
A Non-Deterministic Call-by-Need Lambda Calculus:
Proving Similarity a Precongruence by an Extension of

Howe’s Method to Sharing

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich 15
der Johann Wolfgang Goethe–Universität

in Frankfurt am Main

von
Matthias Mann
aus Frankfurt

Frankfurt 2005
(D F 1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14502833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vom Fachbereich Informatik und Mathematik der Johann Wolfgang Goethe–
Universität als Dissertation angenommen.

Dekan: Prof. Dr.-Ing. Detlef Krömker

Gutachter: Prof. Dr. Manfred Schmidt-Schauß
Johann Wolfgang Goethe-Universität
Fachbereich Informatik und Mathematik
Robert-Mayer-Str. 11-15
60325 Frankfurt

Prof. David Sands, Ph.D.
Chalmers University of Technology and University of Göteborg
Department of Computing Science
S-412 96 Göteborg
Sweden

Datum der Disputation: 17. August 2005

Zusammenfassung

Gegenstand der vorliegenden Arbeit ist ein nicht-deterministischer Lambda-
Kalkül mit call-by-need Auswertung. Lambda-Kalküle spielen im allgemeinen
eine grundlegende Rolle in der theoretischen Informatik, sei es als Basis für
Theorembeweiser im Bereich der Verifikation oder beim Entwurf sowie der se-
mantischen Analyse von Programmiersprachen, insbesondere funktionalen.

Im Zuge der weiter zunehmenden Komplexität von Hard- und Softwaresyste-
men werden funktionale Programmiersprachen eine immer größere Bedeutung
erlangen. Der Grund liegt darin, daß in der Softwareentwicklung stets eine ge-
wisse Diskrepanz entsteht zwischen dem Konzept, welches ein Programmierer
entwirft, und der Art und Weise, wie er es in einer bestimmten Programmier-
sprache umzusetzen hat.

Um robuste und verläßliche Software zu gewährleisten, sollte es eines der
Hauptanliegen der Informatik sein, diese Diskrepanz so klein wie möglich zu
halten. Im Vergleich zu imperativen oder objekt-orientierten ist dies bei funk-
tionalen Programmiersprachen der Fall, weil sie aufgrund ihrer Herkunft aus
der Semantik stärker am Ergebnis einer Berechnung orientiert sind. Imperati-
ve bzw. objekt-orientierte Programmiersprachen hingegen betonen oft zu stark,
welche Schritte notwendig sind, um das gewünschte Ergebnis zu erhalten.

Lambda-Kalkül und funktionales Programmieren

Obwohl der λ-Kalkül die konzeptionelle Grundlage der funktionalen Sprachfa-
milie bildet, spiegelt er die Implementierung moderner funktionaler Program-
miersprachen nicht angemessen wider. Dies trifft besonders für die sogenannten
verzögert auswertenden funktionalen Programmiersprachen zu, d.h. solche, bei
denen Argumente nur dann ausgewertet werden, wenn sie zur Ermittlung des
Ergebnisses beitragen. Denn um eine Mehrfachauswertung bei der Anwendung

i

einer Funktion auf nicht vollständig ausgewertete Argumente zu vermeiden, ver-
wenden alle heutzutage relevanten Implementierungen Graphreduktion, d.h. sie
operieren nicht auf einem Termbaum sondern auf einem Graphen. Ein Beispiel
mag dies verdeutlichen: Die Ausdrücke λx.(x + x) und λx.(2x) stellen beide ei-
ne Funktion dar, die ihr Argument x verdoppelt. Eine Anwendung auf z.B. das
noch nicht vollständig ausgewertete Argument (5 − 3) würde bei der üblichen
call-by-name Auswertung, d.h. die Argumentausdrücke werden einfach für die
Argumentvariablen eingesetzt, aber (5− 3) + (5− 3) bzw. 2(5− 3) liefern.

Offensichtlich würde dann das Ergebnis des Ausdruckes (5−3) bei der ersten
Variante zwei Mal ermittelt, was überflüssig ist, da das zweimalige Vorkommen
des Ausdruckes (5− 3) ein- und denselben Wert bezeichnet. Indem diese Infor-
mation in einem Graphen gespeichert wird, umgeht die Implementierung diese
Mehrfachberechnung. Dies ist aber nur zulässig, weil in funktionalen Program-
miersprachen das Prinzip der referentiellen Transparenz erfüllt ist, d.h. ein Aus-
druck verändert während der Ausführung eines Programmes nicht seinen Wert1

sondern wird nur in eine andere, äquivalente Form überführt.

Um die operationale Semantik einer solchen Implementierung mittels Gra-
phreduktion entsprechend abzubilden, werden sogenannte call-by-need Kalküle
herangezogen. Bei diesen wird durch eine geschickte Wahl der Kalkülregeln si-
chergestellt, daß Ausdrücke erst kopiert werden können, wenn sie in einer be-
stimmten Form vorliegen, die man als Basiswert bezeichnen könnte. Der Charak-
ter der verzögerten Auswertung bleibt hierbei freilich erhalten, d.h. eine Funk-
tionsanwendung vermag sofort ein Ergebnis zu liefern, sobald alle relevanten
Argumentausdrücke ausgewertet sind. Für das genannte Beispiel bedeutet das,
daß die Anwendung von λx.(x + x) auf das Argument (5 − 3) zuerst in einen
Ausdruck der Form let x = (5− 3) in (x + x) überführt wird, wobei das let-
Konstrukt hier die Graphdarstellung, das Sharing, explizit darstellt. Erst wenn
das Ergebnis 2 für den Term (5 − 3) ermittelt ist, wird es für x in den Rumpf
x + x eingesetzt und somit die Mehrfachberechnung vermieden.

Nichtdeterminismus und Gleichheit

Die mitunter wichtigste Frage in einem Lambda-Kalkül, nicht nur call-by-need
betreffend, ist wohl, welche Arten von Termen kopiert werden dürfen. Wesent-
lich beinflußt wird hierdurch auch die Frage, welche Programmtransformationen
zulässig sind bzw. welche Gleichheiten auf Programmen gelten sollen.

1Man beachte, daß diese Aussage für imperative Programmiersprachen nicht zutrifft.

ii

Wie das oben angeführte Beispiel bereits verdeutlicht hat, sollten die beiden
Ausdrücke λx.(x+x) und λx.(2x) als gleich betrachtet werden. Anderseits kann
die im λ-Kalkül übliche (β)-Regel nicht mehr uneingeschränkt gelten.

(λx.M)N = M [N/x] (β)

Hierbei bezeichnet M [N/x] die Einsetzung des Argumentes N im Term M für
die Variable x, was, wir im obigen Beispiel gesehen haben, zu Mehrfachauswer-
tungen führen kann.

Wie aber läßt sich nun ein adäquater Gleichheitsbegriff finden, wenn doch
auch der Ausdruck (5 − 3) + (5 − 3) dasselbe Ergebnis, nämlich 4, liefert? Es
genügt also offensichtlich nicht, nur die Ergebnisse von Auswertungen zu be-
trachten. Einige Arbeiten verfolgen daher den Ansatz, die Anzahl der Auswer-
tungsschritte zu zählen, was auch erfolgversprechend scheint.

Diese Arbeit jedoch schlägt einen anderen Weg ein: Es wird ein Sprachkon-
strukt pick eingeführt, welches nichtdeterministisch eines seiner beiden Argu-
menten auswählt. Nichtdeterminismus in dieser Form verletzt offensichtlich die
referentielle Transparenz, hilft aber im Gegenzug zu erkennen, wann Sharing
erhalten bleibt bzw. wann nicht: Die beiden Ausdrücke pick 5 3+pick 5 3 und
let x = pick 5 3 in (x+x) liefern nun unterschiedliche Mengen von möglichen
Resultaten, nämlich { 6, 8, 10 } gegenüber { 6, 10 } für den let-Ausdruck.

Darüberhinaus gibt es eine Vielzahl von Anwendungsgebieten für nichtde-
terministische Lambda-Kalküle, u.a. als theoretische Grundlage für nebenläufige
Prozesse oder von deklarativer, Seiteneffekt-behafteter Ein-/Ausgabe. Insbeson-
dere im Bezug auf das letztere sind an der Professur schon einige Arbeiten
durchgeführt worden, z.B. die Dissertation von Arne Kutzner oder der tech-
nische Bericht zum Kalkül FUNDIO, zu denen sich diese als eine Ergänzung
bzw. Fortführung versteht.

Denn die Kenntnis über die in einem Kalkül geltenden Gleichheiten spielt ei-
ne herausragende Rolle für dessen Verständnis. Die bisherigen Arbeiten stützen
sich dabei hauptsächlich auf den Begriff der kontextuellen Gleichheit, durch die
zwei Terme s und t miteinander identifiziert werden, wenn deren Auswertung
in allen möglichen Programmkontexten C[] dasselbe Terminierungsverhalten,
gekennzeichnet mit ⇓, zeigt:

s 'c t ⇐⇒ (∀C : C[s] ⇓ ⇐⇒ C[t] ⇓)

Die kontextuelle Gleichheit stellt ein mächtiges Werkzeug für die Beurteilung
der Korrektheit von Programmtransformationen dar, insbesondere weil sie per

iii

Definition eine Kongruenz ist, d.h. ihre Gleichheiten wiederum in Kontexte ein-
setzbar sind, also die Implikation s 'c t =⇒ (∀C : C[s] 'c C[t]) erfüllt.
Mitunter sind Gleichheiten aber schwierig nachzuweisen, weil ja die Terminie-
rung der Auswertung in allen möglichen Kontexten betrachtet werden muß.

Daher ist es oftmals sinnvoll, einen anderen Äquivalenzbegriff zu Hilfe zu
nehmen. Die Rede ist von der Methode der Bisimulation, welche einen stärker
stufenweisen Gleichheitstest beschreibt. Hier werden zwei Terme als gleich be-
trachtet, wenn sie auf allen möglichen Stufen dasselbe Verhalten zeigen, solange
man also nicht das Gegenteil nachweisen kann. Die Technik fand zuerst im Be-
reich der Zustandsübergangssysteme Anwendung, ist mittlerweile aber auf dem
Gebiet der funktionalen Programmierung und Lambda-Kalküle gut etabliert
und existiert in verschiedenen Ausprägungen. Der Stil, den Abramsky appli-
cative bisimulation nennt, ist am einfachsten in Form einer Präordnung . zu
illustrieren.

s . t ⇐⇒ (s ⇓ λx.s′ =⇒ (t ⇓ λx.t′ ∧ ∀r : (λx.s′) r . (λx.t′) r))

Dies ist nicht etwa eine zyklische Definition, sondern als Fixpunktgleichung zu
verstehen, über welcher der größte Fixpunkt gebildet wird. Dadurch wird das
Beweisprinzip der Co-Induktion anwendbar.

Setzt man ∼=. ∩ & so ist leicht zu sehen, daß ∼ ⊆ 'c gefolgert werden
kann, vorausgesetzt ∼ ist eine Kongruenz. Gilt die Einsetzbarkeit in Kontexte
für eine Präordnung, so wird von einer Präkongruenz gesprochen. Es ist also
zu zeigen, daß die Relation ., genannt similarity, eine Präkongruenz ist. Nicht
nur dieser Beweis sondern bereits der Entwurf der passenden Relation für einen
nichtdeterministischen call-by-need Lambda-Kalkül stellt einen wesentlichen Er-
kenntnisgewinn dar.

Denn der übliche Ansatz für die Similarity-Definition ist nicht ohne weiteres
auf call-by-need übertragbar. Dies liegt daran, daß die Resultate der Auswer-
tung hier let-Umgebungen mit unausgewerteten Termen, in diesem Fall auch
nichtdeterministische Auswahlen, umfassen können. Aus diesem Grund wird in
dieser Arbeit ein weiterer Kalkül, der sogenannte

”
Approximationskalkül“, defi-

niert, bei dem die Resultate der Auswertung durch Mengen von Abstraktionen,
also Termen der Form λx.s, dargestellt werden.

Dies ist die wesentliche Grundlage, um Similarity überhaupt definieren zu
können. Die eigentliche Herausforderung besteht nun darin, den Präkongruenz-
beweis zu führen. Hierfür wird die grundlegende Methode von Howe, die für eine
ganze Klasse von Sprachen anwendbar ist, als Ausgangspunkt genommen und
entsprechend erweitert, damit Sharing berücksichtigt wird.

iv

Übersicht

Kapitel 2 ist somit auch den lazy computation systems gewidmet, für die Ho-
we einen allgemeinen Präkongruenzbeweis entwickelt hat. Dazu wird eine spe-
zielle Relation, der Präkongruenzkandidat, eingeführt, welcher per Definition
einsetzbar in Kontexte ist, aber nicht notwendigerweise transitiv. Grundlage
des Beweises ist zu zeigen, daß der Präkongruenzkandidat transitiv ist und da-
durch mit der zugrunde liegenden Präordnung zusammenfällt, insgesamt also
eine Präkongruenz vorliegt.

Dazu wird eine Fortsetzung von Relationen auf offenen Termen benötigt,
die Howe in seiner ursprünglichen Arbeit über alle schließenden Substitutionen
erklärt. Dies ist mit Sharing offensichtlich nicht vereinbar. Daher wird hier von
einer konkreten Definition für die Erweiterung von Relationen auf offenen Ter-
men abstrahiert und der Beweis mit Hilfe der Zulässigkeit einer solchen offenen
Erweiterung geführt. Bedingt dadurch kann ein Substitutions-Lemma für den
Präkongruenzkandidaten in der allgemeinen Form, in der es bei Howe aufgestellt
wird, nicht hergeleitet werden. Stattdessen folgen, sobald die entsprechenden
Begriffe definiert sind, zwei spezialisierte Substitutions-Lemmata.

Daher wird in Kapitel 3 erst einmal der λND-Kalkül, der eigentliche Untersu-
chungsgegenstand dieser Arbeit, vorgestellt. Er verfügt u.a. über ein let für die
Darstellung von Sharing, seq für die Sequentialisierung der Auswertung und das
bereits angesprochene pick-Konstrukt für die nichtdeterministische Auswahl.

Anhand eines Beispiels wird, wie schon erwähnt, aufgezeigt, daß die übliche
Definition von Similarity nicht möglich ist. Deshalb wird in Abschnitt 3.2 der
Kalkül λ≈ eingeführt, in dem Similarity definiert werden kann, weil die Re-
sultate von Auswertungen reine Abstraktionen ohne let-Umgebung sind. Dies
wird mittels einer zusätzlichen Konstante } bewerkstelligt, wodurch der Aus-
wertungsprozeß abgeschnitten werden kann. Auf diese Weise wird ermöglicht,
in den let-Umgebungen mit einer quasi variablen Ressourcenbeschränkung be-
liebig lange auszuwerten.

Die entscheidende Aufgabe von Kapitel 3 besteht darin zu zeigen, daß λND-
Terme in der Tat durch entsprechende Mengen von λ≈-Termen repräsentiert
werden können. Dies wird durch das Approximation Theorem bewerkstelligt,
eines der bedeutendsten Resultate dieser Arbeit.

In Kapitel 4, dem wohl herausragendsten Teil dieser Arbeit, wird der Prä-
kongruenzbeweis für Similarity im λ≈-Kalkül geführt, welcher schließlich im
Precongruence Theorem mündet. Außerdem werden an dieser Stelle auch die
zuvor genannten Substitutions-Lemmata aufgestellt. Sie spielen beim Beweis,

v

daß der Präkongruenzkandidat unter Reduktion mittels der (cpa)-Regel des λ≈-
Kalküls stabil ist, eine wesentliche Rolle. Stabilität des Präkongruenzkandidaten
unter Reduktion wird in Abschnitt 4.3.1 bewiesen und bildet eine der wichtigsten
Grundlagen, um die Ergebnisse aus Kapitel 2 anwenden zu können.

Kapitel 5 behandelt die Gleichheitstheorie, die von 'c, der kontextuellen
Gleichheit, induziert wird. Hier trägt das Precongruence Theorem bei, Similari-
ty als Beweismethode für die kontextuelle Präordnung, das ist die der kontextu-
ellen Gleichheit zugrunde liegende Präordnung .c, nutzbar zu machen. D.h. im
Main Theorem wird gezeigt, daß die Erweiterung von Similarity auf offene Ter-
me in der kontextuellen Präordnung enthalten ist. Similarity kann aber nicht
zur vollständigen Charakterisierung der kontextuellen Präordnung verwendet
werden, weil die o.g. Inklusion strikt ist. Das bedeutet, es gibt geschlossene Ter-
me, für die zwar s .c t aber nicht s . t gilt. Der Nachweis dieser Eigenschaft
ist nicht trivial und führt über den Begriff der syntaktischen Stetigkeit. Im we-
sentlichen bedeutet dies, daß der Fixpunktkombinator Y, mit dessen Hilfe sich
bekanntlich rekursive Funktionen definieren lassen, zur Berechnung von klein-
sten oberen Schranken aufsteigender Ketten von Termen eingesetzt und dabei
durch

”
Kontexte hindurch geschoben“ werden kann. Bezüglich der kontextuellen

Präordnung bzw. Gleichheit ist diese Aussage zutreffend, bezüglich Similarity
jedoch nicht. Dies wird in Abschnitt 5.2 näher ausgeführt.

In Kapitel 6 werden mögliche Erweiterungen des Basiskalküls besprochen.
Um diese Arbeit möglichst unkompliziert und zielgerichtet durchführen zu kön-
nen, verfügt der λND-Kalkül weder über Datentypen noch über rekursive Bin-
dungen in seinem let-Konstrukt. Die Betrachtungen in Abschnitt 6.1 erscheinen
vielversprechend, daß Datentypen, also case und Konstruktoren, ohne größere
Schwierigkeiten zum Kalkül hinzugefügt werden können. Für rekursive let-
Bindungen hingegen wird in Abschnitt 6.2 gezeigt, daß sie nicht einfach mittels
eines Fixpunktkombinators, wie z.B. Y, dargestellt werden können. Hier sind
also noch eingehendere Untersuchungen notwendig.

Abschließend ist zu sagen, daß die vorliegende Arbeit eine erweiterbare
und vielseitig anwendbare Methodik beschreibt, wie Bisimulations-Relationen
in Lambda-Kalkülen mit let implementiert werden können, so daß Einsetzbar-
keit in Kontexte gewährleistet ist.

vi

Preface

This dissertation reports on research which has been carried out under the
supervision of Prof. Dr. Manfred Schmidt-Schauß during the years 2000 to 2005
at Johann Wolfgang Goethe-Universität Frankfurt. Some of the results from
the dissertation are moderate extensions of work published in [Man04, Man05].

Acknowledgements

Many people have given me great support while working on this thesis. First of
all I would like to express my gratitude to Manfred Schmidt-Schauß who aroused
my interest in call-by-need lambda calculi. He was always keen to discuss the
progress of this work and provided me with new insights. I am glad to have
worked with him and grateful for having been his student. Without his guidance
and motivation all the time this thesis would not have come into existence.

Special thanks go to Søren Lassen for his valuable input and to David Sands
for his interest in this work. I also benefitted a lot from the extensive discussions
with my colleague David Sabel and his constructive comments. I would like to
thank Angelika Schifignano for her assistance in many of my duties which helped
me immensely to concentrate on this work.

Last, but not least, I am particularly indebted to Anke Eggelbusch for her
incredible patience and for letting me participate in her vitality. I wish to
thank Sebastian Meiss for always giving me pleasure and Elfriede Meiss as well
as Andrea Münch for their helpful advice on language use. This research would
have been impossible without the education, which I owe to my parents.

vii

viii

Contents

German Abstract i

Preface vii

1 Introduction 1
1.1 Survey and Related Work . 4

1.1.1 Classical λ-calculus . 6
1.1.2 Variants of the Theory . 7
1.1.3 Equality . 8
1.1.4 Extended Lambda Calculi 11

1.2 Outline . 12

2 Lazy Computation Systems 17
2.1 Language . 18
2.2 Preorders and the Precongruence Candidate 21
2.3 Reduction and Evaluation . 26

2.3.1 Convertibility and Confluence 27
2.3.2 Contextual Equivalence 29
2.3.3 Reduction Diagrams . 31

2.4 Simulations . 35
2.4.1 Proving Similarity a Precongruence 38
2.4.2 Simulation up to . 40

2.5 Future Work . 42

3 Non-deterministic Lambda-calculi 45
3.1 The Call-by-need Calculus λND 46

3.1.1 Language . 46

ix

3.1.2 Reduction and Evaluation 48
3.1.3 Contextual (Pre-) Congruence 54

3.2 The Approximation Calculus λ≈ 57
3.2.1 Language . 58
3.2.2 The (cpa)-reduction . 62
3.2.3 Internal (stop)-reductions 65
3.2.4 The (lbeta)-reduction . 68
3.2.5 Rearrangement of Reduction Sequences 71
3.2.6 The evaluation of seq . 80

3.3 Approximation of λND-terms in λ≈ 82

3.3.1 Transforming
S
−→λ≈

- into
n
−→λND

-reduction sequences . . . 85

3.3.2 Transforming
n
−→λND

- into
S
−→λ≈

-reduction sequences . . . 90
3.3.3 Proof of the Approximation Theorem 92

3.4 Related Work . 95
3.4.1 Non-deterministic choice as a Constant 95
3.4.2 Approximation and Call-by-Value Evaluation 96

4 Similarity in λ≈ is a Precongruence 99
4.1 Similarity in the λ≈-Calculus . 100

4.1.1 The Open Extension (·)o
in the λ≈-Calculus 100

4.1.2 Representations for Similarity 103
4.1.3 Open Simulations and Open Similarity 112
4.1.4 Soundness of (cp), (llet) and Two Further Reductions . . 115

4.2 Admissibility of the Open Extension (·)o 119
4.2.1 The Precongruence Candidate Revisited 119
4.2.2 Substitution Lemmas . 122

4.3 Proving Open Similarity a Precongruence 124
4.3.1 Precongruence Candidate Stable Under Reduction 124
4.3.2 Establishing the Precongruence Theorem 129

4.4 Future Work . 132
4.4.1 Reduction Strategies for the λ≈-Calculus 132
4.4.2 Similarity Checking . 133
4.4.3 Deterministic Subterms 134

5 Contextual and Denotational Semantics 137
5.1 Contextual (Pre-) Congruence . 138

5.1.1 Correspondence of Equality in λND and λ≈ 139
5.1.2 Open Similarity implies Contextual Preorder 140

x

5.2 Syntactic Continuity . 141
5.2.1 Contextual Preorder . 142
5.2.2 Similarity . 146

5.3 (In-) Equational Theory . 147
5.4 Denotational Semantics . 150

5.4.1 The Domain . 151
5.4.2 Denotation . 152
5.4.3 Adequacy and Full Abstraction 152
5.4.4 Denotational Equations 153
5.4.5 Future Work . 154

6 Possible Extensions of the Base Calculus 155
6.1 Lambda Calculi with case and Constructors 156

6.1.1 A λ-let-calculus with case, Constructors and pick . . . 158
6.2 Lambda Calculi with recursive let 163

6.2.1 Representation in a Lazy Computation Language 164
6.2.2 Approximating Recursive Bindings 164

7 Conclusion and Future Work 167

Bibliography 171

Index 180

xi

xii

Chapter 1

Introduction

The complexity of computer systems increases excessively and this is unlikely
to change in the near future. While formal verification of hardware has be-
come quite standard, the vast majority of the existing software is not rigorously
founded on mathematical models. This is even more surprising as lots of rather
critical applications are affected. However, most of the software systems have
been growing over years and a thorough verification is often not feasible.

Nonetheless, in order to manage complexity, formal methods will become
inevitable in many areas. To a certain extent some of the techniques from
extreme programming already point into this direction e.g., by regarding a test
as a specification rather than as a necessity which may be deferred.

Although aiming at development processes mainly, extreme programming is
oriented towards object-oriented programming. Like imperative programming
languages, object-oriented programming is largely based on the so-called von
Neumann computer model, which emphasises the concept of a state that is
changed by a sequence of instructions. Though this view may be suitable for
some application domains like graphical user interfaces or databases, it does not
appear to capture very well complex relations, which are encoded in many appli-
cations, cf. [BS02]. Hence there is a kind of semantic gap, i.e., how the solution
of a certain task is reflected by its translation into a specific programming lan-
guage. This gap is not expected to be filled in completely, but computer science
shall make it as small as possible.

In his famous article [Bac78], Backus proposes a paradigm shift and devel-
ops basic algebraic laws for establishing the correctness of functional programs.
Instead of manipulating a state by a sequence of instructions, functional pro-

1

2 CHAPTER 1. INTRODUCTION

gramming is based on evaluation, i.e., expressions are taken into an explicit form
by a sequence of transformations. During execution of a functional program,
every expression retains its value, a principle that is called referential trans-
parency. Hence it is sound to “replace equals by equals” and thus functional
programming benefits from algebraic reasoning. In [FH88, p. 11], a small exam-
ple illustrates that this is not the case for imperative languages. We conclude
that for functional programming languages the aforementioned semantic gap is
smaller than for imperative and object-oriented programming languages.

Both programming paradigms, the functional as well as the imperative,
have their roots in computability theory. In the first half of the 20th century
Church [Chu36] and Turing [Tur36] introduced two distinct formal models of
computation. While the Turing machine concentrates on the aspects of symbol
manipulation w.r.t. a store and order of execution, the λ-calculus, cf. [Chu41],
is a system for representing functions and their application to arguments. The
computational power of the λ-calculus stems from the fact that functions it-
self may be arguments to other functions. As turned out, Turing machines
and λ-calculus have the same expressiveness. Hence the so-called “Church-
Turing thesis” states that all sensible notions of computability are equivalent.
Of course, this cannot be proven for every possible formalism, but it has been
performed for every of the subsequent ones, e.g., random access machines. So
the Church-Turing thesis is generally accepted.

Turing has shown that the halting problem for Turing machines is undecid-
able, i.e., there is no Turing machine which, given the input and the encoding
of a second Turing machine, always returns whether the second Turing machine
stops on its input. By the Church-Turing thesis this is also valid for the λ-
calculus, hence it is undecidable if the evaluation of an arbitrary λ-expression
terminates. However, unlike Turing machines the λ-calculus does not depend on
a certain evaluation order. The reason is that evaluation is based on reduction
according to a set of rules and there are in general several possibilities when or
where a rule may be applied. The Church-Rosser Theorem says that the results
will be identical whenever evaluation terminates in two different ways. This
property is also called confluence and will be discussed in section 2.3.1 in more
detail. A further significant result due to Church and Rosser is that a certain
evaluation order, namely the normal-order , terminates at least as often as any
other evaluation order does.

As both formalisms, λ-calculus and Turing machines, capture the notion of
computability, they might both be used to model the semantics of programming
languages. However, because of its very detailed description, a specification by a
Turing machine would be rather tedious. But following the underlying pattern,

3

the notion of an abstract machine has become a quite successful technique for
specifying the operational semantics of programming languages. Also the λ-
calculus has proven to be useful in operational semantics, i.e., describing the
execution behaviour of programs in a certain language, cf. [Lan65a, Lan65b].

However, the λ-calculus had perhaps a greater impact on denotational se-
mantics, where each language construct a function is assigned to as its respec-
tive denotation. Since the λ-calculus was designed as a formal system to reason
about functions, it seems quite right for this purpose. From the use of the
lambda notation as a semantic language it is not a big step to a “real” pro-
gramming language. Therefore today’s functional programming languages are
still closely related to their foundation, i.e., the λ-calculus. Furthermore, se-
mantic languages are used to describe what the meaning of a program is and
hence the functional paradigm emphasises what has to be computed. This is
contrary to imperative programming for which it is necessary to specify when
and where the state, i.e., storage, should be manipulated.

LISP was the first programming language inspired from the λ-calculus. It
is a hybrid language rather than a pure functional one, i.e., contains functional
as well as imperative elements. Such hybrid programming languages are not
uncommon and can be found in object-oriented programming, too. Several
functional programming languages like, e.g., Erlang or ML and its derivatives
SML and OCaml, permit imperative elements, i.e., side-effects. All the afore-
mentioned languages are strict, i.e., before a function is called, its arguments
are evaluated. Therefore the independence of the evaluation order from the
λ-calculus is more or less abandoned. For a sequential implementation this has
the advantage that side-effects become manageable. But it would be of no help,
if arguments were evaluated in parallel.

Thus pure functional programming languages are of particular interest. The
absence of side-effects promotes the design of non-strict languages, where argu-
ments need not to be evaluated before function calls take place. Non-strictness
enables concise representations of possibly infinite data structures such as “the
list of all primes”. In order to implement this, an evaluation strategy is required,
that yields termination whenever termination is possible. In [Tur79] Turner
describes such an evaluation strategy which corresponds to the normal-order
reduction mentioned before, but avoids duplication of work by using graph re-
duction. Since then progress has been made towards efficient implementations of
non-strict functional programming languages, cf. [Aug84, PJ87, PJS89, PvE93].

Influenced from Milner’s work [Mil78] on polymorphic type systems, the non-
strict functional programming language Miranda, cf. [Tur85], was developed.
Nowadays all relevant implementations of non-strict functional programming

4 CHAPTER 1. INTRODUCTION

languages respect “sharing”, i.e., they employ graph reduction to avoid dupli-
cation of work. Among these, Haskell [PJ03] and Clean [PvE99] are probably
the most popular. However, because of sharing these language implementa-
tions possess an operational semantics which is not reflected accurately by the
reduction in the original λ-calculus.

Therefrom the main motivation arises for dealing with a call-by-need lambda
calculus in this work: Such a calculus represents sharing explicitely and thus may
act as an operational semantics for modern functional programming languages.
Furthermore, the specific calculus of this work provides a non-deterministic
language construct which may evaluate to either of its arguments. In this form,
non-determinism serves two purposes. On one hand, it is crucial for modelling
side-effecting I/O in non-strict functional programming languages. The Natural
Expert [HNSSH97] programming language proposes such a declarative style and
also for Haskell [Sab03] side-effecting I/O has been implemented. Its theoretical
foundations have been explored in [Kut99, SS03a].

On the other hand, the presence of non-determinism helps to detect when
sharing is violated. In order to say that sharing is violated requires to know
when two terms should be equivalent. So for the understanding of a calculus
it is vital to have a sensible notion of equality. It is the merit of this work to
develop such a notion, namely mutual open similarity, and to establish it as
a powerful proof tool. Although the combination of non-determinism, call-by-
need evaluation and mutual open similarity as an equational theory seems quite
useful, there has not been much research in this area yet. A reason might be
that this is a non-trivial topic which requires an extensive treatment. Hopefully,
this will change once this work has laid the foundations.

1.1 Survey and Related Work

As stated before, lambda calculi are ubiquitous in theoretical computer science
and fundamental to the study of programming language semantics and design,
in particular for functional programming languages. Apart from this, lambda
calculi have a great influence on automated theorem proving as well as on formal
methods for system analysis.

Numerous facets of lambda calculi exist therefore: typed and untyped, with
and without data constructors, deterministic and non-deterministic, with differ-
ent evaluation strategies and notions of what a “value” is, i.e., how far reduction
should proceed. E.g., Andrews [And02] builds a higher-order logic on top of sim-
ply typed lambda calculus which in turn forms the basis for the Isabelle theorem

1.1. SURVEY AND RELATED WORK 5

prover, cf. [Pau89]. Or, in [Bar91], Barendregt describes various type systems
for lambda calculus and their correspondence to certain logics. Out of these, the
system λPω, also called the “calculus of constructions”, is used as a foundation
for the theorem prover Coq, cf. [CH88].

Equality plays a prominent role in all these areas and apparently there are
several forms. Some of these will be discussed in section 1.1.3. Contextual
equivalence due to [Mor68] is especially worth mentioning. It discriminates
terms by their behaviour in all term contexts, typically termination, cf. [Mil77].

Before we consider equality and, in section 1.1.2, some variants of the the-
ory, we will examine the “classical” lambda calculus in section 1.1.1 first. The
standard reference for the classical lambda calculus is [Bar84], a comprehensive
book. Though it treats many aspects like models and consistent extensions, it
mainly focuses on the lambda calculus as a formal system in which equations
between lambda terms are deduced using inference rules. This yields the so-
called notion of convertibility, i.e., two terms are considered equivalent, if they
can be transformed to each other according to these rules.

There, the evaluation of terms accords to the call-by-name strategy insofar
that arguments of function applications are simply substituted for the formal
parameter and thus copied. Since arguments of functions need not be evaluated
in advance, call-by-name may result in the duplication of work.

In order to overcome this, some work on call-by-need lambda calculi has
already been done. One of the most important questions for call-by-need is
which kind of terms may be copied. To get an impression of the right answer
for this question we advocate either to let contextual equivalence regard the
number of reduction steps as in [MS99] or to use a non-deterministic calculus.
Based on the calculus from [Kut99] this work pursues the latter and will develop
a behavioural equivalence that is sound w.r.t. the semantics of the language
which is defined in terms of contextual equivalence.

The behavioural equivalence which is referred to is similarity, or more pre-
cisely, mutual open similarity. It is based on the technique of bisimulation,
which is due to Park [Par81] and Milner [Mil71] and has frequently been ap-
plied to functional programming, cf. [Abr90, San91, Gor94a, Gor99]. Bisimula-
tion emphasises that two programs or expressions are equivalent as long as no
difference can be discovered by a possibly infinite series of experiments. For a
process calculus like in [Mil89] such an experiment usually comprises observ-
ing the respective actions performed by two processes whereas in functional
programming it involves evaluation. Although experiments are therefore not
decidable in general, bisimulation describes a more stepwise procedure to tackle
the equivalence of terms than contextual equivalence. Furthermore, because of

6 CHAPTER 1. INTRODUCTION

its definition as a greatest fixed point of some suitable operator, bisimulation is
accessible by the proof technique of coinduction [Gor94b, NNH99].

However, employing bisimulation, or rather mutual open similarity, for the
correctness of program transformations requires substitutivity, i.e., the ability
to “replace equals by equals” within every program or term. An equivalence
which adheres to this principle is called a congruence. Proving congruence for
bisimulation-like relations is in general a non-trivial task. This is in particular
true for mutual open similarity within the non-deterministic call-by-need calcu-
lus λND of this work which establishes a completely new result. Therefore the
calculus λND is intentionally designed as simple and concise as possible. That
means, as a fundamental study this work will devise the notions and methods
for the congruence proof. Once the technique has been developed it should be
possible to transfer it to more sophisticated calculi.

1.1.1 Classical λ-calculus

The classical λ-calculus as set out in [Bar84] has a relatively simple syntactic
structure, but it is a powerful system. Its building blocks are variables, abstrac-
tions and applications. The terms are given by the symbol E in the grammar

E ::= V | (λV.E) | (E E)

Figure 1.1: Syntax for terms in the λ-calculus

of figure 1.1 where V stands for a countable set of variables. The rationale is to
regard an abstraction λx.M as an anonymous function whose argument variable
is x whereas a term M N stands for the application of M to its argument N .

The formal theory of the λ-calculus consists of axioms and inference rules
from which equations are deduced, see [Dav89, Chapter 5] for an introductory
presentation. Complemented by rules inducing a congruence, i.e., an equivalence
relation for which substitutivity holds, the basic conversion rules look like

(λx.M) = (λy.M [y/x]) (α)

(λx.M)N = M [N/x] (β)

where M [N/x] stands for the capture-free substitution of N for x in M . Note
that a variable x becomes bound in an abstraction λx.M , otherwise it is con-
sidered free. Hence the rule (α) needs the side-condition that y must not occur

1.1. SURVEY AND RELATED WORK 7

free in M . However, usually the rule (α) is abandoned in favour of regarding
terms as syntactically equal up to renaming of bound variables. Therefore, it is
customary to adopt a convention for bound variables, cf. [Bar84, p. 26].

1.1.2 Variants of the Theory

Regarding the rule (β) as directed from left to right, the notion of reduction is
obtained. This means, a term is rewritten according to the (β)-rule until it is
of a certain syntactic form. E.g., if a term does not contain any (β)-redex , i.e.,
a position where the (β)-rule can be applied, it will be called a normal form.
Most functional programming languages do not require reduction to a normal
form but stop as soon as an abstraction is reached, which is said to be a weak
head normal form. Abramsky calls this style of evaluation “lazy” in [Abr90].

This question of what has to be considered a value, is associated with the
issue which form an argument must have in order to apply (β)-reduction. If the
rule does not impose any restriction like in its original form above, we speak of
call-by-name. It permits to implement normal-order as a reduction strategy.

This is contrary to call-by-value, where the term N in the (β)-rule above is
demanded to be a value — however a value might be defined. The applicative-
order evaluation strategy of strict functional languages corresponds closely to
call-by-value. The “parametric lambda calculus” in [RDRP04] is an attempt to
give a uniform account of these variants.

It is clear that there are situations where call-by-value requires more reduc-
tion steps to obtain a result than call-by-name. But the converse is also true,
since by the substitution M [N/x] in the rule (β) the term N may be dupli-
cated and thus all the reductions necessary to evaluate N , too. In order to get
“the best out of both worlds” call-by-name is combined with sharing, which
yields call-by-need lambda calculi, e.g. [AFM+95, AF97, MOW98]. These usu-
ally employ a let-construct to represent the sharing of arguments explicitely,
but it is also possible to do without such an extra syntax, cf. [AF97]. However,
the reduction rules and the strategy have to be adapted in such a way that a
function may be applied immediately but its argument is not copied until it
represents a value. As an example consider the terms λx.(x + x) and λx.(2 ∗ x)
both representing functions which double their argument x. If the application
to the argument (5−3) was evaluated call-by-name using the (β)-rule, we would
obtain (5− 3) + (5− 3) and 2 ∗ (5− 3) respectively.

Obviously, the result of the term (5 − 3) would be computed twice in the
former case. According to referential transparency this seems redundant, as
both occurrences of (5 − 3) represent the same value. So in a call-by-need

8 CHAPTER 1. INTRODUCTION

calculus the application (λx.(x + x)) (5− 3) is usually transformed into a term
of the form let x = (5−3) in (x+x) first. Nothing will be substituted for x in
the body x + x until for the term (5− 3) the result 2 has been computed. Thus
duplication of reductions is avoided.

1.1.3 Equality

The equivalence of the classical λ-calculus is convertibility , i.e., two terms are
equivalent when they can be transformed to each other according to the conver-
sion rules of the calculus. As mentioned before, conversion is usually permitted
inside arbitrary contexts, i.e. program fragments. Therefore convertibility allows
to “replace equals by equals” which means that it is a congruence.

This is also the case for the call-by-need calculi named before. These papers
emphasise that their call-by-need evaluation implements call-by-name correctly.
This implies that all equivalences which hold in the call-by-name setting are
also valid w.r.t. call-by-need evaluation. We believe that this should not be
the case: Duplicating terms which have to be further reduced contradicts the
idea of call-by-need. Particularly the original copying (β)-rule can therefore
not be valid in general. On the other hand, Sands et al. show in [SGM02]
for call-by-value calculi that convertibility can only relate terms of the same
asymptotic complexity. Since this statement remains true in a call-by-need
setting, an equational theory based on convertibility is too limited for proving
useful optimisations correct.

So what about the situation with contextual equivalence? This notion is
due to Morris, cf. [Mor68], and plays an important role for the correctness of
program transformations. Unlike convertibility it does not depend directly on
the reduction rules of a calculus. Rather, terms are discriminated by observing
termination in all possible contexts. Thus with ⇓ denoting termination while C
stands for program contexts, contextual equivalence 'c can be expressed as

s 'c t ⇐⇒ (∀C : C[s] ⇓ ⇐⇒ C[t] ⇓)

It is by definition a congruence, i.e., s 'c t =⇒ C[s] 'c C[t], and provides a
justification for the reduction rules, if they preserve contextual equivalence.

However, the results of [MOW98, Theorem 32] and [AF97, Theorem 5.11]
indicate that the contextual equivalences of call-by-name and call-by-need agree
in their calculi. The reason for this is that we have considered the fact of
termination only regardless of “how fast” it happens. Therefore an improvement
theory like in [MS99] would probably lead to differing contextual equivalences.

1.1. SURVEY AND RELATED WORK 9

This work opts for another possibility which is to examine a non-deterministic
lambda calculus. If non-deterministic choices are copied, this will have a poten-
tial influence on termination. Moreover, non-deterministic lambda calculi have
numerous applications in concurrency and parallelism as well as for modelling
side-effecting I/O in non-strict functional programming languages. Some of
these will be discussed in section 1.1.4. That’s why the investigation of equality
in such a call-by-need calculus is of particular interest: To gain a deeper un-
derstanding of sharing in a non-deterministic lambda calculus, a combination
which is non-trivial, cf. [MSC99a]. This is one of the contributions of this work.

Similarity

Establishing contextual equivalence is rarely straightforward, thus sometimes a
further equivalence is involved. What we mean here is a behavioural equivalence
based on the technique of bisimulation due to Park [Par81] and Milner [Mil71].
Compared to contextual equivalence it provides a more stepwise approach for
proving equations. The approach is generally applicable to labelled transition
systems , e.g., automata. Also process calculi like CCS, cf. [Mil89], or the pi-
calculus, even in a polymorphic setting, cf. [PS00], can be represented in this
style. And this is the case for functional programming languages and lambda
calculi as their operational semantics, too, cf. [Abr90, Gor99].

