal layer with stemcells before building
the epidermis. In general, these stochastic elements did not contradict the characteristic morphology
of the epidermis. From the numerical point of view, they are necessary ingredients to avoid planar
configurations that are unfavourable for the adjacency detection (compare subsection 2.3.2). From
the biological point of view, it is interesting that the stochastic variation of the initial conditioms of
silico melanocytes can lead to qualitativelyfdrent outcomes.

The dynamics of the nutrients and of water has been described with a readfigiedi approach here.
However, due to the cellular movement, there will be an additional contribution by active transport
that is completely neglected. To a first approximation, tifisat (and others) may be absorbed into
the apparent diusion codicient as is done in the experimental measurements. Note that the polarized
structure of the cornified cells in tlegratum corneunmay give rise to non-isotropic filusion, where
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the difusion codicient is not a scalar value anymore.

The cell cycle has been approximated here by a small number of internal cellular states only. It may
be questioned whether a subdivision into discrete substates makes sense. One may expect a mu
smoother reaction of the epidermis to the removal of all keratinocytes if transition into and og# of G
phase would not depend on a threshold water concentration, but would be determined by transitiot
probabilities that may continuously depend on the water concentration. This may be judged with
guantified experimental data.

4.5 Realistic model extensions

Though in comparison to chapter 3, a more complicated system including $i@tis ef tumour host
competition has been studied, in addition to the shortcomings discussed before, further properties ¢
the realistic system have been neglected. Many of these, for example tumour immune interactions
plasticity of tumour cell properties, tumour cell sensitivity to othefudiing factors than just nutri-

ents etc., have been mentioned already in section 3.6. Several further processes occur in a realist
epidermis, some of these are summarized below:

e Healthy cells often require further environmental signals (such as e. g. contact with other cells
or with a membrane) that must be continuously supplied. If the supply of these signals fails,
these cells undergo apoptosis. This dependence on external signals is also investigated fc
proliferation in a theoretical model [174].

¢ In processes such as wound healing in epithelial sheets, active cellular movement has bee
observed [175].

e In reality, the epidermis can react as well to mechanical irritations that leavetidgeim
corneumintact with a proliferative response. This is hot accomplished by the current model.

e The protective function of melanin [154] is not included in the model. Consequentlyffdotse
of electromagnetic radiation cannot be studied.

Living organisms presumably host a plethora of interactions that are currently not even known. This
number would be considerably constrained byirawitro co-culture of the cell types encountered in

the epidermis. If such an experimental system could be established, it could be used to study isolate
mechanisms under better-defined conditions.
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parameter value comment
ECM viscosityn 0.001 kgum1s?t [76, 77]
adhesion energy densigf'®* 0.0001 Nm nr? [88]
minimum anchorage™" 0.00001 pJ
receptor loss rate'°ss 0.00001 st
tangential friction cofficienty, 0.1-102Nsnrd [76]
stochastic force cdBcients 0.001-10%kgm s®2 | D = 0.0001um? st
keratinocyte M-phase duratiafi™ (1.0+£0.25) h [77]
keratinocyte $G,-phase duratiom(S/G2) (5.0+2.0)h [77]
keratinocyte G-phase prolongatior(©o) (138.9+ 138.9) h [162]
shortest observed keratinocyte cycletinf&’ (150+20) h [77, 162]
pre-mitotic cell radiuR(™ 5.0 um [165]
cell elastic modulug; 0.000750 MPa [140]
cell Poisson ratio; 1/3 [134]
melanocyte glucose uptake rallgél‘j'c 1500 amol celf! s* [139]
keratinocyte glucose uptake rafgljc 10.0 amol celt! s1
critical water concentratiob ﬁrgo 90.0 % [163]
critical glucose concentratidnél’[f}C 1.0 mM [107]
water difusivity Do %" 10000 um? 571 [166, 167]
water difusivity D§j3'o™ 0.2 um? st [168, 169]
water boundary concentrati %”d 100.0 % by definition
glucose diusivity Dgﬁfc 2560 um? st [170]
glucose boundary concentratimgﬂé”d 5.0 mM [171]
stemcell basal adhesion energy deng?fF?! 2emax

Table 4.1: Parameters for the agent-based model of the epidermis. As far as possible, model
parameters have been derived from independent experiments or they have been varied as fit pa-
rameters. Parameters not included in the table have been varied and are discussed separately in the
text.
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Critical Reflections

5.1 Numerical algorithms

Several numerical algorithms have been used in this thesis. Being a compromise of algorithmic
simplicity and execution féciency, all of these algorithms can profit from further improvements.
Evidently, to model realistic systems of a larger size, parallelisation of the algorithms [40] is of urgent
interest.

The numerical tool of the Delaunay triangulation may be improved significantly both in terms of
efficiency and numerical stability:

e The dficiency of the triangulation could be improved by using fiedlent data structure based
on faces and not on tetrahedra [27].

¢ Inthe evaluation of the orthosphere criterion (2.7) with adaptive precision arithmetics (compare
appendix A.2) it is assumed that the vertices are in general position, i. e., planar configurations
should not occur. If they do occur, the triangulation is reconstructed following slight perturba-
tions of the vertex positions. For most realistic applications, one can expect stocliasts ®
rule out these planar configurations. However, for these rare cases, the error-handling of the al
gorithm could be significantly improved. Thus, unnecessary reconstructions could be avoided.

e The flip algorithm presented in subsection 2.3.5 will fail if within a single timestep the tra-
jectories of two balls intersect such that — in an intermediate flipping configuration — a ball
is covered by another one. In such a case, the intermediate spatial steps arising from equatio
(2.15) become infinitely small and the error-handling performs a complete reconstruction of the
triangulation with all positions updated. Though it turned out, that with an adaptive timestep
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such situations are reduced to rare exceptions, a nfiogeat approach would simply delete

the corresponding balls at their old position and insert them at their new ones. This would
contribute to avoid unnecessary reconstructions. In addition, the modification of the cell-cell
interactions in equation (2.73) does not completely rule out overlapping balls but makes them
highly improbable. Note that a smaller value for the divergence point (@.9.1 + Ruin/Rmax)

in this correction would conflict with the present implementation of mitosis.

e For some applications, it may be necessary to calculate the set intersection of Voronoi volume
and sphere volume as defined in equation (2.77). Though currently a Monte-Carlo approach for
the calculation of such volumes is provided, dihcgent numerical routine is still missing.

The discretisation of PDEs with the discrete element method (DEM) is numerically stable under well-
defined conditions. However, based on DEM, the algorithms may still be improved significantly:

e The size of sparse linear systems such as equation (B.1) strongly influences the computation
time necessary for their iterative solution. Currently, the boundary conditions on the PDE are
implemented as separate equations. Withféinient algorithm that could use time-dependent
boundary conditions to reduce the dimension of the system one could considerably decrease the
computational time for obtaining a solution, compare figure B.1 left panel.

¢ In the full solution of equation (2.36) with the method of biconjugate gradients, currently no
preconditioning beyond the inverse of the diagonal is used. The general matrix structure of
these equations suggests, that the use of the side diagonals for preconditioning might improve
convergence.

¢ In order to calculate a continuous gradient of concentration in RDE problems, a spline function
of higher order than the linear interpolation in equation (3.8) must be used (compare subsec-
tion 3.2.2), since the chosen tri-linear interpolation is not continuousigréntiable.

The numerical solution of the cellular equations of motion (2.86) has been performed using a first-
order scheme that used an adaptive timestep (compare appendices C.2.1 and C.2.3). This approach
may be improved significantly as well:

e The order of the numerical scheme could be increased by using Runge-Kutta methods [68], but
these require intermediate recalculations of the forces (and thus, an intermediate update of the
Delaunay triangulation). This drawback is not displayed by predictor-corrector methods [176]
that require the maintenance of a history of the dynamics instead. However, these methods may
fail if the involved forces are not continuous (as for example in the present implementation of
mitotic separation forces).
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e At present, the timestep used in the adaptive scheme is reduced simultaneously for all particle:
(cells) in the simulation as soon as too large spatial stepsizes are encountered. This is also th
case if the maximum spatial stepsize has been exceeded in a small region only. Therefore, th
efficiency of the numerical solution can be increased by using timesteps that are individualised
to every single cell. However, such a scheme must not exhibit artifacts.

5.2 Underlying models

Different models for cell-cell and cell-medium interaction have been introduced for the agent-basec
approach within this thesis. Inevitably, these models cannot grasp the full spectrum of the interactior
properties:

e As discussed in subsection 2.5.2, the chosen JKR interaction model has many shortcomings. |
would be interesting to derive a fundamental theoretical contact model that incorporates viscous
and plastic &ects under the influence of normal and shear forces. Thusfféwseof friction
could already be included as well. Such a model should be derived from a microscopic model
(e. g. tensegrity) and should be verified experimentally. For the numerical solution, such a
model could then be replaced by a simpler mechanical network as well, where the parameter:
have been adjusted such that the dynamics of this network resembles the full theoretical model

e To model active and possibly random forces exerted by eucaryotic cellsfuspaglia lamel-
lipodia, or pseudopodig96], the dynamics of these cellular projections should be understood.
For passive random movement, the stochastic forces should in redligy donsiderably in
solution and in dense tissue. Consequently, at the interface of solution and dense tissue, th
isotropy of the stochastic forces should be abandoned in a realistic model.

e For strongly compressed tissue, the involved forces will be large and the overdamped approxi-
mation in equation (2.86) may not apply anymore. If acceleration is included in the equations,
the dimension of the system (2.86) will double, but the same general techniques could be ap-
plied. For example, in the case of MTS, the assumption of pressure relaxation within the fluid
phase may not be valigh vivo, as it is known from surgery that excised tumours may be un-
der strong pressure. The influence of the extracellular pressure distribution on the cell kinetics
[111, 115] should be included in these cases.

