
Cell Replication and Redundancy Elimination During Placement
for Cycle Time Optimization

Ingmar Neumann* Dominik Stoffel* Hendrik Hartje+ Wolfgang Kunz*

*J.W.G. University Frankfurt a.M. +University of Potsdam
Department of Computer Science Department of Computer Science

Electronic Design Automation Group Fault Tolerant Computing Group
60054 Frankfurt a.M., Germany 14415 Potsdam, Germany

Abstract

This paper presents a new timing driven approach for cell
replication tailored to the practical needs of standard cell
layout design. Cell replication methods have been studied
extensively in the context of generic partitioning problems.
However, until now it has remained unclear what practical
benefit can be obtained from this concept in a realistic
environment for timing driven layout synthesis. Therefore,
this paper presents a timing driven cell replication
procedure, demonstrates its incorporation into a standard
cell placement and routing tool and examines its benefit on
the final circuit performance in comparison with
conventional gate or transistor sizing techniques.
Furthermore, we demonstrate that cell replication can
deteriorate the stuck-at fault testability of circuits and
show that stuck-at redundancy elimination must be
integrated into the placement procedure. Experimental
results demonstrate the usefulness of the proposed
methodology and suggest that cell replication should be an
integral part of the physical design flow complementing
traditional gate sizing techniques.

1. Introduction

With the advent of deep-submicron technologies,
interconnect delay has become a dominating factor for
circuit delay, thus, dramatically increasing the importance
of delay-driven optimization methods at the layout-level.

A method for optimizing circuit speed, being widely
used in today's physical design tools, is gate sizing or
transistor sizing, e.g. [1]. Gates or transistors located on
critical paths are enlarged to increase their driving force.

A totally different approach for optimizing circuit
performance is cell replication. Instead of resizing the
gates on critical paths, they are replicated so that their
fanout tree can be splitted. This allows to concentrate the
driving force of a gate onto the critical path. Additionally,
the length of the net driven by this gate can often be
reduced. Therefore, in many cases the resulting

performance gain is higher than if this gate was replaced by
an instance of double size.

While gate sizing methods are standard elements in
state-of-the-art physical design tools, cell replication
strategies have only been investigated in the foreground of
generic partitioning problems. However, so far no research
has been reported that integrates cell replication into a
placement algorithm taking into account the technical
requirements to optimize circuit speed during layout
synthesis. For example, testabili ty is an important
optimization criterion in logic level synthesis. Our research
shows that cell replication can drastically reduce the stuck-
at testability of circuits. This aspect has been completely
ignored in previous cell replication literature. Our results
show that layout synthesis exploiting the cell replication
concept should always be combined with a method to
ensure 100% stuck-at testabili ty such as redundancy
elimination based on automatic test pattern generation
(ATPG).

2. Cell replication for timing-driven placement

2.1 Requirements for Cell Replication Strategies in
Circuit Placement

A number of powerful cell replication algorithms have
been presented in the past [2] - [7]. While these algorithms
have been examined in the context of generic bipartioning
problems it is necessary to take into account several
practical requirements when cell replication is integrated
into a timing-driven placement tool that is based on a
recursive procedure performing bipartitioning steps
multiple times.
1) The algorithm must be able to handle multi-terminal

nets, i.e., it must be able to run on a hypergraph
representation of the circuit.

2) The algorithm must support multi-source nets to handle
circuits with bidirectional I/Os, tri-state elements,
busses etc..

3) The algorithm must accept size constraints for the area
overhead caused by the replication of cells. Cell

0-7803-5832-X /99/$10.00 ©1999 IEEE.
0-7803-5832-5/99/ $10.00 © 1999 IEEE

25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14502851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

replication is particularly important to redesign small
areas of the circuit containing timing critical paths.
Therefore, it is crucial that the algorithm can operate
with relatively small size constraints so that circuit
modifications are focused to small but well-selected
regions of the circuit.

4) The algorithm must take into account that the timing
data of signal nets can change with every replication of
a single cell . Therefore, it is not wise to perform many
cell replications at a time, since the cost function is
unable to predict the actual timing situation after
complex replications.