The equivalence may intuitively be described as follows: Whenever some
action takes such a system from a state to certain descendant, this action must
also be possible within the second system leading to an equivalent state. In
this way bisimulation describes equivalence by always performing only a single
action at a time and deferring to the next step the check, whether the results are
equivalent or not. Note that this is not a cyclic definition because the equivalence
can properly be constructed as the greatest fixed point of a suitable relation. So
let P, P ′, Q, Q′ stand for arbitrary states and

α
−→ denote the transition by some

action α. Bisimulation equivalence ∼ may then be depicted as below.

P ∼ Q ⇐⇒ (∀α : P
α
−→ P ′ ⇐⇒ Q

α
−→ Q′ ∧ P ′ ∼ Q′)

This emphasises that two states are regarded equivalent as long as no difference
is discovered by a (possibly infinite) series of actions. In functional programming
languages or lambda calculi such an action involves the evaluation of a term, as
will be discussed in section 2.4. Proofs of bisimulation equivalence may rely on
coinduction, cf. [Gor94b, NNH99], a very powerful method. Roughly, it amounts

to showing ∀α : P
α
−→ P ′ ⇐⇒ Q

α
−→ Q′ ∧ (P ′, Q′) ∈ R for some relation R

under the premise that (P, Q) ∈ R holds. In some cases this precondition may

10 CHAPTER 1. INTRODUCTION

be so strong that the proof becomes nearly trivial whereas a direct proof for
contextual equivalence is rather subtle.

However, in order to employ bisimulation as a tool for establishing contex-
tual equivalences it has to be a congruence. This is vital, even if bisimulation is
used on its own, e.g., for showing correctness of program transformations. But
as, e.g., the work in [Abr90, How89, How96] demonstrates, proving bisimulation
a congruence is in general a complex effort. In particular for non-deterministic
call-by-need λ-calculi, up to now there has not been much research in this
respect. Strictly speaking this work does not treat bisimulation but rather mu-
tual similarity. This means that the greatest fixed point is taken of an operator
which yields, instead of an equivalence relation, a preorder, namely similarity,
see section 2.4. It will be shown that this preorder is respected by insertion
into arbitrary contexts, i.e., similarity is a precongruence. Note that bisimu-
lation and mutual similarity do not necessarily coincide in a non-deterministic
environment, cf. [Gor99, LP00], whereas this is true for deterministic calculi.

For the “lazy” lambda calculus Abramsky shows in [Abr90] that applicative
bisimulation is a congruence. Treating a deterministic call-by-name λ-calculus,
his work employs domain theory usually known from denotational semantics.
However, there are various purely operational approaches, some also devising
rule formats so that congruence of bisimulation holds for all systems whose
operational semantics is specified in this format.

So e.g., the gdsos rule format of [San97] is deterministic, which ensures
the orthogonality of the corresponding rewrite system, yet its strength lies in
the proof principles it provides. Moreover, the tyft/tyxt format in [GV92] is
too restricted to represent the calculus of section 3.1. On the other hand, the
promoted tyft/tyxt format, cf. [Ber98], might be able to capture the normal-order
reduction of our λND-calculus. However, its proof obligations seem to amount
to a direct precongruence proof in this case.

Even if the operational semantics of the λND-calculus cannot directly be
represented as a Structured Evaluation System, cf. [How96], the approach of
Howe in [How89, How96] is trailblazing. First, it works for a wide range of
languages called “lazy computation systems” while providing still some freedom
for the definition of the evaluation relation. Secondly, the method permits non-
determinism in a straightforward way. Thirdly, and likely most importantly, the
approach has a clear potential for call-by-need, although it was not primarily
designed to deal with sharing. The results presented in this work provide ample
support for the universality of Howe’s technique.

1.1. SURVEY AND RELATED WORK 11

1.1.4 Extended Lambda Calculi

As described before, various extensions of the λ-calculus have been the subject
of research. We have already quoted call-by-need calculi with or without a let-
construct. In particular worth mentioning is also PCF, cf. [Plo77], which is typed
and can be seen as a functional “core” language. There are numerous variants
containing numbers, bools or pairs and sometimes also lists. PCF is often used as
a vehicle for studying semantic properties of functional programming languages.

The extension with constructors and case discussed in section 6.1 could be
considered a PCF-like language in some respect. Apart from this, the calcu-
lus which is the subject of this work is rather different. First, PCF is typed
whereas the λND-calculus is untyped. This is no shortcoming because we view
the calculus λND as an intermediate product in the compilation of a high-level
language that has already been type-checked. However, regarded as the core of a
functional programming language, PCF lacks a representation of sharing which
is usually present in an implementation. On the other hand, the λND-calculus
has call-by-need evaluation.

Furthermore, by means of its non-deterministic choice it provides a foun-
dation for side-effecting I/O in non-strict functional programming languages as
the recent work in [Sab03, SS03a] demonstrates. Sharing is inevitable for such
an approach. Consider the example terms λx.(x + x) and λx.(2 ∗ x) from sec-
tion 1.1.2 again. These should be considered equivalent as they both double
their argument. Now suppose a non-deterministic function ASK, which returns
for each call some user input. A similar construct has been implemented in
Natural Expert, cf. [HNSSH97]. The terms (ASK+ASK) and (2 ∗ ASK) may yield
different results. For let x = ASK in (x + x) and (2 ∗ ASK) this is not the case.

Non-deterministic Lambda-calculi

A number of questions have to be clarified when introducing a non-deterministic
construct into a programming language or, e.g., a lambda calculus. Apart from
the classification of non-determinism as e.g. in [SS92], we consider the decision
what kind of terms may be copied a major issue.

As the example above has shown, non-determinism in languages without
sharing, i.e. retaining a copying (β)-rule like [Ong93, San94, dP95, LP00],
is completely different from our work because it will distinguish λx.(x + x)
from λx.(2 ∗ x). Likewise is the situation with explicit substitution-calculi,
cf. [ACCL91], since substitutions are duplicated by distributing them over ap-
plications. In [Bou94] this is the case, too.

12 CHAPTER 1. INTRODUCTION

As mentioned before, the calculi in [AFM+95, AF97, MOW98] realise explicit
sharing and restrict copying to abstractions but are deterministic. Moreover,
their equational theory is based on convertibility rather than on contextual
equivalence. The calculi in [KSS98, MSC99a, SS03a, SSSS04] all provide a
non-deterministic choice, sharing and contextual equivalence, albeit designed
for various purposes. E.g., in [MSC99a] Moran et al. describe the semantics
of “stream processors” which are the foundation of the Fudget combinators for
graphical user interfaces in Haskell. The work [SSSS04] successfully employs a
non-deterministic choice for representing set descriptions.

The last-named calculi roughly represent the direction of our investigations,
though there are a few differences. Since these papers do not discuss congruence
of bisimulation, it seems sensible to carry out our studies in a rather elementary
calculus. Hence, like [KSS98, Kut99], the λND-calculus has a non-recursive let
only, whereas the remaining calculi provide recursive bindings. Furthermore, in
contrast to [MSC99a, SS03a, SSSS04], the calculus λND neither has a case nor
data constructors.

1.2 Outline

The aim of this work is twofold. First it develops a general framework for prov-
ing similarity a precongruence in a call-by-need lambda calculus. Therefore in
chapter 2 the pioneering method of Howe [How89, How96], which introduces a
certain precongruence candidate relation, will be adapted to cope with sharing.
In particular this concerns the way a relation over closed terms is continued on
open terms. In [How89, How96] this is done using all closing substitutions, a
view which is obviously incompatible with sharing. Because of this a general
substitution lemma for the precongruence candidate like [How96, Lemma 3.2] is
not possible. We will obtain specialised versions of this lemma but their proof
has to be deferred. The reason is that we will parameterise the open exten-
sion of a relation and extract the notion of admissibility from Howe’s original
precongruence proof.

The second contribution of this work is to explore non-determinism. This is
not only a vehicle in order to demonstrate proving similarity a precongruence
in a highly non-trivial calculus but is also valuable to gain knowledge about the
effect of sharing on the equational theory. So chapter 3 contains a thorough
treatment of two non-deterministic call-by-need lambda calculi. In section 3.1
the λND-calculus, which is the intrinsic subject of our study, will be introduced.
The calculus has a let-construct to express sharing, a seq-operator for sequen-

1.2. OUTLINE 13

tial evaluation and a non-deterministic choice called pick. In this calculus, the
usual technique to define similarity, namely by reducing terms to a weak head
normal form and applying these weak head normal forms to arbitrary fresh argu-
ments, will not work, as we will see. But finding the right definition of similarity
is not easy for a call-by-need calculus in the presence of non-determinism. The
reason is that weak head normal forms in a call-by-need setting usually possess
a let-environment which may contain unevaluated non-deterministic choices.

The solution proposed in this work is to represent each weak head normal
form by a set of abstractions from which the let-environments have been elim-
inated. In order to do this, we must evaluate within the let-bindings — but
when to stop? The answer is: At any point! This means it may be necessary
to evaluate terms arbitrarily deep. We therefore introduce the λ≈-calculus in
section 3.2 which is equipped with the special constant } that stops evaluation
when substituted for a (sub-) term. This approach seems somewhat related
to [Wad78] where the denotation of a term may be represented as the limit of
its “approximate normal forms” though Wadsworth used the technique for the
construction of λ-calculus models.

The challenge of chapter 3 is to show that a λND-term may be indeed “ap-
proximated” by terms of the λ≈-calculus. This result will be achieved by the
Approximation Theorem which says that termination of evaluation in both of
the calculi coincides. Since weak head normal forms in the calculus λ≈ are
abstractions which do not carry around a let-environment, similarity can be
defined in the usual manner. This is accomplished in chapter 4 which is probably
the most central part of this work. Proposition 4.1.27 shows that the formula-
tion of similarity conforms to the style of Abramsky’s applicative bisimulation.

Figure 1.2 illustrates the dependencies of the essential proof steps up to the
Precongruence Theorem which states that the open extension of similarity in
the λ≈-calculus is a precongruence. It is the significant achievement of chapter 4
and requires a series of supporting results. E.g., the aforementioned substitution
lemmas are established in section 4.2.2. This is possible only after similarity,
its open extension and the precongruence candidate in the λ≈-calculus have
been defined. Section 4.3.1 is worth mentioning, too. There, the precongruence
candidate relation is shown to be stable under reduction. This is one of the
major preconditions for the application of the results from chapter 2 in the
proof of the Precongruence Theorem.

Chapter 5 covers the equational theory generated by contextual equivalence
and depicts a denotational semantics for the λND-calculus. The Main Theorem
in section 5.1.2 shows that the open extension of similarity implies contextual

14 CHAPTER 1. INTRODUCTION

preorder and thus establishes mutual open similarity, its symmetrisation, as a
proof tool for contextual equivalence. This is true for the calculus λ≈ as well as
for λND because by virtue of the Approximation Theorem the respective con-
textual equivalences are shown to agree in section 5.1.1. However, mutual open
similarity is strictly contained in, but not identical to, contextual equivalence.

This is the statement of Proposition 5.1.6 whose proof is established in sec-
tion 5.2 involving the notion of syntactic continuity. By means of a counter-
example it is shown that syntactic continuity holds for contextual preorder but
fails for open similarity. This result is not easy to achieve as it involves several
non-trivial properties of reductions from chapter 3.

Finally, chapter 6 discusses possible extensions of the base calculus such as
recursive bindings or case and constructors.

1.2. OUTLINE 15

Precongruence Theorem:
(.b)

o
is a

precongruence

Theorem 2.2.13

66mmmmmmmmmmmmmm

(.̂b) 0 ⊆ .b

hhQQQQQQQQQQQQ

(.b)
o is

admissible

OO

(.̂b) 0 stable
under reduction

OO

Substitution
Lemmas 4.2.7

and 4.2.8

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

OO

Lemma 2.2.10

OO

<<

(·)o
is preorder-

preserving

OO

Figure 1.2: Structure of the precongruence proof

16 CHAPTER 1. INTRODUCTION

Chapter 2

Lazy Computation Systems

In this chapter, a general framework is being developed, under which a preorder
can be shown to be compatible with contexts. This lays the foundation for the
behavioural equivalence of the non-deterministic call-by-need lambda calculus
in the remainder of this work.

Therefore, Howe’s original work [How89, How96] on the so-called lazy com-
putation systems will be extended. Though a priori it is capable to deal with
non-determinism, it was not primarily intended for sharing which comes with
call-by-need evaluation. By means of a lazy computation system the syntax and
operational semantics of a language can be specified in an abstract way. This
approach to higher-order syntax is fairly standard, cf. [KvOvR93, MN98] for
combinatory reduction and higher-order rewrite systems. However, their focus
is on confluence rather than behavioural equivalence.

For dealing with simulations and proving them a precongruence, certain rule
formats, e.g. [Ber98, GV92, San97], for structural operational semantics have
been proposed. As explained in section 1.1.3, these formats are all too limited
for representing the calculus which is subject to this work.

Even though Howe originally allowed substitutions of arbitrary terms, his
technique is flexible enough to cope with call-by-need. Sands has already demon-
strated the extensibility of Howe’s approach in [San91] by applying it to improve-
ments, but without sharing. Moreover, Gordon [Gor94a, Gor99] makes use of
the technique for typed programs.

This chapter treats the adoption of this method to non-deterministic call-
by-need lambda calculi. Thus, it does not simply reproduce the corresponding
notions and results but rather enhances them. Moreover, an attempt is made

17

18 CHAPTER 2. LAZY COMPUTATION SYSTEMS

to unravel some of the features of preorders and their impact on the proofs. We
will therefore devise the notion of admissibility for the extension of a relation
to open terms. It reveals its central role in the proof of theorem 2.2.13.

In section 2.1 we first introduce the concept of a lazy computation language,
before section 2.2 addresses preorders and establishes sufficient conditions to
make up a precongruence. In section 2.3 we then define reduction and evalua-
tion, i.e. the operational semantics for lazy computation languages, thus yielding
lazy computation systems. The notion of a simulation will be generally treated
in section 2.4, where also coinductive proof principles are explained.

2.1 Language

The presentation of higher-order abstract syntax follows [How96] closely, i.e. the
terms of the language are determined by the operators which impose a variable-
binding structure.

Definition 2.1.1 (Lazy Computation Language). Let L = (O, α) be a
signature such that α(τ) ∈ {〈k1, . . . , kn〉 | ∀1 ≤ i ≤ n ∈ N : ki ∈ N0} for every
τ ∈ O holds. Then L is called a lazy computation language (lcl for short) and
O its set of operators with α denoting their respective arity.

The arity α(τ) of an operator τ ∈ O is a sequence of non-negative integers
in order to record the number of arguments as well as the number of variables,
which become bound in every argument position. It is also possible to introduce
separate kinds of variables, cf. [How96] and [San97], for e.g. mixing call-by-name
and call-by-value evaluation. But since we are mainly interested in call-by-need
evaluation here, we will not pursue such an approach. It seems straightforward
to incorporate this though.

Definition 2.1.2 (Terms and Operands). Let L = (O, α) be a lazy compu-
tation language and V a countable set of variables. Then the sets iT (L) are
inductively defined as follows:

• V ⊆ 0T (L)

• If t ∈ 0T (L) and x1, . . . , xn ∈ V are distinct then x1, . . . , xn.t ∈ nT (L)

• If τ ∈ O with arity α(τ) = 〈k1, . . . , kn〉 and tj ∈
kjT (L) for j ∈ {1, . . . , n}

then τ(t1, . . . , tn) ∈ 0T (L)

The terms of the language L are given by the set T (L) = 0T (L) whereas the
elements of the sets nT (L) with n > 0 are called operands.

2.1. LANGUAGE 19

If x1, . . . , xn.t ∈ nT (L) is an operand, the notation x.t will be used as a
shorthand. Note that the constitution of an operand x.t binds all free occur-
rences of variables from x in t. With FV(t) the set of free variables of a term
t is designated. As usual, a term t is closed if all of its variables are bound,
i.e. FV(t) = ∅, otherwise it is called open. The set of closed terms will be re-
ferred to as T0(L). If the language L is clear from context we will simply write
T and T0 respectively in the remainder of this chapter. In addition we will also
frequently use the notation s for sequences, i.e. tuples, of terms and operands.

Definition 2.1.3. Let x ∈ V be a variable and s, t ∈ T terms. Then s[t/x]
denotes the capture-free substitution of t for all free occurrences of x in s.

This extends to tuples of terms and variables in the obvious way, i.e. the
expression s[t/x] is a synonym for s[t1/x1, . . . , tn/xn] and stands for the term s
in which all free occurrences of the variables x1, . . . , xn in s have been substituted
by the respective terms t1, . . . , tn simultaneously.

The technical details of these notions are quite standard and can be found
in the literature [Bar84, Dav89]. Furthermore, we will write {x 7→ s} for the
substitution [s/x] when it is convenient.

In the following, we use the symbol ≡ to denote syntactic equivalence up
to renaming of bound variables, i.e. terms and operands will be considered
syntactically equal modulo alpha-renaming. In particular for operands, this
means that x.s ≡ y.t holds if there are fresh variables z such that the syntactic
equivalence s[z/x] ≡ t[z/y] is true.

It is well-known, cf. [Bar84], that variable renamings have to be consistent
insofar as free variables should not become bound after a substitution. To avoid
such a variable capture the following convention is widely accepted.

Variable Convention for Terms. Throughout this work, whenever some term t
is referred to, its bound variables are chosen to be distinct from each other and
the free variables. Furthermore, this convention extends to sets of terms as well
as terms which result from other terms, e.g., by transformations.

Example 2.1.4. The λ-language consisting of the operators O = {λ, @} with its
arities α(λ) = 〈1〉 and α(@) = 〈0, 0〉 forms a lazy computation language where
e.g. @(λ(x.s), y) is an open term which would usually be denoted by (λx.s) y
and λ(y.@(y, y)) is a closed term, written λy.yy in the common notation.

Example 2.1.5. With O = {λ, let, @} a simple let-language is declared. The
arities of λ and @ are given in example 2.1.4, while α(let) = 〈1, 0〉 models the
non-recursive let which binds one variable. Hence a term like let x = t in s
would be expressed as let(x.s, t).

20 CHAPTER 2. LAZY COMPUTATION SYSTEMS

In the end of this section, the notion of a context will be introduced. Roughly,
a context C is a term with a hole [] and C[s] stands for the resulting term
where s has been plugged into the hole of C. Contexts are defined analogously
to definition 2.1.2 where [] denotes the empty context.

Definition 2.1.6 (Contexts). Let L be a lcl and T (L) its set of terms. Then
the set C(L) = 0C(L) of contexts over L is inductively defined as follows.

• [] ∈ 0C(L)

• If t ∈ 0C(L) and x1, . . . , xn ∈ V are distinct then x1, . . . , xn.t ∈ nC(L)

• If τ ∈ O with arity α(τ) = 〈k1, . . . , kn〉 and Ci ∈
kiC(L) for some

1 ≤ i ≤ n and tj ∈
kjT (L) for j ∈ {1, . . . , i − 1, i + 1, . . . , n} then

τ(t1, . . . , ti−1, Ci, ti+1, . . . , tn) ∈ 0C(L).

We may omit the language L whenever there is no risk of confusion and write
C for the set of all such single-hole contexts. We sometimes also consider multi-
contexts , i.e. contexts with multiple, distinguishable holes. If C, D are contexts
then C[D] denotes the context resulting from inserting D into C’s hole.

The essential feature of contexts is to possibly capture free variables of the
term plugged into the hole. Therefore, contexts are not identified up-to renam-
ing of bound variables.

Example 2.1.7. Regard the lcl of example 2.1.5 again. Then let(x.[], t) and
let(y.[], t) denote different contexts. Also λ(x.@(s, [])) is a context.

The formation of terms and contexts is conveniently be specified by a context
free grammar. Using this, we define the following compositions of contexts.

Definition 2.1.8. Let D be denoting some set of contexts. Then the sets D∗,
D+, Dk, Dm∨n are defined by the corresponding symbols for every D ∈ D:

D0 ::= [] Dk+1 ::= D[Dk]

D+ ::= D | D[D+] Dm∨n ::= Dm | Dn

D∗ ::= D0 | D+

For ease of notation, we will write e.g. Dm∨n denoting a context D ∈ Dm∨n.

Definition 2.1.9. Any subset D ⊆ C of contexts is closed under composition
if and only if for all C, D ∈ D also C[D] ∈ D holds.

2.2. PREORDERS AND THE PRECONGRUENCE CANDIDATE 21

2.2 Preorders and the Precongruence Candidate

This section will introduce the method of Howe [How89, How96] for proving a
preorder to be compatible with contexts, i.e. a precongruence. The key idea is
to define a so-called “precongruence candidate” relation which is by definition
reflexive and compatible with contexts, but not necessarily transitive. Once it
has been shown that the precongruence candidate coincides with the underlying
preorder, a reflexive, transitive and compatible relation is obtained.

So we first define these notions as well as how they extend to operands and
tuples of terms and operands. Hence, for the remainder of this section we fix a
lazy computation language L and its set T of terms.

Definition 2.2.1. Let η ⊆ T ×T be an arbitrary relation over terms. Then for
operands x.s, y.t ∈ nT we declare

x.s η y.t
def
⇐⇒ ∃z : s[z/x] η t[z/y] (2.2.1)

and for sequences of terms or operands furthermore

si η ti
def
⇐⇒ ∀i : si η ti (2.2.2)

For η ⊆ T 2 a relation, (η) 0

def
= η ∩ T0

2 defines its restriction to closed terms.

Note that by monotonicity of set-intersection the inclusion (η1) 0 ⊆ (η2) 0

follows from η1 ⊆ η2 immediately.

Definition 2.2.2 (Preorder). A relation η ⊆ T 2 is called a preorder if it is
reflexive and transitive, i.e., s η s and r η s ∧ s η t =⇒ r η t hold.

A relation η ⊆ T 2 is compatible (with contexts) if for every context C ∈ C
from s η t also C[s] η C[t] is implied. A precongruence is a compatible preorder.

Definition 2.2.3 (Precongruence). Let η ⊆ T 2 be a preorder. Then η is
called a precongruence if and only if for all terms s, t ∈ T the following holds:

s η t =⇒ ∀C ∈ C : C[s] η C[t] (2.2.3)

If (2.2.3) is valid and η additionally is symmetric, then η is a congruence.

Example 2.2.4. Apparently, the syntactic equivalence ≡ is a congruence. Since
a congruence, e.g. in [Bar84, p. 50], is also called equality, the syntactic equiv-
alence ≡ will usually be referred to as syntactic equality.

22 CHAPTER 2. LAZY COMPUTATION SYSTEMS

By induction on the structure of contexts, it is easily shown that the follow-
ing, more gradual definition yields an identical notion. We may therefore freely
interchange the terms compatible and operator-respecting throughout this work.

Definition 2.2.5. A relation η ⊆ T 2 is said to be operator-respecting if and
only if ai η bi implies τ(ai) η τ(bi) for all operands ai, bi and operators τ ∈ O.

As mentioned before, the precongruence candidate relation will be operator-
respecting by construction. In order to define it, we need an idea of how a
preorder η ⊆ T0 over closed terms should behave on open ones. The crucial point
is that such a continuation of η on T , the full set of terms, must in general not
be carried out using all closing substitutions. The following example illustrates
that this possibly violates sharing.

Example 2.2.6. Consider the lcl from example 2.1.5, where let represents
the explicit sharing of terms. Let Υ(·) be a measure on terms that counts all
(distinct) variables1 and applications. Then relate all closed terms w.r.t. this
measure, i.e. η = {(s, t) ∈ T0

2 | Υ(s) ≤ Υ(t)} is clearly reflexive and transitive.
Now consider the open terms @(x, @(x, y)) and @(x, @(y, y)) for which obvi-

ously Υ(@(x, @(x, y))) = 4 = Υ(@(x, @(y, y))) holds. After applying the substi-
tution σ = {x 7→ @(λa.a, λb.b), y 7→ λc.c)} to both of these terms, this relation
is lost, i.e. Υ(σ(@(x, @(x, y)))) = 7 but Υ(σ(@(x, @(y, y)))) = 6.

On the other hand, note that for arbitrary closed terms s, t ∈ T 0 we have

Υ(let(x.let(y.@(x, @(x, y)), t), s)) = Υ(let(x.let(y.@(x, @(y, y)), t), s))

Thus, the sharing has been broken by the substitution discussed above.

Closing terms by surrounding them with let-expressions is essentially what
will be done in chapter 4 for the λ≈-calculus. But for now we will not bother
with concrete instances for a distinct lcl. Hence for a preorder η ⊆ T0

2 on closed
terms its extension ηo to open terms will be defined rather conceptually. With
the notion of admissibility we will soon impose additional restrictions:

Definition 2.2.7. A map (·)o
: T0 × T0 → T ×T is said to extend (relations)

to open terms and ηo is called the extension of the relation η to open terms.

What follows is the definition of the precongruence candidate, which works
without specific properties of (·)o

which extends η ⊆ T0
2 to open terms. The

precongruence candidate can easily be seen to be compatible and reflexive but
not necessarily transitive. Developing the criteria under which it coincides with
the relation ηo is the purpose of this section.

1This is not the number of occurrences but the cardinality of the variables viewed as a set.

2.2. PREORDERS AND THE PRECONGRUENCE CANDIDATE 23

Definition 2.2.8 (Precongruence Candidate). Let η ⊆ T0 × T0 be a pre-
order. Then define its precongruence candidate η̂ ⊆ T ×T inductively by

• x η̂ b if x ∈ V is a variable and x ηo b.

• τ(ai) η̂ b if there exists a′
i such that ai η̂ a′

i and τ(a′
i) ηo b hold.

The informal account in [How89, p. 201] is striking: a η̂ b if b can be obtained
from a via one bottom-up pass of replacements of subterms by terms that are
larger under ηo. So clearly for every nullary operator ζ, i.e., α(ζ) = 〈〉 and ζ
has no operands, we obtain ζ η̂ t ⇐⇒ ζ ηo t for t ∈ T be an arbitrary term.

Under certain conditions, it can be shown that no additional free variables
have to be introduced for the intermediate operators a′

i in the recursive case of
definition 2.2.8 above. Because of its interaction with the open extension (·)o

we cannot provide such a result in general here. But it is feasible in the context
of the λ≈-calculus, cf. lemma 4.2.3, where a term exists that may substituted
for such a “spare” variable, i.e. a free variable in a′

i but not in ai before.

Definition 2.2.9. If (·)o extends relations to open terms, it is called preorder-
preserving if and only if for every relation η ⊆ T0

2 on closed terms the following
holds: η is a preorder implies that ηo is a preorder, too.

The notion above is sufficient for some of the most fundamental properties,
like the following counterpart to [How96, Lemma 3.1].

Lemma 2.2.10. Let η ⊆ T0
2 be a preorder and (·)o

preorder-preserving. Then
the relation ηo ⊆ T 2 is a preorder, too, and furthermore

1. η̂ is reflexive

2. η̂ and η̂ 0 are operator-respecting

3. ηo ⊆ η̂

4. η̂ ◦ ηo ⊆ η̂

Proof. 1. Let a ∈ T be an arbitrary but fixed term, then we show a η̂ a by
induction on the structure of a:

• If a ∈ V is a variable, we have a η̂ a from the reflexivity of ηo and
the base case of definition 2.2.8.

• If a ≡ τ(ai) for some operator τ and operands ai, we have ai η̂ ai

from the induction hypothesis and τ(ai) ηo τ(ai) from the reflexivity
of ηo. So, by definition 2.2.8, we may compose this to τ(ai) η̂ τ(ai).

24 CHAPTER 2. LAZY COMPUTATION SYSTEMS

2. We assume ai η̂ bi and have to show τ(ai) η̂ τ(bi) for an arbitrary but
fixed operator τ . By reflexivity of ηo we have τ(bi) ηo τ(bi) and from
definition 2.2.8 we conclude τ(ai) η̂ τ(bi).

As a consequence if τ(ai), τ(bi) ∈ T0 are closed, we also have τ(ai) η̂ 0 τ(bi)
from ai η̂ bi, which implies that η̂ 0 is operator-respecting too.

3. Assume a ηo b for arbitrary but fixed a, b ∈ T and show a η̂ b by induction
on the structure of a:

• If a ∈ V is a variable, we have a η̂ b directly from a ηo b and the base
case of definition 2.2.8.

• If a ≡ τ(ai) for some operator τ and operands ai, we have ai η̂ ai

from property 1, the reflexivity of η̂. By definition 2.2.8 then, we
may conclude τ(ai) η̂ b.

4. Assume a η̂ b and b ηo c, so according to definition 2.2.8 we have to
distinguish the following two cases:

• a is a variable, then for a η̂ b also a ηo b must hold and thus the
proposition by transitivity of ηo and property 3.

• For a of the form τ(ai) there is τ(a′
i) with ai η̂ a′

i and τ(a′
i) ηo b. By

transitivity of ηo we also have τ(a′
i) ηo c thus τ(ai) η̂ c.

Theorem 2.2.13 at the end of this section is vital in establishing the criteria
under which ηo becomes a precongruence. In order to prove this theorem, we
have to demand the following properties.

Definition 2.2.11. Let η ⊆ T0
2 be a relation, then an extension ηo ⊆ T 2 of η

to open terms is admissible if only if all of the following conditions are met:

1. (·)o is preorder-preserving

2. (ηo) 0 = η

3. ∀ν : ν ⊆ η =⇒ νo ⊆ ηo

4. η̂ ⊆ (η̂ 0)
o

Note that, because of the interdependency of ηo and η̂ above, the order of
the definitions 2.2.7 and 2.2.8 is indeed significant.

Lemma 2.2.12. Let η ⊆ T0
2 be a preorder on closed terms. Then every ad-

missible extension ηo contains η, i.e. η ⊆ ηo.

2.2. PREORDERS AND THE PRECONGRUENCE CANDIDATE 25

Proof. Assume a preorder η ⊆ T0
2 on closed terms such that ηo is admissible.

Then (ηo) 0 = η follows from property 2 of definition 2.2.11. Furthermore, for
every relation ν ⊆ T 2 on terms, the inclusion ν 0 = ν ∩ T0

2 ⊆ ν holds. Thus,
with η = (ηo) 0 = ηo ∩ T0

2 ⊆ ηo the proposition is shown.

In [How96, Theorem 3.1] the analogical formulation of the following theorem
requires a substitution lemma which we cannot provide at this point. This is
so, because until now only a few assumptions about ηo have been made.

On the other hand, the preceding definitions, particularly the notion of ad-
missibility from definition 2.2.11, represent just the abstract conditions which
are actually relevant. This is justified by the fact that they are strong enough
for the proof of this section’s main result.

Theorem 2.2.13. Let η ⊆ T0
2 be a preorder and ηo its admissible extension to

open terms. Then the following are equivalent.

1. ηo is a precongruence

2. η̂ ⊆ ηo

3. η̂ 0 ⊆ η

Proof. The claim is shown by a chain of implications.

“1 =⇒ 2”: Assuming ηo to be a precongruence and a η̂ b, we show a ηo b by
induction on the definition of η̂.

• If a ∈ V is a variable, the only possibility is a ηo b.

• If a ≡ τ(ai) for some operator τ and operands ai, there must have
been operands a′

i such that ai η̂ a′
i for every i and τ(a′

i) ηo b. From the
induction hypothesis we may conclude ai ηo a′

i, which in turn means
τ(ai) ηo τ(a′

i) and furthermore τ(ai) ηo b since ηo is a precongruence.

“2 =⇒ 3”: From η̂ ⊆ ηo we have η̂ 0 ⊆ (ηo) 0 = η since ηo is admissible.

“3 =⇒ 1”: So it remains to show that ηo is a precongruence under the as-
sumption η̂ 0 ⊆ η. Since ηo is admissible, from η̂ 0 ⊆ η we have (η̂ 0)

o ⊆ ηo

by monotonicity, i.e. property 3 of definition 2.2.11. In conjunction with
property 4 there, this becomes η̂ ⊆ (η̂ 0)

o ⊆ ηo. Hence by property 3 of
lemma 2.2.10 we have η̂ = ηo, thus ηo is operator-respecting.

The plan is to establish the last set inclusion η̂ 0 ⊆ η for which we will show
the precongruence candidate η̂ to be stable under reduction. Thus, we now turn
our attention to reduction and evaluation in lazy computation languages.

26 CHAPTER 2. LAZY COMPUTATION SYSTEMS

2.3 Reduction and Evaluation

In this section we shall investigate the operational semantics of a lazy computa-
tion language. In operational semantics, cf. [Hen90, Win93], it is common to dis-
tinguish between “big-step” and “small-step” operational semantics. Roughly,
a big-step operational semantics is mainly concerned with the result of an eval-
uation whereas a small-step semantics emphasises the way which leads to this
particular outcome. Therefore, big-step operational semantics seems somewhat
related to denotational semantics which is covered in e.g. [Sch86, Mos90]. The
small-step semantics for lambda calculi is reduction, which is a rewrite system
on terms, cf. [Klo92, BN98, DP01, KBdV03], by its nature.

This section will depict reduction and evaluation to the extent applicable
for the abstract notion of a lazy computation language. We begin with big-step
operational semantics.

Definition 2.3.1 (Lazy Computation System). A lazy computation lan-
guage L together with a binary relation ⇓ ⊆ T 2 on terms is called a lazy com-
putation system (lcs for short) if and only if ⇓ meets the following:

a ⇓ v =⇒ ∀v′ : (v ⇓ v′ ⇐⇒ v ≡ v′) (2.3.1)

We then call ⇓ evaluation or convergence. The term v is the answer to which
a is said to converge to. We simply write a ⇓ if there exists some v such that a
converges to v, and a 6⇓ if there is no such v.

Note that (2.3.1) does not enforce determinism, as a ⇓ v may hold for dif-
ferent v. However, this condition causes the answers to be “end-points” of
the evaluation in some sense. Frequently, small-step reduction is coupled to
big-step evaluation when these end-points can be reached by finitely many re-
duction steps. In [How89] this is done by partitioning the set O of language
operators into canonical and non-canonical ones. Terms whose top-level oper-
ator is canonical are then called canonical terms and regarded as answers. To
indicate this, the operator θ instead of τ will be used sometimes.

Definition 2.3.2. The answer set of a term s is defined by ans(s) = { t | s ⇓ t }.

In [Bar84, p. 50], Barendregt requires a reduction relation to be compatible
with contexts in general. Such a constraint will not be adopted, since it would
be too restrictive for non-deterministic calculi. Another reason is that, as ex-
posed in section 1.1 before, contrary to [Bar84, AFM+95], this work rests upon
contextual equivalence instead of convertibility.

2.3. REDUCTION AND EVALUATION 27

Definition 2.3.3 (Reduction). A reduction relation is a binary relation on
terms which may be specified by certain reduction rules.

If s, t ∈ T are terms so that s reduces to t by some rule (a) we write s
a
−→ t

and speak of a top-level reduction. If D ∈ C is a context and s reduces to t at
top-level by rule (a) then we may use rule (a) in the context D, which is denoted

by D[s]
D, a
−−−→ D[t].

The term s is referred to as an a-redex because it is a “reducible expression”
and rule (a) may be applied to it. Furthermore, the term t is called the reduct
and D[t] the contractum. If D ⊆ C stands for some subset of contexts we will

write s
D, a
−−−→ t if and only if s

D, a
−−−→ t holds for some D ∈ D. When (a) is not

explicitely specified it may be any of the rules from the respective calculus.

We will not go into the details of how single rewrite steps may be defined by
means of reduction rules, since this is outside the scope of this work. We rather
postulate the rules to be specified in a framework like [KvOvR93, San97].

Writing s
[], a
−−−→ t we shall emphasise a top-level reduction. As is custom-

ary, the transitive and reflexive-transitive closure of −→ will be denoted by the
symbols −→+ and −→∗ respectively. Furthermore, we write −→k and −→<k for a
reduction of exactly and less than k steps, whereas e.g. −→k≥m indicates a re-
duction of k ≥ m steps. Further labels may be attached to the symbol −→ in
order to specify certain properties of the reduction. A word which comprises all
the labels of an arrow will usually be designated by lowercase Greek letters.

Reduction rules might also be used in the opposite direction. Instead of a
contraction we then speak of an expansion. A conversion is either an contraction
or an expansion.

Definition 2.3.4 (Reduction and Conversion Sequences). Let n ∈ N be
a non-negative integer, t1, . . . , tn+1 ∈ T be terms, Ca1

, . . . , Can
be contexts and

a1, . . . , an be reduction rules (with possibly further labels attached).
Then a sequence (〈ti, ai, Cai

〉)i is a reduction sequence (of length n) if and

only if ti
Cai

, ai

−−−−−→ ti+1 for every 1 ≤ i ≤ n holds.

If for every 1 ≤ i ≤ n, we have either ti

Cai
, ai

−−−−−→ ti+1 or ti
Cai

, ai

←−−−−− ti+1, then
we call (〈ti, ai, Cai

〉)i a conversion sequence (of length n).

2.3.1 Convertibility and Confluence

Quite naturally, conversion gives rise to the following equivalence relation, which
is the reflexive-symmetric-transitive closure of −→ in fact.

28 CHAPTER 2. LAZY COMPUTATION SYSTEMS

Definition 2.3.5 (Convertibility). Two terms r, s ∈ T are convertible if
and only if there is a conversion sequence (〈ti, ai, Cai

〉)i such that r ≡ t1 and

tn+1 ≡ s holds. We then write r
∗
↔ t while the relation

∗
↔ is called convertibility.

Note that in equational reasoning, e.g. [HO80, Pla93], it is common to define
conversion first and then derive reduction rules by giving an orientation to the
equations. But equational reasoning is based on the basic principle that “equals
may be replaced by equals” and thus requires the equivalence to be substitutive,
i.e. compatible. This is why conversion is usually permitted inside arbitrary
contexts, which makes convertibility a congruence.

However, in this way, equality and reduction are heavily intertwined, since
the reduction rules, viewed as program transformations, are trivially correct
w.r.t. convertibility. Hence the notion of confluence frequently serves as a sep-
arate justification, e.g. [Bar84, MOW98], that a certain calculus behaves well.

Definition 2.3.6 (Confluence). A reduction relation −→ ⊆ T 2 is confluent if
for all terms p, q, r ∈ T satisfying p ∗←− q −→∗ r there is a further term t ∈ T
such that p −→∗ t ∗←− r holds.

Figure 2.1 depicts confluence and its weaker companion local confluence.
Confluence and techniques to prove it have been addressed at length, cf. [Hue80].

q

∗

����
��

��
�

∗

��>
>>

>>
>>

>

p

∗
��>

>
>

> r

∗
���

�
�

�

t

q

����
��

��
�

��>
>>

>>
>>

>

p

∗
��>

>
>

> r

∗
���

�
�

�

t

(a) (b)

Figure 2.1: Confluence (a) and local confluence (b)

One particular result worth mentioning is Newman’s Lemma, i.e. that every
terminating rewrite system is confluent whenever it is locally confluent. As a
consequence, for the confluence of a terminating rewrite system it is sufficient
to show that all its critical pairs are joinable. This notion has successfully
been transferred to the higher-order case in [MN98]. Roughly, a critical pair
represents the overlap of two reductions which leads to a non-trivial peak , i.e. a

2.3. REDUCTION AND EVALUATION 29

situation where p ←− q −→ r and the existence of a term t with p −→∗ t ∗←− r is
not obvious. We will see later how this motivates our notions of complete sets
of forking and commuting diagrams.

Note that local confluence in general does not imply confluence as the fol-
lowing ubiquitous example, cf. e.g. [BN98, p. 29], illustrates.

Example 2.3.7. Let the reduction relation −→ be specified by

a boo CC c
��

// d

Then clearly −→ is locally confluent but not confluent.

2.3.2 Contextual Equivalence

In operational semantics, contextual equivalence, cf. [Mor68, Plo75], is widely
used and can be considered the standard semantic equivalence. Section 1.1.3
gives several reasons why we consider it more significant than convertibility.

Contextual equivalence equates two terms if they exhibit the same converging
behaviour in all possible contexts.

Definition 2.3.8. The contextual equivalence 'c ⊆ T ×T is defined by

s 'c t
def
⇐⇒ (∀C ∈ C : C[s] ⇓ ⇐⇒ C[t] ⇓) (2.3.2)

Contrary to convertibility, it forms a congruence independently of where
reduction is permitted. Therefore, contextual equivalence provides a reasonable
alternative to confluence for the validation of a calculus.

However, proving that two terms are contextually equivalent requires to take
infinitely many contexts into account. Switching to another equality which im-
plies contextual equivalence may circumvent this. As mentioned before, this is
one of the main reasons for the treatment of similarity and its precongruence
proof in this work. But for a while, we will raise the issue of how to directly
establish the reduction rules to be correct program transformations w.r.t. con-
textual equivalence.

Definition 2.3.9 (Program Transformation). A program transformation
is a binary relation on terms. Let Ψ ⊆ T 2 be a program transformation. Then
Ψ is correct (w.r.t. contextual equivalence) if and only if for all terms s, t ∈ T
the implication s Ψ t =⇒ s 'c t holds.

30 CHAPTER 2. LAZY COMPUTATION SYSTEMS

We do not require a program transformation to be compatible with contexts,
though program transformations shall typically be applied at arbitrary locations
of a program. However, for every correct program transformation its compatible
closure is again a correct program transformation: For s Ψ t, correctness of Ψ
implies s 'c t and furthermore C[s] 'c C[t] since 'c is a congruence.

Now suppose that evaluation is defined by finite
α
−→-reduction sequences

to an answer. Then it is in general not obvious, whether the reduction rules
itself constitute correct program transformations. But we shall adopt techniques
which are, to some extent, related to the ones in confluence proofs.

s

Ψ

����
��

��
�

α

��>
>>

>>
>>

>

t

α∗

��>
>

>
> ·

Ψ∗

���
�

�
�

α

��=
==

==
==

=

· ·

·
α

��?
??