In addition to the last item, further model limitations apply to the PDE model presented:
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¢ As has already been discussed, the description of the cell dynamics by positive-defunsieuli
does neglect the attractive part of cellular adhesion. The approximate analytic form of a realistic
effective ditusion codicients could well be derived from comparisons with an agent-based
modelling approach including repulsion and adhesion, if experimental data are not available.

e If corresponding experimental data become available, it would be interesting to analyse the cell
cycle distribution in an extended continuum approach as well.

The simple model of calculating the distribution of nutrients with RDESs is quite limited:

¢ If pressure dterences exist, this would imply fluid flow and the assumption that the nutrients
are transported using purditision would have to be discarded.

e Depending on the culturing conditions of the tumour spheroids, the boundaries of the spheroids
should be treated as time-dependent Dirichlet boundary conditions in well-stirred growth me-
dia.

¢ In all modelling approaches, the simple assumptions of constant cellular uptake rates should
be improved by comparing with experimental observations on a single well-defined model cell
line. This could for example be achieved by employing the Michaelis-Menten kinetics (3.6)
for the nutrient uptake rates. As a further advantage, this would directly preserve positive
definiteness of the RDE for the nutrient concentrations.

5.3 Data Improvements

The quantitative experimental signature used in this thesis is too weak to falsify the proposed models
or to determine model parameters with acceptable certainty. However, the present work can well be
interpreted as a feasibility study on large-scale simulations.

Specifically for the continuum approach applied to multicellular tumour spheroids it turned out that
due to the moderate computational demands of the PDE model under spherical symmetry, the multi-
dimensional fitting procedure is well applicable. The conclusions drawn from the best-fit parameters
would benefit greatly if the experimental data contained error estimates. Then, an estimate on the er-
ror of the parameters can be extracted from the fitting procedure as well. With such data, the current
continuum model could well have been falsified.

Consequently, to reduce the number of mathematical models currently available, new experiments
should be carried out. Multicellular tumour spheroids constitute a popular experimental model system
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already and seem under reasonable experimental control. It seems therefore promising to analyse tl
growth dynamics of multicellular spheroids on a single (well-defined) cell line. In such an experiment,
the culturing conditions could be varied as in [107] and in addition, the cellular response to growth
inhibition could be studied in line with [106]. The data (including relative distribution of cells in
the cell cycle, total cell number, quantitative morphologic data with error bars) could be studied
with spherically symmetric continuum approaches that also account for the cellular dynamics [66,
111, 115] to extract information on nutrient uptake rates and necrosis- or growth-inhibition inducing
mechanisms.

Having established parameters (with estimates on their uncertainties), these may be used in ager
based models to analyse the additiorfegdets that arise from the discreteness. Since stochdtdui®

seem to be of great importance in the discrete simulations in the epidermis, one should aim at deriving
probabilistic statements of the discretéeets. In comparison with experiments it remains then to be
seen whether tissues display Emergence or not. The other way round, continuum models can prof
from agent-based approaches by incorporatifieces arising from discreteness.

The models in this thesis produce a large variety of experimental signatures, not all of which could be
thoroughly discussed here. In table 5. Xfelient proposals for the experimental falsification of these
model predictions are summarized.

5.4 Limits of Current Theoretical Biology

Theoretical Biology is an interdisciplinary science. Its strongest contributions arise from biology and
mathematics. This remains valid for its strongest limitations as well.

Biology has contributed detailed observations on natural phenomena and is now evolving from a
qualitative empirical science to a quantitative science within which hypotheses can be accepted o
rejected with confidence levels. This process has not been completed up to now. Even in modert
experiments, where error estimates on a defined confidence level are included, the measured quantiti
underlie large variations. Historically, this has made fticult for the quantitative scientific method

to be established in biology. These large variations have several reasons:

Firstly, it is very dificult to keep biological material under good experimental control. Empirically,
specimens collected in nature are not identical and their antecedent is not known. iButifiar ex-
periments this is not elierent: Apart from intrinsic geneticalftierences, one has so far not been able

to establish defined initial and boundary conditions in the experiments. For example, the metabolic
needs of cells in culture are not completely understood such that the growth medium used in many
in vitro experiments has to be prepared or extracted from existing biological systems [98, 107, 139],
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proposal reference

In the initial growth phases of monoclonal MTS, the model predicts

oscillations within the occupation numbers of the cell cycle substatelsapter 3
This relative distribution of cells in the cell cycle could be measured fiyure 3.4
staining methods to falsify the model.

Both the agent-based model and the continuum approach make qfi@#te 3.5
titative predictions about the sizes of the spheroids and the nufriégitre 3.6
distribution. figure 3.7

In the model for the epidermis, tape stripping events lead to a [syn-
o . . . |8ure 4.4
chronisation of the cellular proliferation, which could be observed

staining methods afterwards. ta/p left panel

By measuring the proliferative response to successive tape-strip;ﬁ&gre 44
experiments, information about the time spent in thgpBase can be '

gained. top right panel

Table 5.1: List of proposals for the falsification of predictions made by agent-based models. The
proposals are ordered by the occurrence of the corresponding discussion in this thesis.
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which are under limited control only. Hopefully, improved control on culture conditions will be
gained in future.

Secondly, most biological systems above the protein level underlie large intrinsic variations, as for
example two cells are never identical. Since many current measurement techniques are invasive, me
sured guantities have to be averaged over a whole ensemble of not completely identical constituent:
The origin of these variations is not entirely genetic, as even organisms with identical genotype may
express dterent phenotype. In fact, if one includes the DNA of our suspected endosymbiotes — the
mitochondrions that occur in eucaryots — into the definition of the genotype, the variance in the geno-
type becomes even larger. In addition, the time-dependent internal cellular state of expression an
transcription will determine the cellular behaviour. Knowledge of this internal state would require

information about spatial distributions of proteins within the cell. Still, using less invasive measure-

ments in combination with an improved control of experimental conditions would enable a time-

average performed on single individuals, which would reduce the intrinsic uncertainties. However,
the results obtained from such measurements could not directly be transferred to other individuals. Ir
addition, having medical applications in mind, one should rather be interested in real-world scenarios
In conclusion, it should be accepted that this second source of error will not be definitely eliminated.

Mathematics alone is a science that examines self-made abstract structures for their properties ar
patterns. Itis the field of applied mathematics, which analyses correspondents of these abstract stru
tures in reality. Impressive success of applied mathematics in many natural sciences — especially i
physics — has even put up the philosophical question whether mathematics provides a model of th
world or whether the world is just a realisation of an abstract mathematical model. Independent of the
philosophical outcome, there is the strict requirement that mathematical models must yield conclu-
sions that are consistent with experimental observations and predictions that can be falsified in future
experiments.

The questions that can be answered with current scientific means are a lot simpler: It is establishe:
that biology can profit from the use of mathematical methods for the analyses of experiments, but
possibly one can use mathematics for more. As discussed before, modern experiments are expensi
and often under poor control. An abstract mathematical model has the potential to pierfalico
experiments at a fraction of the costs and under complete control. The method of mathematics tc
study abstract structures has brought great advantages, since mathematicians do not have to strug
with the pains of everyday life. However, this tendency to abstraction can turn fatal in the sense that
scientific benefit is lost when predictions of mathematical models cannot be falsified in reality. In
such a case, thefert invested in mathematical modelling is a glass bead game [177].

Within the plethora of mathematical models that already constitute a universe, one has to identify
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the subset that is intrinsically consistent and within this subset, the models that are consistent with
current experimental data and maké&eting predictions are of special interest. Models that do not
make falsifiable predictions cannot contribute to scientific progress.



Chapter 6
Summary

It has been possible to create previously not existent software that meets the computational require
ments of df-lattice agent-based model approaches. This included the creation of a triangulation for
adjacency detection and the numerical implementation of algorithms for the solution of reaction-
diffusion equations. For specific examples it has been demonstrated that the tool of weighted kinetis
and dynamic Delaunay triangulations can be usedtitadtice agent-based cell tissue simulations for
adjacency detection. The presented implementation is able to calculate the specifics of a weighte
Voronoi tessellation such as contact surfaces and volumes. The method allows for interesting exter
sions such as a consistent concept of volume calculation in cellular tissues. The tool has been applie
to off-lattice agent-based simulations in the case of multicellular tumour spheroids and epidermal
tissue.

With simplifying assumptions on cellular interactions and cellular nutrient uptake rates, the model
could reproduce experimental growth curves on multicellular tumour spheroids. An even simpler
continuum approach has been able to reproduce these experimental growth curves as well. Owin
to missing quantitative data on tissue morphology and limited quality of experimental data sets, one
could not distinguish between the two models on this level. Beyond the simple growth curves, the
agent-based model exhibits more physiological properties than the analogous continuum approacl
For example, initial oscillations within the relative occupation of the cell cycle states should be ob-
servable in small and monoclonal spheroids.