5) The algorithm must not destroy the stuck-at testabili ty
of the circuit that has been achieved by the efforts of
logic synthesis.
We briefly review important contributions on cell

replication and examine their abili ty to fulfill the above
requirements:

Kring and Newton [2] described an extension to the well
known Fiduccia-Mattheyses (FM) algorithm [3] where
single cells can not only be moved but also be replicated to
minimize the cut size. Since this FM-based strategy only
considers single cells, the method is hard to adapt to handle
multi-source nets.

In [4][5] Hwang and ElGamal propose to map a given
partition of a graph onto a flow network and to apply a
min-cut-max-flow algorithm. This method finds an optimal
replication set with regard to the given initial partition, but
the ignorance of size constraints can lead to very large
replication sets. Hypergraphs can be handled by mapping
hyperedges onto trees, where the signal source becomes the
root node and signal sinks become the leaves. If size
constraints are given, the min-cut-max-flow algorithm is
replaced by a heuristic based on a directed FM algorithm.
Note that either method can only be used in the case, where
each signal has exactly one source.

A powerful approach was presented by Liu et al. in [6],
where the concept of a replication graph is introduced. The
algorithm finds the optimal cut size replication in
polynomial time. Size contraints are not regarded. In the
case of hypergraphs or when size constraints are given a
directed FM algorithm is used for partitioning. We have
implemented the FM-based version of this approach and
conducted several experiments. It turned out that although
this method is very powerful for bi-partitioning its
application in circuit placement is problematic. To achieve
good partitioning results very large size constraints were
needed. This leads to large area overheads which is
especially unacceptable in a placement procedure where
such partitioning is conducted numerous times.
Furthermore, as explained above, replications involving a
large number of gates are difficult to be guided by a
timing-based cost function.

Therefore, we have taken a pragmatic approach and
developed a heuristic procedure to integrate cell replication
into placement algorithms that attempts to fulfill all the
above requirements. This will be described in the next
sections.

2.2 The Approach

A well-established method for timing-driven placement
is to assign net weights [8][9], which are calculated from
the results of a timing analysis and net length estimations.
Because the replication of a cell may change the lengths
and the slack values of the nets connected to this cell
dramatically, we wish to recalculate the weights of these
nets immediately after the cell has been replicated.
Therefore, accurate timing information can only be
obtained if partitioning and replication is carried out in two
separate steps.

The algorithm is based on recursively partitioning the
circuit and chip area. For this purpose the circuit is
represented as a weighted directed hypergraph. In each
recursion of the partitioning procedure the edge weights of
the hypergraph are recalculated for each region based on
the minimum reachable net lengths and the upper bounds
for the net lengths. The minimum reachable net lengths are
estimated immediately before each bipartitioning by using
the semi perimeter of the bounding rectangle-method. In
this way, the net weights reflect the timing constraints of
the circuit. For the calculation of the upper bounds for each
signal net the longest path leading through this net is
analyzed. This guarantees that for every net an upper bound
is calculated. For bipartitioning a region we combined a
modified FM-algorithm and a clustering method. Similar to
[10], wires leading outside the region of interest are
connected to additional dummy nodes being marked as
fixed prior to the partitioning step. These nodes are called
position nodes in this paper and are assumed to be signal
sinks. Then, bipartitioning is improved by an optimization
step using cell replication. The algorithm is able to
duplicate single cells as well as sets of cells. When
selecting cells for duplication the net weights are evaluated
so that preference is given to cells driving nets on the
critical paths. After duplicating a single cell or a set of
cells, the weights of the nets corresponding to the
replicated cells are updated.

Redundancies introduced by cell replication are
removed prior to row generation. Testabili ty and
replication will be further discussed in section 2.5. Fig. 1
gives an overview of the general program flow.

timing analysis and calculation of
upper bounds

estimation of net lengths, calculation
of hyperedge weigths

FM-bipartitioning

next recursion
level

redundancy removal

next
region

cell library, netlist

optimization via cell replication

generating cell rows

Fig. 1: Placement algorithm

26

2.3. Bipartitioning and Replication

A key problem when integrating cell replication into a
timing-driven placement method is the choice of an
appropriate cost function. Therefore, we now describe in
more detail the modeling of the circuit and the calculation
of the cost function to select cells for replication.