??
??

?

v

Figure 2.2: Application of a Program Transformation Ψ

First note, that non-terminating reduction sequences are ruled out in the
definition of contextual equivalence. Therefore, induction becomes applicable
like for the proof of Newman’s Lemma. Now regard the illustration in figure 2.2

where
Ψ
−→ indicates an application of the program transformation Ψ to a term

while the
α
−→-reduction sequence to the right is assumed to end in an answer. If

the dashed relations exist, α and Ψ are called to commute weakly in [BKvO98].

As can be seen, for t a finite sequence of
α
−→-reductions could, under certain

conditions, be constructed from an argument of induction. This sequence ends
in a term which may be reached from v by several program transformations. If
the notion of answer is invariant w.r.t. the transformation Ψ, the

α
−→-reduction

sequence for t might produce an answer too, i.e., t converges.

In this manner the implication C[s] ⇓ =⇒ C[t] ⇓ of the contextual equiv-

2.3. REDUCTION AND EVALUATION 31

alence s 'c t could be established. Of course, this is just one example from
numerous possibilities, but it demonstrates well the main idea behind the no-
tions of the next section. Also does the aforementioned article [BKvO98] discuss
several confluence patterns in addition to the one in figure 2.2.

2.3.3 Reduction Diagrams

The method presented in this section will be used in significant parts of later
proofs. After it was successfully applied in showing program transformations
correct w.r.t. contextual equivalence repeatedly [KSS98, SSSS04], we consider
it a well-established technique.

In this work we will employ it as a general framework for transformations
on reduction sequences in multiple ways. Instead of diagrams like the one in
figure 2.2, a more concise notation will be introduced.

Definition 2.3.10 (Transformation Rule). A transformation of a con-
version sequence (〈si, ai, Cai

〉)i of length m consists of a conversion sequence
(〈tj , bj , Cbj

〉)j of length n such that s1 ≡ t1 and sm+1 ≡ tn+1 holds.

A transformation rule describes a set of possible transformations of conver-
sion sequences in an abstract manner using a notation like

Ca1
, a1

−−−−−→ ·
Ca2

, a2

←−−−−− · . . . ·
Cam−1

, am−1

←−−−−−−−−− ·
Cam , am

−−−−−−→

Cb1
, b1

←−−−−− ·
Cb2

, b2
−−−−−→ · . . . ·

Cbn−1
, bn−1

−−−−−−−−→ ·
Cbn , bn

←−−−−−

A transformation rule of the above form is called applicable to a prefix (suf-
fix) of a conversion sequence (〈si, ai, Cai

〉)i of lengh k ≥ m if there are terms
t1, . . . , tn+1 ∈ T such that (〈tj , bj , Cbj

〉)j is a transformation of the prefix-
sequence (〈si, ai, Cai

〉)i≤m (suffix-sequence (〈si, ai, Cai
〉)i>k−m respectively).

Now suppose that, similar to the case in figure 2.2, we have a terminating
reduction sequence for some term. Moreover, assume that for every reduction
which overlaps with the first of the given sequence, there is a possible transfor-
mation to join the peak. Then we obtain the following notion.

Definition 2.3.11 (Complete Set of Forking Diagrams). A set of forking

diagrams for a reduction
D, a
−−−→ w.r.t. two sets B, O of reductions, is a set of

32 CHAPTER 2. LAZY COMPUTATION SYSTEMS

transformation rules of the form

Cb1
, b1

←−−−−− · . . . ·
Cbl

, bl

←−−−− ·
D, a
−−−→

Ca1
, a1

−−−−−→ · . . . ·
Can , an

−−−−−→ ·
Cb′

1

, b′
1

←−−−−− · . . . ·
Cb′m

, b′m
←−−−−−−

for conversion sequences, where the following conditions are met:

1.
Cbi

, bi

−−−−→ ⊆ B for every 1 ≤ i ≤ l,

2.
Cb′

i
, b′i

−−−−→ ⊆ B for every 1 ≤ i ≤ m and

3.
Caj

, aj

−−−−−→ ⊆ O ∪
D, a
−−−→ for every 1 ≤ j ≤ n

A set of forking diagrams is called complete if and only if for every conversion
sequence of the form

s0

Cb1
, b1

←−−−−− . . .
Cbl−1

, bl−1

←−−−−−−− sl−1

Cbl
, bl

←−−−− sl
D, a
−−−→ sl+1

such that l > 0 and s0 is an answer but sl is not, there is one transformation
rule applicable to a suffix of the sequence.

The existence of complete sets of forking diagrams for some reduction may
guarantee that arbitrary applications of this reduction do not compromise the
termination behaviour. This is how complete sets of forking diagrams will typi-
cally be used in this work, although they are equally well suited for the correct-
ness of program transformations.

However, as the preceding section has shown, from complete set of forking
diagrams only one of the implications necessary for contextual equivalence could
be established. So assume s Ψ t where t rather than s has a finite reduction
to an answer. If the inverse program transformation Ψ−1 of Ψ is considered, a

complete set of forking diagrams for
Ψ−1

−−−→ will achieve the desired effect. Hence
the corresponding concept for the original transformation Ψ is that of a complete
set of commuting diagrams.

Definition 2.3.12 (Complete Set of Commuting Diagrams). A set of

commuting diagrams for a reduction
D, a
−−−→ w.r.t. two sets B, O of reductions, is

2.3. REDUCTION AND EVALUATION 33

a set of transformation rules of the form

D, a
−−−→ ·

Cb1
, b1

−−−−−→ · . . . ·
Cbl

, bl

−−−−→

C′
b1

, b′
1

−−−−−→ · . . . ·
Cb′m

, b′m
−−−−−−→ ·

Ca1
, a1

−−−−−→ · . . . ·
Can , an

−−−−−→

for reduction sequences, where the following conditions are met:

1.
Cbi

, bi

−−−−→ ⊆ B for every 1 ≤ i ≤ l,

2.
Cb′

i
, b′i

−−−−→ ⊆ B for every 1 ≤ i ≤ m and

3.
Caj

, aj

−−−−−→ ⊆ O ∪
D, a
−−−→ for every 1 ≤ j ≤ n

A set of commuting diagrams is called complete if and only if for every reduction
sequence of the form

s0
D, a
−−−→ s1

Cb1
, b1

−−−−−→ . . .
Cbl

, bl

−−−−→ sl+1

such that l > 0 and sl+1 is an answer but s0 is not, there is one transformation
rule applicable to a prefix of the sequence.

By means of a complete set of commuting diagrams for
D, a
−−−→ it can be

shown that every
D, a
−−−→-reduction may be moved to the end of any terminating

reduction sequence consisting only of reductions from B. During this process
auxiliary reductions from O might possibly be introduced.

In this work, complete sets of commuting diagrams will chiefly be of the

form
D, a
−−−→ ·

D, b
−−−→

D, b
−−−→

∗

·
D, a
−−−→ whereas in e.g. [SSSS04] also patterns like

D, a
−−−→ ·

D, b
−−−→

∗

D, b
−−−→

∗

·
D, a
−−−→ occur sometime.

Both, complete sets of commuting and forking diagrams, should adhere to
the condition that the composition of diagrams from the set terminates. Apart
from their limitation to terminating reduction sequences, this is another prereq-
uisite to make induction applicable.

If O = ∅ in the definitions above, it is omitted and we simply speak of a set
of forking (commuting) diagrams w.r.t. B.

34 CHAPTER 2. LAZY COMPUTATION SYSTEMS

Independent Reductions

While diagrams are a very useful tool to prove commuting reductions, there
are already some simple cases which may be shown in a generic manner. We
therefore introduce the notion of disjoint contexts.

Definition 2.3.13. Two contexts Ca, Cb ∈ C are called disjoint if there is no
other context C ∈ C such that Ca ≡ Cb[C] or Cb ≡ Ca[C] holds.

Lemma 2.3.14. Let Ca, Cb ∈ C be two disjoint contexts. Then for all terms
s0, s1, s2 ∈ T and all reductions a, b the following holds:

s0
Ca, a
−−−−→ s1

Cb, b
−−−→ s2 =⇒ ∃s′2, C

′
a, C ′

b : s0
C′

b, b
−−−→ s′2

C′
a, a
−−−−→ s2

s1
Ca, a
←−−−− s0

Cb, b
−−−→ s2 =⇒ ∃s3, C

′
a, C ′

b : s1
C′

b, b
−−−→ s3

C′
a, a
←−−−− s2

Proof. Assume Ca, Cb ∈ C to be disjoint contexts, i.e. neither Ca ≡ Cb[C] nor

Cb ≡ Ca[C] for some further context C ∈ C holds. We recall that s0
Ca, a
−−−→ s1

means that s0 and s1 are of the respective forms s0 ≡ Ca[t1] and s1 ≡ Ca[t′1]

such that t1
[], a
−−−→ t′1 is a top-level reduction. The same holds for Cb, i.e. in the

forking case which we will treat first, we have s0 ≡ Cb[t2] and s2 ≡ Cb[t
′
2] such

that t2
[], b
−−−→ t′2 is a top-level reduction. Since Ca and Cb are disjoint, there is a

two-hole-context C[[]1, []2] ∈ C such that Ca ≡ C[[]1, t2] and Cb ≡ C[t1, []2].
Thus C ′

a ≡ C[[]1, t
′
2] and C ′

b ≡ C[t′1, []2] represent the desired contexts, which

clearly permit the reductions s1
C′

a, a
−−−→ s3 and s2

C′
b, b
−−−→ s3.

For the commuting case we have s1 ≡ Cb[t2] and s2 ≡ Cb[t
′
2] such that the

reduction t2
[], b
−−−→ t′2 is at top-level. Since Ca and Cb are disjoint, there is a

two-hole-context C[[]1, []2] ∈ C such that Ca ≡ C[[]1, t2] and Cb ≡ C[t′1, []]
hold. Thus C ′

a ≡ C[[]1, t
′
2] and C ′

b ≡ C[t1, []2] are contexts, which permit the

reductions s0 ≡ C[t1, t2]
C′

b, b
−−−→ C[t1, t

′
2]

C′
a, a
−−−→ C[t′1, t

′
2] ≡ s2 as desired.

Constructing Complete sets of Diagrams

In the following, we will develop criteria on how to establish complete sets of
commuting and forking diagrams respectively. The key idea is that, for reduc-
tions which may be performed inside contexts that are closed under composition,
it is sufficient to analyse the empty context in a few base cases. The next lemma
demonstrates this for the commutation of two reductions.

2.4. SIMULATIONS 35

Lemma 2.3.15. Let s0
Ca, a
−−−−→ s1

Cb, b
−−−→ s2 be a reduction sequence for arbitrary

terms s0, s1, s2 ∈ T . If Cb ≡ Ca[C] with some context C ∈ C then the following

holds: If for every reduction sequence t0
[], a
−−−→ t1

C, b
−−−→ t2 there exists a term

t′1 ∈ T and a context C ′ such that t0
C′, b
−−−→ t′1

[], a
−−−→ t2 then there is also a term

s′1 ∈ T and a context C ′
a ∈ C with s0

Cb, b
−−−→ s′1

C′
a, a
−−−−→ s2.

Proof. Assume s0
Ca, a
−−−→ s1

Cb, b
−−−→ s2 then s0 and s1 must be of the respective

forms s0 ≡ Ca[t0] and s1 ≡ Ca[t1] for some terms t0, t1 ∈ T and a top-level

reduction t0
[], a
−−−→ t1. Since Cb ≡ Ca[C] we have s2 ≡ Ca[t2] and t1

C, b
−−−→ t2

from s1
Cb, b
−−−→ s2, hence there are t′1 and C ′ such that t0

C′, b
−−−→ t′1

[], a
−−−→ t2 by the

premise. This reduction can also be performed inside Ca, thus the claim.

The last step of the proof using composition of contexts is remarkable. Hence
we may adopt the technique to reductions inside a class of contexts which is
closed under composition. Also the claim could be extended to reduction and
conversion sequences of a length greater than two by similar arguments, hence
the summary in the following corollary.

Corollary 2.3.16. Let (〈si, ai, Cai
〉)i be a reduction (conversion) sequence of

length m and 1 ≤ k ≤ m an index such that for every 1 ≤ i ≤ m there are
contexts C ′

ai
with Cai

≡ Cak
[C ′

ai
] for i 6= k and C ′

ak
≡ []. Furthermore, pre-

sume that for every conversion sequence (〈pi, ai, C
′
ai
〉)i there is a transformation

(〈qj , bj , Cbj
〉)j . Then there exists also a transformation (〈tj , bj , Ck[Cbj

]〉)j of the
original reduction (conversion) sequence.

It is important to note that one serious restriction applies, when making use
of lemma 2.3.15 and the above corollary respectively. I.e., in this case it is not
valid to consider converging reduction sequences only.

Usually this is permissible since a set of reduction diagrams is complete if it
contains one applicable diagram for every converging reduction. But when some
part of the enclosing context is disregarded, also non-converging terms have to
be taken into account, for obvious reasons: Even if some term t itself does not
converge, for some compound term C[t] this will clearly be possible.

2.4 Simulations

The preceding section addressed evaluation and reduction in lazy computation
languages thus defining lazy computation systems. Moreover, two forms of

36 CHAPTER 2. LAZY COMPUTATION SYSTEMS

equality, namely convertibility and contextual equivalence, have been discussed
there. We have seen how contextual equivalence provides a meaningful approach
for the correctness of program transformations.

This section will now develop a further view on equivalence which yields to-
wards a more stepwise procedure to discover the behaviour of terms compared to
contextual equivalence. It is based on an, not necessarily effective, experiment.

Definition 2.4.1. Let L be a lazy computation system and η ⊆ T ×T be a
preorder. Then the experiment [·] with [η] ⊆ T0

2 is given by

s [η] t
def
⇐⇒ (∀θ(si) : s ⇓ θ(si) =⇒ (∃θ(ti) : t ⇓ θ(ti) ∧ si η ti)) (2.4.1)

The rationale behind an experiment is to determine whether t converges at
least as often as s to a term with the same top-level operator. And if it does so,
to leave the examination of the respective operands to the specified preorder.
Hence the application of an experiment could simply stop at this depth, i.e. if
for η the whole relation η = (T0 × T0)

o is chosen. But it could also be performed
one step further by taking η = [(T0 × T0)

o
]
o

and so on.
In this manner, two terms will be identified as long as no difference in their

behaviour is encountered while this process is continued arbitrarily deep. In

this way, the infinite intersection
⋂

i [(T0 × T0)
o]

i
is computed. It represents

the greatest fixed point of the compound [·o]-operator, since [·o] is monotone
on relations considered as sets and sets ordered by inclusion form a complete
lattice, cf. [DP92].

Definition 2.4.2 (Simulation). A preorder η ⊆ T0
2 is called a simulation if

and only if η ⊆ [ηo] holds. Similarity .b is defined to be the largest simulation.

To see that [·o] is in fact monotone, consider two preorders ν, η ⊆ T0
2 on

closed terms such that ν ⊆ η holds. Since (·)o
is admissible νo ⊆ ηo follows from

property 3 of definition 2.2.11 immediately. Assuming s [νo] t we have s [ηo] t
too. Thus [·o] is monotone and its greatest fixed point actually exists.

By η ⊆ [ηo] a simulation constitutes a post-fixed point of the [·o]-operator.
A relation η which meets this property is called [·o]-dense in [Gor94b]. There,
a quite perspicuous account2 is given that similarity coincides with both the
greatest fixed point of [·o] and the union

⋃
{ η | η ⊆ [ηo] } of all [·o]-dense sets.

The latter gives rise to the proof principle of co-induction, cf. [Gor99, NNH99].
In order to establish s .b t it suffices to give any simulation η such that (s, t) ∈ η

2in a more general setting concerning monotone operators on sets

2.4. SIMULATIONS 37

is satisfied. Then (s, t) ∈ .b holds, too, because .b is the largest simulation
which contains all [·o]-dense sets.

This technique is due to the work of Milner [Mil71] and Park [Par81] who had
applied it to transition systems originally. Meanwhile it has also established as
a standard approach, cf. [Abr90, Las98b, Gor99], for functional programming
and lambda calculi. Since two programs are regarded equivalent as long as
they show the same behaviour, it is sometimes called behavioural equivalence
in contrast to the term observational equivalence which is frequently used for
contextual equivalence. However, based on simulations, behavioural equivalence
may be defined in (at least) two ways.

Definition 2.4.3 (Bisimulation). An equivalence relation η is a bisimulation
if η ⊆ [ηo] holds. Then bisimilarity ∼b is the largest bisimulation.

Note that a simulation is a bisimulation whenever it is symmetric and thus
bisimilarity is the largest symmetric simulation. The demand for symmetry
before taking the greatest fixed point causes a tight coupling between the terms
related by bisimilarity. During every step in applying the experiment, uniform
convergent behaviour is required.

An alternative is to regard terms as equivalent if they simulate each other.
This means to flip the order of “symmetrisation” and taking the fixed point.

Definition 2.4.4 (Mutual Similarity). The largest equivalence relation con-

tained in .b is defined by 'b
def
= .b ∩ &b and called mutual similarity.

See [Gor99, p. 19] and in particular [Las98b, p. 92] why mutual similarity
generally strictly contains bisimilarity in a non-deterministic scenario. Since the
aim of this dissertation is to establish contextual equivalence via behavioural
equivalence, we opt for mutual similarity. Once similarity has shown to form a
precongruence, its inclusion in contextual preorder is relatively straightforward.

Definition 2.4.5 (Contextual Preorder). The relation .c ⊆ T ×T is re-
ferred to as contextual preorder and defined by

s .c t
def
⇐⇒ (∀C ∈ C : C[s] ⇓ =⇒ C[t] ⇓) (2.4.2)

Obviously, contextual preorder is a precongruence and thus also called con-
textual precongruence frequently. It is clear that s 'c t is valid if and only if
s .c t and s &c t hold. So mutual similarity implies contextual equivalence
whenever similarity implies contextual preorder. The latter holds if similarity
extended to open terms is a precongruence and the extension (·)o qualifies for
preservation of convergence.

38 CHAPTER 2. LAZY COMPUTATION SYSTEMS

Definition 2.4.6. An extension (·)o of relations from closed to open terms is
said to qualify for preservation of convergence if it meets the following condition.

(∀s, t ∈ T0 : s η t =⇒ (s ⇓ =⇒ t ⇓)) =⇒

(∀s′, t′ ∈ T : s′ ηo t′ =⇒ (s′ ⇓ =⇒ t′ ⇓)) (2.4.3)

Roughly, an extension (·)o
qualifies for preservation of convergence if it trans-

fers the implication s ⇓ =⇒ t ⇓ from the relation on closed terms to the one
over open terms. Note how the premise s η t =⇒ (s ⇓ =⇒ t ⇓) in (2.4.3)
is satisfied for every simulation: From s η t we have s [ηo] t since η is a sim-
ulation, i.e., η ⊆ [ηo] holds. Then s ⇓ =⇒ t ⇓ is a direct consequence from
definition 2.4.1 of the experiment.

Theorem 2.4.7. Let η ⊆ T0×T0 be a simulation such that ηo is a precongruence
and (·)o

qualifies for preservation of convergence. Then ηo ⊆ .c is true.

Proof. Assume terms s, t ∈ T such that s ηo t holds. Then ∀C : C[s] ηo C[t]
because ηo is a precongruence. As explained before, η matches the premise
of (2.4.3) since it is a simulation. Thus, from ∀C : C[s] ηo C[t] we may also
infer ∀C : C[s] ⇓ =⇒ C[t] ⇓ which establishes the claim.

2.4.1 Proving Similarity a Precongruence

The essential challenge is the proof that similarity is a precongruence which
has its own right, e.g. for the application of mutual similarity to equational
reasoning. However, it is not possible to adopt definition 2.4.1 of the experiment
directly for the non-deterministic call-by-need calculus λND in section 3.1. The
reason is that answers in λND might contain unevaluated non-deterministic
choices that are explicitely shared using let. Thus section 3.2 will introduce
the λ≈-calculus in which sharing is eliminated from answers by collecting all
possible outcomes.

Additionally, in this way the distinction from [How89] between canonical
and non-canonical operators of the language remains intact for the λ≈-calculus,
i.e. only λ-terms form answers. In contrast, such a distinction is impossible in
the calculus λND, since a let-term might either be an answer or constitute
a redex, so let is neither a canonical nor a non-canonical operator. The un-
derlying difficulty would persist with [How96] even if small-step reduction to
canonical terms is abandoned in favour of a big-step evaluation semantics. In
definition 2.4.1, this can be seen from the decomposition of the answers.

2.4. SIMULATIONS 39

However, the notion of a simulation derived from Howe’s work is general
enough to deal with non-deterministic evaluation. As mentioned before, we will
apply theorem 2.2.13 in order to prove similarity a precongruence. For this

purpose, the inclusion (.̂b) 0 ⊆ .b is to be shown. Therefore, note that .b is
defined as the greatest fixed point of the operator [·o], i.e., contains all [·o]-dense
sets. Recall that a relation η is [·o]-dense iff η ⊆ [ηo] holds. By coinduction, the

inclusion (.̂b) 0 ⊆
[
(.̂b) 0

o]
suffices. It can be attained by the concept below.

Definition 2.4.8. Let η ⊆ T0
2 be a relation on closed terms. Then evaluation

respects η if for all closed terms s, t, θ(si) ∈ T0 such that s ⇓ θ(si) and s η t
hold, there exists θ(ti) such that t ⇓ θ(ti) and θ(si) [ηo] θ(ti) are true.

Figure 2.3 illustrates the situation for a relation η to be respected by evalu-
ation. The immediate consequence is that every such relation is a simulation.

s
⇓ //

η

��

θ(si)

[ηo]

���
�

�

t
⇓ //_____ θ(ti)

Figure 2.3: Evaluation respects a relation η

Corollary 2.4.9. Let η ⊆ T0
2 be a relation on closed terms that is respected by

evaluation. Then η is a simulation, i.e. η ⊆ [ηo] holds.

Proof. Assume terms s, t, θ(si) such that s η t and s ⇓ θ(si) hold. Since evalua-
tion respects η there exists a term θ(ti) such that t ⇓ θ(ti) and θ(si) [ηo] θ(ti) is
satisfied. Since only θ(si) ⇓ θ(si) and θ(ti) ⇓ θ(ti) are possible by definition 2.3.1
of the evaluation, this implies si ηo ti which proves the claim.

The notion of evaluation respecting a relation on subterms in [How96] aims
at big-step operational semantics defined in terms of structural rules whereas the
operator extensionality from [How89] provides a way to show the precongruence
candidate to be respected by evaluation on a per-operator basis.

In this work, evaluation will be defined by a finite small-step reduction se-
quence to answers with a certain syntactical structure. Although this resembles
the use of canonical operators, contrary to [How89] the proof will be under-
taken for every reduction rule instead of every language operator. Therefore,
we introduce the notion of a relation be stable under reduction.

40 CHAPTER 2. LAZY COMPUTATION SYSTEMS

Definition 2.4.10. Let η ⊆ T0
2 be a relation on closed terms. Then η is said

to be stable under reduction if for all closed terms s, s′, t,∈ T0 such that s η t
and s −→ s′ hold, the relation s′ η t is valid as well.

As convergence for the λ≈-calculus is a reduction to an answer, what is to be
established by induction is actually the condition (2.4.4) below. In section 4.3
we will be able to prove how it implies that evaluation respects the restriction
of the precongruence candidate to closed terms.

(s η̂ 0 t ∧ s ⇓ θ(si)) =⇒ θ(si) η̂ 0 t (2.4.4)

Then it will be evident that the precongruence candidate is contained in simi-
larity thus making its open extension a precongruence. This not only enables
equational reasoning but also causes mutual similarity to be a correct program
transformation w.r.t. contextual equivalence.

2.4.2 Simulation up to

When proving a relation [·o]-dense, i.e. that it forms a simulation, sometimes
a stronger hypothesis would be helpful. This means to modify the definition
of the experiment such that si LηM ti rather than si η ti suffices to be shown
for some suitable modification LηM of the original relation. It is the aim of this
section to explore what “suitable” could mean.

One possibility is to consider the operands si and ti respectively modulo
an equivalence relation. This resembles the “bisimulation up to equivalence”
of [Mil89, p. 92] and, with ∼ denoting some equivalence, looks like

s [η] t ⇐⇒ (∀θ(si) : s ⇓ θ(si) =⇒ (∃θ(ti) : t ⇓ θ(ti) ∧ si (∼ η ∼) ti))

where LηM = (∼ η ∼) and (ν η υ) stands for the composition of relations below.

s (ν η υ) t
def
⇐⇒ ∃s′, t′ : s ν s′ ∧ s′ η t′ ∧ t′ υ t

Reasoning within a simulation up to equivalence agrees with similarity as long
as the equivalence is contained in the extension of similarity to open terms. The
requirement of an equivalence relation can be relaxed further to a preorder, thus
even LηM = (.b η .b) is conceivable.

Apart from the “bisimulation up to equivalence” of [Mil89] already men-
tioned, the notion of “simulation up to” has appeared sometimes in the lit-
erature. So, e.g. Lassen [Las98a] discusses simulation “up to similarity” and

2.4. SIMULATIONS 41

simulation “up to context” while in [San98] simulation “up to improvement and
context” is treated by Sands.

Subsequently, we will try to shed some light on the general principle behind
simulation up to and why it is correct. Therefore, consider the operator L·M on
relations over closed terms again.

Definition 2.4.11. An operator L·M is said to support the experiment [·] when-
ever LηM ⊆ T0

2 for every relation η ⊆ T0
2 and the following is true:

∀s, t : s LηM t =⇒ (∃s′, t′ : s′ η t′ ∧ (s′ [LηM
o
] t′ =⇒ s [LηM

o
] t))

Then η is called a simulation up to experiment support if η ⊆ [LηMo] holds.

We will also speak of a simulation up to L·M for a simulation up to experiment
support. It is then to show that η ⊆ [LηM

o
] suffices for η ⊆ .b, i.e. that η is

included in similarity. The following points out that the notion of L·M to support
the experiment [·] is appropriate.

Lemma 2.4.12. If η is a simulation up to L·M then LηM is a simulation.

Proof. For a simulation η ⊆ T0
2 up to L·M we will show that LηM ⊆ [LηM

o
] is valid.

So we assume closed terms s, t ∈ T0 such that s LηM t holds. Since L·M supports
the experiment [·] there exist closed terms s′, t′ ∈ T0 such that s′ η t′ as well as
the implication s′ [LηM

o
] t′ =⇒ s [LηM

o
] t is true. Because of η ⊆ [LηM

o
] the

premise of this implication is met. Thus s [LηMo] t proves the claim.

Although the previous lemma did not, nor could it because that would re-
quire the condition η ⊆ LηM, establish that every simulation up to L·M is also a
simulation, reasoning based on simulation up to experiment support is sensible.

Theorem 2.4.13. Similarity contains all simulations up to experiment support.

Proof. Lemma 2.4.12 shows that if η is a simulation up to L·M then LηM is a
simulation. Hence LηM ⊆ [LηM

o
] and thus [LηM

o
] ⊆

[
[LηM

o
]
o]

holds, since [·o] is
monotone. So [LηM

o
] is [·o]-dense and thus contained in similarity.

Example 2.4.14. We will demonstrate that simulation up to similarity is con-
tained in similarity, i.e. that LηM = (.b η .b) supports the experiment. Then
simulation up to L·M results in the following proof obligation.

s η t =⇒
(
∀θ(si) : s ⇓ θ(si) =⇒ (∃θ(ti) : t ⇓ θ(ti) ∧ si (.b η .b)

o
ti)

)

42 CHAPTER 2. LAZY COMPUTATION SYSTEMS

In the course of this example suppose that the extension (·)o to open terms is
given by s ηo t ⇐⇒ ∀σ : σ(s) η σ(t) for simplicity, i.e. the common way
over all closing substitutions. Assume s (.b η .b) t in order to show that the
operator L·M supports the experiment. This means that there are terms s′, t′ such
that s .b s′ ∧ s′ η t′ ∧ t′ .b t holds. So furthermore assume s′ [LηM

o
] t′

for showing s [LηMo] t as follows:

s ⇓ θ(si) =⇒ s′ ⇓ θ(s′i) ∧ si .b
o s′i (by s .b s′)

s′ ⇓ θ(s′i) =⇒ t′ ⇓ θ(t
′
i) ∧ s′i LηMo t

′
i (by s′ [LηMo] t′)

∀σ : σ(s′i) LηM σ(t
′
i) (by s′i LηM

o
t
′
i)

∃s′′i , t
′′
i : σ(s′i) .b s′′i η t

′′
i .b σ(t

′
i) (by σ(s′i) LηM σ(t

′
i))

t′ ⇓ θ(t
′
i) =⇒ t ⇓ θ(ti) ∧ t

′
i .b

o ti (by t′ .b t)

∀σ : σ(si) .b s′′i η t
′′
i .b σ(ti) (by def. of (·)o

and trans. of .b)

si LηM
o

ti (by def. of (·)o
and L·M)

s [LηM
o
] t (by s ⇓ θ(si) ∧ t ⇓ θ(ti) and the def. of [·])

As an aside, note that the proof principle which emerges from (.b η .b)
o

is usually stronger than its counterpart (.b
o ηo .b

o) in [Las98a, p. 107]. This
is so because s (.b

o ηo .b
o) t implies s (.b η .b)

o t for (·)o like above as well
as its restricted variant in the λ≈-calculus.

2.5 Future Work

Since the framework is greatly abstract already, there are rather few possibilities
for further enhancements. Though, it will be discussed shortly whether and how
the use of the ⇓-relation in the experiment could be further relaxed. So consider
definition 2.4.1 where ⇓ has been replaced by υ as an additional parameter.

s [η]υ t ⇐⇒ (∀θ(si) : s υ θ(si) =⇒ (∃θ(ti) : t υ θ(ti) ∧ si η ti))

E.g. choosing υ = &c could be worthwhile for some situations. But what con-
ditions on υ make the precongruence proof to go through? At least υ has to be
a preorder for this and the below seems also sensible.

s υ t =⇒ (t ⇓ =⇒ s ⇓)

s υ t =⇒ (t
[
υ ∩ υT

]
υ

s)

2.5. FUTURE WORK 43

While ⇓ and &c trivially meet the former, the latter requires a closer look. It
essentially states that υT ⊆

[
υ ∩ υT

]
holds, i.e., whenever two terms s, t are

related by υ then they must be contained in the experiment of the equivalence
generated by υ too.

However, instead of reiterating the whole proof with this parameterised ver-
sion of experiment it seems more appealing to ascertain general properties. So
among others, the following conditions can be found to be of relevance for the
precongruence proof.

s 6⇓ =⇒ ∀t : s [η] t

s [η] t =⇒ (∀s′ : s ⇓ s′ =⇒ (∃t′ : t ⇓ t′ ∧ s′ [η] t′))

By the first, a non-converging term is considered smaller than anything else, a
common property. The second demands that the answers itself will be contained
in the experiment if the originating terms are.

It is then to be shown that the notions of the precongruence candidate being
respected by evaluation and stable under reduction respectively, guarantee its
inclusion in similarity for an experiment characterised in this abstract way.
Thereby note that the results of section 2.2, in particular theorem 2.2.13, remain
applicable as long as the extension (·)o

of relations to open terms is admissible.

44 CHAPTER 2. LAZY COMPUTATION SYSTEMS

Chapter 3

Non-deterministic
Lambda-calculi

The previous chapter describes a general framework for (pre-) congruence proofs
in lazy computation systems. There, the work of Howe [How89, How96] has been
adapted, in order to cope with call-by-need evaluation. The feasibility of this
method will be set out in the remainder of this work.

As an exhaustive example we therefore present a non-deterministic call-by-
need lambda calculus in this chapter. The reason for non-determinism is to
demonstrate the effect of sharing on the equations valid w.r.t. contextual equiv-
alence. The results of [MOW98, Theorem 32] and [AF97, Theorem 5.11] indi-
cate that the operational theories of call-by-name and call-by-need do not differ
much in a deterministic scenario. At least this seems to be true as long as only
the fact of convergence or divergence is observed whereas the number of reduc-
tions is not taken into account. Hence another interesting application would be
improvement theory like in [San98, MS99], though it will not be treated here.

However, the motivation for our non-deterministic call-by-need lambda cal-
culus is not merely to serve as an example. Rather, subsequent chapters of this
work contain a thorough treatment of operational equivalence and possible tools
to prove it. Many further aspects are covered, e.g. computation of fixed points
and denotational semantics in section 5.3 and 5.4 respectively.

So this chapter is organised as follows. After the non-deterministic call-
by-need lambda calculus λND is introduced in section 3.1, a way to prune the
evaluation in environments at an arbitrary, finite depth is developed. This is

45

46 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

the approximation calculus λ≈ of section 3.2, which provides a basis for the
substantial proof in chapter 4 that similarity in λ≈ forms a precongruence. In
section 3.3 the link between the λND- and the λ≈-calculus is established by
showing that the respective notions of convergence coincide. The λND-calculus
deliberately has an elementary structure in order to lay a foundation for further
studies. Thus, chapter 6 will discuss possible extensions.

3.1 The Call-by-need Calculus λND

In this section the λND-calculus will be discussed. It closely resembles the one
of [KSS98, Kut99], apart from a few differences. First, the erratic nondetermin-
istic choice is modelled by the syntactic construct pick rather than a constant.
While this is mainly of technical nature, basing the contextual equivalence solely
on the observation of converging behaviour, has a deeper impact. Disregarding
divergence in its definition leads to more equations which are valid w.r.t. con-
textual equivalence.

On the other hand, the language construct seq will increase the discriminat-
ing power of contexts. Therefore, it will cause contextual preorder to be closer
to similarity than this was possible in [Man04].

Having specified the language, we will define a normal-order reduction which
respects sharing in that only abstractions may be copied and non-deterministic
choices will not be duplicated. We will prove some fundamental properties of
the normal-order reduction and then demonstrate why a definition of simulation
in the λND-calculus working directly with let-environments fails. This is the
reason for the approximation calculus λ≈ of section 3.2.

3.1.1 Language

The language ΛND is given by the symbol E of the grammar in figure 3.1, where
the non-terminal V stands for a countable set of variables. I.e., the terms are
either variables, applications or formed by one of the language operators λ, let,
pick and seq.

Since the symbol = is part of the let-construct, we use ≡ for syntactic
equality up to renaming of bound variables. While the intention of abstraction,
application and explicit sharing via let should be clear from usual call-by-need
calculi, the intuitive meaning of pick and seq will be explained in a few words.

The operator pick represents erratic non-determinism, i.e., may uncondi-
tionally reduce to either of its arguments. In contrast to the constant choice

3.1. THE CALL-BY-NEED CALCULUS λND 47

E ::= V | (λV.E) | (E E) | (let V = E in E)

| (pick E E) | (E seq E)

Figure 3.1: Syntax for expressions in the language ΛND

in [Kut99], it is modelled as a syntactic construct, hence the different name.
The constant choice can be implemented in the λ≈-calculus, though its repre-
sentation is distinguished from λx.(λy.pick x y) by contexts. See section 3.4.1
for a more in-depth treatment.

The construct seq enables sequential evaluation. Given a term of the form
s seq t, the subterm s has to be evaluated first. Using strict application, i.e. ar-
gument evaluation precedes function application, is on a par with seq because
both are mutually expressible by each other. Suppose s to denote strict appli-

cation, then seq and s could be defined by the equations s seq t
def
= s(K t, s)

and s(s, t)
def
= let x = t in x seq s x respectively. So it is merely a matter of

taste which one to implement. Since it is easier to interface with the calculus
of [SSSS04], seq will be set up in this work.

Like in [Man04] before, the (set) inclusion of similarity in contextual pre-
order will be strict. One merit of seq in this work is to reduce that existing
gap. Roughly, we could show that s is smaller than t w.r.t. similarity if s is
contextually smaller than t and the answer set ans(t) of t is finite.

Obviously, λ and let are the only operators which bind variables, so ΛND

forms a lazy computation language with the following arities, where @ stands
for application.

α(@)
def
= 〈0, 0〉 α(λ)

def
= 〈1〉

α(pick)
def
= 〈0, 0〉 α(let)

def
= 〈1, 0〉

α(seq)
def
= 〈0, 0〉

The definition of free and bound variables is as usual and will not be repeated
here. FV(s) will denote the set of free variables of the term s. A term which
does not contain free variables is called closed , otherwise open. We frequently
will refer to closed terms as combinators. Writing e.g. λxy.s as a shortcut for

48 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

λx.(λy.s), the following combinators will be used throughout this work.

S
def
= λpqr.p r (q r) K

def
= λxy.x

I
def
= λx.x K2

def
= λxy.y

Y
def
= λf.(λx.f (x x)) (λx.f (x x)) Ω

def
= (λx.x x) (λx.x x)

The notion of a context has formally been declared in section 2.1 already. Con-
texts are terms with some holes, which are denoted by [], and are not considered
equivalent modulo renaming of bound variables: Capturing free variables is one
of their major features.

Definition 3.1.1. Let e be a term. Define the following sets of contexts:

AL ≡ [] e LL ≡ let x = [] in e WL ≡ [] seq e

AR ≡ e [] LR ≡ let x = e in [] WR ≡ e seq []

Some of the contexts of this definition will be used to explain reduction and
evaluation in the following section. For this purpose, the common notation from
section 2.1, as e.g. L∗

R for the Kleene closure of LR-contexts, will be used.

3.1.2 Reduction and Evaluation

In this section we will provide an operational semantics for the ΛND-language
by means of a small-step reduction relation. Evaluation is “lazy” in the sense
that reductions do not take place under an abstraction, cf. [Abr90]. But since
the λND-calculus respects sharing, the notion of a weak head normal form has
to be adapted accordingly. Hence the following definition reflects what is called
an answer in [AFM+95, AF97, MOW98].

Definition 3.1.2 (Weak Head Normal Form). A term L∗
R[λx.s] ∈ ΛND

is called a weak head normal form (WHNF for short). A term t ∈ ΛND is in
WHNF iff t ≡ L∗

R[λx.s] for some context L∗
R and term s ∈ ΛND holds.

Contexts of the form L∗
R play an essential role in the previous definition and

thus will be called environment contexts or environments for short. The goal of
reducing a term is to bring it in WHNF. Therefore, the calculus λND embodies
the reduction rules of figure 3.2 which should be understood as templates. I.e.,
for the symbols s, t, . . . all kinds of terms, for x, y, . . . arbitrary variables and
for D any context may be substituted.

3.1. THE CALL-BY-NEED CALCULUS λND 49

Furthermore, we adopt the distinct variable convention, i.e. suppose all
bound variables to be distinct from each other and the free variables. Since
we implicitly assume this convention to take effect after every reduction step,
notably the duplicate occurrence of the term λy.r in the specification of the
(cp)-rule below does not pose any problem.

let x = (let y = ty in tx) in s
llet
−−→ let y = ty in (let x = tx in s) (llet)

(let x = tx in s) t
lapp
−−−→ let x = tx in (s t) (lapp)

(λx.s) t
lbeta
−−−→ let x = t in s (lbeta)

(let x = r in s) seq t
lseq
−−→ let x = r in (s seq t) (lseq)

(λx.s) seq t
eseq
−−→ t (eseq)

pick s t
nd, left
−−−−→ s (nd, left)

pick s t
nd, right
−−−−−→ t (nd, right)

let x = λy.r in D[x]
cp
−→ let x = λy.r in D[λy.r] (cp)

Figure 3.2: The reduction rules of the λND-calculus

The purpose of (llet), (lapp) and (lseq) is mainly to rearrange let-bindings
for subsequent reductions. The ordinary (β)-rule is superseded by (lbeta) which
just creates a let-binding. The rules (nd, left) and (nd, right) implement the
non-deterministic choice while (eseq) returns the second argument of a seq once
the first has been evaluated to an abstraction.

With (cp) one occurrence of a variable bound to an abstraction may be
replaced with a copy of this abstraction, hence the name of the rule. Note that
an abstraction is copied to exactly one location at a time. This conforms to
the earlier work [AFM+95, AF97, MOW98] on call-by-need λ-calculi and is also
closer to the implementation of lazy functional programming languages than a
simultaneous substitution would be.

Definition 3.1.3 (Reduction). Figure 3.2 defines the reduction rules of the
calculus λND, which induce a reduction relation as follows. For terms s, t ∈ ΛND

50 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

we write s
C, a
−−−→ t if there exists a context C ∈ C and terms s′, t′ ∈ ΛND such that

s ≡ C[s′] ∧ t ≡ C[t′] and s′
a
−→ t′ holds by some (a) of these rules. Thereby, s′

is called redex1 or a-redex more precisely, because rule (a) is used. The term t′

is the reduct and C[t′] is called contractum sometimes. In addition, let D ⊆ C

denote a subset of contexts. We then write s
D, a
−−−→ t if s

D, a
−−−→ t for some D ∈ D

is true. Whenever (a) is not explicitely specified it may be any of the rules.