For epidermal tissue, the model has qualitatively reproduced simple key features of a realistic evolu:
tion. For the smaller cell numbers considered in this system, the equations of motion could be treatet
with less approximations. In particular, a suspected control mechanism for epidermal homeostasis
where the extracellular water concentration influences the proliferation rate, has been tested using a
agent-based model. The resulting homeostasis was stable against perturbations such as removal
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the stratum corneumThe consequences of a varying basal adhesion of cancerous melanocytes were
found to be strongly interlinked with the balance between melanocyte and keratinocyte proliferation
rates. In addition, it turned out that for the initial (avascular) growth phases of melanoma stochastic
effects are very important within the model, in particular the stochastic variation of the initial envi-
ronment. The model predicts a cone-like (and dynamically changifigisdi shape of melanoma in
pre-clinical stages.

Though the kinetic and dynamic Delaunay approach constitutes a great benefitl&dtice agent-

based approaches, the disadvantage of strong computational demands persists. In addition, it turns
out that the vast amount of information produced by agent-based models currently missenty
guantified experimental signatures for falsification. Consequently, the current experimental signature
does not sfiice to fix the parameters of the theory withffszient accuracy. Neverthelessffdrent
mechanisms could be tested for consistency with realistic tissue dynamics witmrsttieo models.



Appendix A

Delaunay triangulation

A.1 Expected algorithmic scaling

A theoretical analysis on the expected algorithmic complexity of the construction algorithm of sub-
section 2.3.6 is provided in [29]. In order to determine the overall performance of the triangulation
code, the CPU time necessary for the construction of the triangulation has been recordfdriamtdi
numbers of randomly-distributed vertices. To exclude time delays arising from disconnected vertices
in the triangulation, all weights have been set to zero. For randomly distributed vertices, the expectec
average total algorithmic complexity can then be deduced as follows: A first contribution results from
the stochastic visibility walk [46], where the length of the hopping path — measured in units of passed
simplices (which in average scales as the number of vertices) — can in three dimensions be expected
scale asN*3. For randomly distributed points, this is well fulfilled (compare figure A.1 right panel).

A second contribution arises from updating the triangulation using either the Green-Sibson or the
Bowyer-Watson algorithms. If the vertices are not in an extreme configuration (which can be ex-
pected for randomly distributed data), this contribution to complexity will in average be constant. To
obtain the total complexity of Delaunay construction, one has to integrate over the two contributions,
which yields the scalingN*3 + 8N, whereN is the final number of vertices (compare figure A.1 left
panel).

Since for realistic applications in adjacency detection a complete reconstruction of the triangulation
will require too much time, especially the times necessary for restoration of the Delaunay criterion
after slight vertex movements will be of interest (see figure A.2). It turns out that this time scales lin-
early with the number of vertices and provides an advantage in comparison to complete reconstructiol
of the triangulation.
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Figure A.1: Algorithmic scaling for the total Delaunay construction and the visibility walk [26].
Left: CPU times necessary for the tetrahedralization fiédént point numbers (unweighted case)

for different distributions. Dashed lines are fits to the expected overall algorithmic complexities
aiN*3 + g;N. Cubic lattices are known to produce many flat simplices (slivers). In the case of the
points distributed on perturbed lattices, the cost of the simplex location can be reduced by giving
a good first guess. In the case of randomly distributed points, the walk in the triangulation can
be considerably shortened by choosing a better guess for a starting sirRéx. The number

of necessary steps starting from an arbitrary simplex in the triangulation towards another arbitrary
simplex scales for uniformly distributed points in three dimensions*&s Note that number of

steps necessary for a specific location may vary considerably, as each data point resembles the
mean out of ten runs.
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Figure A.2: CPU times necessary for the restoration of the Delaunay criterion [26]. The times
have been obtained after vertex movement fdfedént relative step-sizes defined by the ratios

r = m/dnmin (Step size over the minimum distance). The expected linear relation (dashed lines
correspond to linear regressions) is found with slopes increasing with the step size. In the ideal
case, this update method is about 20 times as fast as computing a new triangulation. Here, for a
ratio ofr = 0.1 the flip restoration method is by a factor of 10 faster in comparison to complete
reconstruction. Blue symbols correspond to the black curve in figure A.1.
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points | deletions (total) insertions (total) flips (total) | CPU time per timestep [s]
20000 59 41 426 0.26
40000 51 49 1098 0.54
60000 52 48 2067 0.84
80000 46 54 2749 1.15
100000 42 58 3521 1.47
120000 47 53 5154 1.81
140000 62 38 6297 2.14
160000 56 44 7207 2.49
180000 50 50 7918 2.84
200000 49 51 9766 3.21

Table A.1: Mixed performance of the triangulation forftérent numbers of vertices. In every

run, 100 timesteps have been performed. In each timestep, with probabiity/2 either an old

vertex was deleted or a new vertex was inserted into the triangulation (second and third columns).
Then all the vertices were moved by a small amount (corresponding to a fractioe @1 in

figure A.1) and the flips necessary to restore the Delaunay criterion have been counted — the fourth
column does not include the flips necessary for the deletion process.

Within the context of cellular tissue, a simulation must be able to cope with a varying number of
kinetic vertices. For this case, the performance of the combined algorithms on vertex insertion, vertex
deletion and vertex movement is of interest. In table A.1, féifedent numbers of uniformly dis-
tributed vertices 100 time steps have been performed. In each time step, with prohabili§/5

an arbitrary vertex was deleted from the triangulation and with probalplity0.5 a random vertex

was inserted. Afterwards, all the vertices were slightly displaced followed by the restoration of the
Delaunay criterion. The resulting computation time increases in average linearly (see table A.1).

For the actual runtime of an application, evidently the additional computing time required by the
application will be important. This will heavily depend on the analysed interactions, but sometimes
an estimate of the mean number of expected interactions may be of use. For the example of MTS,
compare chapter 3, the distribution of the number of next Delaunay-neighbours is given in figure A.3,
where from the Delaunay triangulation in average 14 neighbours can be expected. In the logarithmic
plot in figure A.3 it becomes visible that the number of highly connected vertices exceeds the normal
distribution. This behaviour is not due to the existence of cavities within the tumour spheroid, as it is
found for spheroids right at the onset of necrosis (not shown) as well. Note that only a subset of this
number contributes to actual interaction forces, as adjacency in the Delaunay triangulation does not
necessarily imply a spherical overlap.
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Figure A.3: Relative frequency of the next neighboursimsilico MTS. For a large tumour
spheroid (grown at 0.28 mM oxygen and 16.5 mM glucose concentrations, compare figure 3.5), the
relative frequency of occurrence is displayed versus the number of next Delaunay neighbours in a
logarithmic plot. The cell sizes were allowed to range fron25Y3 um to 5 um. The histogram

(blue circles) is well fit by a normal distribution with mean 14.23 and width 1.46 in the region of
less than 20 Delaunay neighbours. This deteriorates rapidly for larger connectivities.
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A.2 Adaptive Precision Arithmetics

In modern computers, floating point variables are usually stored by a sigmdignificant bits, and
some bits describing the exponent of the number. For example, in the common IEEE-standard [67] the
64 bits required to store @ouble variablex, consist of a single bit to store the sign of the mantissa,
p = 52 bits to store the most significant bits of the mantissa, a single bit to store the sign of the
exponent, and the remaining 10 bits are used to store the exponent
+bb...bb
X =+ xbb...bbbx2 0, (A.1)
p=52
Numerical roundff error may occur, when thesignificant bits do not stice to store all information.
For example, for adding the numbers 118 and 3 in binary representatiop withone obtains

1110110+ 11=1111001~ 1111000 (A.2)

This however would require 7 significant bits, and thereby the last bit is lost. Numerical fdundo
may occur for all basic operations. A simple way to circumvent this would be to use a much larger
(or variable) number of significant bits. This however would considerably decreas#itieney of

all operations — and be superfluous most of the time. The adaptive approach is based on the idea of
representing a number by several other numbers via an expansion [39]

X=Xp+ Xng+ -+ X+ Xq, (A.3)
where
e thex are ordered such that is largest and

e the expansion is non-overlapping in the sense that the least significanihit sfmore signif-
icant than the most significant bit &f.

The above expansion is not unique (consider, for example, 1119110 0006- 100+10 = 110000+

110), but due to the second condition, all expansions fulfil ¥and x, have the same sign. This is
especially interesting for geometric predicates such as the computation of an orthosphere criterion in
equation (2.9). The determinants can be expanded as described in [39] (compare [27, 40]) such that
an order by order evaluation is possible.



Appendix B

Large Sparse systems

B.1 Sparse Matrix Storage

A problem often encountered in the numerical solution of fundamental equations is the inversion of
large matrices, i. e., a problem of the form

Ainj = bi or AX = b, (Bl)

where theb; on the right hand side as well as the matrix elemégtare known and the values ought

to be found. The usual procedure of computing the invergeisfnot always practical for numerical
purposes, which is especially true for larger dimension®\.ofFor most systems encountered in
this thesis the full matrices would not even fit into computer main memory. Fortunately however,
most matrix elements vanish identically for these problems and thus need not be stored (compar
figure B.1). For the numerical calculations, the row-indexed sparse storage mode as provided in [68
has been used, which is summarized below.