For the partitioning process, a circuit is mapped onto a
hypergraph G=(V, E). The node set V consists of three
types of nodes:
• Cell nodes model the cells of the circuit. The weight of a

cell node denotes the area requirement of the cell .
• Port nodes model the primary ports of the circuit. During

the partitioning process a port node has to stay in a region
adjacent to one of the four borders of the circuit area. To
ensure this, port nodes can be marked as fixed prior to
partitioning. Port nodes have the weight zero.

• Position nodes are temporarily introduced to model nets
leading outside a region. Position nodes are connected to
hyperedges as sink nodes and have the weight zero.
A hyperedge e∈E represents a signal net of the circuit.

The connections between the nodes and the hyperedges are
provided with a direction to model the signal flow.

A node v is called a source node, a sink node or a
bidirectional node with regard to a particular incident edge
e depending on the type of the gate port (input, output,
bidirectional port) connected to the corresponding signal
net.

After the bipartitioning process, which is carried out by
a modified FM-algorithm, it is often possible to reduce the
cut size if cells are replicated. For ill ustration Fig. 2 shows
a part of a circuit which is divided into two subcircuits
located in two subregions RA and RB. The cut set contains
three signal nets. If the highlighted cell in RA is replicated
so that the copy is placed in RB, one signal net can be
removed from the cut set. In practice this can often
simplify the routing task for this net. This is especially
advantageous if this net is part of a critical path. In RB a
new signal net is created with the same logic function as
the original net in RA.

RA RBRA RB

Fig. 2: Cut size improvement via cell replication

In principle, each signal net can be removed from the cut
set by replicating its drivers but it should be noted that this
may cause other nets to become members of the cut set.
This has to be considered in the cost function. If cells
contain only one single output port and signals are driven
only by one single source, the calculation of the cut size
improvement by a particular cell replication is simple.
However, as already mentioned, multi-source nets and
bidirectional ports must be considered when calculating the
cut size gain. In the case of timing driven placement, net

weights are calculated on the basis of timing data, which
depend on the load driven by the cells. Because these loads
change, sometimes dramatically, when cells are duplicated,
weights are updated during replication.

Before the replication process is described, some
definitions and notations are introduced. Consider a
subregion R containing a subgraph of the initial
hypergraph:
• E(vi) denotes the set of hyperedges incident to a node

vi∈R.
• Eo(vi) contains those hyperedges e∈E(vi), for which vi is

a source node.
• Ei(vi) contains those hyperedges e∈E(vi), for which vi is

a sink node.
• Eb(vi) contains those hyperedges e∈E(vi), for which vi is

a bidirectional node.

For E(vi) we obtain: () () () ()i
b

i
o

i
i

i vEvEvEvE ∪∪= (1)

Analogously, V(ei), Vi(ei), Vo(ei) und Vb(ei) denote the
sets of nodes v, v∈R which are incident to a hyperedge ei.

V*(ei) contains V(ei) and additionally all nodes incident
to previously created copies of ei, such that:

() ()
() ()()

�

ijij ecopyeee
ji eVeV

=∨=

=* (2)

The driver set Dj of an edge set ESi denotes the set of
nodes that are a signal sources of an edge e ∈ ESj:

() ()()�

ESe
j

b
j

o

j

eVeVESD
∈

∪=)((3)

Furthermore we need the notion of a candidate set. A
candidate set CS is recursively defined as:

i) a set containing exactly one edge being part of the
cut set

ii) the union of two candidate sets CSi and CSj, such
that D(CSi) ∩ D(CSi) ≠ ∅

Note that this definition of candidate sets permits to
adequately consider multi-source nets when calculating a
cost function.

Let Di denote the driver set for given candidate set CSi.
The set of those hyperedges being signal sources for the
nodes vi∈Di but not contained in the candidate set is
denoted by Si.

() ()()

∪=

∈

�

ij Dv
j

b
j

i
i vEvES \ CSi (4)

Obviously, Si denotes the set of those hyperedges which
would join the cut set if the cut edges ej ∈ CSi were
removed from the cut set by duplicating the nodes vk ∈ Di.
The notion of the driver set facilitates multiple cell
replications, e.g., for candidate sets containing busses. Note
that a bus can only be removed from a cut set by replicating
multiple cells at a time.