As usual, the symbol −→+ denotes the transitive and −→∗ the reflexive-
transitive closure of a reduction relation. Here, the arrow may also be decorated
by one or several rules and we declare the following unions of reductions.

nd
−→

def
=

nd, left
−−−−→ ∪

nd, right
−−−−−→ (nd)

lll
−→

def
=

llet
−−→ ∪

lapp
−−−→ ∪

lseq
−−→ (lll)

The notion
D, a
−−−→ of a reduction (a) only to take place within certain contexts

belonging to the subset D ⊆ C will be used frequently. In particular the normal-
order reduction will be restricted to reduction contexts, although compared to
other λ-calculi, as e.g. [Gor99, San98, Sch00], this is not a sufficient condition.

Since the seq-construct has to be incorporated into reduction contexts, the
definition becomes slightly more complicated than in [Kut99, Man05]. Note
that reduction contexts are not closed under composition.

Definition 3.1.4 (Reduction Contexts). The class R of reduction contexts
is inductively defined by the following rule for the symbol R while the symbol R−

denotes weak reduction contexts:

R− ::= [] | R−[AL] | R−[WL]

R ::= L∗
R[R−] | L∗

R[let x = R− in R[x]]

Let t ∈ ΛND be a term. Then a weak reduction context R− is called maximal
for R−[t] if and only if there is no other term t′ ∈ ΛND and no weak reduction
context R−′

such that R−′
[t′] ≡ R−[t] holds and t′ is a subterm of t.

The notion of normal-order reduction may then intuitively be described as
follows. Descend into contexts of the form LR and subsequently R−, until one
of the rules (lapp), (lbeta), (lseq), (eseq) or (nd) becomes applicable, the case 1
of definition 3.1.5. If during this process a variable is encountered, its binding is

1which is an acronym for “reducible expression”

3.1. THE CALL-BY-NEED CALCULUS λND 51

examined. Whenever possible, perform (cp) or (llet) for the variable in question,
i.e., cases 3 and 4 respectively. Otherwise, in case 2, if the variable is bound
to an application, descend into the R−-context as far as necessary in order to
apply (lapp), (lbeta), (lseq), (eseq) or (nd).

Definition 3.1.5 (Normal-Order Reduction). A reduction s
R, a
−−−→ t is

called normal-order and depicted by s
n, a
−−−→ t if and only if it matches one

of the following.

1. If s ≡ L∗
R[R−[r]] with a weak reduction context R− and rule (lapp),

(lbeta), (lseq), (eseq), (nd, left) or (nd, right) is applied to r.

2. If s ≡ L∗
R[let x = R−[r] in R[x]] with R a reduction context and R−

a weak reduction context such that rule (lapp), (lbeta), (lseq), (eseq),
(nd, left) or (nd, right) is applied to r.

3. If s ≡ L∗
R[let x = λy.r in R[x]]

n, cp
−−−→ L∗

R[let x = λy.r in R[λy.r]] ≡ t
by rule (cp) for some reduction context R.

4. If rule (llet) is applied as follows:
s ≡ L∗

R[let x = (let y = ty in tx) in R[x]]
n, llet
−−−−→

L∗
R[let y = ty in (let x = tx in R[x])] ≡ t

Note that, for R−[r] in the cases 1 and 2 of the above definition, the weak
reduction context R− is not maximal. Rather, it is the one directly “above”
the maximal weak reduction context, i.e. the maximal weak reduction context
extends into the outermost application or seq-operator of the redex r. It is easy
to see that none of the rules permitted in the cases 1 and 2 is applicable within
a smaller weak reduction context. Hence the normal-order redex is unique and,
except for the non-deterministic rules, also the reduction itself.

The definition of the normal-order reduction is well-suited for the aforemen-
tioned purpose to determine weak head normal forms of terms. I.e., we state
without proof, that the normal-order reduction is “standard” in that whenever
for some term t there is a reduction to WHNF then t has also a normal-order
reduction to the same WHNF.

Therefore the notion of convergence in the λND-calculus is defined by a
normal-order reduction sequence to a term of the form L∗

R[λx.t], i.e. a WHNF.

Definition 3.1.6 (Convergence). Let s, t ∈ ΛND be terms. Then s converges

to t, denoted by s ⇓ t, if and only if s
n
−→

∗
t and t is a WHNF. We write s ⇓ if

there exists a term t ∈ ΛND such that s ⇓ t and s 6⇓ if not.

52 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

From the definition of the normal-order it can easily be seen how the condi-
tions of definition 2.3.1 are satisfied and λND forms a lazy computation system.

Below, a converging normal-order reduction is illustrated briefly as well as
the possible cases to reach a weak head normal in one normal-order step.

Example 3.1.7. The normal-order reduction of (λx.x)
(
(λy.(λz.q)) r

)
is

(λx.x)
(
(λy.(λz.q)) r

) n, lbeta
−−−−−→ let x = ((λy.(λz.q)) r) in x

n, lbeta
−−−−−→ let x = (let y = r in (λz.q)) in x

n, llet
−−−−→ let y = r in (let x = (λz.q) in x)

n, cp
−−−→ let y = r in (let x = (λz.q) in (λz.q))

Thus (λx.x)
(
(λy.(λz.q)) r

)
⇓ let y = r in (let x = (λz.q) in (λz.q)) holds.

Remark 3.1.8. If s
n
−→ t for two terms s, t ∈ ΛND such that t is a weak head

normal form but s is not, then s must be of one of the following forms where
the respective reduction rule is used:

• s ≡ L∗
R[(λy.L′∗

R [λz.q]) r]
n, lbeta
−−−−−→ L∗

R[let y = r in L′∗
R [λz.q]]

• s ≡ L∗
R[(λy.p) seq (L′∗

R [λz.q])]
n, eseq
−−−−→ L∗

R[L′∗
R [λz.q]]

• s ≡ L∗
R[pick (L′∗

R [λz.q]) r]
n, nd, left
−−−−−−→ L∗

R[L′∗
R [λz.q]]

• s ≡ L∗
R[pick r (L′∗

R [λz.q])]
n, nd, right
−−−−−−−→ L∗

R[L′∗
R[λz.q]]

• s ≡ L∗
R[let y = λz.q in L′∗

R [y]]
n, cp
−−−→ L∗

R[let y = λz.q in L′∗
R[λz.q]]

Internal Reductions

Contrary to calculi like [AF97, MOW98, Sch00], the normal-order reduction
in the calculus λND cannot simply be specified as the closure of the reduction
rules w.r.t. reduction contexts. Therefore, we now examine reductions which
are non-normal-order, in particular those within reduction contexts.

Definition 3.1.9. A reduction by a rule (a) within some context C ∈ C is called

internal and depicted by
i, C, a
−−−−→ (or

iC, a
−−−→ for short) if it is not normal-order.

This notion extends to subsets of contexts in the obvious way. It is then
straightforward to make the following observations.

3.1. THE CALL-BY-NEED CALCULUS λND 53

Lemma 3.1.10. There is no
iR, a
−−−→-reduction for a ∈ { lapp, lbeta, lseq, eseq,nd }

Proof. By inspecting the structure of reduction contexts.

Lemma 3.1.11. A reduction inside a reduction context L∗
R[R−] is internal if

(llet) or (cp) is applied to the subterm let x = r in s of L∗
R[R−[let x = r in s]]

and either there is no reduction context R such that s ≡ R[x] holds or R− is
not the empty context.

Lemma 3.1.12. A reduction for a term L∗
R[let x = R−[let y = r in s] in R[x]]

is internal within a reduction context if R is a reduction context and the rule
(llet) or (cp) is applied to let y = r in s.

Proof of Lemma 3.1.11 and 3.1.12. By the definition of normal-order.

As an analysis shows, a (iR, llet)-reduction may only be of a form as in the
previous two lemmas. The target location of the copy operation does indeed
matter, hence for (iR, cp) there is one additional possibility.

Corollary 3.1.13. Let s, t ∈ ΛND be terms. Then s
iR
−−→ t if and only if rule

(llet) or (cp) is applied to the subterm s′ and one of the following holds:

1. s ≡ L∗
R[let x = q in C[x]] where s′ ≡ let x = q in C[x] and C is not a

reduction context.

2. s ≡ L∗
R[R−[s′]] where s′ ≡ let y = q in r and R− is not the empty context

or there is no reduction context R such that s ≡ R[y].

3. s ≡ L∗
R[let x = R−[let y = q in r] in R[x]] where R is a reduction

context and s′ ≡ let y = q in r.

It easily can be seen that the property of a weak head normal form is invari-
ant w.r.t. internal reductions within reduction contexts.

Lemma 3.1.14. Let s, t ∈ ΛND be terms such that s
iR
−−→ t holds. Then t is a

WHNF only if s is a WHNF.

Proof. By case analysis on the contraposition of the claim.

54 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

3.1.3 Contextual (Pre-) Congruence

The way it has been defined in the previous section, convergence exhibits the
so-called may convergence, i.e. s ⇓ holds if there is any normal-order reduc-
tion sequence starting with s and leading to a WHNF. For a non-deterministic
calculus, like e.g. [Las98b], the complementary notion of must convergence also
makes sense, i.e., all normal-order reduction sequences starting with s result in a
WHNF. Since may divergence, i.e., the existence of infinite normal-order reduc-
tion sequences, is the logical negation of must convergence, it may equally well
be used, cf. [MSC99a, Kut99, SS03a], instead of must convergence. However,
for reasons of simplicity this work only regards may convergence.

Definition 3.1.15. The contextual preorder .ΛND, c is defined by

s .ΛND, c t ⇐⇒ ∀C : C[s] ⇓ =⇒ C[t] ⇓

and contextual equivalence 'ΛND, c by

s 'ΛND, c t ⇐⇒ s .ΛND, c t ∧ t .ΛND, c s

Obviously, these relations are reflexive, transitive, compatible with contexts
and, in the case of 'c, symmetric. Therefore 'c (.c) is a (pre-) congruence.
Establishing contextual equivalence is in general not straightforward, since its
definition quantifies over all possible contexts. The following lemma consider-
ably reduces the “amount” of contexts which have to be taken into account.

Lemma 3.1.16 (Context Lemma). Let s ∈ ΛND be a term and T ⊆ ΛND a
set of terms satisfying the following: For every reduction context R ∈ R with
R[s] ⇓ there is a term t ∈ T such that R[t] ⇓ holds.

Then this property is also valid for general contexts, i.e. for every context
C ∈ C with C[s] ⇓ there exists t ∈ T such that C[t] ⇓ is true.

Proof. For 1 ≤ i ≤ k let si ∈ ΛND be terms and Ti ⊆ ΛND sets of terms. We
will then show the following claim:

If for every reduction context R ∈ R the following property holds:
R[si] ⇓ implies that there is a ti ∈ Ti such that R[ti] ⇓ too. Then
for every multi-context C ∈ C with k holes, C[s1, . . . , sk] ⇓ implies
∃(t1, . . . , tk) ∈ T1 × · · · × Tk : C[t1, . . . , tk] ⇓.

The proof is by induction on the lexicographical ordering consisting of the length

of a normal order reduction C[s1, . . . , sk]
n
−→

∗
p to some weak head normal form

3.1. THE CALL-BY-NEED CALCULUS λND 55

p and the number k of C’s holes. For the induction base consider the case for a
context C with only one hole, where C[si] already is a weak head normal form.
Then either C[ti] for some ti ∈ Ti is a weak head normal form too, or the hole
is in a reduction context and the precondition proves the claim.

So for the induction step we assume the proposition to hold for all terms si,
all sets of terms Ti and all contexts smaller than C w.r.t. the given ordering.
Then there are the following possibilities:

• In the case the first reduction of the sequence C[s1, . . . , sk]
n
−→

∗
p is of

the form C[s1, . . . , sk]
n
−→ C ′[s1, . . . , sk] the induction hypothesis applied

to the context C ′ proves the claim.

Note that this applies to the rules (llet), (lapp), (lbeta) and (lseq) but for
the remaining reduction rules only if none of the subterms sj is affected.

• For reductions of the form C[s1, . . . , sk]
n
−→ C ′[s′1, . . . , s

′
m] only the follow-

ing rules have to be taken into account:

– An application of rule (nd) may “pick” a subset of the si. I.e., m ≤ k
holds and for every 1 ≤ j ≤ m there is a 1 ≤ i ≤ k such that s′j ≡ si

is valid.

This selection emerges for the reduction C[t1, . . . , tk]
n
−→ C ′[t′1, . . . , t

′
m]

as well and therefore the induction hypothesis may be applied since
the length of the normal order reduction sequence to a weak head
normal form has been decreased.

– If the first argument of a seq has been discarded by rule (eseq), the
argument is the same as in the previous case.

– For (cp), when a hole is within the copied expression, the correspond-
ing si has been duplicated, i.e. there is a 1 ≤ j ≤ m and a variable
renaming σ such that sj ≡ σ(si) holds. Note that, by the variable
convention, σ only renames free variables of si which become bound
by C. Therefore the precondition R[sj] ⇓ =⇒ ∃tj ∈ Tj : R[tj] ⇓
remains valid for sj , too. Thus the proposition is shown by the in-
duction hypothesis, since the length of the normal order reduction
sequence to a weak head normal form has been decreased.

• The remaining possibility is that some hole ·i of C[·1, . . . , ·k] is found
in a reduction context. From the definition of a reduction context it
is easy to show that this case is independent of the terms filled in the
holes. Now let C ′ ≡ C[[]1, . . . , []i−1, si, []i+1, . . . , []k] then the terms

56 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

C ′[s1, . . . , si−1, si+1, . . . , sk] and C[s1, . . . , sk] have the same normal order
reduction because C ′[s1, . . . , si−1, si+1, . . . , sk] ≡ C[s1, . . . , sk]. Since C ′

is smaller than C, i.e. has k − 1 holes, the induction hypothesis applies,
so there are (t1, . . . , ti−1, ti+1, . . . , tk) ∈ T1 × · · · × Ti−1 × Ti+1 × · · · × Tk

such that C ′[t1, . . . , ti−1, ti+1, . . . , tk] may converge, too. From the above,
we have that R ≡ C[t1, . . . , ti−1, [], ti+1, . . . , tk] is also a reduction context
and therefore R[si] =⇒ ∃ti ∈ Ti : R[ti] ⇓ by the precondition. Thus
by construction of R there exist (t1, . . . , tk) ∈ T1 × · · · × Tk such that
C[t1, . . . , tk] converges.

The lemma is especially useful in the case T = {t}, i.e. where T is a singleton,
from which the following corollary arises.

Corollary 3.1.17. Let s, t ∈ ΛND be terms such that R[s] ⇓ implies R[t] ⇓ for
every reduction context R ∈ R. Then s .c t is true.

For proving contextual equivalence, a case analysis may now be limited to re-
duction contexts instead of arbitrary ones, although their number is still infinite.
Hence there is good reason for a more stepwise method in proving equations.

So the ambition is to define similarity in such a manner that it implies
contextual preorder. However, the following example makes clear that in the
calculus λND it is impossible to apply the usual approach “reduce to weak head
normal form and apply to fresh arguments” like e.g. in [Abr90].

Example 3.1.18. The so-called “shifting let over λ” transformation, is in
general not correct w.r.t. contextual equivalence. Therefore consider the closed
terms s ≡ let v = pick K K2 in λw.v and t ≡ λw.let v = pick K K2 in v
which are not contextually equivalent. Rather, they are distinguished by the
context C ≡ let f = [] in ((f K) (f K)ΩΩK) in the following way. Con-

cerning t we may construct a normal-order reduction sequence C[t]
n
−→

∗
L∗

R[K]
whereas there is no converging normal-order reduction sequence for C[s] since
v is shared.

Obviously, the terms s and t are weak head normal forms and if applied to
an arbitrary (dummy) argument both may either yield K or K2. Hence s and t
could not be distinguished by application to an argument.

The example suggests that, because of the let-environments, weak head
normal forms do not carry enough information in order to be distinguished
solely by application to arguments. Therefore the calculus λ≈ of the subsequent
section eliminates environments from the weak head normal forms.

3.2. THE APPROXIMATION CALCULUS λ≈ 57

This has the additional benefit that proving the precongruence candidate
stable under the rule (llet) becomes obsolete, a task which seemed to be infea-
sible. The next example illustrates that in the λND-calculus the rule (llet) is
generally necessary to find a WHNF.

Example 3.1.19. Consider the term s ≡ let x = (let y = ty in λz.t) in x
which obviously has a WHNF by the following normal-order reduction:

let x = (let y = ty in λz.t) in x

n, llet
−−−−→ let y = ty in (let x = λz.t in x)

n, cp
−−−→ let y = ty in (let x = λz.t in λz.t)

Apparently, the effect of (llet) cannot be accomplished without it. E.g., making
a copy of the whole environment let y = ty in λz.t is obviously not an option.

3.2 The Approximation Calculus λ≈

This section introduces the λ≈-calculus. It will enable us to define a sensible
notion of simulation for the calculus λND from the preceding section. Exam-
ple 3.1.18 shows that a direct definition in the calculus λND is not easily possible.
As we have already argued there, the difficulty results from the environments
in a weak head normal form.

Therefore, the reduction in the λ≈-calculus has the ability to eliminate these
environments from weak head normal forms. This sometimes requires to cut off
evaluations which otherwise could continue arbitrarily deep. Hence we speak
of the “approximation calculus”, since this process permits to come as close as
desired to the original terms.

Section 3.4.2 explains how this relates, to some extent, to call-by-value eval-
uation. However, we will not pursue such an approach because calculi which
represent let implicitly by applications of the form (λx.s) t, are not capable of
a recursive letrec, a potential subject of further research.

So weak head normal forms of the calculus λ≈ are simply abstractions.
This facilitates the definition of a simulation and makes its precongruence proof
accessible for Howe’s method from [How89, How96].

First, in the λND-calculus, a distinction between the notion canonical and
non-canonical was not possible for the let-operator, since a let-term could be
either a WHNF or a redex. Secondly, the reduction rule (llet) becomes obsolete
in the λ≈-calculus. Proving the precongruence candidate stable under reduction
w.r.t. this rule seemed intractable in the λND-calculus.

58 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

3.2.1 Language

As figure 3.3 shows, a special constant } (pronounced “stop”) is added to the
language which is now designated by Λ≈. The reduction rules of the λ≈-calculus

E ::= V | } | (λx.E) | (E E) | (let x = E in E) | (pick E E)

Figure 3.3: Syntax for expressions in the language Λ≈

in figure 3.4 evolve from the ones in λND as follows. First, by the rule (stop)

(let x = tx in s) t
lapp
−−−→λ≈

let x = tx in (s t) (lapp)

(λx.s) t
lbeta
−−−→λ≈

let x = t in s (lbeta)

(let x = r in s) seq t
lseq
−−→λ≈

let x = r in (s seq t) (lseq)

(λx.s) seq t
eseq
−−→λ≈

t (eseq)

pick s t
nd, left
−−−−→λ≈

s (nd, left)

pick s t
nd, right
−−−−−→λ≈

t (nd, right)

let x = s in t
cpa
−−→λ≈

t[s/x] (cpa)

where s ≡ λz.q or s ≡ }

s
stop
−−→λ≈

} if s 6≡ } (stop)

Figure 3.4: The reduction rules of the λ≈-calculus

which may reduce every non-} term to }, a further level of non-determinism is
introduced. As there is no rule for }, this delimits the reduction, i.e. evaluation
is pruned underneath. Along with the existing non-determinism of the calculus,
we will utilise rule (stop) in order to represent every term by, so to speak, a set
of terms which have been evaluated to varying depth.

3.2. THE APPROXIMATION CALCULUS λ≈ 59

Since it is our goal to eliminate top-level environments, it is natural to com-
pletely substitute terms that could not be reduced further, namely } and ab-
stractions, and remove their bindings with the rule (cpa) in parallel. If (cp) was
extended such that also } can be copied, the rule (cpa) could also be regarded
as a combination of certain, mostly internal reductions of type (cp), followed by
a garbage collection, i.e., a removal of unnecessary let-bindings. So the only
reduction rule actually new is (stop), and it is no surprise, that in section 3.3
we can show the original (cp)-rule to become obsolete.

All these reductions will be permitted inside arbitrary surface contexts,
which are denoted by the symbol S and defined as follows.

Definition 3.2.1 (Surface Contexts). The class S of surface contexts is
given by the following rules for the symbol S where e means any expression:

S ::= [] | S e | e S |

let x = e in S | let x = S in e |

pick S e | pick e S |

S seq e | e seq S

It is easy to see that surface contexts are closed under composition, thus
the results of lemma 2.3.14 and corollary 2.3.16 apply. Moreover, they obey
the significant property that a hole does not occur under an abstraction. This
closely relates to the idea that only abstractions may be copied.

Definition 3.2.2 (Approximation Reduction). The reduction rules of the
calculus λ≈ in figure 3.4 define an approximation reduction as follows. For

terms s, t ∈ Λ≈ we write s
S, a
−−−→λ≈

t if there exists a surface context S ∈ S and

terms s′, t′ ∈ Λ≈ such that s ≡ S[s′] ∧ t ≡ S[t′] and s′
a
−→λ≈

t′ hold. If not
explicitely specified, (a) may be any of the declared rules.

The notions of redex, reduct and contractum are used accordingly. Fur-

thermore, we write s
S, a
−−−→λ≈

t if s
S, a
−−−→λ≈

t for some S ∈ S is true. If it is
clear from context, the subscript λ≈ might be omitted, in particular when one
of the rules (cpa) or (stop) is used.

It is remarkable that, beyond the reductions (nd) and (stop), in the λ≈-
calculus an additional degree of non-determinism arises from the choice between
several possible surface contexts where reduction could be performed.

Again, for a reduction relation, the symbols −→+ and −→∗ denote the transi-
tive and reflexive-transitive closure respectively. Also, the arrow may be deco-
rated by one or several rules. As before, the rules (nd, left) and (nd, right) are

60 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

combined into the following union.

nd
−→λ≈

def
=

nd, left
−−−−→λ≈

∪
nd, right
−−−−−→λ≈

(nd)

While [How96] aims mainly at big-step evaluation rules, the notion of operator
extensionality from [How89, sec. 3.1] is well-suited for a small-step reduction
semantics as in our λ≈-calculus. Therefore, we will need a set of evaluation
relations ⇓k which fulfils the conditions that

• a ⇓0 b if and only if a ≡ b is an abstraction.

• If a ⇓k b for some k > 0 then a is not an abstraction but b is.

and write a ⇓ b if there is some k ≥ 0 such that a ⇓k b holds.

Definition 3.2.3 (Evaluation). For k ≥ 0 let the relation ⇓λ≈,k defined by

s ⇓λ≈,k t
def
⇐⇒ ∃λx.t′ : s

S
−→

k

λ≈
t ∧ t ≡ λx.t′ (3.2.1)

We say that s evaluates or converges to t in k steps. If ⇓λ≈,k is valid for some
k, the symbol ⇓λ≈

will be used. Moreover, we simply write s ⇓λ≈
if there exists

a term t ∈ Λ≈ satisfying s ⇓λ≈
t, and s 6⇓λ≈

if no such terms exists.

Again, the criteria of definition 2.3.1 are obviously fulfilled, i.e. λ≈ together
with ⇓λ≈

is a lazy computation system. Like with reduction we will omit the
subscript λ≈ throughout this section, if it is clear from context. Note that the
term } is a constant, i.e., there is no reduction rule for it, since } is explicitely
excluded from the (stop)-rule. Thus } 6⇓ is clear.

Note that in contrast to the convergence in λND, we demand an approxima-
tion reduction that ends in an abstraction. On the other hand, all these reduc-
tions are permitted within arbitrary surface contexts, which seems to provide
considerably more freedom than normal-order reductions. However, section 3.3
will show that convergence in λND and λ≈ indeed coincides.

Regarding the previous comment on emulating the rule (cpa) with internal
(cp)-reductions followed by a garbage collection, it can now be seen that the rule
(stop) is essential: Just like in example 3.1.19, finding a weak head normal form
is impossible without the rule (llet), all converging approximation reductions of
the term let x = (let y = Ω in λz.t) in x require the (stop)-rule.

3.2. THE APPROXIMATION CALCULUS λ≈ 61

Example 3.2.4. The term let x = (let y = Ω in λz.t) in x has the following,
converging approximation reduction

let x = (let y = Ω in λz.t) in x

let x=(let y=[] in λz.q) in x, stop
−−−−−−−−−−−−−−−−−−−−−−−−→ let x = (let y = } in λz.t) in x

let x=[] in x, cpa
−−−−−−−−−−−−−→ let x = λz.t[}/y] in x

[], cpa
−−−−−→ λz.t[}/y]

Thus let x = (let y = Ω in λz.t) in x ⇓λ≈
λz.t[}/y] holds. Another possible

approximation reduction, which does not lead to an abstraction, is

let x = (let y = Ω in λz.t) in x

let x=[] in x, stop
−−−−−−−−−−−−−→ let x = } in x

[], cpa
−−−−−→ }

Since the evaluation relation is highly non-deterministic, it is convenient to
gather all possible abstraction a term converges to.

Definition 3.2.5. We define the answer set ans(s) ⊆ Λ≈ of a term s as follows.

ans(s)
def
= {t | s ⇓ t}

and augment ans(·) to sets of terms by ans(S)
def
= {t | s ∈ S ∧ t ∈ ans(s)}.

Closed terms possess only closed answers, since reduction does not introduce
free variables, which is the statement of the following corollary.

Corollary 3.2.6. Let s ∈ Λ0
≈ be a closed term. Then ans(s) ⊆ Λ0

≈.

It is interesting to note that only some of the above rules may yield an
abstraction directly in one step.

Remark 3.2.7. If s
[]
−→λ≈

λx.t for two terms s, λx.t ∈ Λ≈, then s must be of
one of the following forms where the respective reduction rule is used:

• s ≡ (λz.q) seq (λx.t)
[], eseq
−−−−−→ λx.t

• s ≡ pick r (λx.t)
[], nd, right
−−−−−−−−→ λx.t

62 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

• s ≡ pick (λx.t) r
[], nd, left
−−−−−−−→ λx.t

• s ≡ let y = λx.t in y
[], cpa
−−−−−→ λx.t as a special case of

• s ≡ let y = q in r
[], cpa
−−−−−→ r[q/y] ≡ λx.t

Section 3.3 will establish the approximation of λND-terms in the λ≈-calculus.
Therefore we need some elementary properties about reductions in λ≈ which
are the topic of the following subsections.

3.2.2 The (cpa)-reduction

Reduction by the rule (cpa) is the key to eliminate environments. Often we will
use the fact that it does not change convergent behaviour. In order to prove

this, we need to establish a complete set of forking diagrams for
cpa
−−→ w.r.t. all

the remaining
S
−→λ≈

-reductions. In the following we will only consider the cases
according to corollary 2.3.16, where a surrounding surface context already is
abandoned, since surface contexts are closed under composition. Now we inspect
all possible (cpa)-redexes.

If (cpa) is applied in the empty context, the whole expression must be of
the form let x = s in t with s ≡ } or s ≡ λz.q. Hence a (lapp)-reduction is
possible in the surface context let x = e in S only, which results in the first
diagram. If (lapp) is top-level on the other hand, a reduction by (cpa) may take
place in every non-empty surface context, which could be commuted easily in
the following three diagrams. The last represents the case where (cpa) makes
the top-level (lapp)-reduction superfluous.

let x=e in S, lapp
←−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, lapp
←−−−−

[], lapp
←−−−−− ·

(let x=tx in s) S, cpa
−−−−−−−−−−−−−−→

let x=tx in (s S), cpa
−−−−−−−−−−−−−−→ ·

[], lapp
←−−−−−

[], lapp
←−−−−− ·

(let x=S in s) t, cpa
−−−−−−−−−−−−−−→

let x=S in (s t), cpa
−−−−−−−−−−−−−−→ ·

[], lapp
←−−−−−

[], lapp
←−−−−− ·

(let x=tx in S) t, cpa
−−−−−−−−−−−−−−→

let x=tx in (S t), cpa
−−−−−−−−−−−−−−→ ·

[], lapp
←−−−−−

[], lapp
←−−−−− ·

[] t, cpa
−−−−−→

[], cpa
−−−−→

3.2. THE APPROXIMATION CALCULUS λ≈ 63

For the rule (lseq) we have exactly the same cases as before.

let x=e in S, lseq
←−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, lseq
←−−−−

[], lseq
←−−−−− ·

(let x=tx in s) seq S, cpa
−−−−−−−−−−−−−−−−−→

let x=tx in (s seq S), cpa
−−−−−−−−−−−−−−−−−→ ·

[], lseq
←−−−−−

[], lseq
←−−−−− ·

(let x=S in s) seq t, cpa
−−−−−−−−−−−−−−−−−→

let x=S in (s seq t), cpa
−−−−−−−−−−−−−−−−−→ ·

[], lseq
←−−−−−

[], lseq
←−−−−− ·

(let x=tx in S) seq t, cpa
−−−−−−−−−−−−−−−−−→

let x=tx in (S seq t), cpa
−−−−−−−−−−−−−−−−−→ ·

[], lseq
←−−−−−

[], lseq
←−−−−− ·

[] seq t, cpa
−−−−−−−−→

[], cpa
−−−−→

Again, the first case for (lbeta) is the same as for (lapp) and (lseq), whereas for
a top-level application of (lbeta), the situation is slightly different since (cpa) is
possible only in surface contexts of the form (λx.e) S now.

let x=e in S, lbeta
←−−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, lbeta
←−−−−−

[], lbeta
←−−−−− ·

(λx.e) S, cpa
−−−−−−−−→

let x=S in e, cpa
−−−−−−−−−−−−→ ·

[], lbeta
←−−−−−

For (eseq) the situation is similar:

let x=e in S, eseq
←−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, eseq
←−−−−

[], eseq
←−−−−− ·

(λx.e) seq S, cpa
−−−−−−−−−−−→

S, cpa
−−−−→ ·

[], eseq
←−−−−−

The rules (nd, left) and (nd, right) do not cause any problem even if the target of
the copy operation lies inside the pick in question. Consequently, the following
two diagrams ensue.

let x=e in S, nd, left
←−−−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, nd, left
←−−−−−−

let x=e in S, nd, right
←−−−−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, nd, right
←−−−−−−−

In the converse case, i.e. if (cpa) is applied inside the pick, it may be eliminated.

[], nd, left
←−−−−−−− ·

pick S e, cpa
−−−−−−−−−→

S, cpa
−−−−→ ·

[], nd, left
←−−−−−−−

[], nd, right
←−−−−−−−− ·

pick S e, cpa
−−−−−−−−−→

[], nd, right
←−−−−−−−−

[], nd, right
←−−−−−−−− ·

pick e S, cpa
−−−−−−−−→

S, cpa
−−−−→ ·

[], nd, right
←−−−−−−−−

[], nd, left
←−−−−−−− ·

pick e S, cpa
−−−−−−−−→

[], nd, left
←−−−−−−−

64 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

The cases for the rule (cpa) overlapping itself conceal that a “top-down” strategy
seems capable to minimise the number of target locations for (cpa)-reductions.

let x=e in S, cpa
←−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, cpa
←−−−−

[], cpa
←−−−− ·

let x=e in S, cpa
−−−−−−−−−−−−→

S, cpa
−−−−→ ·

[], cpa
←−−−−

If rule (stop) is applied to the term e to be copied by (cpa), then it has to be
compensated by #x(e) subsequent (stop)-reductions, where #x(e) is the number
of occurrences of the variable x in the term e. Note that these (stop)-reductions
have to be admitted within arbitrary contexts. Another possibility is that (stop)
may be applied to a target of (cpa) or a superterm of this target, or does not
interfere with the copy procedure. Hence the second diagram arises. The last
diagram covers the case where (stop) is applied in the empty context, while
substituting the whole term with } and thus deleting every surface (cpa)-redex.

let x=[] in e, stop
←−−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

C, stop
←−−−−

#x(e)

let x=e in S, stop
←−−−−−−−−−−−− ·

[], cpa
−−−−→

[], cpa
−−−−→ ·

S, stop
←−−−−

[], stop
←−−−−− ·

S, cpa
−−−−→

[], stop
←−−−−−

The observations above end up in the following lemma.

Lemma 3.2.8. A complete set of forking diagrams for
S, cpa
−−−−→ w.r.t. the two

sets
S
−→λ≈

and
C, stop
−−−−→ of reductions is:

S, a
←−−− ·

S, cpa
−−−−→

S, cpa
−−−−→ ·

S, a
←−−− (3.2.2)

[], { lapp, lseq}
←−−−−−−−−−− ·

[] t, cpa
−−−−−→

[], cpa
−−−−−→ (3.2.3)

S, nd
←−−−− ·

S, cpa
−−−−→

S, nd
←−−−− (3.2.4)

S, stop
←−−−−− ·

[], cpa
−−−−−→

[], cpa
−−−−−→ ·

C, stop
←−−−−

∗

(3.2.5)

[], stop
←−−−−− ·

S, cpa
−−−−→

[], stop
←−−−−− (3.2.6)

Proof. By corollary 2.3.16, the cases discussed above are exhausting.

An analysis of the reduction rules shows, that the diagrams for an overlap of
(cpa) with (lapp) and (lbeta) are very similar to the ones with (lseq) and (eseq)

3.2. THE APPROXIMATION CALCULUS λ≈ 65

respectively. For a better understanding, assume that the operator τ stands
for @, i.e., application, or seq. Then the respective left hand side of the rules
(lapp), (lseq) and (lbeta), (eseq) obey the format τ(let x = sx in s, t) and
τ(λx.s, t) respectively. Hence in the following we will not treat these analogue
cases in detail again.

From this complete set of forking diagrams we wish to conclude that the
convergent behaviour is preserved after an application of the (cpa)-rule. There-

fore, we first have to examine the
C, stop
−−−−→-reductions which are introduced in

the diagram (3.2.5).

3.2.3 Internal (stop)-reductions

Since in the diagrams for the reduction rule (cpa) there occur (stop)-reductions
which are to be carried out in arbitrary rather than surface contexts, we have
to show that they are safe for an approximation reduction to reach an abstrac-
tion. More precisely, complete sets of commuting diagrams for such internal
reductions will be established in this section.

Definition 3.2.9. A
C, stop
−−−−−→-reduction is called internal, depicted by

i, C, stop
−−−−−−→,

if C ∈ C is a context which is not a surface context, i.e. C /∈ S.

Lemma 3.2.10. Below is a complete set of commuting diagrams for
i, C, stop
−−−−−−→

w.r.t. approximation reductions:

i, C, stop
−−−−−−→ ·

S, a
−−−→

S, a
−−−→ ·

i, C, stop
−−−−−−→

i, C, stop
−−−−−−→ ·

S, a
−−−→

S, a
−−−→

i, let x=λy.C in t, stop
−−−−−−−−−−−−−−−−→ ·

[], cpa
−−−−−→

[], cpa
−−−−−→ ·

i, C, stop
−−−−−−→

#x(t)

i, S1[(λx.S2) t], stop
−−−−−−−−−−−−−→ ·

S1, lbeta
−−−−−→

S1, lbeta
−−−−−→ ·

S1[let x=t in S2], stop
−−−−−−−−−−−−−−−→

Proof. Note that — apart from the empty one — the contexts in which approx-
imation and internal (stop)-reductions respectively take place, are by definition
disjoint. Hence the first diagram is an easy application of lemma 2.3.14. Apart
from the (cpa)-rule, it also covers approximation reductions that are performed
inside the empty context.

An internal (stop)-reduction within a subexpression of a seq or pick may
be eliminated as the second diagram shows. This happens when the mentioned
subexpression is dropped by rule (eseq), (nd, left) or (nd, right).

66 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

The third diagram just treats the case, where the internal (stop)-reduction
takes place inside the term to be copied by (cpa), which therefore has to be
made up by as many internal (stop)-reductions as the variable x occurs in the
target t of the copy operation. As the last diagram shows, the internal (stop)-
reduction may also be turned into an ordinary one, since a (lbeta)-reduction
can bring the corresponding context to the surface.

It is easily seen that the application of the above commuting diagrams for
internal (stop)-reductions terminates. Consider the weight of a reduction se-
quence given by the multi-set containing the number of non-(stop) approxima-
tion reductions which follow each internal (stop)-reduction. Applying one of
the commuting diagrams for internal (stop)-reductions strictly decreases this
weight w.r.t. the usual multi-set ordering. Hence by induction on this measure
of such a sequence, we may draw the conclusion that for every reduction se-

quence consisting of
S
−→λ≈

- and
i, stop
−−−−→-reductions leading to an abstraction,

there is also an approximation reduction sequence to an abstraction that only
differs by internal (stop)-reductions.

Lemma 3.2.11. Let s, λx.t ∈ Λ≈ be terms with s (
S
−→λ≈

∪
i, stop
−−−−→)∗ λx.t.

Then there is also a reduction s
S
−→

∗

λ≈
λx.t′ such that λx.t′

i, stop
−−−−→

∗

λx.t holds.

Such mixed (
S
−→λ≈

∪
i, stop
−−−−→)-reductions may evolve from the application of

forking diagrams for (cpa) within some
S
−→λ≈

-reduction sequence. Therefore,
the previous lemma is necessary to show that a (cpa)-reduction preserves the
convergent behaviour of terms up to internal (stop)-reductions.

Lemma 3.2.12. Let s, t be terms such that s
S, cpa
−−−−→ t. Then whenever s has an

approximation reduction to an abstraction λx.s′, there is also an approximation
reduction starting from t leading to an abstraction λx.t′ such that λx.s′ differs

from λx.t′ only by internal (stop)-reductions, i.e. λx.t′
i, stop
−−−−→

∗

λx.s′ holds.

Proof. Assuming s
S
−→

k

λ≈
λx.s′ we show

∃λx.t′ : t
S
−→

∗

λ≈
λx.t′ ∧ λx.t′

i, stop
−−−−→

∗

λx.s′

by an induction on the length k of the reduction sequence.

• If k = 1 then according to remark 3.2.7, only (eseq), (nd) or (cpa) are
possible within the empty context. In these cases we obviously have

3.2. THE APPROXIMATION CALCULUS λ≈ 67

t
S
−→

0∨1

λ≈
λx.s′ by the two diagrams (3.2.2) and (3.2.4) of lemma 3.2.8

that come into question.

• For the induction step assume the claim to be valid for sequences of length

smaller than k. Then the sequence s
S
−→

k

λ≈
λx.s′ may be divided as follows:

s
S , a
−−−→λ≈

s1
S
−→

k−1

λ≈
λx.s′

Therefore, s1 λ≈

S , a
←−−− s

S, cpa
−−−−→ t represents a peak. Since s1 has a con-

verging approximation reduction, at least one forking diagram from the
complete set of lemma 3.2.8 must be applicable.

From (3.2.2) a term t1 satisfying s1
S, cpa
−−−−→ t1 λ≈

S , a
←−−− t is obtained. By

the induction hypothesis, there is a converging approximation reduction

sequence t1
S
−→

∗

λ≈
λx.t′ for which λx.t′

i, stop
−−−−→

∗

λx.s′ is valid. Therefore

with t
S , a
−−−→λ≈

t1 the proposition is shown.

For the diagram in (3.2.3) the situation is s1
S, cpa
−−−−→ t and thus slightly

simpler. Here, the induction hypothesis provides an approximation reduc-

tion sequence t
S
−→

∗

λ≈
λx.t′ such that λx.t′

i, stop
−−−−→

∗

λx.s′ holds.

In the case of diagram (3.2.4) it is not necessary to use the induction

hypothesis, since t
S, nd
−−−→ t1 ≡ s1

S
−→

k−1

λ≈
λx.s′ directly.

An application of the diagram (3.2.5) may cause internal (stop)-reductions,

i.e. s1
S, cpa
−−−−→ t1

C, stop
←−−−−

∗

t ensues. Again, from s1
S, cpa
−−−−→ t1 we have,

by the induction hypothesis, an approximation reduction t1
S
−→

∗

λ≈
λx.t′

that meets the condition λx.t′
i, stop
−−−−→

∗

λx.s′. Now, the whole reduc-

tion sequence is of the form t
C, stop
−−−−→

∗

t1
S
−→

∗

λ≈
λx.t′

i, stop
−−−−→

∗

λx.s′ and
lemma 3.2.11 proves the claim.

The last diagram (3.2.6) is not applicable here, because otherwise s1 would
reduce to the term } instead of an abstraction.

Note that the induction argument in the above lemma is valid because of
the special structure of the forking diagrams for (cpa), i.e. there is at most one
(cpa)-reduction necessary to clean up the forking situation.

68 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

3.2.4 The (lbeta)-reduction

For reductions by rule (lbeta) we will devise a complete set of forking diagrams

w.r.t.
S
−→λ≈

-reductions in this section.
If (lbeta) is applied in the empty context, the whole expression must be of

the form (λx.t) s. Hence a surface reduction may take place inside s or within
the context [] s only. For the latter possibility solely rule (stop) is applicable:

[] s, stop
←−−−−−− ·

[], lbeta
−−−−−→

[], stop
−−−−−→ ·

[], stop
←−−−−−

In the former case, any approximation reduction may obviously be commuted
with a (lbeta)-reduction; thus the diagram below.

(λx.t) S, a
←−−−−−−− ·

[], lbeta
−−−−−→

[], lbeta
−−−−−→ ·

let x=S in t, a
←−−−−−−−−−−

If rule (lbeta) is applied inside a non-empty surface context S ∈ S and (lapp)
is top-level, the following three diagrams arise. The subsequent diagrams for a
top-level (lseq) are analogous.