To store anN x N matrix of typedouble, a vector of typedouble S Aand another vector of type
unsigned int IJA are created. Then the matrix entries Afare saved inSAand IJA as fol-

lows:

1: store theN diagonal entries o in the firstN locations ofS A

2: store the @-diagonal values oA at locations> N + 1 in S A ordered by rows and — within each
row — by column,

3: setlocation O of JAto N + 1,

4: store the index o Athat stores the firstfbdiagonal element of the corresponding row in the
first N locations ofl JA

5. store the column number of the corresponding elemeStAin 1JA at locationN > N + 1.
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Figure B.1: Distribution of matrix entries for typical linear systems in this thesis. Non-vanishing
entries are surrounded by black lines, whereas colours indicate the absolute value of the matrix
elements ranging from blue (vanishing) to red (large). Usually, the systems considered are much
larger than the examples displayed, which necessitates a sparse storage dobiemeypical

matrix occupation for a three-dimensional cubic Poissonian problem (here on555 grid

leading to a 12% 125 matrix) with Dirichlet boundary conditions. In three dimensions, there are

6 off-diagonal entries for internal grid nodes, compare also equation (2.30). Note that due to the
Dirichlet boundary conditions, the boundary nodes do not héivdiagonal entriesRight: Typi-

cal matrix occupation for equation (2.86) for a system of 46 cells (leading to & 138 matrix).

The corresponding linear system is symmetric, which enables one to increadédiemay of
storage and calculation further. Since only tangential friction has been consideregl her®y,

the aligned sub-structures in the coloured regions simply reflect the diagonal dominance of the
3 x 3-dimensional tangential projection operatsy - Different numbers offé-diagonal blocks
correspond to dierent numbers of nelghbourlng cells with an overlap, and tfferént degree

of colour saturation in thefbdiagonal blocks reflects the varying contact surface. Note that as
the system becomes larger (compare figure A.3), the average numh@dadgonal entries will

hardly change, such that the degree of sparseness increases.
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This storage scheme does have the small overhead of storing vanishing diagonal elements, which
negligible for large systems. Thdheient sparse storage scheme has the additional advantage, that
matrix-vector multiplications can be performed by using much less operations [68]. For example, the
matrix

m1 O mysz O 0
0O mm O 0 0
M= mg Mg Mgz Maa Mgs (B.2)

0 0 0 M nNys
0 0 0 0 mgs

would be stored in the arrays as

indexk || O 1 2 3 4 | 5] 6 7 8 9 10 11
1JAK] 6 7 7 11 12112| 2 0 1 3 4 4 .

SALK] My My Mz Mgy Mes | X | Mz Mgy Mgz Mg Mgs Mys

For symmetric or anti-symmetric matrices this scheme can be made even fincieneby storing
only the entries on one side of the diagonal. This must be taken into account when implementing
matrix-matrix or matrix-vector multiplication numerically.

B.2 Conjugate Gradient Method

Since the inverse of a sparse matrix is not necessarily sparse itself, the inversionNot thdinear
system (B.1) is usually not an option. However, if the makiss symmetric, the solution of (B.1) is
equivalent to minimizing the function

f(X) = %XTAX —b'x. (B.3)

For this problemA has to be referenced by multiplication only, so there is no need for actual matrix
inversion. Therefore, any iterative algorithm can be combined with the sparse storage scheme intro
duced before in appendix B.1. In addition, it should be noted that since equation (B.3) is a quadratic
form, it will have a single global minimum — provided thats positive definite. Therefore, the possi-
bility of finding local minima does not exist. For sparse matrices, a popular algorithm is the Conjugate
Gradient Method, for an introduction see e. g. [68, 178]. The convergence time of the algorithm can
be improved by using the following trick: Equation (B.1) can be rewritten as

(MA) x = Mb, (B.4)



140 APPENDIX B. LARGE SPARSE SYSTEMS

whereMA =~ 1. The inverseM is then called a preconditioner. If one repladédy the identity
matrix, one reverts to the ordinary method of conjugate gradients. A better ansatz for thelvhatrix
are the diagonal entries & if A is diagonally dominated. Being used in combination with precondi-
tioning, the algorithm of conjugate gradients can be summarized as follows:

1: choose a starting poixt® and set = 0
2: computer©@ = b — Ax© {the initial residua)

3: repeat

4: i =1+ 1{countiterations

5. setZ'™Y = M~1r(-D {apply preconditioning
6: setp_g=rtD.A-D

7. ifi=1then

8: setp® = Z9 {the initial direction

9: else

10: defines = pi_1/pi_»

11: setp® = Z-Y + gpi-Y) {the new directioh
12:  endif

13:  setq? = Ap®

14:  definea = dﬁ)i__;@

15:  setx® = x(-1) 4 o p {the new solutioh

16:  setr® = (-1 _ 4 {the new residual

17: until convergence reachetfor example||r®|| < ||r@|| or ||r®|| < e|lbl| for somes < 1}.

Intheory, i. e., when numerical rounfi@rrors are neglected, the algorithm converges (exactly vanish-
ing residual) afteniterations, withn being the dimension of (B.1) [68, 178]. In practice however, the
algorithm might not terminate, since due to numerical rodhdoors an exactly vanishing residual

is never reached. Thus, it is appropriate to set up some error criterion above the numericaffroundo
threshold which the algorithm should reach. Evidently, if (B.1) describes the temporal evolution of a
physical problem, i. e., ik contains the time derivative of a physical quantity, the starting point for
computing the solution at time(t + At) can be chosen as the solution of the problem at tugtle

This procedure has been applied to equation (2.86). It is visible that for this probletBocks

occur on the diagonal, i. e.,

(A1)
A= ... . , (B.5)

(An)
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see also figure B.1 right panel. In this case, the inverse of the block-diagonals

(A)t O O
Mt=| o . 0 (B.6)
o o (A)*

can be applied as a preconditioner to improve convergence of the algorithm. For large systems
using a preconditioning matrix becomes contributes significantly to the convergence of the algorithm,
compare figure B.2. There it becomes evident that even for large cell numbers, the conjugate gradier
algorithm converges in reasonable time. It can be improved by using a good initial guess for the
solutionx©, such that the method is suitable for large-scale simulations. The general problem in the
computational demands will then rather shift to the globally adaptive timestep that will be forced to

small values by only few cells that are subject to strong forces.

The ordinary method of conjugate gradients is only suitable for symmetric and positive definite matri-
ces as occur for example in equation (2.86). For more complicated matrices, the biconjugate gradier
algorithm as discussed and provided with the roulimecg in [68] can be used.

B.3 Array referencing

For problems in more than one spatial dimension, it is numerically more favourable to store spatially
discretised quantities on a rectangular lattice within a single array that is accessed using an indexin
function. Within this thesis, in three dimensions the index function

lije = (KMy + ) My + i, (B.7)

has been used, whergj, andk are the indices of a grid node, aMl,,, > 1 denote the maximum
number of grid nodes im or y direction. Partial dferential equations containing derivatives can thus

be discretised and thereby reduce to a sparse linear system of thé&fo#nb, wherex contains the
unknown quantity that is described by the PDE and the materntains the geometric information

of the chosen discretisation. The partial derivatives contribute to the matrix elemeXt3 béreby,

the order of the matrix elements depends on the chosen index fungtiofor the index function

given above, the derivatives occur in the order as given in table B.1. At the boundaries of the reactior
volume however the derivatives cannot be expressed in a centred way: Then, for first order derivative:
the corresponding prefactor should be multiplied by two and the matrix element corresponding to the
index outside the allowed interval should simply be added to the diagowal of
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Figure B.2: Performance of the conjugate gradient algorithm. Shown is the CPU timeftieredtit

sizesN of anN x N system in equation (2.86). There, a system sizé obrresponds tdl/3 cells.

For the displayed regime, the average number of next neighbours per cell becomes independent
on the system size, such that the number of iterations (maxidudisplayed) is approximately
constant. The linear increase in computing time solely results from the (likewise linearly scaling)
number of non-vanishing matrix elements. Note that in this example, preconditioning reduces the
number of necessary iterations by about a factor of three, with directly results in the corresponding
improvement of the CPU time. To obtain identical conditions, as the initial guess for the solution
x(© = 0 and as termination criterioffr®|| < elbl| (Euclidean norm) have been used.
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derivative Al Aj AK | lisaijeajkeak ‘ prefactor

0,0, 0 -1 -1|Ilix—MM,— M, | +(4AyA2)™

R -1 0 -1 hig—-MMy -1 | +(4AxA2)t

8, | 2 0 0 -1 lix—MMy ~(2A2)t | +AZ?
007 +1 0 -1 lx—-MMy+1 | —(4AxA2)!

0,0, 0 +1 -1 lix— MM, + M, | —(4AyA2)™?