The sum of the weights of those edges that would be
removed from the cut set is denoted by gi

+:
()∑

∈

+ =
ij CSe

ji ewg (5)

27

Analogously, gi
- denotes the sum of the weight of those

edges which would join the cut set:
()

() ()
∑

∅=∨∅=∈

− =
jBjAij eVeVSe

ji ewg
**:

(6)

V*
A(ej) and V*

B(ej) denote in the above stated terms two
subsets of V*(ej) which contain those nodes v∈V*(ej) that
are part of RA or RB, respectively. V*

A(ej) and V*
B(ej) are

used instead of VA(ej) and VB(ej) to take into account that a
previously created copy of ej may already exist. Since ej

and its copy always show the same logic values, it is not
necessary to add ej to the cut. This concept helps to save
edges that cannot be identified by a topological analysis
alone. The method keeps track of logicall y equivalent
functions that resulted from cell duplication.

The decrease in cut size gi gained by the duplication of
each hyperedge e ∈ CSi reflects the timing improvement of
the circuit and can be calculated in the following manner:

−+ −= iii ggg (7)

As already mentioned, it is necessary to replicate each
node v∈Di. The sum of the weights of the new nodes is
denoted as the cost dcoi of this replication and reflects the
resulting area overhead:

()∑
∈

=
ij Dv

ji vwdco (8)

If it is desired to exclude port nodes from replication this
is easily taken into account by only considering candidate
sets that do not have any port nodes in their driver sets.

As long as there exist candidate sets CSi with
gi/dcoi > gainmin, the set with the highest value for gi/dcoi is
selected and the replication is carried out. After the
replication for a particular candidate set CSi, the weights of
all nets incident to at least one node vi, vi ∈ CSi, have to be
recalculated. A threshold value gainmin is used to restrict
the replication process to highly weighted critical nets.
Note that the construction of this cost function reflects the
need to duplicate cells only very selectively to improve
local timing values.

The algorithm is described in Fig. 3 in a pseudo-code
notation.

procedure improve_replication()

repeat {

Mcs =: set of all candidate sets consisting of single cut edges;

repeat {

Mcs
new =: ∅ ; /* temporary list of new candidate sets */

for (each CSi, CSj ∈ Mcs with CSi ≠ CSj)

if (D(CSi) ∩ D(CSi) ≠ ∅)

Mcs
new =: Mcs

new ∪ {CSi ∪ CSj};

Mcs=:Mcs∪Mcs
new

} while (new candidate set found);

find candidate set CSi, CSi∈Mcs with maximum value of gi/dcoi;

if (gi/dcoi > gainmin) {

carry out replication;

update w(ei) with ei∈E(vj) with vj∈CSi; }

} while (at least one replication carried out in this stage);

Fig. 3: Replication algorithm

The cost function used is able to handle multi-source
nets, e.g., busses, and cells with bidirectional terminals.
Timing data and constraints are mapped onto net weights.
The changes in timing data caused by cell replication are
taken into account by updating the net weights immediately
after replicating a candidate set.

2.4 Replication example

Consider the situation shown in the left part of Fig. 4.
Since the cut set contains three hyperedges there are three
candidate sets with one cut edge. Additionally, there is one
candidate set with two cut edges, because e0 and e2 have at
least one source node in common (v6). These candidate
sets, denoted by CS0...CS3, are described in Table 1. For the
calculations of gain and cost unit weights are assumed for
nodes and hyperedges. Because CS3 shows the highest
gain-cost relation, the nodes v ∈ CS3 are duplicated. The
reshaped hypergraph is shown in the right part of Fig. 4.

v0

v1

v2

v3

v4

v5

v7

e0

e1

e2

v6e3

v0

v1

v3

v4

v1´

v3´

e0

e1

e2

v6´

e3

v6´

v2

v7

v5

e0´

e2´

Fig. 4: Replication example

i CSi Di Si gi dcoi gi/dcoi

0 e0 v1, v6 e1 1 2 ½
1 e1 V2 e3 0 1 0
2 e2 v3, v6 e1 1 2 ½
3 e0, e2 v1, v3, v6 e1 2 3 2/3

Table 1: Description of the candidate sets of the
example from Fig. 4

2.5 Cell Replication and Stuck-At Testability

An important aspect, when looking at cell replication is
that the replication of logic cells may lead to untestable
stuck-at faults even if the design was 100% stuck-at
testable before placement. This invalidates the efforts of
synthesis and test preparation and is therefore highly
undesirable [11]. Untestable faults can invalidate tests for
testable faults and lead to higher costs for test generation
and fault simulation.