[], lapp
←−−−−− ·

(let x=s in t) S, lbeta
−−−−−−−−−−−−−−−→

let x=s in (t S), lbeta
−−−−−−−−−−−−−−−→ ·

[], lapp
←−−−−−

[], lapp
←−−−−− ·

(let x=s in S) t, lbeta
−−−−−−−−−−−−−−−→

let x=s in (S t), lbeta
−−−−−−−−−−−−−−−→ ·

[], lapp
←−−−−−

[], lapp
←−−−−− ·

(let x=S in s) t, lbeta
−−−−−−−−−−−−−−−→

let x=S in (s t), lbeta
−−−−−−−−−−−−−−−→ ·

[], lapp
←−−−−−

[], lseq
←−−−−− ·

(let x=s in t) seq S, lbeta
−−−−−−−−−−−−−−−−−−→

let x=s in (t seq S), lbeta
−−−−−−−−−−−−−−−−−−→ ·

[], lseq
←−−−−−

[], lseq
←−−−−− ·

(let x=s in S) seq t, lbeta
−−−−−−−−−−−−−−−−−−→

let x=s in (S seq t), lbeta
−−−−−−−−−−−−−−−−−−→ ·

[], lseq
←−−−−−

[], lseq
←−−−−− ·

(let x=S in s) seq t, lbeta
−−−−−−−−−−−−−−−−−−→

let x=S in (s seq t), lbeta
−−−−−−−−−−−−−−−−−−→ ·

[], lseq
←−−−−−

The next diagram covers the situation of (stop) being applied in the empty con-
text eliminating the (lbeta)-reduction while the following handles the function
argument of an (lbeta)-redex being canceled by (stop).

[], stop
←−−−−− ·

S, lbeta
−−−−−→

[], stop
←−−−−−

S[[] s], stop
←−−−−−−−− ·

S, lbeta
−−−−−→

S, stop
−−−−→ ·

S, stop
←−−−−

For rule (eseq) we obtain a single diagram

[], eseq
←−−−−− ·

(λx.t) seq S, lbeta
−−−−−−−−−−−−→

S, lbeta
−−−−−→ ·

[], eseq
←−−−−−

3.2. THE APPROXIMATION CALCULUS λ≈ 69

If the non-deterministic rules (nd) are applied at top-level, the (lbeta)-reduction
may be eliminated as the following diagrams illustrate.

[], nd, left
←−−−−−−− ·

pick S e, lbeta
−−−−−−−−−−→

S, lbeta
−−−−−→ ·

[], nd, left
←−−−−−−−

[], nd, right
←−−−−−−−− ·

pick S e, lbeta
−−−−−−−−−−→

[], nd, right
←−−−−−−−−

[], nd, right
←−−−−−−−− ·

pick e S, lbeta
−−−−−−−−−→

S, lbeta
−−−−−→ ·

[], nd, right
←−−−−−−−−

[], nd, left
←−−−−−−− ·

pick e S, lbeta
−−−−−−−−−→

[], nd, left
←−−−−−−−

Overlapping (lbeta) with itself modifies only the surface context where the re-
duction takes place.

(λx.t) S, lbeta
←−−−−−−−−− ·

[], lbeta
−−−−−→

[], lbeta
−−−−−→ ·

let x=S in t, lbeta
←−−−−−−−−−−−−−

[], lbeta
←−−−−− ·

(λx.t) S, lbeta
−−−−−−−−−→

let x=S in t, lbeta
−−−−−−−−−−−−−→ ·

[], lbeta
←−−−−−

So let us consider the remaining case, where rule (cpa) is applied in the empty
context, i.e. the term has to be of the form let x = λz.q in t or let x = } in t
and hence a surface reduction is possible inside t only.

[], cpa
←−−−− ·

let x=λz.q in S, lbeta
−−−−−−−−−−−−−−−→

S, lbeta
−−−−−→ ·

[], cpa
←−−−−

[], cpa
←−−−− ·

let x=} in S, lbeta
−−−−−−−−−−−−−→

S, lbeta
−−−−−→ ·

[], cpa
←−−−−

Referring to corollary 2.3.16 we collect these diagrams in a separate lemma.

Lemma 3.2.13. The following is a complete set of forking diagrams for
S, lbeta
−−−−−→

w.r.t.
S
−→λ≈

-reductions:

S, a
←−−− ·

S, lbeta
−−−−−→

S, lbeta
−−−−−→ ·

S, a
←−−−

S, nd
←−−−− ·

S, lbeta
−−−−−→

S, nd
←−−−−

[], stop
←−−−−− ·

S, lbeta
−−−−−→

[], stop
←−−−−−

S[[] s], stop
←−−−−−−−− ·

S, lbeta
−−−−−→

S, stop
−−−−→ ·

S, stop
←−−−−

Before we can show that also reduction by rule (lbeta) preserves the ap-
proximation reduction to an abstraction, we need the following result about the
correspondence of } and its application within surface contexts.

70 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Lemma 3.2.14. Let t ∈ Λ≈ be a term and S ∈ S a surface context such that

S[} t]
S
−→

∗

λ≈
λz.q. Then also S[}]

S
−→

∗

λ≈
λz.q holds.

Proof. W.l.o.g. we may require S to be non-empty, i.e. S 6≡ [], because } t
obviously has no approximation reduction to an abstraction: The rules (lapp)
and lbeta are the only possibilities to get rid of the top-level @-operator.

Now assume S[} t]
S
−→

k

λ≈
λz.q for an induction on the length k of the reduc-

tion sequence.

• In the case S[} t]
S
−→λ≈

λz.q for k = 1 it is easily checked that only the
rules (cpa) or (nd) could have been used to produce an abstraction. Since
the term } t in question is located in a surface context, i.e. not under an
abstraction, it must be discarded by (nd), whereas (cpa) is not possible.

• For S[} t]
S
−→λ≈

s
S
−→

k

λ≈
λz.q the proposition will obviously be true, if

the application } t is dropped by rule (nd) in the first reduction step.
Otherwise, either s ≡ S ′[} t], s ≡ S[} t′] or s ≡ S[}] holds, for the latter
of which the claim becomes trivial. On the other hand, to both S ′[} t] and
S[} t′] the induction hypothesis is applicable, thus the claim holds.

Now we can use an argument similar to, but in this case simpler than the
one in lemma 3.2.12 to prove the following lemma.

Lemma 3.2.15. Let s, t be terms such that s
S, lbeta
−−−−−→ t. Then whenever s has

an approximation reduction to an abstraction there is also an approximation
reduction sequence starting from t leading to the same abstraction, i.e.

s
S
−→

∗

λ≈
λz.q =⇒ t

S
−→

∗

λ≈
λz.q

Proof. Assume s
S
−→

k

λ≈
λz.q for an induction on the length k of the sequence.

• If k = 1 then, according to remark 3.2.7, only (eseq), (nd) or (cpa) at

top-level are possible. Hence t
S
−→

0∨1

λ≈
λz.q is obvious from the first two

diagrams of lemma 3.2.13.

• For the induction step assume the claim to be valid for sequences of length

smaller than k. Then the sequence s
S
−→

k

λ≈
λz.q may be divided as follows:

s
S
−→λ≈

s1
S
−→

k−1

λ≈
λz.q

3.2. THE APPROXIMATION CALCULUS λ≈ 71

We may apply the induction hypothesis to s1
S
−→

k−1

λ≈
λz.q, i.e. if we have

s1
S, lbeta
−−−−−→ t1 then there is also a reduction t1

S
−→

∗

λ≈
λz.q. This is only

the case for the first forking diagram of lemma 3.2.13, so there is also a

reduction t
S
−→

∗

λ≈
t1, thus t

S
−→

∗

λ≈
λz.q.

In the case of the second and third diagram, using the induction hypothesis

is not necessary, since t
S, nd
−−−→ t1 ≡ s1

S
−→

k−1

λ≈
λz.q directly.

If the last diagram is applicable, the special treatment necessary is done
in lemma 3.2.14, thus the claim holds.

Corollary 3.2.16. Let s, t be terms such that s
S, lbeta
−−−−−→ t. Then for all ab-

stractions λz.q the following holds:

s
S
−→

∗

λ≈
λz.q ⇐⇒ t

S
−→

∗

λ≈
λz.q

Proof. The “only-if”-part is just the statement of the previous lemma where

the “if”-part results from the fact that s
S, lbeta
−−−−−→ t.

In a similar way, complete sets of forking diagrams for the remaining deter-
ministic rules (lapp), (eseq) and (lseq) could be developed.

3.2.5 Rearrangement of Reduction Sequences

The last sections have illustrated that deterministic reductions, rules (cpa) and
(lbeta) in particular, do not do any harm to the converging behaviour of approx-
imation reduction sequences. Therefore, complete sets of forking diagrams have
been used in section 3.2.2 and 3.2.4, while section 3.2.3 introduced complete

sets of commuting diagrams for
i, stop
−−−−→-reductions.

In this section we will now devise various opportunities for altering the order
of reductions in converging sequences. We opt for not speaking of a reduction
strategy, although some kind of guidance is offered which reduction rules may
be applied when. The reason is that in general a reduction strategy should
determine a way to obtain a certain result, e.g., convergence. But none of
the rearrangements of approximation reduction sequences in this section can
provide this, since convergence is required. The difficulty arises mainly from the
uncertainty, when the rule (stop) should be applied. Therefore, in section 4.4
this topic will briefly be discussed again.

72 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

However, the results of this section are of high relevance for the rest of the
work. E.g., if a closed term at a surface position is needed then its reduction
to an abstraction may take place first, by which syntactic continuity for the
contextual preorder is achieved. Furthermore, there is the ability to restrict
approximation reductions to surface contexts, which do not bind free variables.
This is of great help, when showing the precongruence candidate stable under
reduction. Eventually, a normalisation theorem will be established, i.e., converg-
ing approximation reduction sequences are normalised insofar that reductions
within the binding of the outermost let are performed first, without changing
the overall number of approximation reductions. Ubiquitous applications of the
normalisation theorem underpin its significance.

Simple Commuting Cases

We start with some simple cases in which surface reductions may be commuted.

Corollary 3.2.17. Let s, t ∈ Λ≈ be terms and a, b two arbitrary reduction types.
Then for all surface contexts Sa, Sb ∈ S the following diagrams commute.

s t

s Sa, a

��

Sb t, b // s′ t

s′ Sa, a

��
s t′

Sb t′, b // s′ t′

let x = s in t

let x=s in Sa, a

��

let x=Sb in t, b // let x = s′ in t

let x=s′
in Sa, a

��
let x = s in t′

let x=Sb in t′, b // let x = s′ in t′

s seq t

s seq Sa, a

��

Sb seq t, b // s′ seq t

s′
seq Sa, a

��
s seq t′

Sb seq t′, b // s′ seq t′

Proof. By a simple application of lemma 2.3.14.

3.2. THE APPROXIMATION CALCULUS λ≈ 73

Corollary 3.2.18. Let S ∈ S be a surface context and r, s, t ∈ Λ≈ be terms.
Then for all types (a) of reductions the diagrams below commute.

S[(λx.s) t]

S[(λx.s) []], a

��

S, lbeta // S[let x = t in s]

S[let x=[] in s], a

��
S[(λx.s) t′]

S, lbeta // S[let x = t′ in s]

S[(λx.s) seq t]

S[(λx.s) seq []], a

��

S, eseq // S[t]

S, a

��
S[(λx.s) seq t′]

S, eseq // S[t′]

Proof. By lemma 2.3.14, since the respective surface contexts are disjoint.

Corollary 3.2.19. Let (τ, b) ∈ {(@, lapp), (seq, lseq)}, S ∈ S be a surface context
and r, s, t ∈ Λ≈ be terms. Then for all types (a) of reductions the following
diagrams commute.

S[τ((let x = r in s), t)]

S[τ((let x=[] in s),t)], a

��

S, b // S[let x = r in (τ(s, t))]

S[let x=[] in τ(s,t)], a

��
S[τ((let x = r′ in s), t)]

S, b // S[let x = r′ in (τ(s, t))]

S[τ((let x = r in s), t)]

S[τ((let x=r in []),t)], a

��

S, b // S[let x = r in (τ(s, t))]

S[let x=r in τ([],t)], a

��
S[τ((let x = r in s′), t′)]

S, b // S[let x = r in (τ(s′, t′))]

S[τ((let x = r in s), t)]

S[τ((let x=r in s),[])], a

��

S, b // S[let x = r in (τ(s, t))]

S[let x=r in τ(s,[])], a

��
S[τ((let x = r in s), t′)]

S, b // S[let x = r in (τ(s, t′))]

Proof. As every argument of τ is in a surface position, lemma 2.3.14 applies.

74 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Evaluation at Strict Positions

It is now possible to show that every closed subterm may be evaluated in ad-
vance, whenever it is necessary for an approximation reduction of its enclosing
superterm to reach an abstraction. Note that the evaluation at such a strict
position does not alter the overall outcome of the approximation reduction se-
quence, i.e., the abstraction it ends with.

Lemma 3.2.20. Let S ∈ S be a surface context, λz.q ∈ Λ≈ an abstraction and
t ∈ Λ0

≈ a closed term such that S[t] ⇓ λz.q holds. Then either there is a closed
abstraction λx.s ∈ Λ0

≈ with t ⇓ λx.s and S[λx.s] ⇓ λz.q, or S[}] converges.

Proof. Since for S ≡ [] or t ≡ λz.q there is nothing to show, we rule out these
cases. The proof is then by induction on the length k of an approximation

reduction sequence S[t]
S
−→

k

λ≈
λz.q to an abstraction. Since S cannot be the

empty context k = 0 is not possible and k = 1 forms the induction base. So if

S[t]
S
−→λ≈

λz.q then also S[}] ⇓ as t is closed and not an abstraction.
Hence for the induction step we may assume that the claim holds for all

sequences of length k ≥ 1. Then for the first reduction S[t]
S
−→λ≈

r of an

approximation sequence S[t]
S
−→λ≈

r
S
−→

k

λ≈
λz.q there are the following cases:

• For r ≡ S[t′], i.e. the reduction took place within t, the proposition is
shown by the induction hypothesis for the remaining sequence.

• If the reduction is performed on the context S, so that the hole is deleted by

rule (nd) or (stop), then obviously S[}]
S
−→λ≈

r, thus S[}] will converge.

• For any other reduction by rule (lapp), (lbeta), (lseq), (eseq) and (cpa),
or if the hole is not deleted by rule (nd), r ≡ S′[t] results. For (cpa) this
is only valid because of the precondition, i.e., that t is closed.

Therefore, the proposition is shown by one of the commuting diagrams
from corollary 3.2.17, 3.2.18 or 3.2.19 in combination with the induction

hypothesis. E.g., for S[t] ≡ S ′[(λy.p) t]
S′, lbeta
−−−−−→ S′[let y = t in p] the

term t remains in a surface context. Thus, to S ′′[] ≡ S′[let y = [] in p]
the induction hypothesis may be applied. There are following possibilities:

– In the case of S′′[}] ⇓ we obviously have S[}] ⇓ too, because of the

reduction S[}] ≡ S′[(λy.p)}]
S′, lbeta
−−−−−→ S′[let y = } in p] ≡ S ′′[}].

3.2. THE APPROXIMATION CALCULUS λ≈ 75

– If there exists some closed abstraction λx.s such that both t ⇓ λx.s
and S′′[λx.s] ⇓ λz.q are satisfied, the claim will hold by the following
approximation reduction sequence:

S[λx.s] ≡ S′[(λy.p) (λx.s)]
S′, lbeta
−−−−−→

S′[let y = (λx.s) in p] ≡ S ′′[λx.s] ⇓ λz.q

We now define the notion of a strict position for a surface context. Compared
to [SSSS04] this may seem somewhat simplistic, but is sufficient for our purposes.

Definition 3.2.21. Let S ∈ S be a surface context such that S[}] 6⇓ is true.
Then S is called strict and its hole is said to be at a strict position.

Corollary 3.2.22. Let t ∈ Λ0
≈ be a closed term and S ∈ S be a strict surface

context. Then S[t] ⇓ λz.q if and only if there is a closed abstraction λx.s such
that t ⇓ λx.s and S[λx.s] ⇓ λz.q hold.

Proof. Since the reduction t
S
−→

∗

λ≈
λx.s may take place inside S, the “if”-part is

clear. For the “only-if”-part, assume S[t] ⇓ λz.q. Then lemma 3.2.20 becomes
applicable. Since S is strict, S[}] ⇓ is not possible, thus the claim follows.

Non-closing Surface Contexts

Moreover, we can show that for every approximation reduction to an abstrac-
tion there is also an approximation reduction sequence to the same abstraction
performing reductions on closed terms only.

Definition 3.2.23. The class N of non-closing surface contexts is inductively
defined by the following rule for the symbol N :

N ::= [] | let x = N in e |

N e | e N |

N seq e | e seq N |

pick N e | pick e N

This means that non-closing surface contexts are just the subset of surface
contexts whose construction does not involve any LR-context. Thus a surface
context S ∈ S \N is called closing, i.e., if it is not a non-closing surface context.
We now show that reductions inside closing surface contexts can be moved to
the end of an approximation reduction sequence.

76 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Lemma 3.2.24. For
S \N , a
−−−−−→λ≈

- w.r.t.
N , b
−−−→λ≈

-reductions, the following con-
stitutes a complete set of commuting diagrams.

S \N , a
−−−−−→λ≈

·
N , b
−−−→λ≈

N , b
−−−→λ≈

·
S \N , a
−−−−−→λ≈

S \N , a
−−−−−→λ≈

·
N , b
−−−→λ≈

N , b
−−−→λ≈

Proof. First note that any overlapping closing surface context must be of the
form N [LR[S]] for some surface context S and a non-closing N . Since the
property (non-) closing is retained when inserting into a non-closing surface

context, it suffices to examine sequences of the form
LR[S], a
−−−−−→λ≈

·
N, b
−−−→λ≈

and
N [LR[S]], a
−−−−−−−−→λ≈

·
[], b
−−−→λ≈

. For the former we immediately obtain the diagram

LR[S], a
−−−−−→λ≈

·
N, b
−−−→λ≈

N, b
−−−→λ≈

·
LR[S], a
−−−−−→λ≈

since a LR- is disjoint from every N -context. If
N [LR[S]], a
−−−−−−−−→λ≈

·
[], b
−−−→λ≈

then

from b = stop the diagram
N [LR[S]], a
−−−−−−−−→λ≈

·
[], stop
−−−−−→

[], stop
−−−−−→ follows. For the

remaining rules we must distinguish along N .

• For the empty context N ≡ [] we have b = cpa and in contrast to the
forking diagrams in 3.2.2, a (stop)-reduction can only be performed inside
the target of the (cpa)-reduction, because of the LR-context:

LR[S], a
−−−−−→λ≈

·
[], cpa
−−−−→

[], cpa
−−−−→ ·

S, a
−−−→λ≈

• Since the only top-level reduction for a let-term could be by rule (cpa),
the case N ≡ let x = N ′ in e is impossible.

• If N ≡ N ′ e only b = lapp may be a possible top-level reduction, hence

(let x=N ′′[LR[S]] in f) e, a
−−−−−−−−−−−−−−−−−−→λ≈

·
[], lapp
−−−−−→

[], lapp
−−−−−→ ·

let x=N ′′[LR[S]] in (f e), a
−−−−−−−−−−−−−−−−−−→λ≈

3.2. THE APPROXIMATION CALCULUS λ≈ 77

• For N ≡ e N ′ there is an overlap with b ∈ {lapp, lbeta} which results in

(λx.s) (N ′[LR[S]]), a
−−−−−−−−−−−−−→λ≈

·
[], lbeta
−−−−−→

[], lbeta
−−−−−→ ·

let x=(N ′[LR[S]]) in s, a
−−−−−−−−−−−−−−−−−→λ≈

(let x=s in t) (N ′[LR[S]]), a
−−−−−−−−−−−−−−−−−−−→λ≈

·
[], lapp
−−−−−→

[], lapp
−−−−−→ ·

let x=s in (t (N ′[LR[S]])), a
−−−−−−−−−−−−−−−−−−−→λ≈

• If N ≡ N ′ seq e only b = lseq is possible at top-level, therefore

(let x=N ′′[LR[S]] in d) seq e, a
−−−−−−−−−−−−−−−−−−−−−→λ≈

·
[], lseq
−−−−−→

[], lseq
−−−−−→ ·

let x=N ′′[LR[S]] in d seq e, a
−−−−−−−−−−−−−−−−−−−−→λ≈

• For N ≡ e seq N ′ rule (eseq) or (lseq) may be applicable at top-level.

(let x=tx in t) seq N ′[LR[S]]
−−−−−−−−−−−−−−−−−−−→λ≈

·
[], lseq
−−−−−→

[], lseq
−−−−−→ ·

let x=tx in (t seq N ′[LR[S]])
−−−−−−−−−−−−−−−−−−−→λ≈

(λx.t) seq N ′[LR[S]]
−−−−−−−−−−−−−→λ≈

·
[], eseq
−−−−−→

[], lseq
−−−−−→ ·

N ′[LR[S]]
−−−−−−→λ≈

• The cases pick N ′ e, pick e N ′ imply that the top-level (b)-reduction is
(nd), and the (a)-reduction may be dropped:

N [LR[S]]], a
−−−−−−−−→λ≈

·
[], nd
−−−−→

[], nd
−−−−→ ·

N [LR[S]], a
−−−−−−−−→λ≈

N [LR[S]], a
−−−−−−−−→λ≈

·
[], nd
−−−−→

[], nd
−−−−→

The application of the above commuting diagrams obviously terminates,

since the number of
N , b
−−−→λ≈

-reductions following each
S \N , a
−−−−−→λ≈

-reduction is
strictly decreased in every approximation reduction sequence. So the diagrams

enable to successively move every
S \N , a
−−−−−→λ≈

-reduction to the end of a sequence.

78 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Lemma 3.2.25. Let s, λx.t ∈ Λ0
≈ be closed terms such that s ⇓ λx.t holds.

Then there is an approximation reduction sequence of the form s
N
−→

∗

λ≈
λx.t

too, i.e. using only reductions in non-closing surface contexts.

Proof. By induction on the length k of an approximation reduction s
S
−→

k

λ≈
λx.t.

• If k = 1, nothing has to be shown, since by remark 3.2.7 only reductions
within the empty context come into question.

• For the induction step, we split a reduction s
S
−→

k+1

λ≈
λx.t into the sequence

s
S
−→λ≈

s′
S
−→

k

λ≈
λx.t and assume the reduction s

S
−→λ≈

s′ to take place
in a closing surface context, since otherwise the claim immediately follows
from an easy application of the induction hypothesis.

So applying the induction hypothesis to the suffix sequence s′
S
−→

k

λ≈
λx.t

delivers an approximation reduction s′
N
−→

k

λ≈
λx.t. By the diagrams of

lemma 3.2.24, the reduction s
S
−→λ≈

s′ either commutes with this sequence
or is superfluous.

Normalisation

From the above we have the capability to restrict approximation reductions to
closed terms. Thereby, reductions within LL-contexts, i.e. surface contexts of
the form let x = [] in e, occur as a special case. Now, every approximation
reduction leading to an abstraction can be normalised in that reductions within
the outermost LL-context may take place first. I.e., the goal for a term of the
form let x = s in t is to first reduce inside s until } or an abstraction is
reached and then to collapse the let-expression using (cpa) before proceeding
with reductions inside t.

This means, we have to bring all the reductions that take place inside s, i.e.,

reductions of type
let x=S in t, a
−−−−−−−−−−→λ≈

, to the front. The following lemma uses the
previous commutativity results to successively move these reductions forward.

Lemma 3.2.26. For every reduction sequence let x = s in t
S
−→

n

λ≈
λz.q with

n > 0 there is also an approximation reduction sequence

let x = s in t
let x=S in t
−−−−−−−−−→

k

λ≈
let x = s′ in t

[], cpa
−−−−−→ t[s′/x]

S
−→

m

λ≈
λz.q

where s′ represents } or an abstraction and k + 1 + m ≤ n holds.

3.2. THE APPROXIMATION CALCULUS λ≈ 79

Proof. Assume let x = s in t
S
−→

n

λ≈
λz.q. Then the proof is by induction on

the length n of the reduction sequence. According to remark 3.2.7, for a term
of the form let x = s in t the only rule which may produce an abstraction in
a single step is (cpa), hence the induction base is clear.

For the induction step, we may split up the above reduction sequence into

let x = s in t
S
−→λ≈

r
S
−→

n−1

λ≈
λz.q. Now either let x = s in t

S
−→λ≈

r already
is of the desired form, i.e., takes place within s. Thus we apply the induction

hypothesis to r
S
−→

n

λ≈
λz.q which proves the claim.

Or let x = s in t
let x=s in S, a
−−−−−−−−−−→λ≈

let x = s in t′ ≡ r is the first
reduction and we have to apply the induction hypothesis twice. First, from

let x = s in t′
S
−→

n

λ≈
λz.q we yield an approximation reduction sequence

let x = s in t′
let x=S in t′

−−−−−−−−−→
k

λ≈
let x = s′ in t′

[], cpa
−−−−→ t′[s′/x]

S
−→

m

λ≈
λz.q

with k + 1 + m ≤ n for which we distinguish the following alternatives:

• For s′ ≡ s, if k = 0 is the case, s must be } or an abstraction and hence
the rule (cpa) may already be applied to let x = s in t, which simply

commutes with the
let x=s in S, a
−−−−−−−−−−→λ≈

-reduction.

• If let x = s in t′
let x=S in t′

−−−−−−−−−→
k≥1

λ≈
let x = s′ in t′, i.e.

let x = s in t′
let x=S in t′

−−−−−−−−−→λ≈
let x = s′′ in t′

let x=S in t′

−−−−−−−−−→
k−1

λ≈
let x = s′ in t′

then by corollary 3.2.17 we may commute the first of these reductions with

the preceding let x = s in t
let x=s in S, a
−−−−−−−−−−→λ≈

let x = s in t′ hence

let x = s in t
let x=S in t
−−−−−−−−→λ≈

let x = s′′ in t
let x=s′′

in S
−−−−−−−−−→λ≈

let x = s′′ in t′
let x=S in t′

−−−−−−−−−→
k−1

λ≈

let x = s′ in t′
[], cpa
−−−−→ t′[s′/x]

S
−→

m

λ≈
λz.q

Now apply the induction hypothesis to the suffix of the above sequence,
thus the claim holds.

80 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Since there is no need to shift (cpa)-reductions over (stop)-reductions in this
case, the argument is far less complex than in lemma 3.2.12, where (cpa) is
shown to keep an approximation reduction to an abstraction.

Combining the reduction sequence
let x=S in t
−−−−−−−−→

∗

λ≈
·

[], cpa
−−−−→ in one distinct

reduction, the result of the previous lemma is easily generalised to arbitrarily
deep environments.

Definition 3.2.27. Let r stand for } or an abstraction. Then the reduction
rule (olf) is defined by

let x = r in s
olf
−→ t (olf)

if let x = r in s
S
−→

∗

λ≈
let x = r′ in s

[], cpa
−−−−−→ s[r′/x] ≡ t

We then call an approximation reduction sequence of the form L∗
R[t]

olf
−→

∗

t′ for
some environment L∗

R an outer let first sequence.

The following fruitful theorem shows that such an outer let first sequence
exists for every converging reduction.

Theorem 3.2.28 (Normalisation). Let t ∈ Λ≈ be a term. Then for every

approximation reduction t
S
−→

∗

λ≈
λz.q to an abstraction there exists also an outer

let first sequence t
olf
−→

∗

t′
S
−→

∗

λ≈
λz.q such that t′ is not a let-term.

Proof. Assume t ≡ L∗
R[s] and use lemma 3.2.26 for an induction on L∗

R.

Obviously, this process can be continued recursively, i.e., a reduction se-

quence of the form let x = s in t
let x=S in t
−−−−−−−−→

∗

λ≈
let x = s′ in t may again be

normalised within the surface context let x = S in t, if s′ is an abstraction.

Although this might look like some kind of reduction strategy, theorem 3.2.28
does not present a standardisation in the sense that for any converging term
every (olf)-reduction sequence leads to an abstraction. The reason is that it is
unknown in advance when and to which term the rule (stop) should be applied.

3.2.6 The evaluation of seq

This section shows that the second argument of a seq-term determines its pos-
sible outcomes — provided the first has a reduction to an abstraction.

3.2. THE APPROXIMATION CALCULUS λ≈ 81

Lemma 3.2.29. Let s, t ∈ Λ≈ be terms. Then s seq t has an approximation
reduction to some abstraction if and only if there is also a reduction sequence
starting from t leading to the same abstraction and s converges as well, i.e.:

s seq t ⇓ λz.q ⇐⇒ t ⇓ λz.q ∧ s ⇓

Proof. The “if”-part is trivial. For the “only-if”-part, assume s seq t
S
−→

n

λ≈
λz.q

and use induction on the length n of this converging reduction sequence. If the
first reduction of this sequence takes place within s or t, the induction hypothesis
proves the claim. That’s why only the following cases remain:

• If s is an abstraction and rule (eseq) is applied to the term s seq t we

obtain the reduction sequence t
S
−→

n−1

λ≈
λz.q and nothing has to be shown.

• If s is a let-expression, i.e. s ≡ let x = px in r and the rule (lseq) is
applied to the term s seq t we have

(let x = px in r) seq t
lseq
−−→ let x = px in (r seq t)

S
−→

n−1

λ≈
λz.q

By the standardisation of lemma 3.2.26 there is also an approximation
reduction sequence of the form

let x = px in (r seq t)
let x=[] in (r seq t)
−−−−−−−−−−−−−−→

k

λ≈
let x = p′x in (r seq t)

cpa
−−→ r[p′x/x] seq t[p′x/x]

S
−→

m

λ≈
λz.q

satisfying k + 1 + m = n. Hence the induction hypothesis may be applied
to r[p′x/x] seq t[p′x/x], i.e. we have r[p′x/x] ⇓ and t[p′x/x] ⇓ λz.q where
t[p′x/x] ≡ t holds, since x does not occur free in t. So it remains to prove
that s may converge. We therefore perform the reductions on px within
the surface context let x = [] in r yielding

let x = px in r
let x=[] in r
−−−−−−−−−→

k

λ≈
let x = p′x in r

cpa
−−→ r[p′x/x]

Thus, from r[p′x/x] ⇓ the proposition follows.

82 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

3.3 Approximation of λND-terms in λ≈

In the preceding sections, two non-deterministic call-by-need lambda-calculi
have been introduced. The original λND-calculus possesses a normal-order re-
duction based on reduction contexts, whereas the approximation reductions of
the calculus λ≈ are permitted in every surface context.

Since a sensible definition of a simulation is only possible for the λ≈-calculus,
we have an obligation to show that this indeed forms a technique for proving
contextual equivalences in the λND-calculus. Therefore, this section will es-
tablish the correspondence for the respective notions of convergence in both of
these calculi. So the reader mainly interested in similarity and its precongruence
proof may safely skip this section.

First, we define an approximation of λND-terms by sets of λ≈-terms so that
its convergent behaviour shall be retained.

Definition 3.3.1 (Approximation Set). Let s ∈ ΛND be a λND-term. Then
its approximation set oso ⊆ Λ≈ is defined as the following set of λ≈-terms:

oso = {λx.t ∈ Λ≈ | s
S
−→

∗

λ≈
λx.t}

The key is the Approximation Theorem below. Section 3.3.3 will put to-
gether all the parts of its proof.

Theorem 3.3.2 (Approximation Theorem). For all terms s ∈ ΛND the
following holds: s ⇓ND if and only if its approximation set oso is non-empty.

To simplify matters we will consider λ≈-terms throughout the remainder of
this chapter. We therefore understand the notion of normal-order reduction in
ΛND as extended to terms from Λ≈ in the obvious way, i.e. regarding } as a
constant which has no normal-order reduction. So for the above theorem, the
following two implications have to be shown.

1. If there is a normal order reduction for s ending in a WHNF, then there
is also an approximation reduction from s to an abstraction.

2. If there is an approximation sequence starting with s and ending in an
abstraction, there is also a normal order reduction from s to a WHNF.

The latter requires complete sets of commuting diagrams for
S
−→λ≈

-reductions

w.r.t.
n
−→λND

-reductions, while in order to prove the former implication, we will
resort to complete sets of forking diagrams. The figures 3.5 and 3.6 illustrate

3.3. APPROXIMATION OF λND-TERMS IN λ≈ 83

s

n, a1

���
�

�

�

S, b1 // t

n, a′
1

��

S, b2 // . . . S, bk // ·

·

n, a2

��

S, b′
1 //_____ ·

n, a′
2

��

...

n, ai

��

...

n, a′
j

��
· ·

Figure 3.5: Transformation of a
S
−→λ≈

- into a
n
−→λND

-reduction sequence

s

S, b1

��

n, a1 // t

S, b′
1

���
�

�

�

n, a2 //

cpa0∨1
}

}
}

~~}
}

}

. . . n, ai // ·

·

S, b2

��

·

S, b′
2

��

...

S, bi

��

...

S, b′j

��
·

i, stop∗

// ·

Figure 3.6: Transformation of a
n
−→λND

- into a
S
−→λ≈

-reduction sequence

84 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

this fact as follows. First note, that the proof is by induction on the length of
the respective existing reduction sequence. So when a converging approximation
reduction for the term s is provided, the continuous line in figure 3.5, a converg-
ing normal order reduction for t, marked with the +3 -styled arrows, may be
assumed by the induction hypothesis. Thus, for the original term s, a reduction

sequence of the form
S , b1
−−−→λ≈

·
n, a′

1−−−→ ·
n
−→

∗
arises, that ends in a weak head

normal form. Therefore, the leading approximation reduction has to be moved
to the end of the whole sequence. This process can be accomplished inductively

by a complete set of commuting diagrams for
S
−→λ≈

- w.r.t.
n
−→-reductions, as the

dashed lines in figure 3.5 point out.

On the other hand consider the case where a converging normal order reduc-
tion sequence, the continuous line in figure 3.6, is given for a term s. Then the
induction hypothesis yields a converging approximation sequence for t, whose
tail is again marked with the +3 -styled arrows. The only non-trivial cases for
a1 are (llet) and (cp), because every other normal-order reduction also forms
an approximation reduction. Hence, a converging approximation reduction se-
quence for s, the dotted lines in figure 3.6, can be constructed in either of the
following ways. Regarding (llet), proving the existence of a converging approx-
imation reduction for s falls back on the normalisation of section 3.2.5. In the
case of rule (cp), the complete set of forking diagrams for (cpa) from section 3.2.2
will be used to produce the desired approximation sequence. The dashed lines
in figure 3.6 indicate the forking situation from which, by lemma 3.2.12, internal
stop-reductions may emerge.

So why do not utilise the technique of commuting diagrams again, as for
the transformation of converging approximation into normal-order reduction
sequences before? The reason is simply that there is no complete set of com-

muting diagrams for
n
−→λND

- w.r.t.
S
−→λ≈

-reductions. While diagrams may be

constructed for
n, cp
−−−→ ·

S, cpa
−−−−→ they are not possible for

n, llet
−−−−→ ·

S, cpa
−−−−→ as the

following example shows. Therein, let tx stand for } or an abstraction.

let x = (let y = ty in tx) in R[x]
n, llet
−−−−→ let y = ty in (let x = tx in R[x])

let y=ty in [], cpa
−−−−−−−−−−−−−→ let y = ty in

(
R[x]

[
tx/x

])

Obviously, the same effect cannot be achieved from approximation reductions
followed by (llet) or any other normal-order reduction.

3.3. APPROXIMATION OF λND-TERMS IN λ≈ 85

3.3.1 Transforming
S
−→λ≈

- into
n
−→λND

-reduction sequences

In this section we will prove the second implication of the Approximation The-

orem, i.e. the transformation of a
S
−→λ≈

- into a
n
−→-reduction sequence, while

retaining convergence. As noted above, complete sets of commuting diagrams

for
S
−→λ≈

- w.r.t.
n
−→-reductions will therefore be established. We will then show

that for every reduction sequence

s0
S , a
−−−→λ≈

s1
n, b1
−−−→λND

. . .
n, bk−−−→λND

sk+1 (3.3.1)

ending in a weak head normal form sk+1 there is also a reduction sequence

s0
n, b′

0−−−→λND
s′1

n, b′
1−−−→λND

. . .
n, b′m−1

−−−−−→λND
s′m

S , a′

−−−→
0∨1

λ≈
s′m+1 (3.3.2)

where s′m+1 ≡ sk+1 and s′m is already a WHNF. Basically, this has to be done for
every approximation reduction and every normal-order reduction. Fortunately,
several of these cases do not need to be considered, e.g. surface reductions inside
non-reduction contexts are independent from normal-order reductions.

Lemma 3.3.3. Let S be a surface context, which is not a reduction context.

Then for all terms s0, s1, s2 ∈ Λ≈, every surface reduction
S, a
−−−→λ≈

and every

normal order reduction
n, b
−−→λND

the following holds:

s0
S, a
−−−→λ≈

s1
n, b
−−→λND

s2 =⇒ ∃s′2 : s0
n, b
−−→λND

s′2
S, a
−−−→

0∨1

λ≈
s2

Proof. Let R be the reduction context in which
n, b
−−→λND

takes place, i.e. the

normal order reduction is
R, n, b
−−−−−→λND

in fact. Since S is not a reduction context,
either S and R are disjoint or S has to be of the form S ≡ R[S ′] for S′ ∈ S
being some further surface context.

In the former case, lemma 2.3.14 already proves the claim. For S ≡ R[S ′] an
examination of the normal-order reduction reveals that the surface context S ′

will not be modified: Either it will remain intact or disappear completely. I.e.,
the rule (cp) leaves all surfaces position untouched. Moreover, the rules (llet),
(lapp) and (lseq) only shuffle surface positions, whereas (lbeta) even creates a
new one. The term which is dropped by rule (eseq) does not contain any surface
position. So for all of these rules the commutation is possible. Hence the only
rules which can make a subsequent approximation reduction superfluous are
(nd, left) and (nd, right) respectively.

86 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Hence, by this lemma, we only have to show that
R, a
−−−→λ≈

-reductions, i.e.,
reductions which, in the sense of definition 3.1.9, are internal inside a reduction
context, “commute” with normal-order reductions. By lemma 3.1.10 there are
no internal reductions of type (lapp), (lbeta), (lseq), (eseq) or (nd) within a
reduction context. So (llet) and (cp) would be possible only. As both of these
have been removed in the λ≈-calculus, solely diagrams for (cpa) and (stop)
remain to be constructed.

Beforehand, we will analyse the base case of such a diagram, i.e. that when-
ever there is a one-step approximation reduction for a term s to a WHNF, then
s has also a normal-order reduction to a WHNF.

Lemma 3.3.4. Let s, t ∈ Λ≈ be terms such that s
R, a
−−−→λ≈

t and t is a WHNF.

Then either s is a WHNF, or there is a normal-order reduction s
n
−→λND

t′ in

one step to a WHNF t′ such that either t′ ≡ t or t′
S, cpa
−−−−→λ≈

t holds.

Proof. Let s
R, a
−−−→λ≈

t. If this is a
iR, a
−−−→λND

-reduction, i.e. internal within a
reduction context, then, by lemma 3.1.14, s is already a WHNF. Therefore we

assume that t is a WHNF but s is not. If the reduction s
R, a
−−−→λ≈

t forms a
normal-order reduction in the λND-calculus, nothing has to be shown. Hence,
only the rules new in λ≈, but not present in λND, have to be regarded.

• The case a = stop is not possible: Assume s ≡ R[s′], then t ≡ R[}] cannot
be a weak head normal form.

• If a = cpa is to produce a weak head normal form in one step, it must be

s ≡ L∗
R[let x = λz.q in L∗

R
′[x]]

R, cpa
−−−−→ L∗

R[(L∗
R
′[x])[λz.q/x]] ≡ t

for which there is also a
n, cp
−−−→λND

-reduction, namely

s ≡ L∗
R[let x = λz.q in L∗

R
′[x]]

n, cp
−−−→ L∗

R[let x = λz.q in L∗
R
′[λz.q]] ≡ t′

Since L∗
R[(L∗

R
′[x])[λz.q/x]] ≡ L∗

R[(L∗
R
′[λz.q])[λz.q/x]] we clearly have

t′ ≡ L∗
R[let x = λz.q in L∗

R
′[λz.q]]

R, cpa
−−−−→ L∗

R[(L∗
R
′[λz.q])[λz.q/x]] ≡ t

Thus the lemma is shown.

3.3. APPROXIMATION OF λND-TERMS IN λ≈ 87

(cpa) commutes with normal-order reductions

For a reduction by rule (cpa) inside a reduction context R ∈ R assume

R[let x = s in t]
R, cpa
−−−−→ R[t[s/x]]

where s is } or an abstraction. On one hand the subsequent normal-order
redex may be completely independent of where the substitution takes place.
On the other hand, (lbeta) or (eseq) may use the abstraction substituted for

x, so a preceding
n, cp
−−−→ is necessary. Note that s cannot be } in this case. If

t ≡ L∗
R[let y = x in t′] and let y = x in t′ becomes the

n, cp
−−−→-redex after

(cpa), then s 6≡ } and two successive
n, cp
−−−→-reductions have to be performed.

R, cpa
−−−−→ ·

n, a
−−−→

n, a
−−−→ ·

R, cpa
−−−−→

R, cpa
−−−−→ ·

n, lbeta
−−−−−→

n, cp
−−−→ ·

n, {lbeta, eseq}
−−−−−−−−−−→ ·

R, cpa
−−−−→

R, cpa
−−−−→ ·

n, cp
−−−→

n, cp
−−−→ ·

n, cp
−−−→ ·

R, cpa
−−−−→

It is worth mentioning that the reduction context for the (cpa)-reduction re-
mains the same. This is also true, if t[s/x] is an abstraction which occurs in
the head position of normal-order (lbeta)-redex. In this case we have to insert
a normal-order (lapp)-reduction in front.