Ox0y -1 -1 0 hig—-My-1 +(4AxAY)

oy | 02 0 -1 O - M —(2Ay)t /| +Ay?
00y +1 -1 0| lix—My+1 —(4AxAY)

ox | -1 0 0 hx-1 -(2AX)Y / +AX?
2 ) 8 ) 2| 0 0 Of —2AX? | —2Ay? | —2AZ?
Ay 92 +1 0 O lix+1 +(2AX)7r / +AX?
Ox0y -1 +1 O lig+My—1 —(4AxAY) L

oy | 02 0 +1 O lij + My +(2Ay)t /| +Ay?
Ixdy +1 +1 O lijx+My+1 +(4AxAY) ™t

A0, 0 -1 +1] L+ MMy— My | —(4AyAZ)™

307 -1 0 +1] lig+MMy—1 | —(4AxAD)™

8, | 0 0 +1] lij+ MMy +(2A2)t | +AZ?
Ox0; +1 0 +1|lix+MMy+1 | +(4AxAZ)™

A0, 0 +1 +1] lijk+ MMy + My | +(4AyAZ)™

Table B.1: Array referencing scheme for first and second order spatial derivatives. The table
refers to the index functiohjk given in equation (B.7). The first section contains the contributions

to matrix elements left of the diagonal of the matAx whereas the second section contributes
directly to the diagonal. The last section contains contributions to matrix elements right of the
diagonal ofA. The first column contains all possible spatial derivatives of second order in three
dimensions in the order in which they have to occur within a row of the corresponding linear
system, and the third column contains the corresponding (increasing) index. All derivatives must
be accompanied with the given prefactor. The first and second order derivatives with respect to
a single coordinate contribute to the sanfediagonal matrix elements. Note that for volume
elements on the boundaryfldirent discretisation rules apply, for more details see the text.
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Appendix C

Numerical tests

C.1 Discrete Element Method

All numerical implementations making use of the discrete element method (DEM) have been testec
following the scheme below:

1. The module has been put to the test with the memory leak cheakgimd.

2. For some sample problem with a given distinct direction, the isotropy of the numerical imple-
mentation has been checked by changing the intrinsic direction.

3. When applicable, the numerical solution has been cross-checked with other numerical methods
4. The numerical solution has been compared with an analytical solution for a sample problem.

The comparisons with analytical solutions of sample problems are discussed in the following subsec
tions.

C.1.1 Constant-Diffusivity problems in a rectangular box

Some of the numerical methods described in section 2.4.2 have been implemented and checked
outlined before, where as a sample problem a rectangular box of dimehsiwohgx L, with constant
diffusivity and uniform Dirichlet boundary conditions has been chosen:

ou
— — DV2u(x,t

Q(x,1),
0. (C.1)

Ulgy
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This problem can be solved by using the eigenfunctions of the Laplacian operator over the box

B 8 (X . (hyry) . (ngz
Cn(x) = ‘/LXLyLZ sm( L )sm( L )sm( L ) (C.2)

with n = (ny, ny, ny) andnyy,; € {1,2,.. ., o). By expanding both the solution and the rates into these
eigenfunctions with time-dependent ¢daents

u(.t) = > un®Cn(x). QX = ) QntiCn(), (C.3)
n n
one can use the orthonormality relation of the eigenfunctions
anCm dV =é6nm (C.4)
and the eigenvalue equation
n ng o
V2Cn = =AnCn = —[L—g + L—é + é]nzcn, (C.5)

to derive ordinary dterential equations describing the dynamics of evergt). For constant
Qn(t) = QY one can obtain their analytic solutions and thus, the full solution can be written as

0
uxt) = {u(;l exp(-DAaAnt) + DQ—;‘n [1- exp(—D/lnt)]} Cn(x). (C.6)
n

The agreement with the numerical implementation has been testedféredi values of the timestep

(see figure C.1). It turns out that in the observed regime the Crank-Nicholson scheme is stable,
whereas for the chosen ADI and the FTCS schemes stability conditions exist. In the lim# ob

the steady-state-solution is obtained

0
0 = D 5,-Cn0), ()
n

which enables one to estimate the quality of the often-used steady-state approximation by observing
the diference to the full analytical solution

Au(x, 1) Ju(x,t) = uS(x)| =

Z u? _n exp(-=DAnt) C
A iy p nt) Cn(x)

0
< an (u?, - DTnn)C”(X) exp(-DAnt)
< exp(-Dam t)Z (U0 —~ Q—%)Cn(x) = exp(—/lmi”GDt) AU’(X) (C.8)
= min 4 n Din 6 )
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Figure C.1: Analysis of numerical accuragstability for a simple test problem. Displayed is the
maximum deviation from the analytic solution that has accumulated after evolving the reaction-
diffusion equation with dierent methods fof = 500 s using dferent timesteps — expressed by
the Courant factor alpha. The calculations have been performed on a cubic grid V@25 L

lattice constant and 65grid nodes. Circle symbols refer to the freefdsion caseL(fll = 20

mM), and the square symbols refer to the reactidfiidion caseLQ11 = 20 mM, Q‘l)11 =013

mM/s), where all cofficients of higher eigenmodes vanish. The FTCS method fails completely
ata = 1/6 as predicted by equation (2.34), whereas the ADI method has its maximum accuracy
ata = 1/2 in the free difusion case, corresponding to the analogous Courant condition in one
dimension. Since the error accumulates and the inaccuracy resulting from the chosen numerical
approach contributes as well, small timesteps do not necessarily imply small final errors in the
case of free difusion. In addition, the full Crank-Nicholson scheme reaches maximum accuracy
at much larger timesteps. For each timestep, the accuracy of the biconjugate gradient method in
the Crank-Nicholson scheme had been set to 1070, Note that the analysed ADI algorithm

as given by equation (2.37) is not unconditionally stable in three dimensions as illustrated by the
super-polynomial growth of the error at= 2. In the RDE case one can see that the error is now
dominated by the reaction terms with the error growing polynomially with the timestep size in the
regions of numerical stability. The larger error of the steady-state solutions demonstrates in both
cases that aftef = 500 s the concentration has not yet reached the steady-state.
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wherelnmi, is the smallest eigenvalue in equation (C.5) Anf{x) is the initial diference to the steady-

state approximation solution. Thus, it is visible that — besides the initial deviation of the steady-state
approximation the lowest eigenvalue of the Laplacian operator in the volume under consideration in
comparison with the diusion lengthv6Dt determines the quality of the steady-state approximation.
Note however, that in above derivation the reaction rates have been kept temporally constant. For
physiological values of = 500 s,D = 105 um?/s (glucose in tissue, [138]), and = (1000 um)?

one obtains exp-DAmint) = 0.21. Therefore, for the validity of the steady-state approximation, the
following conditions must be fulfilled

¢ the initial concentration should be close to the steady-state-concentration,
e the reaction terms should not change much during the observed time interval,

¢ the time interval should be large enough such that tieslon length is larger than the typical
length scale of the system.

Different methods for obtaining the steady-state concentration from a given distribution of reaction
rates have been compared (see figure C.2).

It should be noted that the spatial distribution of the error follows the Laplacian equation as well (see
figure C.3 right panel).

In the case of the RDE (2.24) with no-flux von-Neumann boundary conditions and for a given rate
term Q(x, t) the total content of the reactionftiision volume

U(t):fvu(x,t)d3x (C.9)

can be obtained via
t
U() = U() + f
0

which can be calculated analytically for simple choiceQ@, t). This provides an additional way of
testing. Note that above procedure can be applied for small times and Dirichlet boundary conditions
as well if there is no interaction with the boundary, i. e., if within a non-vanishing environment of the
boundary the cell concentration does not exhibit a gradient.

f Qx.t) d3x] dt . (C.10)
Vv

C.1.2 Steady-state-Solutions for varying-diffusivity problems
By using the formal analogy to electrostatics, where one has [179]

V [6(X)VD(X)] = —4np(X), (C.11)
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Figure C.2: Deviation of the steady-state approximation from the full analytic solution. The ana-
lytical error prediction (dashed line) illustrates the ideal exponential dependence. Three numerical
approaches have been compared: the biconjugate gradient method (CGM), a V-cycle-multigrid
method (VC MGM), and method based on Fast Fourier transform (FFTM). For equal grid reso-
lutions, all numerical approaches converge to the same result within their desired accuracy (here
set toe = 10719). For small times, the error must be large due to the invalidity of the steady-state
approximation, whereas for large times, the error should decrease as indicated by the dashed line
(analytic calculation). Note that the initial nonlinearity does not contradict equation (C.8), since the
difference has been divided by the (time-dependent) full solution. The saturation of error in the nu-
merical approaches however indicates that though for large times, the steady-state-approximation
becomes valid, the spatial discretisation error will still contribute. Here, it is also demonstrated that
the used finite-dferencing schemes are of second order in space, as doubled grid resolution re-
duces the remaining error by a factor of four. Parameters have been chosen as t@ﬁglwszo.o

mM, @}, = 0.13 mMs, D = 100um?/s, andLy = Ly = L; = 1000um.
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Figure C.3: Density plot of solutions for the 222-eigenmode. The plane of the cross-sections

contains the origin and has the normal veator = 1/ V2(1,1,0) Left: Numerical solution of
the Poissonian problem wit®,,, = 0.13 a. u., and D= 100 a. u. Red encodes field values of
+9.9-10* a. u., whereas blue encode8.9 - 10~* a. u. The transparent isosurfaces denote field
values of 10-10~* a. u.Right: Red encodes absolute error values-805-10~7 a. u., whereas the
transparent isosurfaces denote absolute error value§ o167 a. u. Generally, the error follows
Laplaces equation as well.

wherep(x) represents the charge distribution aifxl) the electric permittivity, one can find an analyt-
ical solution for simple configurations from the Green’s function. For example, if one uses Dirichlet
boundary conditions at infinity, the solution can be obtained directly via

O(x) = — f P oy (C.12)

dneg J X = X|

For the special example of a point chaiQdocated atx’ in a half-space witle;, whereas the other
half-space has permittivity,, a solution can be obtained using the method of images

g[ 1,+81_82 . 1 —|  xeV
O(x) =4 &1 IX = X'| 815-82|X(5X +2n(n- x’)| (C.13)
X eV,

g1+ & |X=X|

wheren denotes the normal vector pointing from half-space 1 to half-space 2 (see figure C.4). Obvi-
ously, the error is not completely controlled, as in the numerical solution one has additional boundary
conditions that are not contained in the analytical solution.