Fig. 5 shows an example how cell replication causes
untestable faults in an initially fully testable circuit.

28

x

y

p

stuck-at 1

a. initial circuit b. replication of gate p leads to
redundant inputs

d. first redundancy removal step
creates new redundancies

d. optimized circuit

a

c
b

a

c
b p

q

x

y

a

c
b

stuck-at 0

x

y

a

c
b

x

y

Fig. 5: Redundancy removal

Note that untestable stuck-at faults are always related to
circuit redundancy. The removal of this redundancy does
not only restore the testabil ity property of the circuit, since
wire segments and transistors are removed, it also leads to
a more compact solution. In those cases, where the critical
path is affected, in general circuit speed is improved, too.
The two reasons for this are that short wires have lower
capacitance values than long wires, and that gates with a
large number of inputs in general have a larger propagation
delay than gates with a small number of inputs. For the
redundancy removal step a standard ATPG-based
approach[11] is used.

3. Experimental results

The replication routine has been implemented as a part
of a new timing driven placement and routing package for
standard cell designs. The used benchmark circuits have
been taken from a MCNC benchmark set and have been
mapped onto a standard cell li brary for a 0.35µm CMOS
process with three metal layers. A redundancy check and
removal step has been applied to all circuits prior to the
experiments. The properties of the used circuits after
redundancy removal are shown in Table 2.

Circuit #cells #nets #ports

C432 188 224 43
C499 538 579 73
C880 372 432 86
C1355 642 683 73
C2670 863 1096 372
C3540 1416 1466 72
C5315 2211 2389 301
C6288 2400 2432 64
C7552 3273 3480 315

Table 2: Properties of used benchmark circuits

As explained earlier, the main purpose of this paper is to
explore the usefulness of the cell replication concept in the

context of a typical timing-driven standard cell placement
and routing framework. In order to put the benefits of cell
replication into perspective, a thorough comparison with
gate sizing techniques is required.

Therefore, we also implemented a gate sizing algorithm
which was allowed to introduce the same amount of cell
area as produced by the replication approach. In this way
we ensure that we compare the performance of two designs
that have the same area.

The experimental results are shown in Table 3. The first
column contains the circuit name. The following columns
contain the area requirement and the minimal cycle time
for different design methods. Column 2 and 3 contain the
results for timing driven placement without cell replication
or gate sizing. Column 4 to 7 show the results using the
replication algorithm described in this paper, with and
without redundancy removal during placement. The results
shown in column 8 and 9 have been obtained by applying
the above mentioned gate sizing procedure in the same
timing driven placement environment without replication
of cells.

replicationno replication/
gate sizing no red. rem. with red. rem.

gate sizing
circuit

A/mm2 tmin/ns A/mm2 tmin/nsA/mm2 tmin/ns A/mm2 tmin/ns
C432 0.0170 5.890.0178 5.02 0.176 5.010.0181 5.23
C499 0.0360 4.880.0395 4.700.0395 4.700.0394 4.77
C880 0.0307 4.640.0327 4.210.0320 4.120.0327 4.55
C13550.0544 5.880.0584 5.800.0564 5.700.0583 5.82
C26700.0874 5.060.0852 4.280.0852 4.280.0855 4.42
C3540 0.233 10.0 0.239 9.53 0.234 9.46 0.240 9.92
C5315 0.302 9.51 0.310 8.55 0.307 8.54 0.318 8.90
C6288 0.396 31.3 0.413 29.9 0.401 29.4 0.409 30.9
C7552 0.480 8.91 0.491 8.47 0.490 8.47 0.493 8.62

Table 3: Experimental results

For the used benchmark circuits, a performance
improvement of up to 15 % for the replication routine was
achieved against the values obtained without replication.
Compared to the results obtained by using gate sizing
instead of cell replication there is still a speedup of up to
10%. Because the consumed cell area is the same in both
cases, our results show that cell replication can make more
efficient use of the additionally introduced cell area. It
should be noted however, that in both cases, the results can
be improved by further gate sizing. The overall
optimization potential of gate sizing still is higher than that
of cell replication, because every cell can be resized, while
only a few cells are suitable for replication. On the other
hand, the results show that if there is a potential to improve
performance by replicating cells, it should be exploited.
Finally, it should be mentioned that in many cases the
replication routine also produces somewhat more compact
solutions. This can be explained by the simpli fied routing
task for the critical nets.