R, cpa
−−−−→ ·

n, lbeta
−−−−−→

n, lapp
−−−−→ ·

n, lbeta
−−−−−→ ·

R, cpa
−−−−→

If the abstraction for the (lbeta)-normal-order reduction is created by the pre-
ceding (cpa), a normal-order (cp) has to follow the (lapp)-reduction:

R, cpa
−−−−→ ·

n, lbeta
−−−−−→

n, lapp
−−−−→ ·

n, cp
−−−→ ·

n, lbeta
−−−−−→ ·

R, cpa
−−−−→

Similar is the situation for (eseq) and its combination with the (lseq)-rule.

R, cpa
−−−−→ ·

n, eseq
−−−−→

n, lseq
−−−−→ ·

n, eseq
−−−−→ ·

R, cpa
−−−−→

R, cpa
−−−−→ ·

n, eseq
−−−−→

n, lseq
−−−−→ ·

n, cp
−−−→ ·

n, eseq
−−−−→ ·

R, cpa
−−−−→

Now consider R ≡ L∗
R[let y = [] in R′[x]] which may only be the case when

let x = s in t lies inside the normal-order redex. Then possibly a (llet)-
reduction has to be placed at the beginning of the reduction sequence, thereby
modifying the reduction context where (cpa) is performed.

L∗
R[let y=[] in R′[x]], cpa
−−−−−−−−−−−−−−−−−→ ·

n, a
−−−→

n, llet
−−−−→ ·

n, a
−−−→ ·

L∗
R, cpa
−−−−−→

88 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Since the effect of the reduction rule (cpa) also consists of a garbage collection,
it cannot be simulated by any normal-order reduction. Hence a (cpa)-reduction
might not disappear.

Lemma 3.3.5. A complete set of commuting diagrams for
R, cpa
−−−−→ w.r.t.

n
−→ is:

R, cpa
−−−−→ ·

n, a
−−−→

n, a
−−−→ ·

R, cpa
−−−−→

R, cpa
−−−−→ ·

n, a
−−−→

n, cp
−−−→ ·

n, a
−−−→ ·

R, cpa
−−−−→ if a ∈ {lbeta, eseq, cp}

R, cpa
−−−−→ ·

n, a
−−−→

n, b
−−→ ·

n, cp
−−−→

0∨1
·

n, a
−−−→ ·

R, cpa
−−−−→

if (a, b) ∈ {(lbeta, lapp), (eseq, lseq)}

R, cpa
−−−−→ ·

n, a
−−−→

n, llet
−−−−→ ·

n, a
−−−→ ·

R, cpa
−−−−→

All these transformation diagrams in the above lemma share one basic pat-
tern, namely that they do not duplicate the (cpa)-reduction. Because of this
property the composition of such diagrams terminates. As a measure for a

reduction sequence consider the weighted sum
∑#(cpa)

i=1 (f − p) i counting for
the ith (cpa)-reduction within in the sequence the number f of normal-order
reductions following this (cpa)-reduction minus the number p of normal-order
reductions preceding it. Then an application of a commuting diagram for (cpa)
from the complete set above strictly decreases this weight.

Now that we have the prerequisites to move a (cpa)-reduction from the
front of a normal-order reduction sequence to its tail, we will proceed with the
remaining (stop)-rule.

(stop) commutes with normal-order reductions

If the reduction rule (stop) is applied within a reduction context, there is no
subsequent normal-order reduction.

Lemma 3.3.6. Let s, t ∈ Λ≈ be terms and R ∈ R a reduction context such that

s
R, stop
−−−−−→ t holds. Then t has no normal-order reduction.

Proof. Assuming a reduction sequence of the form
Ri, stop
−−−−−→ ·

n, Rn, a
−−−−−−→ we have

to distinguish only a few cases. Clearly, (stop) must not take place “above” the
normal-order redex, i.e. Rn 6≡ Ri[C] for any other context C ∈ C. Therefore,
only Ri ≡ Rn[[] e] and Ri ≡ Rn[let x = [] in e] are possible reduction contexts

3.3. APPROXIMATION OF λND-TERMS IN λ≈ 89

for the preceding (stop)-reduction. But Rn[} e] and Rn[let x = } in e] both
have no normal-order reduction either.

Commutation of
S
−→λ≈

-reductions w.r.t.
n
−→λND

-reductions

So far we have seen that only (cpa)- and (stop)-reductions inside reduction
contexts are worth considering. Before we proceed further towards the proof
of the Approximation Theorem, we first put the preceding parts together by

showing that for every reduction sequence s
S
−→λ≈

·
n
−→

+
t such that t is a

WHNF, there is either a pure normal-order reduction sequence s
n
−→

+
t or a

reduction sequence of the form s
n
−→

+
·

S
−→λ≈

·
n
−→

∗
t to the same WHNF. This

is accomplished in detail by the following lemma.

Lemma 3.3.7. Let s0, s1, s2, s3 ∈ Λ≈ be terms with s0
S
−→λ≈

s1
n
−→ s2

n
−→

k
s3

and s3 a weak head normal form. Then there exists a term s′1 ∈ Λ≈ such that

s0
n
−→

≤3
s′1

S
−→

0∨1

λ≈
s2

n
−→

k
s3 holds.

Proof. We assume terms s0, s1, s2, s3 ∈ Λ≈ such that s0
S
−→λ≈

s1
n
−→ s2

n
−→

k
s3

and s3 is a WHNF and analyse the following cases for the
S
−→λ≈

-reduction:

• If s0
S
−→λ≈

s1
n
−→ s2 with a surface context S ∈ S \ R which is not a

reduction context, we have a term s′1 ∈ Λ≈ from lemma 3.3.3 such that

s0
n
−→ s′1

S
−→

0∨1

λ≈
s2 holds. Since we can prolong this into the reduction se-

quence s0
n
−→ s′1

S
−→

0∨1

λ≈
s2

n
−→

k
s3 ending in the WHNF s3, the proposition

holds. Hence for the following cases, we may w.l.o.g. assume the reduction
to take place inside a reduction context.

• The case s0
R, stop
−−−−−→ s1 is impossible since it would contradict lemma 3.3.6.

• If s0
R, cpa
−−−−→ s1

n
−→ s2 then one of the diagrams from the complete set in

lemma 3.3.5 is applicable: Because of s2
n
−→

k
s3 the term s2 reduces to a

WHNF. So we obtain the sequence s0
n
−→

≤3
s′1

R, cpa
−−−−→ s2 which can be

prolonged into s0
n
−→

≤3
s′1

R, cpa
−−−−→ s2

n
−→

k
s3 yielding the WHNF s3.

Now it is an easy induction to show that every
S
−→λ≈

-reduction may be
moved from the front of a normal-order reduction sequence to its tail.

90 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Lemma 3.3.8. Let s0, s1, s2 ∈ Λ≈ be terms with s0
S
−→λ≈

s1
n
−→

∗
s2 and s2 a

WHNF. Then there is also a reduction sequence s0
n
−→

∗
s′2

S
−→

0∨1

λ≈
s2 such that

already s′2 is a WHNF.

Proof. For a proof by induction on the length k of the normal order reduction

sequence assume terms si with 0 ≤ i ≤ k + 1 such that s0
S
−→λ≈

s1, si
n
−→ si+1

for 0 < i ≤ k and sk+1 is a WHNF.

• If k = 0 then the approximation reduction s0
S
−→λ≈

s1 must be take place
within a reduction context, thus lemma 3.3.4 shows the claim.

• For k > 0 assume the statement to be true for normal order reduction
sequences of length at most k − 1 and split up the given sequence as
follows:

s0
S
−→λ≈

s1
n
−→ s2

n
−→

k−1
sk+1

Then by lemma 3.3.7, we either already have s0
n
−→

≤3
s2, for which nothing

has to be shown, or obtain a term s′1 such that

s0
n
−→

≤3
s′1

S
−→λ≈

s2
n
−→

k−1
sk+1

Now the induction hypothesis may be applied to the remaining shorter

sequence s′1
S
−→λ≈

s2
n
−→

k−1
sk+1, thus the claim holds.

Note that the induction argument in the proof is only valid because none of

the commuting diagrams for
S, cpa
−−−−→ multiplies the number of (cpa)-reductions.

So with the ability to transform converging
S
−→λ≈

- into converging
n
−→λND

-
reduction sequences one part of the Approximation Theorem can be established.
For the other part we still need the transformation of converging

n
−→λND

- into

converging
S
−→λ≈

-reduction sequences which is addressed in the next section.
Both parts will eventually add up to the whole proof in section 3.3.3.

3.3.2 Transforming
n
−→λND

- into
S
−→λ≈

-reduction sequences

We will now address the first part of the Approximation Theorem, i.e. that for

every term s ∈ Λ≈ there is a reduction s
S
−→

∗

λ≈
λx.r whenever s has a normal

order reduction s
n
−→

∗

λND
t such that t is a weak head normal form. Therefore

remember, that every normal-order reduction is also an approximation reduction

3.3. APPROXIMATION OF λND-TERMS IN λ≈ 91

except for the ones by rule (llet) and (cp). For the induction step, it is then to
show that for every reduction sequence of the form

s0
n, {llet cp}
−−−−−−−→ s1

S , a1

−−−−→λ≈
. . . sk

S ak−−−→λ≈
sk+1 (3.3.3)

where sk+1 is an abstraction, there is also a pure approximation reduction se-

quence s0
S
−→

∗

λ≈
s′ ending with an abstraction. As explained before, a normal-

order reduction by rule (cp) will be replaced by (cpa) for which the result of
lemma 3.2.12 comes into play.

Lemma 3.3.9. Let s, t ∈ Λ≈ be terms such that s
n, cp
−−−→ t holds. If t has an

approximation reduction to an abstraction λx.t′, there is also an approximation
reduction for s leading to an abstraction λx.s′ such that λx.t′ differs from λx.s′

only by internal (stop)-reductions, i.e. λx.s′
i, stop
−−−−→

∗

λx.t′ is true.

Proof. We may assume w.l.o.g.

s ≡ L∗
R[let z = λy.p in R[z]]

n, cp
−−−→ L∗

R[let z = λy.p in R[λy.p]] ≡ t

Furthermore, suppose t has an approximation reduction to an abstraction, i.e.

t ≡ L∗
R[let z = λy.p in R[λy.p]]

S
−→

∗

λ≈
λx.t′

Then, because of its structure, also (cpa) may be applied to t:

t ≡ L∗
R[let z = λy.p in R[λy.p]]

cpa
−−→ L∗

R[(R[λy.p])[λy.p/z]]

Hence from lemma 3.2.12 we obtain the following approximation reduction:

L∗
R[(R[λy.p])[λy.p/z]]

S
−→

∗

λ≈
λx.t′′

i, stop
−−−−→

∗

λx.t′

Note that we could also reduce the initial term s with (cpa) directly

s ≡ L∗
R[let z = λy.p in R[z]]

cpa
−−→ L∗

R[(R[z])[λy.p/z]]

Clearly, L∗
R[(R[z])[λy.p/z]] and L∗

R[(R[λy.p])[λy.p/z]], which results from t by
the (cpa)-reduction, are syntactically the same terms. Thus the claim holds.

The other major requirement is the elimination of normal-order (llet)-reductions.

92 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

Lemma 3.3.10. Let s, s′ ∈ Λ≈ be terms such that s
n, llet
−−−−→ s′ is a top-level

reduction. Then s′
S
−→

∗

λ≈
λx.r implies s

S
−→

∗

λ≈
λx.r, i.e. s also has a surface

approximation reduction sequence to the same abstraction.

Proof. Assume s, s′ ∈ Λ≈ which match the given preconditions, that is to say

s ≡ let x = (let y = ty in tx) in R[x]
n, llet
−−−−→

let y = ty in (let x = tx in R[x]) ≡ s′
S
−→

∗

λ≈
λx.r

By lemma 3.2.26 we may perform reductions in the outermost let-environment
first, i.e. within surface contexts of the form let y = S in let x = tx in R[x].

Hence from s′
S
−→

∗

λ≈
λx.r we obtain a reduction sequence

let y = ty in (let x = tx in R[x])
let y=S in let x=tx in R[x]
−−−−−−−−−−−−−−−−−−−→

∗

λ≈

let y = t′y in (let x = tx in R[x])
cpa
−−→

(let x = tx in R′[x])[t′y/y]
S
−→

∗

λ≈
λx.r (3.3.4)

with t′y being } or an abstraction now. Note, that for every surface context S
also let x = (let y = S in t′x) in R′[x] is a surface context, so we may transfer

the above reduction sequences to s, thereby eliminating the
n, llet
−−−−→-reduction.

We therefore apply to let x = (let y = ty in tx) in R[x] exactly the same
reductions as in equation (3.3.4), but within surface contexts of the respective
form let x = (let y = S in t′x) in R′[x], resulting in

let x = (let y = ty in tx) in R[x]
let x=(let y=S in tx) in R[x]
−−−−−−−−−−−−−−−−−−−−→

∗

λ≈

let x = (let y = t′y in tx) in R[x]
let x=[] in R[x], cpa
−−−−−−−−−−−−−−→

let x = tx[t′y/y] in R[x]

which is syntactically identical to (let x = tx in R[x])[t′y/y], thus the claim.

3.3.3 Proof of the Approximation Theorem

The previous sections have led to a bunch of results on replacing and commuting
S
−→λ≈

-reductions with
n
−→λND

and vice versa. These results are now put together,
establishing the whole proof of the Approximation Theorem.

3.3. APPROXIMATION OF λND-TERMS IN λ≈ 93

Proof of Theorem 3.3.2. For the “if”-part assume an arbitrary but fixed reduc-

tion sequence s
S
−→

m

λ≈
λx.r of length m. We will show, that there exists also a

normal-order reduction s
n
−→

∗

λND
t to a WHNF t by induction on m:

• If m = 1 then by lemma 3.3.4 the proposition holds.

• For the induction step we assume that the claim is valid for a reduction

sequence of length < m. Now suppose a reduction sequence s
S
−→

n

λ≈
λx.r

of length m, which can be split as follows:

s
S
−→λ≈

s1
S
−→

m−1

λ≈
λx.r

By the induction hypothesis there is a normal order reduction sequence

s1
n
−→

∗
t where t is a WHNF, i.e. we have the following situation

s
S
−→λ≈

s1
n
−→

∗
t

Now by lemma 3.3.8 we have s
n
−→

∗
t′

S
−→λ≈

t with t′ already a WHNF.

For the “only if”-part we will construct a reduction s
S
−→

∗

λ≈
λx.r, so assume

a normal-order reduction sequence s
n
−→

m

λND
t of length m such that t is a WHNF.

• From m = 1 we have s
n
−→ t where t is a WHNF and s is not — otherwise

s would not have a normal-order reduction. The normal-order reduction
cannot be (llet), since then s would already be a WHNF, cf. remark 3.1.8
for the possible cases.

The normal-order reductions by rule (lbeta), (eseq) and (nd) all are valid
approximation reductions, too. So for t ≡ λx.r nothing has to be shown.
Hence assume t ≡ L+

R[λx.r] with L+
R be a non-empty environment. Then

we may apply (stop) to every term bound by L+
R followed by a sequence

of (cpa)-reductions. For instance, if xi denotes the variables bound by L+
R

this yields λx.r[}/xi], i.e. an abstraction.

Therefore, (cp) is the only remaining possibility for a normal-order re-
duction which is not an approximation reduction. However, according to
remark 3.1.8 this may only happen in the specific case

L∗
R[let y = λx.r in L′∗

R [y]]
n, cp
−−−→ L∗

R[let y = λx.r in L′∗
R[λx.r]]

Clearly, this effect can be simulated by an application of the (cpa)-rule. An
abstraction can then be obtained as described above, by applying (stop)
to the left hand sides in L∗

R[L′∗
R] followed by appropriate (cpa)-reductions.

94 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

• Assume the proposition holds for normal-order reduction sequences of

length k < m. Then a sequence s
n
−→

m
t may be split up as follows

s
n
−→ s1

n
−→

m−1
t

with t being a WHNF. By the induction hypothesis, s1
S
−→

∗

λ≈
λx.r, hence

s
n
−→ s1

S
−→

∗

λ≈
λx.r

So we examine the possibilities for s
n
−→ s1:

– If s
n
−→ s1 is also a −→λ≈

-reduction then s
S
−→

∗

λ≈
λx.r.

– For L∗
R[let x = λy.s in R[x]]

n, cp
−−−→ L∗

R[let x = λy.s in R[λy.s]] we
may apply lemma 3.3.9 which proves the proposition.

– In the case of

s ≡ L∗
R[let x = (let y = ty in tx) in R[x]]

n, llet
−−−−→

L∗
R[let y = ty in (let x = tx in R[x])] ≡ s1

we obtain, by theorem 3.2.28, the following reduction sequence for s1

L∗
R[let y = ty in (let x = tx in R[x])]

olf
−→

∗

let y = t′y in (let x = t′x in R′[x])
S
−→

∗

λ≈
λx.r (3.3.5)

Here
olf
−→

∗

proceeds completely inside the L∗
R-surface context. There-

fore, these reductions could be transferred to s, giving

s ≡ L∗
R[let x = (let y = ty in tx) in R[x]]

olf
−→

∗

let x = (let y = t′y in t′x) in R′[x] (3.3.6)

The terms, i.e. let x = (let y = t′y in t′x) in R′[x] of (3.3.5) and
let y = t′y in (let x = t′x in R′[x]) of (3.3.6) respectively, we got
from the (olf)-reductions, are identical up to an (llet)-reduction:

let x = (let y = t′y in t′x) in R′[x]
n, llet
−−−−→

let y = t′y in (let x = t′x in R′[x])

3.4. RELATED WORK 95

Since this is top-level normal-order, lemma 3.3.10 applies, hence

let x = (let y = t′y in t′x) in R′[x]
S
−→

∗

λ≈
λx.r

and thus the claim holds by

s ≡ L∗
R[let x = (let y = ty in tx) in R[x]]

olf
−→

∗

let x = (let y = t′y in t′x) in R′[x]
S
−→

∗

λ≈
λx.r

Thus, the preceding sections have dealt with two non-deterministic call-by-
need lambda calculi, namely the λND- and the λ≈-calculus. The above proof of
the Approximation Theorem finally establishes the equivalence of convergence
in both of these calculi. It will be shown later how this result implies that the
respective contextual equivalences of the calculus λND and λ≈ coincide.

3.4 Related Work

At the end of this chapter, some related work is discussed. Worth mentioning
is that some calculi, as e.g. [MS99, MSC99a], have a restricted syntax regarding
the use of applications: Only variables are permitted in the argument position.
The purpose is to simplify matters w.r.t. sharing. However, although the trans-
formation s t −→ let x = t in s x is legal, cf. [SS03a], this syntax restriction
prohibits rules like (cpa) in a possible approximation calculus. There seems not
to be an easy workaround for this.

In the following, a representation of the constant choice from [Kut99] will
be given for the λND-calculus. Furthermore, the relationship of call-by-need and
call-by-value will be explained in more detail We will see that evaluation in the
calculus λ≈ could be seen, to some extent, as a kind of call-by-value evaluation.
Though originally devised as an optimisation of call-by-name in a deterministic
setting, the presence of non-determinism causes call-by-need to be much closer
to call-by-value than to call-by-name. Kutzner, cf. [Kut99, p. 20ff.], has already
remarked on that.

3.4.1 Non-deterministic choice as a Constant

The non-deterministic constant choice of [Kut99] cannot be encoded as the
term λx.λy.(pick x y) in the λND-calculus. The reason is that choice s has an

96 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

immediate normal-order reduction in the Λlet-calculus of [Kut99] as follows:

choice s
nd, left
−−−−−→ (λx.(λy.x)) s

n, lbeta
−−−−−→ let x = s in (λy.x)

Clearly, the non-deterministic choice has already been carried out. On the other
hand, although (λx.λy.(pick x y)) s has the normal-order (lbeta)-reduction

(λx.λy.(pick x y)) s
n, lbeta
−−−−−→ let x = s in (λy.(pick x y))

the non-deterministic choice might still be made — and copied. The solution
would be to observe the behaviour of the constant choice more carefully.

In fact, as soon as applied to an argument, the choice-reduction chooses
between the functions K and K2 and applies the result to its argument. There-
after, a reduction by rule (lbeta) will always be necessary. This (lbeta)-reduction
can also be performed before. Thus we can reproduce the original behaviour of
choice in the calculus λND by setting

choice
def
= λx.pick (λy.x) (λy.y)

As the example choices demonstrates, this is sensible:

choices ≡ (λx.pick (λy.x) (λy.y)) s
n, lbeta
−−−−−→ let x = s in (pick (λy.x) (λy.y))

nd, left
−−−−→ let x = s in (λy.x)

It is easily seen that λx.(choice s x) can be distinguished from choice s by
contexts. Establishing the contextual equivalence of the terms λx.(choice s x)
and λx.(pick s x) is left to the reader.

3.4.2 Approximation and Call-by-Value Evaluation

An observation of the approximation reduction in the λ≈-calculus reveals that
it corresponds to some kind of resource-bounded, call-by-value evaluation. To
see this, suppose some term (λx.t) s which converges. Such an application may
directly be reduced with the (lbeta)-rule, which does not change its converging
behaviour, cf. corollary 3.2.16.

To the let-term which arises therefrom, the normalisation of lemma 3.2.26
applies. Thus the beginning of the converging approximation reduction sequence

3.4. RELATED WORK 97

for (λx.t) s may be assumed to obey the following form.

(λx.t) s

lbeta
−−−→λ≈

let x = s in t

let x=[] in t
−−−−−−−−−→

∗

λ≈
let x = s′ in t (where s′ ∈ PV)

cpa
−−→λ≈

t[s′/x]

According to corollary 3.2.18, a reduction by rule (lbeta) may be commuted
with a reduction within the second argument of an application. Therefore, also
the approximation reduction sequence below can be obtained.

(λx.t) s

(λx.t) []
−−−−−→

∗

λ≈
(λx.t) s′ (where s′ ∈ PV)

lbeta
−−−→λ≈

let x = s′ in t
cpa
−−→λ≈

t[s′/x]

Looking at the role of (lbeta) and (cpa) in the above sequence, it becomes
apparent that they may be combined into the following two rules.

(λx.s)}
β}

−−→ s[}/x] (β})

(λx.s) (λy.t)
βλ−−→ s[λy.t/x] (βλ)

The second (β)-rule is common for a call-by-value calculus, cf. [Plo75], where
it would be the only one. In this case here, it is complemented by one variant
for the }-term since in the λ≈-calculus also } may be copied. Thus, when
classifying these above copying (β)-rules we might speak of “call-by-pseudo-
value” in contrast to call-by-value where only (βλ) is applicable.

However, this view seems a bit too simplistic. It stems from the fact that
abstractions, as variable-binding operators, may be copied regardless of the
subterms they contain. I.e., the situation is different when, e.g., data types come
into play. Therefore, consider the (λx.(fst x) (fst x)) (pick r s, t), where pairs
are denoted by (a, b) from which fst extracts the first component.

Regarding the pair (pick r s, t) as a value which may be copied has undesired
effects, cf. [SSSS04]. So reduction must be continued within the components of
a pair as will be discussed in section 6.1 for the possible extension of the base
calculus. Furthermore, even if “call-by-pseudo-value” was implemented this way,

98 CHAPTER 3. NON-DETERMINISTIC LAMBDA-CALCULI

this would not make the let-construct obsolete: Otherwise, recursive bindings
via letrec could not be modelled.

Chapter 4

Similarity in λ≈ is a
Precongruence

This chapter now brings in the return of the previous two, i.e., similarity can
be defined and shown to be a precongruence.

The first section of the preceding chapter presented the non-deterministic
call-by-need lambda calculus λND, the subject of this work. From example 3.1.18
it has been learned that the naive definition of similarity would not be correct
w.r.t. contextual preorder. Therefore, in section 3.2 the λ≈-calculus has been
introduced. It keeps up the distinction between canonical and non-canonical
terms insofar that only λ-terms do form answers. This enables us to use the
definition of similarity from chapter 2 and the corresponding technique to prove
it a precongruence. This means, the notion of the precongruence candidate to
be stable under reduction becomes applicable. Proving the extension (·)o

to
open terms admissible represents an essential step for this.

This open extension has to be defined first in section 4.1 right before sim-
ilarity itself. The structure of the remaining chapter is then relatively simple.
Section 4.2 deals with the specific definition of the precongruence candidate for
the calculus λ≈ and actually provides the result that the open extension (·)o

is admissible. Subsequently, in section 4.3 the precongruence candidate will be
shown stable under reduction. This leads to the Precongruence Theorem show-
ing that similarity in the λ≈-calculus, or more precisely, its extension to open
terms, is a precongruence. Finally, section 4.4 discusses possible future work.

99

100 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

4.1 Similarity in the λ≈-Calculus

This section is dealing with similarity for the λ≈-calculus. The definition of
similarity accords to the ideas that were presented in section 2.4 before. Proving
the extension of similarity to open terms a precongruence forms one of the major
themes in this work. This result is stated in the Precongruence Theorem which
will be established by applying the proof method for lazy computations systems
described in sections 2.2 and 2.4.1.

The use of this powerful framework still requires quite some effort. First
note that definition 2.4.1 makes use of the extension (·)o

of a preorder to open
terms. Hence its concrete definition in section 4.1.1 is a prerequisite for sim-
ilarity. Some of the properties necessary for showing the open extension (·)o

admissible will already be established there, too. Recall that admissibility of
the open extension was a precondition for the application of theorem 2.2.13.
That theorem formulated the crucial connection between a precongruence and
its precongruence candidate relation.

The precongruence candidate for similarity in the calculus λ≈ will be de-
fined in section 4.2 where it is necessary to show that the open extension is
admissible. Another requisite to apply theorem 2.2.13 is the stability of the
precongruence candidate under reduction which is the subject of section 4.3.1.
Establishing all those results requires a better understanding and sometimes dif-
ferent representations of similarity which therefore are treated in section 4.1.2.
Moreover, section 4.1.4 demonstrates how similarity can be used to prove the
reduction rules of the λND-calculus correct while section 4.1.3 is devoted to a
deeper analysis of reduction as well as similarity on open terms, called open
similarity.

4.1.1 The Open Extension (·)o in the λ≈-Calculus

Not only in lambda calculi it is common to extend a preorder to open terms by
demanding the relation to hold for all closing substitutions. This principle may
be found, e.g., in [Abr90] and also Howe relies on it in his work.

However, in a call-by-need calculus like λND and λ≈ respectively, such an
approach will break sharing. To see this, consider the following example.

Example 4.1.1. Let s ≡ y y and t ≡ (λx.x x) y be terms. In the λND-calculus,
these are contextually equivalent as both uses of the variable y in s will be shared.

Now regard the substition σ = {y 7→ pick a b} where a and b denote con-
textually different terms. While σ(t) yields let x = pick a b in (x x) after a

4.1. SIMILARITY IN THE λ≈-CALCULUS 101

normal-order (lbeta)-reduction, the term σ(s) ≡ (pick a b) (pick a b) contains
two non-deterministic choices between a and b.

It is noteworthy that the effect only becomes visible because of the non-
determinism, or more precisely, because in the presence of non-determinism
not every term may be copied. The rule (cpa) in the calculus λ≈ suggests that
making copies of } and arbitrary abstractions is correct. This obviously extends
to terms in their respective equivalence classes.

From the complete set of forking diagrams in section 3.2.2 a proof could be
constructed that the rule (cpa) preserves contextual equivalence. However, this
is beyond the scope of this work and thus not carried out here.

Definition 4.1.2. A closed term is said to be a pseudo-value if it is } or an
abstraction. We write PV = { p ∈ Λ0

≈ | p ≡ } ∨ p ≡ λz.q } for the set of all
pseudo-values. Moreover, a substitution σ whose range satisfies rng(σ) ⊆ PV
is called a pseudo-valued substitution, or PV-substitution for short.

The open extension (·)o
is then defined in terms of pseudo-valued substitu-

tions. Later, when similarity will have been defined, we will be able to show that
in the calculus λ≈ pseudo-valued substitutions have the same expressiveness as
arbitrary let-environments. The advantage of (pseudo-valued) substitutions is
that they do not depend on the let-construct.

Definition 4.1.3. Let η ⊆ Λ0
≈ × Λ0

≈ be a preorder on closed terms. Then
its extension ηo ⊆ Λ≈ × Λ≈ to open terms is defined by relating two terms
s, t ∈ Λ≈, written s ηo t, if and only if σ(s) η σ(t) for all pseudo-valued closing
substitutions σ holds.

In other words, open terms are related when the underlying preorder does
so for all kinds of instantiations with } or a closed abstraction. Of course, it is
suitable to consider closing substitutions with a “minimal” domain in the sense,
that for open terms s, t ∈ Λ≈ the domain dom(σ) of the substitution σ is just
the set of free variables, i.e., dom(σ) = FV(s) ∪ FV(t) holds.

Corollary 4.1.4. Let η ⊆ Λ0
≈×Λ0

≈ be a preorder on closed terms and s, t ∈ Λ≈

be two (possibly open) terms. Then s ηo t if and only if σ(s) η σ(t) holds for
all pseudo-valued substitutions σ such that dom(σ) = FV(s) ∪ FV(t) is true.

It is not necessary to substitute the free variables all at once. Instead, this
can be done successively which is used in the proof of the substitution lemmas.

102 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Corollary 4.1.5. Let s, t ∈ Λ≈ be (possibly open) terms and η ⊆ Λ0
≈ × Λ0

≈ be
a preorder on closed terms. Then s ηo t implies ρ(s) ηo ρ(t) for every pseudo-
valued substitution ρ with domain dom(ρ) ⊆ FV(s) ∪ FV(t).

Proof. The composition σ◦ρ of the substitutions ρ, σ is again pseudo-valued.

We proceed with a property which has been fundamental for the precongru-
ence proof in theorem 2.2.13.

Lemma 4.1.6. The open extension (·)o
is preorder-preserving.

Proof. Assume a preorder η ⊆ Λ0
≈ × Λ0

≈ on closed terms. It has to be shown
that also ηo is a preorder. However, reflexivity and transitivity transfer from η
to ηo easily: The former is trivial. So assume terms r, s, t ∈ Λ≈ such that r ηo s
as well as s ηo t holds. Thus σ(r) η σ(s) and σ(s) η σ(t) for every pseudo-valued
substitution. Since η is transitive, σ(r) η σ(t) holds.

This is exactly condition 1 of definition 2.2.11 for (·)o to be admissible. It
is notable that in the proof of the previous lemma the restriction to pseudo-
valued closing substitutions is immaterial. I.e., the argument is the same as
if all closing substitutions had to be considered. This indicates the capability
of the approach using pseudo-valued substitutions. Even property 3 and 2 of
definition 2.2.11 can be established this way in the following.

However, the notion of a pseudo-value has to be justified by the calculus.
This means it may comprise those terms only, for which copying is correct.
Otherwise, the condition η̂ ⊆ (η̂ 0)

o
, i.e., property 4 from definition 2.2.11,

cannot be met. Section 4.2, which is devoted to its proof, will illustrate this
when dealing with the precongruence candidate in the λ≈-calculus.

The corollary below plays a major role for the stability of the precongruence
candidate η̂ under reduction.

Corollary 4.1.7. Let η ⊆ Λ0
≈ × Λ0

≈ be a preorder. Then η ◦ ηo ⊆ ηo holds.

Proof. Assume closed terms r, s ∈ Λ0
≈ and a (possibly open) term t ∈ Λ≈ such

that r η s and s ηo t holds. The latter means that for every pseudo-valued
substitution σ the condition σ(s) η σ(t) is valid. This boils down to s η σ(t)
since s is closed and therefore σ(s) ≡ s holds. Thus, for every pseudo-valued
substitution σ we have r η s η σ(t) and the claim is true since η is transitive.

The following corollary establishes property 2 of definition 2.2.11 for the
open extension (·)o

being admissible.

4.1. SIMILARITY IN THE λ≈-CALCULUS 103

Corollary 4.1.8. Let η ⊆ Λ0
≈ × Λ0

≈ be a relation. Then (ηo) 0 = η holds.

Proof. Since s (ηo) 0 t means s ηo t under the premise that s, t ∈ Λ0
≈ are closed

terms, for all pseudo-valued substitutions σ we obtain s ≡ σ(s) η σ(t) ≡ t.

Eventually, property 3 of definition 2.2.11 will be discussed, i.e., that (·)o is
monotonic w.r.t. set inclusion.

Corollary 4.1.9. Let ν, η ⊆ Λ0
≈ × Λ0

≈ be relations. Then ν ⊆ η =⇒ νo ⊆ ηo.

Proof. Assume ν ⊆ η and (possibly open) terms s, t ∈ Λ≈ such that s νo t holds.
Then s ηo t is to show. From s νo t for every pseudo-valued substitution σ we
have σ(s) ν σ(t). Since ν ⊆ η by the premise, σ(s) η σ(t) may be inferred.

4.1.2 Representations for Similarity

Recalling that ans(·) denotes the set of all possible answers for some term, in
the calculus λ≈ the experiment [·] may be defined as [·]≈ below.

s [η]≈ t
def
⇐⇒ ∀λx.s′ ∈ ans(s) : ∃λx.t′ ∈ ans(t) : s′ η t′ (4.1.1)

It should be noted that the additional degree of non-determinism introduced by
rule (stop) is essential to compute the answer set ans(·) in combination with
the (cpa)-rule. The example below exhibits a situation in which experiments
seem by far easier to deal with than contextual preorder.

Example 4.1.10. Let r, s, t ∈ Λ0
≈ be closed and η ⊆ Λ≈ × Λ≈ be a preorder:

r [η]≈ t ∧ s [η]≈ t =⇒ pick r s [η]≈ t

i.e. if t behaves “better” than both r and s, then it is immaterial which one is
chosen thereof. So assume pick r s ⇓ λy.p then, by lemma 2.3.14, the reduction
by rule (nd) may be moved forward, hence r ⇓ λy.p or s ⇓ λy.p. Since by the
premise we have r [η]≈ t and s [η]≈ t the claim is shown.

We proceed with some basic properties of [·]≈ which are pretty self-explan-
atory. Therefore, subsequently only a few comments are to be found but rather
some examples. Note that s [∅]≈ t implies ∀η : s [η]≈ t since [·]≈ is monotone.
Hence for simplicity, whenever s [η]≈ t has to be shown for an arbitrary η the
statement s [∅]≈ t will be used instead.

Corollary 4.1.11. Let s ∈ Λ0
≈ be a closed term such that s 6⇓ holds. Then for

every closed term t ∈ Λ0
≈ the relation s [∅]≈ t is true.

104 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Proof. Since s 6⇓ means that ans(s) = ∅ holds, the claim is valid.

The corollary below reflects the fact that an approximation reduction could
diminish the set of possible answers but not enlarge it.

Corollary 4.1.12. Let s, t ∈ Λ0
≈ be closed. Then s

S
−→

∗

λ≈
t implies t [∅]≈ s.

Proof. Obviously ans(t) ⊆ ans(s) since with t ⇓ λx.r also s ⇓ λx.r holds.

The next lemma will frequently be used without further reference. It es-
tablishes an important proof principle, namely that s [η]≈ t holds, if in every
approximation reduction sequence from s to an abstraction there is a term s′

such that also t has an approximation reduction to some term t′ for which the
relation s′ [η]≈ t′ holds. This represents some kind of short-cut, i.e., in order to
show s [η]≈ t not the whole reduction sequence to an abstraction has to be taken
into account but only certain points within.

Lemma 4.1.13. For all closed terms s, t ∈ Λ0
≈ and all preorders η ⊆ Λ≈×Λ≈ on

terms the relation s [η]≈ t is valid whenever the following condition is satisfied:

∀λx.s′′ : s
S
−→

∗

λ≈
λx.s′′ =⇒

(∃s′, t′ : s
S
−→

∗

λ≈
s′

S
−→

∗

λ≈
λx.s′′ ∧ t

S
−→

∗

λ≈
t′ ∧ s′ [η]≈ t′)

Proof. Since the claim constitutes a central tool, we will give a detailed proof
here. So we assume closed terms s, t ∈ Λ0

≈ as well as a preorder η ⊆ Λ≈ × Λ≈.
To prove s [η]≈ t, we further assume s ⇓ λx.s′′, i.e. there is an approximation

reduction sequence s
S
−→

∗

λ≈
λx.s′′ to a closed abstraction λx.s′′ ∈ Λ0

≈ arbitrary
but fixed. So under the precondition

∃s′, t′ : s
S
−→

∗

λ≈
s′

S
−→

∗

λ≈
λx.s′′ ∧ t

S
−→

∗

λ≈
t′ ∧ s′ [η]≈ t′ (4.1.2)

we have to show that there is a λy.t′′ such that t ⇓ λy.t′′ and s′′ ηo t′′ holds. So
assume s′, t′ ∈ Λ0

≈ to be the closed terms given by (4.1.2), then from s′ [η]≈ t′

we obtain for every term which s′ converges to, in particular for λx.s′′ fixed

above, a λy.t′′ such that s′′ ηo t′′ holds. Since by t
S
−→

∗

λ≈
t′, there is also an

approximation reduction sequence from t to λy.t′′, the claim is shown.

The following corollary presents a special case of the precedent lemma, where
the intermediate terms s′, t′ coincide with the abstractions at the end of an
approximation reduction sequence.

4.1. SIMILARITY IN THE λ≈-CALCULUS 105

Corollary 4.1.14. For all closed terms s, t ∈ Λ0
≈ and all preorders η ⊆ Λ≈×Λ≈

on terms the following proof principle is valid:

(
∀s′ ∈ Λ0

≈ : s ⇓ s′ =⇒ (∃t′ ∈ Λ0
≈ : t ⇓ t′ ∧ s′ [η]≈ t′)

)
=⇒ s [η]≈ t

From the complete set of forking diagrams for the (lbeta)-reduction it may
be inferred that the [·]≈-relation holds:

Corollary 4.1.15. Let r, λx.s ∈ Λ0
≈. Then (λx.s) r [∅]≈ let x = r in s holds.

Proof. By the approximation reduction (λx.s) r
[], lbeta
−−−−−→ let x = r in s in

conjunction with corollary 3.2.16, both terms have the same answer set, i.e.,
ans((λx.s) r) = ans(let x = r in s) holds.

Note that the opposite relation let x = r in s [∅]≈ (λx.s) r is already true
by corollary 4.1.12.

Corollary 4.1.16. Let r, λx.s, λx.t ∈ Λ0
≈ be closed. Then for all η ⊆ Λ≈×Λ≈:

let x = r in s [η]≈ let x = r in t ⇐⇒ (λx.s) r [η]≈ (λx.t) r

Proof. Suppose let x = r in s [η]≈ let x = r in t for the “only-if”-part. Then

(λx.s) r [η]≈ let x = r in s [η]≈ let x = r in t [η]≈ (λx.t) r

by corollary 4.1.12 and 4.1.15 as [η]≈ is transitive. Same for the “if”-part.

The conclusion of the preceding corollaries seems natural since in call-by-
need calculi like [AF97] without an explicit let, terms of the form (λx.s) r
represent a let-binding.

By the complete set of forking diagrams for (cpa) a similar result can be ob-
tained for terms related by a (cpa)-reduction. However, section 3.2.2 shows that
internal (stop)-reduction might be introduced. Hence this requires a treatment
of internal (stop)-reductions first, which is easier in the context of simulations
and similarity. These notions are given for the λ≈-calculus here.

Definition 4.1.17. Let η ⊆ Λ0
≈×Λ0

≈ be a preorder on closed terms. Then η is
called a simulation, if and only if it is [·o]≈-dense, i.e. η ⊆ [ηo]≈ holds.

As already known from section 2.4, the operator [·o]≈ is monotonic w.r.t. set
inclusion, hence its greatest fixed point exists by the fixed point theorem.

106 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Definition 4.1.18. Define similarity .b = gfp([·o]≈) to be the greatest fixed
point of [·o]≈ and mutual similarity 'b by s 'b t ⇐⇒ s .b t ∧ t .b s.

The following are either obvious consequences from the definitions or their
proof can be found in the literature, e.g. [DP92].

Corollary 4.1.19. The relation .b is a preorder and 'b an equivalence.

Corollary 4.1.20. The similarity .b is the greatest [·o]≈-dense set, i.e., it is
itself [·o]≈-dense and can be characterised as the union of all [·o]≈-dense sets:

.b =
⋃
{η | η ⊆ [ηo]≈}

Because of this, also [.b
o]≈ is contained in similarity: From .b ⊆ [.b

o]≈
follows that [.b

o]≈ ⊆
[
[.b

o]≈
o]

≈
since [·o]≈ is monotonic. Hence .b = [.b

o]≈
and similarity may be represented in the recursive manner below.

s .b t ⇐⇒ ∀λx.s′ ∈ ans(s) : ∃λx.t′ ∈ ans(t) : s′ .b
o t′ (4.1.3)

An example shows that λ≈ has, w.r.t. .b, incomparable, closed abstractions.

Example 4.1.21. Consider the combinators K and K2, which both clearly are
abstractions. If applied, e.g., to the argument I we yield

KI
lbeta
−−−→ let x = I in λy.x

cpa
−−→ λy.I

K2 I
lbeta
−−−→ let x = I in λy.y

cpa
−−→ λy.y

Hence both of these reducts are again abstractions. But if applied to Ω as a
further argument, the difference becomes apparent:

(λy.I) Ω
lbeta
−−−→ let y = Ω in I

cpa
−−→ I

(λy.y) Ω
lbeta
−−−→ let y = Ω in y −→ . . .