A further test problem with varying ffusion codicients can be constructed from a one-dimensional
example. If both the diusion codicient and the reaction rates are isotropicxiandy-directions,

and the solution satisfies no-flux von Neumann boundary conditions in these directiorffusedi
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Figure C.4: Approximate solution of an electrostatic test problem. The plane of the cross-sections
contains the origin and has normal veatgr= (1, 0, 0). Left: Simple test problem for the steady-
state-solution of space-dependerfiudiion. A point charge (filled point) is placed in the left half-
spaceV; with permittivity £1, whereas the right half-spa&é is filled with a medium of permit-

tivity £2. The mirror charge (empty point) ensures constant potential at the intermediate boundary.
Middle: Analytical solution (vanishing potential at infinity) for a point charge wiih= 1.0 a. u.

placed at (0.0, 0.0, -15.0) inside a cubic box ranging from (-100.0, -100.0, -100.8108.0,
+100.0,+100.0). Atz = 0O the volume is divided into two half-spaces with = 1.0 a. u. and

&2 = 10.0 a. u. The transparent three-dimensional isosurfaces denote regiors wif005 a. u.

Blue encodes regions witlh = 0 a. u., whereas red encodes regions witlx 0.1 a. u. Right:
Numerical solution of the same problem with 101 grid nodes in every dimension. In contrast to the
analytical solution (middle), the numerical solution underes 0 Dirichlet boundary conditions

at the box walls (colour coding as in the middle panel). This leads to a faster decreasing potential
and to a smaller isosurface of the numerical solution. The associated error can be decreased by
enlarging the grid size while keeping the grid resolution constant.
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equation will reduce to anfiectively one-dimensional problem. For example, in the steady-state
approximation one obtains in this case

D@u’ (2 +D'(9u(2 + Q(2 = 0. (C.14)

Generally, the above one-dimensional problem can for polynobB (gl and Q(z) be solved with a
power-series ansatz

u(2 = i anZ'. (C.15)
n=0

If, for example, the spatial dependence of thudiion codficient and reaction rates is given by
D@ = Dg+aZ,
Q@ = Q (1 + 3D122) , (C.16)
0

the solution can be found by inserting ansatz (C.15) into (C.14). With the additional equations for the
Dirichlet boundary conditiong(0) = ug andu(L,) = u, the series expansion can be re-summated to

Qo2

b+ 55-Ls

u@2 = up — QD 2, 2D° arcta (C.17)
2Do arcta

as can be verified by re-insertlng into equation (C.14). The numerical solution of the above example
has been compared with the analytical solution (C.17), see figure C.5.

C.1.3 The loaded cuboid

As sample problem the following scenario has been considered: A cuboid of dimehgjdrsand
L, and uniform elastic propertids, andy, is pressed with the uniform force denspyon its left side
to the right and is constrained by the half-space situated=at. (see figure C.6 left panel). In this
case, the equations decouple

UX(X’ y’ Z) = UX(X) ’ Uy(X’ y’ Z) = Uy(y) ’ UZ(X’ y’ Z) = UZ(Z) ’ (C18)

which considerably simplifies equations (2.44) to

Ui(x=0, Uj(y=0, U@ = 0,
N UL + RUNY) + LU D] = Py,
hUyy) + R[Ui00 + Uy@| =0, fU@) + R [Uy() + Uy(y)| = o. (C.19)
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Figure C.5: Steady-state solution of a test problem for varyingjudiion codicients.Left: Max-

imum relative deviation between numerical and analytical solution of C.18€or = Dg + o7
andQ(2) = Qo(1+32/DoZ?). The biconjugate gradient algorithm has been used witlerdli

ent values for the error tolerance. For doubled grid resolution, the error decreases by a factor
of four. Parameters have been chosen as follog: = 1.0 um?/s, Qo = 0.5 mol/(um3s),

@ = 1.0-1079/s, ug = 10000 mol/um?3, u. = 1000000 mol/um® in a box ranging from
(0,0,0) um to (10000,100Q0,100Q0) um. Right: Density plot of the relative error. The plane

of the cross-section contains the centre of the computational domain and has the normal vector
n, = 1/v2(1, 1,0). As inx andy-direction no-flux von-Neumann boundary conditions have been
applied, there are no anisotropies in these dimensions, i. ., the isosurfaces (Herd &t} are
planes. Naturally, at the Dirichlet boundary conditions the error vanishes, as also the numerical
solution fulfils the boundary conditions exactly.
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In combination with the additional constrairitg(Ly) = 0, Uy(0) = —Uy(Ly), andU,(0) = —U4(L,)
this simplified system can be solved analytically. The elastic properties of the plate thus solely enter
via the boundary conditions and the solution reads

L
U= 2I=d,  Uym)=rve y—%], U =B[22 (C.20)

~-VE 2
Here it becomes visible that the elastic paramé&eatescribes the deformation in longitudinal di-
rection, whereas the Poisson numbejuantifies the relative deformation transversally to the acting
force, compare also subsection 2.4.3. The total volume is given by

V= Lx(l— %)Ly(u v%)LZ(1+ v%) =V
where it is visible that = 1/2 corresponds to the case of an incompressible medium.

1+ (2v- 1)% +0(E—§)], (C.21)

O Py x o s
[ e 7 % TS < T
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Figure C.6: lllustration of a test problem for strain distributioheft: A plate with dimensions
Lx = Ly = L; = 1 m and uniform Poisson and Young moduli= 0.333 andE = 1.0 kPa,
respectively, is pressed with the uniform force dengity= 0.1 Pa as illustratedMiddle: This
results in a linear dependence of the local deformations: The straidimection is largest at the
face where the force acts and decreases wiftransparent isosurfaces are planeRjght: In
contrast, the absolute strain in a perpendicular direction ()evanishes at the symmetry plane
marked by the transparent isosurface and increases towards the boundaries. As thE strain
linear function ofx?, the resulting strain and stress tensors are spatially constant.

Similarly, for a special case an analytical solution can be found for spatially varying Young modulus.
If no transversal deformation is allowed (equivalent{@) = 0) and if the Young modulus varies
only in one dimensiorE(x) = E(X), one hasf; = E(X), f, = 0,g = E(X)/2 and the same ansatz

Ux(X) =Ux(¥),  Uy(x)=Uyy),  UAx) =UA9 (C.22)
can be used to simplify equations (2.44) to
EQQUL() +E'(QU'(x) =0,  UJ(y) = 0, Uj(@=0,
NEQUL () =P, Uly) = 0, Uy =0, (C.23)



C.2. CELLULAR MECHANICS 155

which has the solution
Ly

Ux(X) = Px f %dx, Ufy)=0, and Ug2)=0. (C.24)

X
Note that for constanE(x) = Eg, above equation reduces to the same solution as (C.20) in case of
v =0.

C.2 Cellular mechanics

The correct calculation of cellular interactions has been tested by the following scheme:

1. The code has been tested with the progvaigrind for memory leaks.

2. For a sample problem with a given distinct direction, the isotropy of the solution has been
checked for by changing the intrinsic direction to all coordinates.

In addition, further comparisons with analytic results as described below have been performed.

C.2.1 Deterministic two-body-problem

The equations of motion for two spheres of rdgiiandR, underlying a JKR-interaction and tangen-
tial as well as isotropic friction resulting from (2.86) are given by

My Xy Fniz— y12 (X1 — X2) — y1Xq1,

MpXz = FNor— 21 (X2 — X1) — yoX2, (C.25)

whereF denotes the JKR-forcey;, = —n,; the normal vector from cell 1 to cell 3, = y,; the
tangential friction tensor, ang = 6znR; the isotropic Stokes friction, whergis the viscosity of the
medium. If the friction tensor only incorporates tangential friction, i. e., if only movements tangential
to the inter-spherical contact surface contribute to intercellular drag forces, the total drag force will
only arise from cell-medium contributions. Mathematically, this reflectg,pn{x; — Xo) = 0, since

v12 contains projectors on the tangential part of the velocifiedence only. Therefore, one obtains

in the over-damped approximationx; ~ O

|6reRY/2
oo 3/2pl1/2
67T7]R1X1 = —-Kh*“R [1 — Khe2 ji@(h) ,

] e(h), (C.26)

BrRo%e = +Kh/2RY2 [1 -
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whereh = R, + R, — [Xo — X4| is the total sphere overlaj denotes the elastic constant defined in
equation (2.60)R is the reduced radius defined in (2.58)stands for the adhesion energy density
between the two spheres, aBddenotes the Heaviside step function. If one assumes — without loss

of generality — thak, > x; and that one has an overlap> 0 (otherwise the solution is trivial), the
distance between the sphere centers can be calculated by subtracting equations (C.26) from each other
and with introducing a normalised distance measure

X2 — X1

= c.27
R]_ + R2 ( )
one yields a dterential equation
A = a(l-AP?-apY?(1-A)P%*,  with (C.28)

_ KR n R and = 6re(Ry + Ry) [ VRiR: 32
T tm VR T VR " T RRK \R+R)
Via integration of variables and following expansion into partial fractions the above equation leads to
the implicit solution
3 13 1 2(1-A)Y4 1 2(1- Ag)¥4
Za/(t - tO)ﬁ = \/é{arctar{% (1 + T — arcta % 1+ T

,81/6 _ (1 _ A)l/4 1 ﬁ1/3 +ﬁ1/6(1 _ A)1/4 + (1 _ A)l/2
pYe—(1- Ao)”“] + 30 [/31/3 +BYS(L— Ag)V4 + (1 - Ao)l/Z] - (C.29)

—log

that cannot be inverted analytically. Therefore, for testing purposes equation (C.28) has been solved
directly with a 4" order Runge-Kutta method [176] using affstiently small timestep. As shown

in figure C.7, the use of adaptive timestep sizes in the agent-based simulation improves the numeric
solution significantly. Note that by using this procedure one has tested the chosen solution scheme
with the adaptive timestepping and in addition whether the tangential projection operators have been
implemented correctly in the dampening matrix in (2.86).