In the majority of the testcases the replication algorithm
created new redundancies. Removing these resulted in

29

small additional area savings and, in some cases, in further
performance improvement.

Table 4 shows the stuck-at fault coverage for the circuits
after placement with replication if no redundancy removal
is performed.

circuit #faults #untestable faults fault coverage

C432 575 7 98.8%
C499 1287 0 100%
C880 993 1 99.9%
C1355 1814 67 96.3%
C2670 1898 0 100%
C3540 3182 30 99.1%
C5315 5270 14 99.7%
C6288 8844 299 96.6%
C7552 6696 10 99.9%

Table 4: Fault coverage using replication without
redundancy removel

It is well-known that very high fault coverages are
needed to achieve appropriate defect coverage and
coverage of non-target faults [11]. Therefore hundreds or
even tens of untestable faults are unacceptable in most
practical situations. Therefore, it should be noted that for
testabili ty reasons alone redundancy elimination must be an
integral part in any tool for layout synthesis that performs
cell replications.

4. Conclusion

A new approach for optimizing circuit performance
using cell replication during placement has been proposed.
The replication routine has been integrated into a
placement algorithm which is based on recursive
partitioning. We used a cost function for cell replication,
which is able to handle multi-source nets, e. g., busses, and
cells with bidirectional terminals. Timing data and
constraints are mapped onto net weights. The changes of
timing data caused by cell replication are taken into
account by updating the net weights immediately after
replicating a candidate set. In comparison with results
obtained by a gate sizing approach, it has been shown that
the additional cell area introduced by cell replication leads
to higher performance improvements than what can be
accomplished by the same area overhead for gate sizing.

Cell replication involves the possibili ty that
redundancies are introduced to an initially redundancy-free
circuit and stuck-at faults become undetectable.
Redundancy removal does not only lead to area savings but
also restores the testability property of the circuit. It must
therefore be integrated into any practical design flow
exploiting the concept of cell replication.

References

[1] Fishburn, J. and Dunlop, A., TILOS: A polynomial
programming approach to transistor sizing, Proc.
ICCAD-85 (1985) pp. 326-328

[2] Kring, C and Newton, A. R., A Cell-Replicating
Approach to Mincut-Based Circuit Partitioning, Proc.
ICCAD-91(1991) pp. 2-5

[3] Fiduccia, C and M., Mattheyses, R. M., A linear-time
heuristic for improving network partitions, Proc. 19th

Design Automation Conference (1982) pp. 175-181
[4] Hwang, L.J. and El Gamal, A., Optimal replication

for Min-Cut Partitioning, Proc. ICCAD-92 (1992) pp.
432-435

[5] Hwang, L.J. and El Gamal, A, Min-Cut Replication in
Partitioned Networks, IEEE Transactions on
Computer Aided Design, vol. 14, no. 1 (1995) pp. 96-
106

[6] Liu, L.-T. et al., A Replication Cut for Two-Way
Partitioning, IEEE Transactions on Computer-Aided
Design, vol.14, no. 5 (1995) pp. 623-629

[7] Mak, W.-K and Wong, D.F., Minimum replication
Min-Cut Partitioning, Proc. ICCAD-96 (1996) pp.
205-210

[8] Burstein, M. and Youssef, M. Timing Influenced
Layout Design, Proc. 22nd Design Automation
Conference (1985), pp. 124-130

[9] Gao, T., A Performance Driven Macro-Cell
Placement Algorithm, Proc. 29th Design Automation
Conference (1992), pp. 147-152

[10] Dunlop, A. and Kernighan, B., A Procedure for
Placement of Standard Cell VLSI Circuits, IEEE
Transactions on Computer-Aided Design, vol. 4,
no. 1, pp. 92-98, 1985

[11] Abramovici, M. et al., Digital Systems Testing and
Testable Design, Computer Science Press (1990)

30