Obviously, the term let y = Ω in y has no approximation to an abstraction,
thus K 6.b K2. With a similar argument — just applying first to Ω and then
to I — one can show that K2 6.b K holds.

As a further motivating example, we demonstrate that similarity as defined
in the λ≈-calculus avoids the pitfalls of the naive approach.

4.1. SIMILARITY IN THE λ≈-CALCULUS 107

Example 4.1.22. As is known, the two terms s ≡ let v = pick K K2 in λw.v
and t ≡ λw.let v = pick K K2 in v of example 3.1.18 could be distinguished
by contexts. Now we can show that t 6.b s does not hold either. Since t already
is an abstraction, we therefore consider all possible approximation reduction
sequences for s that lead to an abstraction:

s
let v=[] in λw.v, nd, left
−−−−−−−−−−−−−−−−−→ let v = K in λw.v

[], cpa
−−−−−→ λw.K

s
let v=[] in λw.v, nd, right
−−−−−−−−−−−−−−−−−−→ let v = K2 in λw.v

[], cpa
−−−−−→ λw.K2

Since the non-deterministic choice has been fixed, neither of these abstractions
exposes the necessary behaviour. Particularly, t may converge when applied to
the argument sequences Ω,Ω,K and Ω,K,Ω, while λw.K does not converge for
the former, nor does λw.K2 for the latter.

Especially useful is the result, that (stop)-reductions in general lead to terms
that are smaller w.r.t. similarity. At the same time the following lemma gives
a nice example of a coinductive proof, exploiting the fact that .b as a greatest
fixed point of [·o]≈ contains every [·o]≈-dense set.

Lemma 4.1.23. Let s, t ∈ Λ0
≈ be closed. Then s

C, stop
−−−−→

∗

t implies t .b s.

Proof. Since .b is the union of all [·o]≈-dense sets, we will simply show that

the set ν = { (t, s) ∈ Λ0
≈ × Λ0

≈ | s
C, stop
−−−−→

∗

t } is [·o]≈-dense, i.e., ν ⊆ [νo]≈

holds. So assume s
C, stop
−−−−→

∗

t such that t ⇓ λx.t′. Then by lemma 3.2.11, there

is also a reduction s
S
−→

∗

λ≈
λx.s′ such that λx.s′

C, stop
−−−−→

∗

λx.t′ holds. Hence for

every pseudo-valued substitution σ we obviously have σ(s′)
C, stop
−−−−→

∗

σ(t′) too.
Therefore, by (σ(t′), σ(s′)) ∈ ν the claim is shown.

The bottom line of the next lemma, that reduction by rule (cpa) complies
with mutual similarity, is integral for arguing within the λ≈-calculus. In order
to prove this, we will fall back upon the previous lemma.

Lemma 4.1.24. If let x = s in t
S, cpa
−−−−→ t[s/x] then let x = s in t 'b t[s/x].

Proof. Since t[s/x] .b let x = s in t is clear by corollary 4.1.12, we only have

to show let x = s in t .b t[s/x], i.e. that
S, cpa
−−−−→ does not change the result of

a
S
−→

k

λ≈
-reduction sequence.

108 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

By corollary 4.1.14, it is sufficient to show that for every reduction sequence

let x = s in t
S
−→

∗

λ≈
λy.p there is a corresponding reduction sequence for t[s/x],

i.e., t[s/x]
S
−→

∗

λ≈
λz.q which satisfies λy.p .b λz.q. By lemma 3.2.12 there is an

approximation reduction t[s/x]
S
−→

∗

λ≈
λz.q such that λz.q

i, stop
−−−−→

∗

λy.p holds.
Thus by lemma 4.1.23 the claim is shown.

Since pseudo-values are just those which are copied by(cpa) anyway, there is
no difference between a PV-substitution and the corresponding let-environment.

Corollary 4.1.25. Let s ∈ Λ≈ be an open term with a single free variable x,
i.e., FV(s) = {x} holds, and let p ∈ PV be a pseudo-value, i.e., p ≡ } or
p ≡ λz.q for some closed abstraction. Then let x = p in s 'b s[p/x] is true.

Proof. By lemma 4.1.24, since reduction by rule (cpa) immediately applies.

So far, we have a correlation between pseudo-valued substitutions and let-
bindings of pseudo-values as well as, by corollary 4.1.15 and 4.1.16 respectively,
one between let-terms and λ-applications. To fill in the gap, what we need is
simply a connection between let-bindings of arbitrary terms and pseudo-values.

Lemma 4.1.26. Let s, t ∈ Λ≈ be terms. Then the following implication is true.

(∀r ∈ PV : let x = r in s .b let x = r in t) =⇒
(
∀p ∈ Λ0

≈ : let x = p in s .b let x = p in t
)

Proof. Let p ∈ Λ0
≈ be an arbitrary but fixed closed term. Since otherwise

nothing has to be shown, we assume that let x = p in s converges. Legitimated
by lemma 4.1.13, we will now prove that for every approximation reduction

sequence let x = p in s
S
−→

∗

λ≈
λz.q yielding an abstraction, there will be

an intermediate term s′ ∈ Λ≈ with let x = p in s
S
−→

∗

λ≈
s′

S
−→

∗

λ≈
λz.q and

a corresponding reduction sequence for let x = p in t
S
−→

∗

λ≈
t′ such that

s′ .b t′ holds. So assuming let x = p in s
S
−→

∗

λ≈
λz.q arbitrary but fixed,

by the standardisation lemma 3.2.26 this converging reduction sequence may be
reordered to

let x = p in s
let x=S in s
−−−−−−−−−→

∗

λ≈
let x = p′ in s

S
−→

∗

λ≈
λz.q

4.1. SIMILARITY IN THE λ≈-CALCULUS 109

for p′ being } or an abstraction, i.e., a pseudo-value. Obviously, this reduction
sequence is also possible for let x = p in t, thus we have

let x = p in t
let x=S in s
−−−−−−−−−→

∗

λ≈
let x = p′ in t

and in conjunction with lemma 4.1.13 the claim holds by the premise.

We are now in a position to show that the concepts discussed above, i.e.,
instantiation with pseudo-values, let-bindings to pseudo-values or arbitrary
terms and application to arguments, are all interchangeable.

Proposition 4.1.27. Let s, t ∈ Λ≈ be terms with FV(s) ∪ FV(t) = {x}, i.e.,
containing only a single free variable. Then the following are equivalent:

1. ∀σ : rng(σ) ⊆ PV =⇒ σ(s) .b σ(t)

2. ∀p ∈ PV : (λx.s) p .b (λx.t) p

3. ∀p ∈ PV : let x = p in s .b let x = p in t

4. ∀p ∈ Λ0
≈ : (λx.s) p .b (λx.t) p

5. ∀p ∈ Λ0
≈ : let x = p in s .b let x = p in t

Proof. The equivalence (1) ⇐⇒ (3) is by corollary 4.1.25 while (5) =⇒ (3)
and (4) =⇒ (2) are trivial. From lemma 4.1.26 the implication (3) =⇒ (5)
may be concluded. Corollary 4.1.16 establishes the equivalence (2) ⇐⇒ (3) as
well as (4) ⇐⇒ (5) and thus the proposition.

Since for a closed abstraction λx.s′ the subterm s′ contains only the single
free variable x, this proposition discloses a whole series of representations of
similarity. Each of these arises from (4.1.3) by replacing the condition s′ .b

o t′

with one of those from the above proposition. Particularly worth mentioning is
the style of what Abramsky calls applicative bisimulation in [Abr90].

s .b t ⇐⇒ ∀λx.s′ ∈ ans(s) : ∃λx.t′ ∈ ans(t) :

∀p ∈ Λ0
≈ : (λx.s′) p .b (λx.t′) p (4.1.4)

Of specific interest is also the variant which explicitely expresses sharing:

s .b t ⇐⇒ ∀λx.s′ ∈ ans(s) : ∃λx.t′ ∈ ans(t) :

∀p ∈ Λ0
≈ : let x = p in s′ .b let x = p in t′ (4.1.5)

110 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

As can be seen from proposition 4.1.27, both of the previous representations
exist also in a version only quantifying over pseudo-values instead of all closed
terms. In the remainder we will freely make use of these results without further
reference, i.e., in each case the most suitable representation will be chosen. It
is clear how these different styles could also have been used for defining the
experiment [·]≈ and thus similarity as its greatest fixed point.

Furthermore, the claim can be generalised to arbitrary open terms using
nested applications and let-environments. The proof is a straightforward in-
duction on the number of free variables in the respective terms but will not be
carried out here.

Referring to the view of applicative bisimulation it turns out that abstrac-
tions are characterised by their applications to arguments.

Corollary 4.1.28. Let λx.s, λx.t ∈ Λ0
≈ be closed abstractions. Then

λx.s .b λx.t ⇐⇒ ∀p ∈ Λ0
≈ : (λx.s) p .b (λx.t) p (4.1.6)

Proof. By (4.1.4) as ans(λx.s) = {λx.s } and ans(λx.t) = {λx.t } holds.

For arbitrary terms instead of abstractions such a characterisation is not
possible. The reason is that in the λ≈-calculus extensionality , i.e., the proof
rule (∀r : s r 'b t r) =⇒ s 'b t is in general not correct. Corresponding to
[Abr90, p. 71], already the counter-example λx.Ωx 6.b Ω demonstrates this.
Though, corollary 4.1.28 above provides some limited kind of extensionality.

Remark 4.1.29. We speak of “limited” extensionality since in our non-deter-
ministic setting we don’t even have the conditional version of the (η)-rule

s ⇓ ∧ x /∈ FV(s) =⇒ λx.s x 'b s

like in [Abr90, p. 71]. We give s ≡ pick K K2 as a counter-example here.
Obviously, λx.(s x) ⇓ λx.(s x) but for s to converge, a choice has to be made in
advance, i.e., either s ⇓ K or s ⇓ K2. Since K and K2 are incomparable as
shown in example 4.1.21, neither K or K2 alone is capable to exhibit the same
convergent behaviour as λx.(s x) if applied to an argument.

From the characterisation of abstractions in corollary 4.1.28 a further repre-
sentation of similarity may be deduced. It is remarkable that a similar property
does not hold for contextual preorder. Though this will not be shown here, it
underpins that similarity is strictly contained in contextual preorder.

4.1. SIMILARITY IN THE λ≈-CALCULUS 111

Corollary 4.1.30. For all closed terms s, t ∈ Λ0
≈ the following is true:

s .b t ⇐⇒ ∀λx.s′ ∈ ans(s) : ∃λx.t′ ∈ ans(t) : λx.s′ .b λx.t′ (4.1.7)

Proof. Apply equivalence (4.1.6) in equation (4.1.4) to the right hand side.

Contrary to extensionality the converse property can be established for ar-
bitrary terms. However, this is not trivial as it involves the proof principle from
lemma 4.1.13.

Lemma 4.1.31. Let s, t ∈ Λ0
≈ be closed terms such that s .b t holds. Then for

every closed term r ∈ Λ0
≈ also s r .b t r is true.

Proof. Given s .b t and a closed term r ∈ Λ0
≈ suppose that s r converges.

Obviously s ⇓ λx.s′ because1 otherwise s r ⇓ would not be possible. Since the
surface contexts [] r and s [] are disjoint, lemma 2.3.14 is applicable. I.e., in the
converging approximation reduction for s r the reductions on s may successively
be shifted forward. Thus for every s r ⇓ λz.q an approximation sequence of the

form s r
[] r
−−→

∗

λ≈
(λx.s′) r ⇓ λz.q can be obtained. Furthermore, from s .b t and

s ⇓ λx.s′ it follows that t ⇓ λx.t′ for a closed abstraction λx.t′ such that the

condition ∀p ∈ Λ0
≈ : (λx.s′) p .b (λx.t′) p holds. Since t r

[] r
−−→

∗

λ≈
(λx.t′) r an

application of lemma 4.1.13 proves the claim.

We conclude the section with a more sophisticated simulation proof using
the fact that .b contains every [·]≈-dense set.

Example 4.1.32 (Simulation Proof). Let r, s, t ∈ Λ0
≈ be closed terms such

that r .b pick s t and the set ans(r) has, w.r.t. .b, one greatest element.
Then r .b s or r .b t holds.

First note that r .b pick s t implies that there must exist a [·o]≈-dense
set η which contains (r, pick s t), i.e., η ⊆ [ηo]≈ and (r, pick s t) ∈ η, hence
(r, pick s t) ∈ [ηo]≈ as well. Since the union of [·o]≈-dense sets again is [·o]≈-
dense, it suffices to show that ν or υ, with ν = η ∪ {(r, s)} and υ = η ∪ {(r, t)}
respectively, is [·o]≈-dense.

Obviously, for r 6⇓ there is nothing to show, so we assume λy.p ∈ Λ0
≈ to be

the .b-greatest closed abstraction such that r ⇓ λy.p holds. From the prerequisite
r [ηo]≈ pick s t we have an abstraction λz.q such that pick s t ⇓ λz.q and
y.p ηo z.q are satisfied. Note that this λz.q usually depends on λy.p but under the
premise that λy.p is greater than every closed abstraction r converges to, we may

1This statement corresponds to the contraposition of lemma 3.2.14

112 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

fix λz.q here. So in the approximation reduction sequence pick s t
S
−→

∗

λ≈
λz.q

the reduction by rule (nd) could be moved forward, hence we can argue that
s ⇓ λz.q or t ⇓ λz.q must hold.

Since these cases behave symmetrically, we assume s ⇓ λz.q w.l.o.g., for
which we will show ν ⊆ [νo]≈, i.e., (a, b) ∈ ν =⇒ (a, b) ∈ [νo]≈, for which we
distinguish the two cases:

• For (a, b) ∈ η nothing has to be shown since η is [·o]≈-dense.

• If (a, b) ≡ (r, s), we know from what has been said before that only r ⇓ λy.p
has to be considered. Hence s ⇓ λz.q with y.p ηo z.q shows the claim, since
[ηo]≈ ⊆ [νo]≈ by monotonicity of the [·o]≈-operator.

4.1.3 Open Simulations and Open Similarity

When the relation s .b
o t should be established for two open terms s and t it

seems rather tedious to consider all pseudo-valued closing substitutions. This
is particularly true for the use of reductions on open terms.

So, is there an alternative for relations which are defined on open terms?
The question leads to the notion below. However, this section will illustrate
that its answer is not quite as satisfactory as expected.

Definition 4.1.33. A preorder η ⊆ Λ≈×Λ≈ on (possibly open) terms is called
an open simulation if and only if η ⊆ [η]≈

o is satisfied.

The relation .b
o is an open simulation: .b ⊆ [.b

o]≈ implies .b
o ⊆ [.b

o]≈
o

since (·)o
is monotone. It even is the largest open simulation and thus called

open similarity . In order to see that every open simulation is contained in .b
o

consider η ⊆ [η]≈
o

from which [η]≈ ⊆
[
[η]≈

o]
≈

follows because [·]≈ is monotone.

Thus [η]≈ is a simulation and contained in similarity. Furthermore [η]≈
o ⊆ .b

o

since the open extension (·)o
is monotone. Therefore η ⊆ [η]≈

o ⊆ .b
o as desired.

Accordingly, the relation 'b
o = .b

o ∩ &b
o is called mutual open similarity .

Some of the results for closed terms transfer directly to open similarity.

Corollary 4.1.34. For every closed term s ∈ Λ0
≈ the relation } .b s holds and

for every (possibly open) term t ∈ Λ≈ the statement } .b
o t is true.

Proof. Since ans(}) = ∅ and} is closed, i.e., σ(}) ≡ } for all substitutions.

Corollary 4.1.35. Let s, t ∈ Λ≈ be terms such that s .b
o t holds. Then for

every term r ∈ Λ≈ also s r .b
o t r is valid.

4.1. SIMILARITY IN THE λ≈-CALCULUS 113

Proof. Assume terms s, t ∈ Λ≈ such that s .b
o t is true. Let σ be an arbitrary

substitution with rng(σ) ⊆ PV such that σ(s r) is closed. For s r .b
o t r it is to

show that σ(s r) .b σ(t r) holds. This is equivalent to σ(s) σ(r) .b σ(t) σ(r)
while σ(s) .b σ(t) from the premise. Thus by lemma 4.1.31 the claim holds.

The notion of an open simulation does not automatically provide a more
straightforward proof technique. The reason is that in order to establish some
relation η to be an open simulation, the condition η ⊆ [η]≈

o has to be checked.
This requires s η t =⇒

(
∀σ : rng(σ) ⊆ PV =⇒ σ(s) [η]≈ σ(t)

)
to be shown.

Note that this does not necessarily involve all closing substitutions that map
only to } or closed abstraction but rather only those for which σ(s) converges.

In the following it will be discussed briefly when and under what precondi-
tions the convergent behaviours of s and σ(s) are connected.

Lemma 4.1.36. Let s ∈ Λ≈ be a term. Then s ⇓ λz.q implies σ(s) ⇓ σ(λz.q)
for all closing substitutions σ that map only to } or closed abstractions.

Proof. Note that the proposition of the lemma is identical to

Let s ∈ Λ≈ be a (possibly open) term and σ a pseudo-valued closing
substitution. Then s ⇓ λz.q implies that also σ(s) ⇓ σ(λz.q) holds.

Hence assume a substitution σ which meets the prerequisites and a term s ∈ Λ≈

such that s ⇓ λz.q holds. The proof is then by induction on the length k of the

converging approximation reduction s
S
−→

k

λ≈
λz.q leading to the abstraction.

• If k = 0 then s ≡ λz.q already is an abstraction and σ(s) ≡ σ(λz.q) holds.

• A reduction sequence of length k ≥ 1 can be split:

s
S
−→λ≈

t
S
−→

k−1

λ≈
λz.q

By the induction hypothesis we may assume σ(t) ⇓ σ(λz.q) so only the

reduction σ(s)
S
−→λ≈

σ(t) remains to be established. This reduction is
obvious for the rules (lapp), (lbeta), (lseq), (eseq), (nd) as well as (stop).
In order to address the rule (cpa) in more detail, consider

s ≡ S[let x = s1 in s2]
S, cpa
−−−−→ S[s2[s1/x]] ≡ t

where s1 is } or an abstraction. Thus, applying the substitution σ yields

σ(s) ≡ σ(S)[let x = σ(s1) in σ(s2)]

σ(S), cpa
−−−−−−→ σ(S)[σ(s2)[σ(s1)/x]] ≡ σ(t)

114 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

which proves the claim.

The proof of the converse property will make use of the substitution mapping
all (free) variables to the }-term. Denoted by σ}, this substitution represents
a tool for expressing that the outcome of an approximation reduction on an
open term does not (essentially) depend on free variables. Otherwise, the re-
duction of the substituted term would not lead to an abstraction since } has
no approximation reduction.

Proposition 4.1.37. Let s ∈ Λ≈ be a (possibly open) term and σ range over
closing substitutions which only map to } or an abstraction. Then the following
statements are equivalent:

1. s ⇓

2. ∀σ : σ(s) ⇓

3. σ}(s) ⇓

Proof. Since “(1) =⇒ (2)” is by lemma 4.1.36 and “(2) =⇒ (3)” is trivial,
only the implication “(3) =⇒ (1)” has to be shown. So assume σ}(s) ⇓ which

means σ}(s)
S
−→

∗

λ≈
λy.p for some abstraction. The term σ}(s) can obviously

be obtained from s by certain, possibly internal, (stop)-reductions. Hence a

reduction sequence s
C, stop
−−−−→

∗

σ}(s)
S
−→

∗

λ≈
λy.p results. Thus by lemma 3.2.11

there is an approximation reduction s
S
−→

∗

λ≈
λz.q to an abstraction λz.q such

that λz.q
i, stop
−−−−→

∗

λy.p holds.

The consequence of this proposition is a necessary but not sufficient criterion
for open simulations, e.g. open similarity: A preorder η ⊆ Λ≈ × Λ≈ is an open
simulation only if it meets (4.1.8) below.

s η t =⇒ (∀λx.s′ ∈ ans(s) : ∃λx.t′ ∈ ans(t) : s′ .b
o t′) (4.1.8)

So in the particular instance for .b
o it can be used to show that two open terms

are not related. This is especially true if s, t ∈ Λ≈ are two open terms such that
s converges but t does not. Since s ⇓ =⇒ (∀σ : rng(σ) ⊆ PV =⇒ σ(s) ⇓)
and t 6⇓ =⇒ σ}(t) 6⇓ by proposition 4.1.37, clearly s 6.b

o t must hold.

4.1. SIMILARITY IN THE λ≈-CALCULUS 115

4.1.4 Soundness of (cp), (llet) and Two Further Reductions

Of particular interest is certainly the proof that the reduction rules of the calcu-
lus λND constitute correct program transformations. Though at this stage open
similarity has not been shown to form a precongruence nor to imply contextual
equivalence, the achievement of the remaining sections will justify its use here.

This means, we will now discuss that some of the rules from the λND-calculus
as well as two further rules comply to open similarity. Therefore, a notion for the
soundness of reductions, i.e., program transformations in fact, is introduced first.
Note that it is sufficient to consider transformations on top-level only, because
in section 4.3 open similarity will be proven a precongruence. The argument
accords to the one in [Kut99, Proposition 3.1.2] but is more powerful as it refers
to open similarity rather than only convergence. The reason is that establishing
contextual equivalence already involves the converging behaviour in all contexts.

Thus it makes essentially no difference if the implication s
[], a
−−−→ t =⇒ s 'c t

or C[s]
C, a
−−−→ C[t] =⇒ C[s] 'c C[t] is shown.

Definition 4.1.38. Let η ⊆ Λ≈ × Λ≈ be a preorder and ν ⊆ Λ≈ × Λ≈ be a
program transformation. Then ν is said to be sound w.r.t. η if s ν t implies
s η t for all terms s, t ∈ Λ≈.

Soundness of a program transformation can be carried over from closed terms
to open terms if it is closed under pseudo-valued substitutions.

Corollary 4.1.39. Let
a
−→ ⊆ Λ≈ ×Λ≈ be some transformation that is is sound

w.r.t. .b on closed terms and closed under substitutions σ with rng(σ) ⊆ PV.

Then
a
−→ is also sound w.r.t. .b

o on open terms.

Proof. Let s, t ∈ Λ≈ be open terms such that s
a
−→ t and assume

a
−→ to be

sound w.r.t. .b. Since
a
−→ is closed under substitutions that only map to }

or abstractions, ∀σ : rng(σ) ⊆ PV =⇒ σ(s)
a
−→ σ(t) holds. Therefore

∀σ : rng(σ) ⊆ PV =⇒ σ(s) .b σ(t) shows the claim.

In the previous corollary, the symbol
a
−→ has been used to indicate a program

transformation which is based on some kind of rewriting. The motivation for
this is that reduction in the calculi λND and λ≈ is closed even under arbitrary
substitutions. However, this is not to be expected for program transformations
in general as the example y y

a
−→ let x = y in x x illustrates.

Corollary 4.1.40. Let s, t ∈ Λ≈ be terms. Then s
S
−→

∗

λ≈
t implies t .b

os.

116 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Proof. By corollary 4.1.12 in connection with corollary 4.1.39.

Additionally, the soundness of the rules (cpa) and (lbeta) w.r.t. mutual open
similarity is inferred from the respective results in lemma 4.1.24 and corol-
lary 4.1.15 for closed terms.

Corollary 4.1.41. Let s, t ∈ Λ≈ be terms such that the reduction s
S, cpa
−−−−→ t or

s
S, lbeta
−−−−−→ t holds. Then s 'b

o t is true.

Out of the rules of the λND-calculus, the rule (lbeta) will not be treated here,
since it is also a λ≈-rule and has already been addressed above. Furthermore,
(lapp) will be omitted, since a complete set of forking diagrams is analogous to
the one for (lbeta) in section 3.2.4. As explained before, cf. corollary 3.2.19, the
reduction rules (eseq) and (lseq) resemble (lbeta) and (lapp) respectively, and
thus are left out, too.

Since non-deterministic choice does clearly not preserve contextual equiva-
lence, only the reduction rules (llet) and (cp) remain. These are quite interesting
as they are not contained in the λ≈-calculus. Moreover, we introduce two fur-
ther rules which may be viewed as program transformations and prove that
these also comply with mutual open similarity. The two additional rules com-
prise the so-called garbage collection rule (gc) which deletes a let-binding when
the variable is no longer referenced. In [Kut99] it is called (ldel). The second,
named (cpx) contrary to (lcv) in [Kut99], concerns copying of variables. For
completeness (llet) and (cp) are listed again.

let x = s in t
gc
−→ t if x /∈ FV(t) (gc)

let x = y in D[x]
cpx
−−→ let x = y in D[y] (cpx)

let x = (let y = ty in tx) in s
llet
−−→ let y = ty in (let x = tx in s) (llet)

let x = λy.r in D[x]
cp
−→ let x = λy.r in D[λy.r] (cp)

Note that here the two occurrences of y in let x = y in D[y] denote the same
variable since y occurs free in let x = y in D[x] and therefore no alpha-renaming
takes place during a (cpx)-reduction.

We begin with (cp) since its soundness can be deduced from (cpa) relatively
straightforward.

Corollary 4.1.42. Let let x = λy.r in D[x]
cp
−→ let x = λy.r in D[λy.r] then

let x = λy.r in D[x] 'b
o let x = λy.r in D[λy.r] holds.

4.1. SIMILARITY IN THE λ≈-CALCULUS 117

Proof. Using the (cpa)-reductions let x = λy.r in D[x]
cpa
−−→ D[x][λy.r/x] and

let x = λy.r in D[λy.r]
cpa
−−→ D[λy.r][λy.r/x] respectively. These are both

sound w.r.t. 'b
o by corollary 4.1.41 and moreover result in syntactically the

same term D[x][λy.r/x] ≡ D[λy.r][λy.r/x].

With soundness of (cp) w.r.t. mutual open similarity the proof for (cpx)
becomes very concise.

Corollary 4.1.43. Let let x = y in D[x]
cpx
−−→ let x = y in D[y] then

let x = y in D[x] 'b
o let x = y in D[y] holds.

Proof. First note that only (mutual) open similarity makes sense here, since y
is free. Showing let x = y in D[x] 'b

o let x = y in D[y] amounts to

∀σ : rng(σ) ⊆ PV =⇒ σ(let x = y in D[x]) 'b σ(let x = y in D[y])

The application of the substitution yields the proof obligation

let x = σ(y) in σ(C[x]) 'b let x = σ(y) in σ(C[σ(y)]) (4.1.9)

W.l.o.g. we may assume that x is not in the domain of σ because of corollary 4.1.4
in combination with the variable convention. Thus, in case of σ(y) ≡ λz.q
equation (4.1.9) is an instance of rule (cp) while σ(y) ≡ } is shown similarly.

For the rule (llet), the equations (3.3.5) and (3.3.6) from the proof of the
Approximation Theorem give a hint how the approximation reduction to an
abstraction is retained. For simplicity we only perform this for closed terms,
but the transfer to open similarity is easy.

Lemma 4.1.44. For all s, tx, ty ∈ Λ≈ such that let x = (let y = ty in tx) in s
is closed: let x = (let y = ty in tx) in s 'b let y = ty in (let x = tx in s).

Proof. It will be shown that both terms have the same answer set. Suppose
that let x = (let y = ty in tx) in s ⇓ λz.q, i.e., the first term has a converging

approximation reduction. Since let y = ty in tx
stop
−−→ } is even simpler, only

the case let y = ty in tx ⇓ is treated. By two applications of the normalisation

118 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

from lemma 3.2.26 the reduction sequence can be reordered to proceed as below.

let x = (let y = ty in tx) in s

let x=(let y=[] in tx) in s
−−−−−−−−−−−−−−−−−−−→

∗

λ≈
let x = (let y = t′y in tx) in s

let x=[] in s, cpa
−−−−−−−−−−−−→λ≈

let x = tx[t′y/y] in s

let x=[] in s
−−−−−−−−−→

∗

λ≈
let x = t′x in s

[], cpa
−−−−→λ≈

s[t′x/x]
S
−→

∗

λ≈
λz.q

All these surface reductions are possible for the second term and vice versa, thus
we obtain an approximation reduction to exactly the same abstraction:

let y = ty in (let x = tx in s)

let y=[] in (let x=tx in s)
−−−−−−−−−−−−−−−−−−−→

∗

λ≈
let y = t′y in (let x = tx in s)

[], cpa
−−−−→λ≈

(let x = tx in s)[t′y/y] (x /∈ FV(s))

≡ let x = tx[t′y/y] in s

let x=[] in s
−−−−−−−−−→

∗

λ≈
let x = t′x in s

[], cpa
−−−−→λ≈

s[t′x/x]
S
−→

∗

λ≈
λz.q

Finally, the soundness of rule (gc) enables a result which will be used fre-
quently: Corollary 4.1.46 states that let-bindings for open similarity may be
introduced successively and only for the variables affected.

Corollary 4.1.45. Let let x = s in t
gc
−→ t then let x = s in t 'b

o t holds.

Proof. Since it could be simulated by the approximation reduction
stop
−−→ ·

cpa
−−→

the relation t .b
o
let x = s in t is clear. In order to show let x = s in t .b

o t
we consider a closing substitution σ that maps only to } or closed abstractions.
Whenever σ(let x = s in t) ⇓ λz.q, i.e., has a converging approximation

4.2. ADMISSIBILITY OF THE OPEN EXTENSION (·)o 119

reduction, then t ⇓ λz.q by normalisation:

σ(let x = s in t)

≡ let x = σ(s) in σ(t)

let x=[] in σ(s)
−−−−−−−−−−−→λ≈

let x = s′ in σ(t)

[], cpa
−−−−→λ≈

σ(t)[s′/x] (x /∈ FV(t))

≡ σ(t)
S
−→

∗

λ≈
λz.q

Corollary 4.1.46. Let s, t ∈ Λ≈ be terms and x ∈ FV(s) ∪ FV(t). Then the
following statements are true:

s .b
o t ⇐⇒ (∀p ∈ Λ0

≈ : let x = p in s .b
o
let x = p in t)

x /∈ FV(s) =⇒
(
s .b

o t ⇐⇒ (∀p ∈ Λ0
≈ : s .b

o
let x = p in t)

)

x /∈ FV(t) =⇒
(
s .b

o t ⇐⇒ (∀p ∈ Λ0
≈ : let x = p in s .b

o t)
)

Obviously, according to proposition 4.1.27 the condition ∀p ∈ Λ0
≈ could be

relaxed to ∀p ∈ PV in the above corollary. After this section has demonstrated
the power of similarity proofs, the remainder of this chapter is devoted to the
proof that similarity is a precongruence. Hence the subsequent section starts
with an examination of the precongruence candidate in the λ≈-calculus.

4.2 Admissibility of the Open Extension (·)o

So far, this chapter has covered similarity and its extension to open terms, as
well as, in the precedent section, the soundness of some reduction rules which
are quite of significance. This section now treats one of the major prerequisites
in the proof that open similarity forms a precongruence. Namely, the open
extension (·)o

is admissible, i.e., meets the conditions of definition 2.2.11.
Therefore, section 4.2.2 provides substitution lemmas for the respective terms

which may be copied in the λ≈-calculus. These represent the counterpart
to [How96, Lemma 3.2], since the approach of Howe originally permitted to
copy every term.

4.2.1 The Precongruence Candidate Revisited

Before the substitution lemmas will be established, some properties of the pre-
congruence candidate in the calculus λ≈ are discussed. Note that it can now be
portrayed as below.

120 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Definition 4.2.1. Let the relation .̂b ⊆ Λ≈ × Λ≈ defined by induction:

• x .̂b b if x ∈ V is a variable and x .b
o b.

• τ(ai) .̂b b if there exists a′
i such that ai .̂b a′i and τ(a′

i) .b
o b.

Since the term } has no operands, } .̂b s holds if and only if } .b
o s is

true. In connection with corollary 4.1.34 this immediately yields the following.

Corollary 4.2.2. Let s ∈ Λ≈ be a term. Then } .̂b s holds.

Operands of the form x.s occur solely for the cases τ = λ and τ = let in

definition 4.2.1. It will be used frequently that the condition ∃y.t : x.s .̂b y.t

may be simplified to ∃t : s .̂b t by the definition 2.2.1 of relations on operands.
By default, no restriction on the intermediate operands a′

i is imposed in the
definition 4.2.1 of the precongruence candidate. However, it seems natural that
no additional free variables are necessary. This results in the characterisation of

lemma 4.2.3 below. When dealing with closed terms, or, more precisely, if a .̂b b
for a closed term a, the statement boils down to the subsequent corollary 4.2.4
that the intermediate term τ(a′

i) can be chosen to be closed, too. It will be
heavily used throughout section 4.3.1 where the precongruence candidate is
shown to be stable under reduction.

Lemma 4.2.3. Let a, b ∈ Λ≈ be terms. Then a .̂b b iff one of the following:

• a ≡ x for a variable x ∈ V and x .b
o b.

• a ≡ τ(ai) for some operator τ ∈ O, operands ai and there are a′
i such that

ai .̂b a′
i and τ(a′

i) .b
o b hold with FV(a′

i) ⊆ FV(b) ∪ FV(ai) for all i.

Proof. Since the “if”-part is merely a special case of definition 4.2.1, we just

show the “only-if”-part. Therefore we assume a .̂b b for a case analysis along
the definition of the precongruence candidate.

• For a ≡ x .̂b b with a variable x we have x .b
o b.

• If a ≡ τ(ai) .̂b b, from definition 4.2.1 of the precongruence candidate we

obtain operands a′′
i such that ai .̂b a′′

i and τ(a′′
i) .b

o b hold. W.l.o.g. for
every i let FV(a′′

i) \ (FV(b) ∪ FV(ai)) = {xi,k | 1 ≤ k ≤ n }. Then
construct the desired operands a′

i by substituting every xi,k with }, i.e.:

a′
i

def
≡ a′′

i [}/xi,1, . . . ,}/xi,n]

4.2. ADMISSIBILITY OF THE OPEN EXTENSION (·)o 121

Using these substitutions [}/xi,k] we have τ(a′
i) .b

o b from τ(a′′
i) .b

o b by
corollary 4.1.5, because none of the xi,k does occur free in b either. Now

an easy induction on the structure of the operands a′
i shows that ai .̂b a′

i

follows from ai .̂b a′′
i for every i.

Corollary 4.2.4. Let τ(ai) ∈ Λ0
≈ be a closed and b ∈ Λ≈ an arbitrary term

such that τ(ai) .̂b b holds. Then there are operands a′
i such that τ(a′

i) is closed

too, and ai .̂b a′
i as well as τ(a′

i) .b
o b is true.

Proof. Immediately from lemma 4.2.3 since FV(τ(ai)) = ∅ holds.

From the previous corollary an interesting conclusion may be drawn when
both terms are closed and a is an abstraction.

Lemma 4.2.5. If λx.r (.̂b) 0 s for closed terms λx.r, s ∈ Λ0
≈ then there is a

closed λx.t such that s ⇓ λx.t and λx.r
[
(.̂b) 0

o]
≈

λx.t as well as λx.r (.̂b) 0 λx.t.

Proof. From λx.r (.̂b) 0 s we have λx.r′ such that r .̂b r′ and λx.r′ .b
o s

holds. Note that we may assume λx.r′ to be closed according to corollary 4.2.4.
By the premise s is closed, hence λx.r′ .b

o s is equivalent to λx.r′ .b s
by corollary 4.1.8. Since λx.r′ is an abstraction, from λx.r′ .b s we obtain
λx.t such that s ⇓ λx.t and λx.r′ .b λx.t holds by corollary 4.1.30. Thus

λx.r (.̂b) 0 λx.t by composition, i.e., property 4 of lemma 2.2.10, and eventu-

ally λx.r
[
(.̂b) 0

o]
≈

λx.t because both terms are abstractions already.

This leads to a result which is analogous to [How89, Lemma 2].

Corollary 4.2.6. For all closed terms a, a′, b ∈ Λ0
≈ we have

a ⇓ a′ ∧ a′ .̂b 0 b =⇒ (∃b′ : b ⇓ b′ ∧ a
[
(.̂b) 0

o]
≈

b)

Proof. From a′ .̂b b we have a closed b′ such that b ⇓ b′ and a′
[
(.̂b) 0

o]
≈

b′

by lemma 4.2.5 since a′ is an abstraction. Thus a
[
(.̂b) 0

o]
≈

b follows from

corollary 4.1.14 since all the terms are closed.

122 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

4.2.2 Substitution Lemmas

The following substitution lemmas present an essential step forward to the proof
that .b

o is a precongruence.

The }-Substitution Lemma states that it is safe for .̂b to replace free vari-
ables by the }-term. A slightly more complex case is treated by the Value-

Substitution Lemma. I.e., the substitution of a free variable with .̂b-related

abstractions in the respective terms which are related by .̂b itself.

Lemma 4.2.7 (}-Substitution Lemma). For all b, b′ ∈ Λ≈ we have

b .̂b b′ =⇒ b[}/x] .̂b b′[}/x]

Proof. We use induction on the definition of .̂b.

• If b ≡ y .̂b b′ for a variable y ∈ V , then by definition 4.2.1 we have
y .b

o b′. This then, by corollary 4.1.5, means that y[}/x] .b
o b′[}/x]

holds. Thus property 3 of lemma 2.2.10 shows the claim.

• For b ≡ τ(bi) .̂b b′ there must exist b
′
i such that bi .̂b b

′
i and τ(b

′
i) .b

o b′

hold. From τ(b
′
i) .b

o b′, again by corollary 4.1.5, τ(b
′
i)[}/x] .b

o b′[}/x]

is obtained. On the other hand τ(bi)[}/x] ≡ τ(bi[}/x]) .̂b τ(b
′
i[}/x]) ≡

τ(b
′
i)[}/x] by the induction hypothesis and since .̂b is operator-respecting.

Therefore, τ(bi)[}/x] .̂b b′[}/x] is established by composition, i.e., prop-
erty 4 of lemma 2.2.10.

Lemma 4.2.8 (Value-Substitution Lemma). For all b, b′ ∈ Λ≈ and closed
terms λz.r, λz.r′ ∈ Λ0

≈ the following holds:

b .̂b b′ ∧ λz.r .̂b λz.r′ =⇒ b[λz.r/x] .̂b b′[λz.r′/x]

Proof. Assume x ∈ FV(b)∪FV(b′) for a proof by induction on the definition of

the precongruence candidate .̂b since otherwise nothing has to be shown.

• If b ≡ y .̂b b′ for a variable y ∈ V then y .b
o b′ from which, by

corollary 4.1.5, y[λz.r′/x] .b
o b′[λz.r′/x] is implied. Now the two cases

y ≡ x and y 6≡ x have to be distinguished. If y ≡ x then y[λz.r/x] ≡

λz.r .̂b λz.r′ ≡ y[λz.r′/x] .b
o b′[λz.r′/x] by the premise. Thus compo-

sition, i.e., property 4 of lemma 2.2.10, establishes the claim. For y 6≡ x
we have y[λz.r/x] ≡ y ≡ y[λz.r′/x] .b

o b′[λz.r′/x] by the premise. Hence
the proposition holds by the definition of the precongruence candidate.

4.2. ADMISSIBILITY OF THE OPEN EXTENSION (·)o 123

• For b ≡ τ(bi) .̂b b′ with b
′
i such that bi .̂b b

′
i and τ(b

′
i) .b

o b′ holds,

we have τ(b
′
i)[λz.r′/x] .b

o b′[λz.r′/x] by corollary 4.1.5. Furthermore,

τ(bi)[λz.r/x] ≡ τ(bi[λz.r/x]) .̂b τ(b
′
i[λz.r′/x]) ≡ τ(b

′
i)[λz.r′/x] by an ap-

plication of the induction hypothesis and since .̂b is operator-respecting.
Thus composition by property 4 of lemma 2.2.10 proves the claim.

By means of the substitution lemmas it easily follows that the precongruence
candidate is stable under substitutions which map only to } or abstractions.

Corollary 4.2.9. Let s, t ∈ Λ≈ be terms such that s .̂b t is satisfied. Then for

all substitution σ with rng(σ) ⊆ PV also σ(s) .̂b σ(t) holds.

Proof. Obvious from lemma 4.2.7 and 4.2.8, since .̂b is reflexive.

The above corollary represents the up to now missing property 4 for the
admissibility of the open extension (·)o

which thus can established now.

Proposition 4.2.10. The extension .b
o of .b to open terms is admissible.

Proof. We restate the properties from definition 2.2.11 that have to be proven.

1. (·)o
is preorder-preserving

2. (.b
o) 0 = .b

3. ∀ν, η : ν ⊆ η =⇒ νo ⊆ ηo

4. .̂b ⊆
(
(.̂b) 0

)o

Lemma 4.1.6 shows that (·)o
is preorder-preserving, thus condition 1 is met.

Property 2 represents just the statement of corollary 4.1.8 while 3 is the con-
sequence of corollary 4.1.9. Finally, by corollary 4.2.9, condition 4 is implied

as follows. Suppose (possibly open) terms s, t ∈ Λ≈ such that s .̂b t holds.
Furthermore, let σ be a substitution with rng(σ) ⊆ PV such that σ(s) and

σ(t) are closed. By corollary 4.2.9, from s .̂b t we obtain σ(s) .̂b σ(t) which is

σ(s) (.̂b) 0 σ(t) in fact. As σ was arbitrary, s
(
(.̂b) 0

)o

t and thus the claim.