C.2.2 Deterministic many-body-problem

Since for multi-particle systems an analytical solution is usually impossible to find in the general case,
a rather special configuration can serve as a testing problem. A dktells of equal and constant

radiusR being in contact with each other, situated on a plane substrate without any stochastic force
will still experience elastic and adhesive cell-cell as well as cell-substrate interactions due to the JKR-
model and also the corresponding drag forces. If now in addition every cell crawls with a constant
force f® tangential to the plane, one can expect the cell-cell interaction forces to vanish after some
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Figure C.7: Numerical solution of the two-body interaction test problem. Temporal evolution

of the normalised relative distanee = (x; — x1)/(R1 + Ry) for constant timestep widthe(ft,

At = 50 s) and adaptive timestep widthight, maximum step-sizéXmax = 0.25 um). The

black dashed line denotes the equilibrium value, for whick 0. Solid lines denote pseudo-
analytic solutions (% order Runge-Kutta with gficiently small timestep and Euler cross-check),
whereas symbols denote discretisation by the simulation. For the adaptive scheme, strong slopes
automatically enforce smaller timesteps. Parameters have been chosen as follows to correspond
with physiological valuesR; = R, = 5um, E; = E; = 1000 Pay; = v, = 0.2, = 0.005 kg(um

s),e = 0.0001 pJum?.
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time, as the two-body interaction will find its minimum — in particular having the contact suiface
with the boundary. In the limit of large all cells will then move as a single rigid body. The equations
of motion (2.86) can be written as

f"+ D Fi kzﬁ:{[yghzygfwgﬁ 6ik—yﬁ<ﬁ})’£
J ) J

PSRRI EEDRTUCEEIR (€.30)
B

B

which simplifies in the large time-limit to
fo {,yldﬂ + F:Yﬂ})f (C31)

As the force is tangential to the substrate, one has ith= A*y,#* and the usual Stokes friction
termy™ = 6xnyRs*
fa

= SR (C.32)

X
since the cellular velocities are directed tangential to the substrate and are tliiectedaby the
projection operator, i. e®;x; = X;. Consequently, the observed cellular velocities must approach a
common value proportional to the crawling force, compare figure C.8. Note that the large-time limit is
independent on the number of cells, whereas the initial conditions and the number of cells determine,
how fast this equilibrium is reached.

C.2.3 Stochastic single-body-problem

For a single cell of constant radil®and massn, that is neither subject to cell-cell nor to cell-
boundary interaction, the dynamics is described by the Langevin equation of motion

r = v,

Vo= —%v(t)+%F(t), (C.33)

wherey = 6a7R is the Stokes friction cd&cient,  the viscosity of the medium, anB(t) is a
stochastic force. Note that for active random cellular dynamics the Einstein relation

p- el

= — .34
6mmR (C.34)

does not directly relate to the physical temperafurbut rather defines arffective temperatur@®’,
since in this case the cellular movement does not result from physical collisions with particles in the
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Figure C.8: Deterministic many-body test of the projection operators in the numerical solution.
Left: A cohort of 144 cells subject to intercellular as well as cell-substrate JKR-forces is moving on
the x-y-plane due to a crawling force (arrow) acting on every &atiht: Initially, the intercellular

and cell-substrate equilibrium distances have to be found, but for large times all cells move syn-
chronously with a constant velocity, as is indicated by the smaller standard deviations (error bars) of
the velocity. For large times, the average absolute value of the velocity matches the theoretical pre-
dictions of equation (C.32) (solid horizontal lines). Thé&elience for non-mobile cells (orange) is
aresult of the tolerance of the conjugate gradient algorithm, that had beer setl®® (compare
section B.2). Parameters have been chosen as follews= Ece = 7500 Pa,vsyp = veen = 1/3,

Y. =0, = 01 kg/(llm2 S). €Ecell-cell = €cell-sub = 0.0001 me21 n = 0001 kg (um s),

Reel = 5 um, At = 50 s,N = 144. Note that with the absence of stochastic forces in this exam-
ple, cells tend to assume a planar equilibrium configuration, which violates the general position
assumption and leads to on-going reconstructions in the Delaunay triangulation module.
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fluid, but rather from internal cellular actions. The solution of (C.33) can be found by variation of
constants and is given by

t
rt) = r0+m[l—exp(—y—t)]vo+1f
Y m Y Jo

In the large-time limit (over-damped approximation), i. e., withm > 1, this reduces to

F(r)dr. (C.35)

1- exp(—y(tr; T))

t
() = ro+ Tvo+ = f F(r)dr. (C.36)
Y Y Jo
By using the two assumptions on the stochastic force
(Fy =0,
(F(ta) - F(t2)) 3%t — 1), (C.37)

whereé is a parameter that describes the strength of the stochastic forces, the mean square displace-
ment can be calculated in the large-time limit as

2 2 2
(ré(t) - rg) = (T) (V§) + 35—2t ~ +3§—2t. (C.38)
Y Y Y

Note that the constant term can be safely neglecte@nag/ycer)> = O (102232) for realistic systems.

The above identity is known as the fluctuation-dissipation theorem, whereffusidin codicient is
sometimes defined & = £2/(2y?).

A numerical emulation of a stochastic force fulfilling the conditions (C.37) can be derived as follows:
The first condition is met by using any random number distribution with a vanishing mean. In nu-
merical calculations, the smallest time unit within which the stochastic forces ffen idigiven by

the time stepAt. This can be used to derive the amplitude of the stochastic force from the correlation
condition in (C.37):

t+At/2
f (F(t) - F(r)) dr = 3¢% =~ F2(t)At. (C.39)
t-At/2
Thus, every component of the stochastic force must be renormalised with the timestep width
& causs
Fit) = —x , (C.40)
\/ﬁ 0,1

wherey§1Y5° is a random number drawn from a normalised normal distribution with mean 0 and
width 1. Consequently, the spread of the random forces becomes larger for smaller timesteps. The
fluctuation-dissipation theorem is reproduced by the numerical implementation (see figure C.9). For
the simulations within this thesis, the random number geneRenB00— as provided in the Matpack
package [97] — has been used.
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Figure C.9: Test of the random force calculations. Solid lines indicate the prediction by the
fluctuation-dissipation theorem, whereas the symbols indicate the mean out of 100 test runs with
different seed values of the random number generator. The corresponding standard deviation is
indicated by the yellow or black-dotted region, respectivelgft: For constant timestep width

(At = 50 s), the fluctuation-dissipation theorem is well-reprodudeight: If spatial step-sizes

are constrained to.05 um < Ax; < 0.5 um by using a variable timestep widti, this appearance

is not changed: As the random forces are normalised/By in every timestep, the fluctuation-
dissipation-theorem is recovered. The remaining parameters have been chggnr-gsum and

n = 1073 kg/(um s). Mean square displacements have been recorded every 1000 seconds. If this
was not possible due to the variable timestep width, linear interpolation between the two closest

successive time points has been used.
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C.3 Fitting Experimental Data

In order to fit theoretical results to experimental datg2it has been performed (compare e. g. sub-
section 3.3.2). Thereby, one considers a minimization problem on the function

YEOt) — VST, . Pol(t))
2

(
lpswpl= D ), ~

i:experiments:datapoints i

: (C.41)

which expresses a measure for thfetences between experimental data pq’rﬁfi’éand the simula-

tion resultsy;™ — weighted by the experimental uncertainiigsof y;*. Note that generally an error

in t;; will contribute too; as well, but for most measurements on growth experiments its contribution

can safely be neglected. Since the simulation results will depend on the parafpeters py}, the
quantityy?[ps, .. ., pn] can be minimized by varying the parametéps, ..., p,} by specified proto-

cols such as e. g. systematic rastering of the parameter space, Monte-Carlo methods such as simulated
annealing or genetic algorithms, and geometric algorithms such as simplex walk and Powell's method
[68, 176]. Note however, that due to numerical reasons equation (C.41) may not be favourable for
minimization problem, as — especially having the initial exponential growth of cell populations in
mind — the cell numberyfj‘m[ P1, ..., pn] May fluctuate strongly. This problem can be alleviated by
reducing the dferences between the cell numbers, i. e., by se;ﬁ)ﬁ’(iim =1In (NﬁXp/Sim) and likewise

for the other quantities [66].

In this thesis, Powell’s algorithm as provided in [68] has been used as minimization protocol. It
is a purely deterministic algorithm, which opens the possibility that it will terminate within a local
minimum. Therefore, dierent test runs (starting from ftkrent initial parameter sets) should be
performed to check whether these terminate within the same minimum.

At a local minimump, any functionf can be expressed as

1 9%f
f(p+x) = f0+§ 9pop,

xixj+...:fo+}xTAx+..., (C.42)
D 2

where A is the symmetric Hessian matrix at the minimum that can be determined using finite-
differencing. At a local minimum, the Hessian matrix must be positive definite. Withy?, the
isosurfaces of the quadratic fomiAx = 2Ay? definen-dimensional hyper-ellipsoids that can gener-

ally be rotated against the parameters axes. By a fiédan ellipsoid of confidence is defined and
consequently, error estimates for single parameters can then be obtained from perpendicular projec-
tion of the hyperellipsoid on the parameter axes. Such a projection is obtained from the inverse of the
Hessian matrix at the minimum, i. e., for parame®eone can derive an error estimate via

Api = VA 1e2A\2, (C.43)
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where e denote the Cartesian unit vectors ang? defines the confidence region. Technically,

x = A lg can be determined using the method of conjugate gradients, compare appendix B.2. Note

that 22 A g is identical with tha™ diagonal element of the covariance matrix [68].

The algorithm has been tested using the logistic growth equitienN — N2 — compare equation

(2.1), which has the solution
aNp

(@ — BNo) &' + BNo

with the three parametefdy, @, andg. By adding normally-distributed random deviations to above

equation, an artificial data set has been created with the parariNigterd cells,a = 1.0/day, ang3 =

0.005(day cell), compare figure C.10. The fit yielded the parameter estiNgteg3.94+0.17) cells,

a = (1.01+0.02)/day, angs = (5.1+0.1)-1073 /(cell day) at a confidence level of 99%. Consequently,

provided with sificient quantitative data, Powell's method can be used to extract model parameters

with acceptable accuracy.

The implemented method has the advantage that the function to be minimized can be defined in ;

non-analytic form.

N(t) = (C.44)
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Figure C.10: Test of Powell's minimization method with an artificial data set. Using the pa-
rametersNg = 4 cells,a = 1.0/day, andd = 0.005(day cell) in equation (C.44) with assumed
normally-distributed relative errors @N/N = 0.05, 200 artificial data points have been created
(symbols, error bars correspond to one standard deviation). Powell's method [68] has been used to
minimize 2 in equation (C.41) (red line). Using confidence ellipsoidagf ~ 6.63 (correspond-

ing to a confidence level for single parameters of 99% [68] in case of normally-distributed errors),
the algorithm yielded the parameter estimatigs= (3.94 + 0.17) cells,a = (1.01+ 0.02)day, and

B = (5.1+0.1)-10°%/(cell day) (dashed lines mark extremal fits). The green line represents a fit per-
formed withxmgrace, which uses a Levenberg-Marquard algorithm [68]§&minimization and

yields Ng = 4.36 cells, = 0.98/day, ang3 = 4.9 - 10-%/(cell day). The discrepancy iNp results

from the fact that the interface provided in xmgrace ignores the error bars and thereby weights all
points equally, as can be verified by applying Powell's methodyt®with o; = 1Vi, j in equation
(C.41).



Appendix D

Source Code

The source code has been written in the programming language Generally, the paradigm of
object-oriented programming [42] has been followed.

The following modules have been implemented as separate (documented) classes, such that they ¢
be included in independent applications:

e a parameter parsepdrameter.h, parameter.cc, approx. 350 lines) that processes param-
eter files, command line options, and provides parameter values upon request,

e a structure classsgructs3D.h, structs3D.cc, approx. 2000 lines), within which funda-
mental data structures such as vertex and simplex and the corresponding necessary operatio
are defined,

e a triangulation classtfiangulator3D.h, triangulator3D.cc, approx. 4000 lines) that
provides the functionality to construct and maintain weighted kinetic and dynamic Delaunay
triangulations in three dimensions as described in section 2.3,

e aseries of classesqluble.h, soluble.cc, approx. 4200 lines) with similar interface mem-
ber functions all intended for the solution of RDE wittfdrent methods:

a class providing the multigrid method on a rectangular grid for the steady-state solution
of RDE,

a class providing the FFT method for the steady-state solution of RDE,

a class providing the ADI algorithm for the full solution of RDE,

a class providing the Crank-Nicholson algorithm for the full solution of RDE with the
method of biconjugate gradients.
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Note however that owing to technical necessities, these separate implementéaferns dome
aspects, which are described in the respective documentations.

The source code will be available upon request from July 2006 from Gernot Schaller, Tilo Beyer, and
Dr. Michael Meyer-Hermann.



Appendix E

Used Symbols and Acronyms

Used symbols:

symbol meaning ‘ unit/‘comment
\Y Nabla operator umt
R the set of real numbers -
3 weighted vertex associated with a vector -
rt lifted vertex? -
F1a flip replacing one by four simplices -
Fa1 flip replacing four simplices by one -
Foz flip replacing two by three simplices -
Fa2 flip replacing three by two simplices -
n(fi, 7)) orthogonal sphere distance -
u(r, t) concentration of a substance mM = amolum3
D(r, t) diffusion codicient um? st
V2, A Laplacian operator um2
Q(r, 1) reaction term mM st
u (t) spatially discretised concentration mM
D (t) spatially discretised ffusion codicient um? st
Qi(t) spatially discretised reaction term mM st
uf' spatially and temporally discretised concentration mM
Dy spatially and temporally discretiseditision codicient um? st
A spatially and temporally discretised reaction term mM st
A contact surface betwedrandJ um?
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APPENDIX E. USED SYMBOLS AND ACRONYMS

symbol meaning ‘ unit/‘comment
L lattice discretisation operator st
1 identity operator 1
At timestep width S
AX, Ay, Az lattice constants um
o(..) order of... -
0 partial derivative with respect t, umt
CTop stress tensor MPa
E Young modulus MPa
v Poisson modulus 1
Uos strain tensor 1
FR JKR interaction force uN
Rij reduced radius um
Kij elastic cofficient MPa
h; virtual overlap between sphereand | um
€] adhesive energy density between sphesedd | J nr?
O(X) Heaviside step function 1
VR JKR interaction potential between ceiland j pJ
creqt) receptor density of cell 1
C(t) ligand density of cell 1
Fi(t) force acting on celi uN
Fij (1) force acting between celisand | uN
¥ cell-medium friction cofficients kg st
Fﬁ’f cell-boundary friction coicients kg st
yﬁﬁ cell-cell friction codficients kg st
n medium viscosity kgum st
5%, 6 Kronecker symbol 1
Yi friction codficient for tangential movement kg st um
Vi friction codficient for perpendicular movement kg st um
Pﬁ’jl tangential projection operator for celland | 1
Pi‘fl perpendicular projection operator for cdlland | 1
@) zero operator 1
R (pre-mitotic) mother cell radius um
R® (post-mitotic) daughter cell radius

um



symbol

meaning unit’comment
ymax maximum cell-cell friction contribution kg st um
fad maximum adhesive force uN pum=2
Tert critical cell tension MPa
kg Boltzmann constant JK1
T temperature K
Cox(r, 1) oxygen concentration mM
Cql(r., 1) glucose concentration mM
Cu(r, 1) viable cell density um=3
Che(r, 1) necrotic cell density um3
a@[Cyp, Cnd] proliferation rate st
B[Cox Cql death rate st
y necrotic removal rate st
Cthresh cell threshold density um=3
cort maximum cell density um3
Kerit cell compression factor 1
pert minimum nutrient product mM?
m diffusion exponent 1
Lp diffusion length um
7(m mean M-phase time S
7(8/G2) mean 3G,-phase time s
7min minimum observed cycle time s
Aox cellular oxygen uptake rate amol celf* s
Agl cellular glucose uptake rate amol celf! st
& cellular anchorage pJ
min minimum anchorage pJ
mel melanocyte cycle time S
£ fluctuation force parameter kg mts32
o(X) Dirichlet -distribution function 1

Table E.1: Symbols used throughout this thesis. If units are
given, these correspond to the units chosen in this thesis, un-
less noted otherwise. Symbols are in order of their first oc-

currence in the text.
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Used acronyms:

abbreviation

APPENDIX E. USED SYMBOLS AND ACRONYMS

full phrase

AD
BTCS
CGM
CNS
DEM
DNA
FFT
FTCS
JKR
MTS
ODE
PDE
RDE

VCMGM

Alternating-Direction Implicit
Backward-Time-Centred Space
Conjugate Gradient Method
Crank-Nicholson Scheme
Discrete Element Method
Deoxyribose Nucleic Acid
Fast Fourier Transform
Forward-Time-Centred Space
Johnson-Kendall-Roberts
Multicellular Tumour Spheroid
Ordinary Dfiferential Equation
Partial Diferential Equation
Reaction-Diffusion Equation

V-Cycle Multigrid Method

Table E.2: Abbreviations used throughout this thesis.
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