124 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

4.3 Proving Open Similarity a Precongruence

This section is devoted to the proof that open similarity is a precongruence.

According to theorem 2.2.13, it suffices to show (.̂b) 0 ⊆ .b in order to establish
this result. Since .b is the greatest fixed point of [·]≈ it contains all [·]≈-dense

sets. Thus the condition (.̂b) 0 ⊆ .b follows from (.̂b) 0 ⊆
[
(.̂b) 0

o]
≈

by

coinduction. This in turn has been addressed in section 2.4.1 by the notion that
a relation is respected by evaluation. Corollary 2.4.9 shows that in such a case
the relation is indeed [·o]≈-dense, i.e, a simulation.

Definition 2.4.10 suggests the related notion stable under reduction which is

more suitable for small-step reduction. Before we can show that s′ .̂b t holds

whenever s .̂b t and s
S
−→λ≈

s′ does, we have to verify how condition (2.4.4)
implies that the precongruence candidate is respected by evaluation.

Lemma 4.3.1. If (s (.̂b) 0 t ∧ s ⇓ λx.s′) =⇒ λx.s′ (.̂b) 0 t holds for all

closed terms s, λx.s′, t ∈ Λ0
≈ then (.̂b) 0 is a simulation.

Proof. Suppose closed terms s, λx.s′, t ∈ Λ0
≈ for which s (.̂b) 0 t and s ⇓ λx.s′

as well as λx.s′ (.̂b) 0 t holds. To show that (.̂b) 0 is respected by evaluation

requires to find a λx.t′ such that t ⇓ λx.t′ and λx.s′
[
(.̂b) 0

o]
≈

λx.t′ are

satisfied. From λx.s′ (.̂b) 0 t such an abstraction is obtained by lemma 4.2.5.

For lemma 4.3.1 to apply it is to prove that s′ .̂b t holds whenever s .̂b t and
s ⇓ s′ do so for closed terms. As the convergence relation ⇓ is defined in terms of
stepwise reduction, this can be accomplished for every reduction rule separately.
So it will be shown that the precongruence candidate restricted to closed terms

is stable under reduction, i.e., s (.̂b) 0 t ∧ s
S
−→λ≈

s′ =⇒ s′ (.̂b) 0 t holds.
For this, we fall back upon non-closing surface contexts in lemma 4.3.10, since
the reduction rules shall only be treated at top-level.

4.3.1 Precongruence Candidate Stable Under Reduction

Now a series of lemmas will be established showing that s .̂b t ∧ s
[], a
−−−→λ≈

s′

implies s′ .̂b t for each reduction rule (a) of the λ≈-calculus.

4.3. PROVING OPEN SIMILARITY A PRECONGRUENCE 125

Lemma 4.3.2 (Stability of (.̂b) 0 Under (lapp)). Let s, t, tx ∈ Λ≈ be terms
such that (let x = tx in s) t is closed. Then we have

((let x = tx in s) t
lapp
−−−→λ≈

let x = tx in (s t) ∧

(let x = tx in s) t .̂b b) =⇒ let x = tx in (s t) .̂b b

Proof. From (let x = tx in s) t .̂b b we have

∃l′, t′ : let x = tx in s .̂b l′ ∧ t .̂b t′ ∧ l′ t′ .b
o b (4.3.1)

such that, by corollary 4.2.4, we may assume l′ t′ and hence the subterms l′, t′

itself to be closed. Furthermore, let x = tx in s .̂b l′ implies

∃x.s′, t′x : x.s .̂b x.s′ ∧ tx .̂b t′x ∧ let x = t′x in s′ .b
o l′ (4.3.2)

with let x = t′x in s′ again to be closed according to corollary 4.2.4, so that
let x = t′x in s′ .b l′ holds on closed terms. Since .b is respected by closed
A∗

L-contexts, cf. lemma 4.1.31, we have

(let x = t′x in s′) t′ .b l′ t′

from let x = t′x in s′ .b l′, and hence (let x = t′x in s′) t′ .b
o b by corol-

lary 4.1.7. As approximation reductions are sound w.r.t. &b
o by corollary 4.1.12,

we may apply the (lapp)-reduction also to (let x = t′x in s′) t′ which results in

(let x = t′x in s′) t′
lapp
−−−→λ≈

let x = t′x in s′ t′ .b
o b

We have tx .̂b t′x, s .̂b s′ and t .̂b t′ by construction and s t .̂b s′ t′ since .̂b

is operator-respecting, thus let x = tx in s t .̂b b holds.

Lemma 4.3.3 (Stability of (.̂b) 0 Under (lbeta)). Let s, t ∈ Λ≈ be terms
such that (λx.s) t is closed. Then

(λx.s) t
lbeta
−−−→λ≈

let x = t in s ∧ (λx.s) t .̂b b =⇒ let x = t in s .̂b b

Proof. Assume (λx.s) t
lbeta
−−−→ let x = t in s and (λx.s) t .̂b b. By corol-

lary 4.2.4, from the latter we have closed terms f ′, t′ ∈ Λ0
≈ such that (λx.s) .̂b f ′

and t .̂b t′, as well as f ′ t′ .b
o b is valid. Expanding (λx.s) .̂b f ′ further, we ob-

tain a closed λx.s′ ∈ Λ0
≈ which fulfils s .̂b s′ and λx.s′ .b

o f ′, hence λx.s′ .b f ′

126 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

for the closed relation, too. By corollary 4.1.30 this means, that there is a closed
abstraction λx.s′′ ∈ Λ0

≈ such that f ′ ⇓ λx.s′′ and λx.s′ .b λx.s′′ hold.

We obviously may perform the reduction f ′ S
−→

∗

λ≈
λx.s′′ also inside the

surface context [] t′ so (λx.s′′) t′ .b f ′ t′ holds. From λx.s′ .b λx.s′′ we also
have (λx.s′) t′ .b (λx.s′′) t′ by corollary 4.1.28. Furthermore we may reduce

(λx.s′) t′
lbeta
−−−→ let x = t′ in s′ hence the chain

let x = t′ in s′ .b (λx.s′) t′ .b (λx.s′′) t′ .b f ′ t′ .b
o b

Since then let x = t′ in s′ .b
o b holds by corollary 4.1.7, we complete the proof

by recognising that let x = t in s .̂b let x = t′ in s′ holds since .̂b is operator-

respecting. Thus let x = t in s .̂b b by property (4) of lemma 2.2.10.

Lemma 4.3.4 (Stability of (.̂b) 0 Under (lseq)). Let let x = sx in s, t ∈ Λ≈

be terms such that (let x = sx in s) seq t is closed. Then

((let x = sx in s) seq t
lseq
−−→ let x = sx in (s seq t) ∧

(let x = sx in s) seq t .̂b b) =⇒ let x = sx in (s seq t) .̂b b

Proof. From (let x = sx in s) seq t .̂b b by corollary 4.2.4 we have

∃l′, t′ : let x = sx in s .̂b l′ ∧ t .̂b t′ ∧ l′ seq t′ .b
o b (4.3.3)

such that l′ seq t′ is closed and hence the subterms l′ and t′ itself, too. Again,

from let x = sx in s .̂b l′ we have

∃s′x, s′ : sx .̂b s′x ∧ s .̂b s′ ∧ let x = s′x in s′ .b
o l′ (4.3.4)

Hence it remains to show that let x = s′x in (s′ seq t′) .b
o b is true. So assume

let x = s′x in (s′ seq t′) ⇓ λz.q. Then by the standardisation of lemma 3.2.26
there is also an approximation reduction

let x = s′x in (s′ seq t′)
let x=[] in (s′

seq t′)
−−−−−−−−−−−−−−−→

∗

λ≈
let x = s′′x in (s′ seq t′)

cpa
−−→ s′[s′′x/x] seq t′[s′′x/x] ≡ s′[s′′x/x] seq t′

S
−→

∗

λ≈
λz.q

where t′[s′′x/x] ≡ t′ holds, since x does not occur free in t′. Clearly, the first
part of these reductions may independently also be performed within the surface
context let x = [] in s′ which yields

let x = s′x in s′
let x=[] in s′

−−−−−−−−−→
∗

λ≈
let x = s′′x in s′

cpa
−−→ s′[s′′x/x] (4.3.5)

4.3. PROVING OPEN SIMILARITY A PRECONGRUENCE 127

From s′[s′′x/x] seq t′ ⇓ λz.q we have t′ ⇓ λz.q and s′[s′′x/x] ⇓ by lemma 3.2.29,
hence let x = s′x in s′ .b

o l′ of (4.3.4) implies l′ ⇓ too. Thus l′ seq t′ ⇓ λz.q
again by lemma 3.2.29. So l′ seq t′ .b

o b in (4.3.3) proves the claim.

Lemma 4.3.5 (Stability of (.̂b) 0 Under (eseq)). For λx.s, t ∈ Λ≈ we have:

(λx.s) seq t
eseq
−−→ t ∧ (λx.s) seq t .̂b b =⇒ t .̂b b

Proof. In an analogous manner like for the (nd)-rules below.

Lemma 4.3.6 (Stability of (.̂b) 0 Under (nd, left)). For s, t ∈ Λ≈ we have:

pick s t
nd, left
−−−−→λ≈

s ∧ pick s t .̂b b =⇒ s .̂b b

Proof. From pick s t .̂b b we obtain

∃s′, t′ : s .̂b s′ ∧ t .̂b t′ ∧ pick s′ t′ .b
o b

Approximation reductions are sound w.r.t. &b
o by corollary 4.1.39, so we have

s′ .b
o
pick s′ t′

from pick s′ t′
nd, left
−−−−→λ≈

s′. Hence by transitivity

s .̂b s′ .b
o
pick s′ t′ .b

o b

thus s .̂b b by composition, i.e. property 4 of lemma 2.2.10.

Lemma 4.3.7 (Stability of (.̂b) 0 Under (nd, right)). For s, t ∈ Λ≈ we have:

pick s t
nd, right
−−−−−→λ≈

s ∧ pick s t .̂b b =⇒ s .̂b b

Proof. The argument is symmetric to the one for the (nd, left)-rule.

Lemma 4.3.8 (Stability of (.̂b) 0 Under (stop)). Let s ∈ Λ≈ be a term such
that s 6≡ } holds. Then the following holds:

s
stop
−−→ } ∧ s .̂b b =⇒ } .̂b b

Proof. Obvious by corollary 4.2.2.

128 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Based on the substitution lemmas from section 4.2.2, the proof for a reduc-
tion by rule (cpa) is quite involved.

Lemma 4.3.9 (Stability of (.̂b) 0 Under (cpa)). Let s, t ∈ Λ≈ be terms such
that let x = s in t is closed. Then the following is true:

let x = s in t
cpa
−−→ t[s/x] ∧ let x = s in t .̂b b =⇒ t[s/x] .̂b b

Proof. Show the cases for s ≡ } and s ≡ λz.q from definition 3.2.2 separately.

• For s ≡ } the proposition is

let x = } in t
cpa
−−→ t[}/x] ∧ let x = } in t .̂b b =⇒ t[}/x] .̂b b

From let x = } in t .̂b b, by definition 4.2.1, we have s′, t′ such that

} .̂b s′ ∧ x.t .̂b x.t′ ∧ let x = s′ in t′ .b
o b

hence t[}/x] .̂b t′[}/x] from t .̂b t′ by lemma 4.2.7 and furthermore

t′[}/x] .b
o
let x = } in t′ .b

o
let x = s′ in t′ .b

o b

since let x = s′ in t′
stop
−−→ let x = } in t′

cpa
−−→ t′[}/x]. Thus t[}/x] .̂b b

holds by composition, i.e. property (4) of lemma 2.2.10.

• If s ≡ λz.q the claim reads as follows

let x = λz.q in t
cpa
−−→ t[λz.q/x] ∧ let x = λz.q in t .̂b b =⇒

t[λz.q/x] .̂b b

From let x = λz.q in t .̂b b, by corollary 4.2.4, we have l′, t′ such that

λz.q .̂b l′ ∧ t .̂b t′ ∧ let x = l′ in t′ .b
o b

holds and let x = l′ in t′ is closed, which implies that l′ itself is closed.

Expanding the definition of .̂b further, from λz.q .̂b l′ we have q′ with

q .̂b q′ ∧ λz.q′ .b
o l′

4.3. PROVING OPEN SIMILARITY A PRECONGRUENCE 129

which obviously implies λz.q .̂b λz.q′ because .̂b is operator-respecting.
Since λz.q′ again is closed by corollary 4.2.4, from λz.q′ .b

o l′ we even
have λz.q′ .b l′, hence l′ ⇓ λz.q′′ with

λz.q′ .b λz.q′′

by corollary 4.1.30, as λz.q′ is an abstraction. So λz.q .̂b λz.q′′ follows

from λz.q .̂b λz.q′ in connection with λz.q′ .b λz.q′′ by composition, i.e.,

property 4 of lemma 2.2.10. Moreover, the reduction l′
S
−→

∗

λ≈
λz.q′′ can

also be performed inside the surface context let x = [] in t′, hence

let x = l′ in t′
S
−→

∗

λ≈
let x = λz.q′′ in t′

cpa
−−→ t′[λz.q′′/x]

Since a −→ b implies b .b a by corollary 4.1.12, from let x = l′ in t′ .b b,
by transitivity of .b and corollary 4.1.7, we have

t′[λz.q′′/x] .b
o b

With t .̂b t′ and λz.q .̂b λz.q′′ the preconditions of lemma 4.2.8 are

satisfied, thus t[λz.q/x] .̂b b follows from t[λz.q/x] .̂b t′[λz.q′′/x] and the
above by property (4) of lemma 2.2.10.

From the above, we achieve that the precongruence candidate restricted to
closed terms is stable under top-level reductions. This result will be carried over
to reductions within non-closing surface contexts below.

4.3.2 Establishing the Precongruence Theorem

In the previous section we have investigated the stability of the precongruence
candidate on closed terms under top-level reductions, but we have not yet com-
pletely established the link for the use of theorem 2.2.13 in the proof that open
similarity forms a precongruence.

To prove the Precongruence Theorem, first the precongruence candidate on
closed terms is shown to be stable under reductions within non-closing surface
contexts and subsequently the corresponding instance of (2.4.4) is deduced.

Lemma 4.3.10. Let p, q ∈ Λ0
≈ be closed terms such that p

N , a
−−−→λ≈

q with some

rule (a) of definition 3.2.2. Then for every term r: p .̂b r implies q .̂b r.

130 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Proof. We assume p ≡ N [p′]
N, a
−−−→ N [q′] ≡ q with p′

[], a
−−−→ q′ for some arbitrary,

but fixed non-closing surface context N ∈ N . Then p′, q′ ∈ Λ0
≈ have to be closed

terms by definition 3.2.23 and we may use induction over the structure of N :

• For N ≡ [] the claim holds by one of the lemmas above.

• If N ≡ N ′ t for some surface context N ′ ∈ N and a term t ∈ Λ0
≈ such that

p ≡ N ′[p′] t holds, then from p .̂b r we have s1, s2 such that

N ′[p′] .̂b s1 ∧ t .̂b s2 ∧ s1 s2 .b
o r

by definition 4.2.1. Since N has only one unique hole, the (a)-reduction
may also take place within N ′, hence

N ′[p′]
N ′, a
−−−→ N ′[q′]

to which we may apply the induction hypothesis, i.e.

N ′[p′]
N ′, a
−−−→ N ′[q′] ∧ N ′[p′] .̂b s1 =⇒ N ′[q′] .̂b s1

thus q ≡ N [q′] .̂b r immediately follows.

• The cases s N ′, pick N ′ t, pick s N ′ and let x = N in t can be shown
accordingly.

Using induction on the length of N -approximation reduction sequences,

yields s (.̂b) 0 t ∧ s ⇓ λx.s′ =⇒ λx.s′ (.̂b) 0 t by the above lemma.

Lemma 4.3.11. Let λx.r, s, t ∈ Λ0
≈ be closed terms such that s (.̂b) 0 t and

s ⇓ λx.r hold. Then also λx.r (.̂b) 0 t is true.

Proof. By lemma 3.2.25 it suffices to regard a converging approximation re-

duction involving non-closing surface contexts only. So assume s (.̂b) 0 t and

s
N ,
−−→

k

λ≈
λx.r for an induction on the length k of the reduction sequence.

• For k = 0 nothing has to be shown.

• If s
N
−→λ≈

s′
N
−→

k−1

λ≈
λx.r with k > 0 we obtain s′ (.̂b) 0 t from s (.̂b) 0 t

by lemma 4.3.10. Thus an application of the induction hypothesis to the

approximation reduction sequence s′
N
−→

k−1

λ≈
λx.r proves the claim.

4.3. PROVING OPEN SIMILARITY A PRECONGRUENCE 131

Proposition 4.3.12. The restriction (.̂b) 0 of .̂b to closed terms is a simu-

lation, i.e., the inclusion (.̂b) 0 ⊆
[
(.̂b) 0

o]
≈

is valid.

Proof. Let s, t ∈ Λ0
≈ be closed terms such that s (.̂b) 0 t holds. Furthermore,

assume s ⇓ λx.s′, i.e., ∃k : s
S
−→

k

λ≈
λx.s′ as well. By lemma 3.2.25, there is

also an approximation reduction sequence s
N
−→

k′

λ≈
λx.s′ to the same abstraction,

taking place within non-closing surface contexts only.

Thus λx.s′ (.̂b) 0 t follows from s (.̂b) 0 t by lemma 4.3.11. By corol-

lary 4.2.6, there is a closed λx.t′ such that t ⇓ λx.t′ and s
[
(.̂b) 0

o]
≈

t hold.

Having proven (.̂b) 0 a simulation, it is now a straightforward consequence

that the inclusion (.̂b) 0 ⊆ .b holds by coinduction. Together with the admissi-
bility of .b

o, this enables the application of theorem 2.2.13 in order to establish
one of the main results.

Precongruence Theorem 4.3.13. Open similarity .b
o is a precongruence.

Proof. Proposition 4.2.10 shows that the open extension .b
o is admissible.

Hence by theorem 2.2.13 it suffices to show that (.̂b) 0 ⊆ .b holds. Recall
that, as a greatest fixed point, .b contains all [·o]≈-dense sets, therefore the

inclusion (.̂b) 0 ⊆
[
(.̂b) 0

o]
≈

is sufficient. By proposition 4.3.12 this inclusion

is true, hence (.̂b) 0 is [·o]≈-dense and thus .b
o a precongruence.

As noted before, this is the essential precondition for showing that similarity
complies with contextual preorder, which will be addressed in a later section.
Thus, with mutual open similarity this chapter provides a powerful notion of
program equivalence which is a suitable criterion for the correctness of program
transformations.

By the concluding example, we may now get a better understanding of how
non-determinism and open similarity interact in the λ≈-calculus.

Example 4.3.14. Let s and t be terms such that s .b
o t or t .b

o s holds.
Then we have λx.pick s t .b

o
pick (λx.s) (λx.t), i.e., the potential to copy the

non-deterministic choice of two .b
o-related abstractions does not gain anything.

W.l.o.g. assume s .b
o t from which we have pick s t .b

o t by adopting the
argument in example 4.1.10 to open similarity. Since open similarity .b

o is a
precongruence, we obtain λx.pick s t .b

o λx.t therefrom.

132 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

On the other hand, the relation λx.t .b
o
pick (λx.s) (λx.t) follows di-

rectly from the top-level reduction pick (λx.s) (λx.t)
nd, right
−−−−−→ λx.t and thus

λx.pick s t .b
o λx.t .b

o
pick (λx.s) (λx.t) is established.

4.4 Future Work

As explained before, one motivation for developing a notion of similarity for the
non-deterministic call-by-need lambda calculus λND, was its use as a tool for
proving contextual equivalences. Though the results of the preceding section
show that this is indeed the case, apart from coinduction no proof strategy has
been established so far.

This is a non-trivial task since the approximation reduction in the calcu-
lus λ≈ comprises two further degrees of non-determinism beyond the pick-
construct: For every reduction step there are usually various surface context
available while rule } competes with all the other rules. So the prior question
is whether there is a some kind of “standard” reduction or, at least, a “more
deterministic” order for approximation reductions.

Moreover, like in [Kut99], it would be interesting to examine the determinis-
tic fragment of the λND-calculus. These aspects will be addressed subsequently.

4.4.1 Reduction Strategies for the λ≈-Calculus

In order to devise a reduction strategy for the λ≈-calculus which is able to
determine a converging approximation reduction if there is one, we will briefly
discuss some ideas. Though the normalisation theorem 3.2.28 implements some
kind of “leftmost-outermost” reduction order, it does not represent a suitable
procedure for finding an abstraction.

One elementary requirement is that it should be detected when convergence
is possible without using the (stop)-rule. It is easy to see that in general this
cannot be accomplished by (olf)-reductions.

On the other hand, trying to simulate normal-order reduction to some extent,
seems sensible. The crucial point is whether the rules (llet) and (cp) should be
kept or replaced by (stop) and (cpa) from the λ≈-calculus.

If only the rules of the approximation calculus λ≈ were used, the effect
of the rule (llet) would have to be emulated by descending recursively into
the respective binding. To see that this situation is slightly different from the
normalisation, a normal-order (llet)-redex let x = (let y = ty in tx) in R[x] is
considered. Since x is in a reduction context and thus needed for the reduction,

4.4. FUTURE WORK 133

the whole term has no WHNF if let y = ty in tx hasn’t any. So it would make
sense to proceed inside let y = ty in tx with the reduction. But, it is still not
clear when and where rule (stop) should be applied. The reason is that it is in
advance unknown which abstraction from the answer set of let y = ty in tx
suffices for the whole term let x = (let y = ty in tx) in R[x] to have an
approximation reduction to an abstraction. The advantage of this method would
be that all reductions which are involved belong to the λ≈-calculus.

An alternative could be to switch back to normal-order reduction to weak
head normal form. Then, using (stop) and (cpa) on the let-environment, an
abstraction can be produced. In general such an abstraction will clearly pos-
sess less information than the corresponding weak head normal form and thus
all possible abstractions have to be considered — this is just the way the ap-
proximation calculus λ≈ works. The results from section 4.1.4 suggest that the
use of (llet) and (cp) during this process is safe for a possible approximation
reduction to an abstraction. Particularly, lemma 4.1.44 demonstrates that (llet)
preserves the answer set of a term while an analogous result2 seems possible for
normal-order (cp)-reductions.

Hence the latter approach looks most promising since it can be based on
many results already devised in this work.

4.4.2 Similarity Checking

Now possibilities and limitations will be discussed of how the technique pre-
sented in the previous section could be used to check for similarity. So a short
illustration of the procedure using normal-order reduction will be given.

Assume two closed terms s, t ∈ Λ0
ND for which s .b t is to be shown. If s has

no WHNF the relation will trivially be true, hence suppose s
n
−→

∗

λND
Ls[λx.s′]

to hold. If t has no WHNF the relation will be false, so t
n
−→

∗

λND
Lt[λx.t′]

is assumed. As a first step, the abstractions λx.s′[}/x] and λx.t′[}/x] are
produced, i.e., all variables which were bound in the let-environments, denoted
by x, are replaced by the }-term. Note that λx.s′[}/x] .b λx.t′[}/x] is not
necessary for s .b t to hold.

Therefore, the next stage proceeds within the let-environments Ls and Lt

respectively. I.e., Let si and ti respectively stand for the terms to which the
variables x are bound to, then si and ti are reduced in normal-order until a
WHNF is reached, if possible. The goal is again to obtain abstractions from

2Note that in the case of (cpa), internal (stop)-reductions come into play, only because
copy targets might be at non-surface locations.

134 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

these weak head normal forms. So unless there are abstractions already, the
process is applied recursively. Finally, using (cpa) abstractions may be copied
and thus the environments Ls and Lt are eliminated.

Backed up by (4.1.7) of corollary 4.1.30 we can establish s .b t by showing
that for every abstraction λx.s′′ derived from s in the above manner, there exists
a corresponding abstraction λx.t′′ for t such that λx.s′′ .b λx.t′′ holds.

Though the answer set is computed in a systematic way, it is not yet clear
how to accomplish the comparison of all possible answers — usually there are
infinitely many. But the approach discussed above might offer the possibility
to “short-circuit” proof obligations which occur repeatedly. The idea behind it
is similar to the detection of a “loop”, e.g. in [Sch00, SSSS04] where an infinite
(cyclic) expansion of a proof tree can be avoided in some situations.

4.4.3 Deterministic Subterms

The treatment of deterministic subterms in [Kut99] extends over a whole chap-
ter. Since the aim of this work is on similarity, we only glimpse at what deter-
ministic essentially means and why those terms could be copied unrestrictedly.

Definition 4.4.1. Let s ∈ Λ0
≈ be a closed term. Then s is deterministic if and

only if s does not contain the pick-operator.

If the above notion was given for the calculus λND, a deterministic term
automatically would have at most one weak head normal form. But, as explained
before, in the λ≈-calculus there exist further levels of non-determinism. Though
it seems not immediately clear, whether a deterministic term might still have
an infinite answer set, e.g. ans(KI) is obviously not a singleton. However,
it contains λy.} only because (stop) could be applied to I although it is not
necessary. Hence, analysing the answer set of deterministic terms should give the
result that its elements differ only by internal stop reductions. More formally:

Conjecture. Let s be a deterministic term. Then λy.p, λz.q ∈ ans(s) implies

λy.p
i, C, stop
←−−−−−−→

∗

λz.q

We will illustrate how this property could be used to show that closed deter-
ministic terms may be copied, i.e., mutual similarity is retained. The argument

is based on an additional assumption, namely: For all
i, C, stop
←−−−−−−→

∗

-related ab-

stractions from the answer set, there exists a further element which is greater
w.r.t. similarity.

4.4. FUTURE WORK 135

Hence, suppose a surface contexts S ∈ S and a closed term t ∈ Λ0
≈ that is

deterministic. We will only explain how let x = t in S[t] .b let x = t in S[x]
could be justified since the opposite relation should be even simpler. Therefore
let x = t in S[t] ⇓ λz.q is assumed. By the normalisation from lemma 3.2.26 in
section 3.2.5 the converging approximation reduction sequence ending in λz.q
may be required to reduce let x = t in S[t] to let x = λy.p in S[t] first.
Furthermore, suppose the second occurrence of t in S[t] to be necessary to
reach the abstraction λz.q. Then t has to be reduced to some abstraction
λy.p′. By the premise there is a t ⇓ λy.p′′ such that λy.p .b λy.p′′ as well
as λy.p′ .b λy.p′′ is valid. Choosing this abstraction λy.p′′ for the reduction
of t within let x = t in S[x] establishes the claim since open similarity is a
precongruence.

It is remarkable that the argument is based on the condition that the answer
set of a deterministic term has a greatest element. In section 5.1 this condition
will appear again.

136 CHAPTER 4. SIMILARITY IN λ≈ IS A PRECONGRUENCE

Chapter 5

Contextual and
Denotational Semantics

The intention of this work is to provide the fundamentals for using similarity as
a proof tool, e.g., to show program transformations correct. Since correctness
of program transformations is defined in terms of contextual equivalence, the
inclusion of (open) similarity in contextual preorder is vital. Fortunately, as will
be seen in section 5.1.2, this is no more subtle once open similarity has been
established a precongruence in the previous chapter.

However, for the time being this consequence is only valid w.r.t. the con-
textual preorder of the λ≈-calculus, because similarity is exclusively defined
therein. Hence, section 5.1.1 will first have to show that the respective contex-
tual preorders of the calculi λND and λ≈ indeed coincide. This is accomplished
by using the Approximation Theorem from section 3.3, by which convergence
in the calculus λ≈ conforms with the one of the λND-calculus.

By means of the subsequent discussion of syntactic continuity, it becomes
evident that mutual open similarity fails to completely match contextual equiv-
alence. The observation that similarity is strictly contained in contextual pre-
order is due to Lassen, though the counter-example for the λ≈-calculus is, com-
pared to [Las98b], by far more involved.

Thus, section 5.3 describes which parts of the theory need contextual pre-
order and for which open similarity suffices. Moreover, a condition is given un-
der which open similarity and contextual preorder agree. The chapter concludes
with section 5.4 that sketches a term model based on contextual equivalence.

137

138 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

5.1 Contextual (Pre-) Congruence

This section presents the link for similarity in the calculus λ≈ as a tool for
proving contextual equivalence in the λND-calculus. Therefore, we first recall
the definition of contextual preorder and equivalence as well as briefly compare it
to the corresponding notions from [Kut99] and [MSC99a]. From definition 2.4.5
contextual preorder is known as the following relation.

s .c t ⇐⇒ (∀C ∈ C : C[s] ⇓ =⇒ C[t] ⇓) (5.1.1)

That definition is valid for the λ≈-calculus too, though } enriches the sets of
terms and contexts. Hence section 5.1.1 will also address the issue that } does
not add any computational power in more detail.

However, the above definition does not cover divergence, i.e., non-terminating
reduction sequences. So, w.r.t. the definition used in this work, the terms I and
pick I Ω are contextually equivalent. But this is not true for the contextual
equivalence of neither [Kut99] nor [MSC99a].

To see this, we consider the definition of contextual preorder in the calculus
Λlet of [Kut99] and in the Λ⊕

NEED-calculus of [MSC99a] respectively. Let the
symbol � stand for must convergence and ⇑ for may divergence.

s .Λlet
t

def
⇐⇒ (∀C ∈ C : C[s] ⇓ =⇒ C[t] ⇓) ∧

(∀C ∈ C : C[s] � =⇒ C[t] �)

s .Λ
⊕

NEED

t
def
⇐⇒ (∀C ∈ C : C[s] ⇓ ⇐= C[t] ⇓) ∧

(∀C ∈ C : C[s] ⇑ ⇐= C[t] ⇑)

As explained in the introduction to section 3.1.3, must convergence � and may
divergence ⇑ are just logical counterparts, i.e., s � ⇐⇒ s 6⇑ holds. So it is
merely a matter of taste which one to choose thereof. Here, contrary to [Kut99]
the representation with must convergence was preferred, because it provides
a uniform look of the implications. Because of the above mentioned relation
between must convergence and may divergence, both contextual preorders .Λlet

and .Λ
⊕

NEED

apparently induce the same style of contextual equivalence. That

is, two terms are contextually equivalent if and only if identical converging and
diverging behaviour is observed in all contexts.

This is apparently not the case for the terms I and pick I Ω as the latter
has a non-terminating reduction within the empty context. It is interesting
to note that in the Λ⊕

NEED-calculus pick I Ω .Λ
⊕

NEED

I is true and also in

5.1. CONTEXTUAL (PRE-) CONGRUENCE 139

the Λlet-calculus the relation pick I Ω .Λlet
I holds. This is so because I

and pick I Ω are distinguished only by their non-terminating behaviour. The
situation is completely different for the non-deterministic choice of two incom-
parable terms, e.g., pick K K2 and K are not related by .Λlet

in any fashion
but pick K K2 .Λ

⊕

NEED

K holds. Though, the motivation for the design of the

contextual preorder in [Kut99] is convincing: A term t should only be considered
“better” than a term s if it does not additionally introduce non-termination.

However, such a view would cause pick K K2
nd, left
−−−−→ K to be a counter-

example to terms becoming smaller w.r.t. contextual preorder during reduction.
And throughout chapter 4 this property has been used extensively, simplifying
many of the proofs. So when the calculus λND would be extended to incorporate
divergence, adopting the opposite relation &Λ

⊕

NEED

of the contextual preorder

from the Λ⊕
NEED-calculus seems most promising.

By the achievement of the aforementioned chapter 4, i.e., that it is a pre-
congruence, open similarity will be shown to imply contextual preorder in sec-
tion 5.1.2. But before this, the equivalence of the contextual preorders in λND

and λ≈ is established.

5.1.1 Correspondence of Equality in λND and λ≈

From the Approximation Theorem in section 3.3 it has been learned that conver-
gence in the calculi λND and λ≈ coincides. There, the normal-order reduction
of the λND-calculus was already extended to λ≈-terms by considering } as a
term without any normal-order reduction. Furthermore, it is not difficult to see
that } and Ω are mutual similar in the λ≈-calculus and therefore contextu-
ally equivalent by the results of the subsequent section. Hence, not only inside
terms but also in contexts all occurrences of } can be replaced with Ω without
changing their discriminating power. This means that apart from normal-order
reduction also the contextual preorder may be transferred from the ΛND- to
the Λ≈-language. Therefore, we may assume to completely operate within the
language Λ≈ so that the lemma below becomes applicable.

It accomplishes the step from correspondence of convergence to contextual
preorder. This is even possible in the general setting of a lazy computation
system while its proof benefits from the fact that only may convergence has to
be considered.

Lemma 5.1.1. Let L1,L2 be two lazy computation systems, whose term sets
are identical, i.e. T (L1) = T (L2), with respective evaluation ⇓L1

and ⇓L2
and

140 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

contextual approximation .L1,c and .L2,c. Then .L1,c = .L2,c if and only if
r ⇓L1

⇐⇒ r ⇓L2
for every term r ∈ T holds.

Proof. The “only-if”-part is trivial by choosing C = [] in the right hand side
of (5.1.1). By symmetry, it suffices to show .L1,c ⊆ .L2,c for the “if”-part.
So assume terms s, t ∈ T , arbitrary but fixed, and a context C ∈ C such that
s .L1,c t and C[s] ⇓L2

hold. By the premise ∀r : r ⇓L1
⇐⇒ r ⇓L2

, we also
have C[s] ⇓L1

and hence C[t] ⇓L1
since s .L1,c t implies C[s] .L1,c C[t]. Thus

C[t] ⇓L2
by the premise ∀r : r ⇓L1

⇐⇒ r ⇓L2
again.

In conjunction with the Approximation Theorem it is now an easy conse-
quence that the contextual congruences in λND and λ≈ agree.

Theorem 5.1.2. Let s, t ∈ Λ≈ be terms. Then s 'λND,c t iff s 'λ≈,c t is true.

Proof. As explained before, Λ≈ is considered the common set of terms. Thus
the claim follows from lemma 5.1.1 since ∀r : r ⇓λND

⇐⇒ r ⇓λ≈
holds by the

Approximation Theorem.

We will therefore drop the distinction between the two contextual preorders
in λND and λ≈ for the rest of this work.

5.1.2 Open Similarity implies Contextual Preorder

The last step for establishing mutual open similarity as a method to show con-
textual equivalences in the λND-calculus is now the inclusion of open similarity
in the contextual preorder. The prerequisites for this are provided in chapter 4,
namely by the Precongruence Theorem, which states that open similarity is a
precongruence, and by proposition 4.1.37 about convergence on open terms.

Main Theorem 5.1.3. For all terms s, t ∈ Λ≈ the following holds:

s .b
o t =⇒ s .c t

Proof. Since .b
o is a precongruence by the Precongruence Theorem and .b is

by definition a simulation, according to theorem 2.4.7 the prerequisite that (·)o

qualifies for preservation of convergence has to be established only.
The proof is then as follows. Assuming terms s, t ∈ Λ≈ and an arbitrary

context C ∈ C satisfying s .b
o t and C[s] ⇓ it is to show that C[t] ⇓ holds,

too. From s .b
o t we have C[s] .b

o C[t] since .b
o is a precongruence. By

definition 4.1.3 of the open extension this means σ(C[s]) .b σ(C[t]) for all
closing substitutions σ that map only to } or a closed abstraction.

5.2. SYNTACTIC CONTINUITY 141

This is true in particular for the substitution σ} that yields } for all vari-
ables. Furthermore, C[s] ⇓ implies σ}(C[s]) ⇓ by proposition 4.1.37 from which,
in connection with σ}(C[s]) .b σ}(C[t]), we have σ}(C[t]) ⇓ in turn. Thence,
by proposition 4.1.37 again, C[t] ⇓ holds.

It easily follows that approximation reduction makes terms smaller w.r.t. con-
textual preorder.

Corollary 5.1.4. Let s, t ∈ Λ≈ be terms with s
S
−→

∗

λ≈
t. Then t .c s is true.

Proof. By corollary 4.1.40 in connection with the Main Theorem.

By the results from section 3.3 and section 4.1.4 the previous corollary may
be carried over to normal-order reduction.

Corollary 5.1.5. Let s, t ∈ Λ≈ be terms with s
n
−→

∗

λND
t. Then t .c s is true.

However, the current section is entitled that open similarity implies contex-
tual preorder which means that the inclusion .c⊆ .b

o is in general not valid.
If it was, then also (.c) 0 ⊆ (.b

o) 0 = .b would be, since (·) 0 is monotonic
and (·)o

admissible. So, by the following proposition open similarity is strictly
contained in contextual preorder.

Proposition 5.1.6. There exist closed terms s, t ∈ Λ0
≈ such that s (.c) 0 t

holds but s .b t does not.

Involving the notion of syntactic continuity, the proof of this proposition is
quite complex and thus deferred to the next section.

5.2 Syntactic Continuity

It is well-known, cf. [MST96], that not every least upper bound in Λ≈ is contin-
uous w.r.t. contexts. I.e., there exist infinitely ascending chains (si) which have
a least upper bound, say t, but C[t] is not the least upper bound of the chain
(C[si]) where C is some context. When least upper bounds should be considered
only, which are continuous w.r.t. contexts, the notion of a contextual least upper
bound proves useful, cf. [Sch00, SS03a]. Suppose . to be some preorder.

Definition 5.2.1. Let (si) be an ascending chain. Then t is the contextual

least upper bound of (si), denoted t =
⊔C

i si, iff the following condition is met.

∀C : (∀i : C[si] . C[s]) ∧ (∀t : (∀i : C[si] . t) =⇒ C[s] . t)

142 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

Usually the combinator Y shall be used to represent recursion. Therefore, it
is crucial that Y f forms the contextual least upper bound of the chain (f i})
where f i denotes the i-fold application of the term f which will be defined below.
This property is called syntactic continuity , i.e., Y f is the least upper bound
of the chain (f i}) and continuous w.r.t. contexts, cf. [Pit97, San97, Las98b].

Definition 5.2.2. Let s, t ∈ Λ≈ be terms and i ∈ N a natural number. Then
si t, the i-fold application of s to t, is inductively defined as follows:

s0 t ≡ t

si+1 t ≡ s (si t)

The remainder of this section treats syntactic continuity w.r.t. contextual
preorder and open similarity respectively. For the former it holds, whereas
regarding the latter a counter-example is being devised.

5.2.1 Contextual Preorder

In order to show that syntactic continuity is valid w.r.t. the contextual preorder,
a context lemma for the λ≈-calculus will be established first. By means of the
Surface Context Lemma it is sufficient to consider the converging behaviour of
terms within surface contexts only.

Lemma 5.2.3 (Surface Context Lemma). Let T ⊆ Λ≈ be a countable set
of terms and s ∈ Λ≈ a term satisfying the following: For every surface context
S ∈ S with S[s] ⇓ there is a term t ∈ T such that S[t] ⇓ holds.

Then this property is also valid for general contexts, i.e. for every context
C ∈ C with C[s] ⇓ there exists t ∈ T such that C[t] ⇓ is true.

Proof. Given a term s such that ∀S ∈ S : S[s] ⇓ =⇒ ∃t ∈ T : S[t] ⇓ holds. For
all terms r ∈ Λ≈ we have r ⇓ND ⇐⇒ r ⇓λ≈

by the Approximation Theorem.
This is why the above implication is equivalent to

∀S ∈ S : S[s] ⇓ND =⇒ ∃t ∈ T : S[t] ⇓ND

As every reduction context is also a surface context, lemma 3.1.16 applies.

Remark 5.2.4. Note that, even if restricted to closed terms, the above lemma
cannot be extended to the case that C[s] and C[t], respectively S[s] and S[t],
converge to the same abstractions.

5.2. SYNTACTIC CONTINUITY 143

A counter-example is s ≡ pick K K2 and T = {K,K2}. By lemma 3.2.20,
since s is closed, for every S ∈ S such that S[s] ⇓ λz.q either S[K] ⇓ λz.q
or S[K2] ⇓ λz.q holds. But λx.(pick K K2) is not contextually equivalent to
pick (λx.K) (λx.K2) and hence neither λx.K ⇓ λx.s nor λx.K2 ⇓ λx.s is true.

Now we will proceed as follows. Basically, the subsequent lemma will estab-
lish that Y f can be computed by the chain (f i}), i.e., for all possible outcomes
of Y f there is also an index i such that f i} converges to the same abstraction.
Afterwards, this result is extended to reductions within surface contexts. Using
the Surface Context Lemma, it is eventually transferred to arbitrary contexts
which yields syntactic continuity.

Lemma 5.2.5. Let f ≡ λx.s ∈ Λ0
≈ designate a closed abstraction. Then for ev-

ery abstraction the term (λy.f (y y)) (λz.f (z z)) converges to, there is a natural
number i ∈ N such that f i} reduces to the same abstraction.

Proof. By induction on the length n of the converging approximation sequence
for the term (λy.f (y y)) (λz.f (z z)). We therefore distinguish on the first re-
duction of this sequence:

• Clearly (λy.f (y y)) (λz.f (z z))
S, stop
−−−−→ } may be ruled out, since } has

no approximation reduction to an abstraction.

• By lemma 3.2.14, the case (λy.f (y y)) (λz.f (z z))
S, stop
−−−−→ } (λz.f (z z))

behaves identically to the previous one.

• The reduction (λy.f (y y)) (λz.f (z z))
S, stop
−−−−→ (λy.f (y y))} may only be

followed by (lbeta) to reach an abstraction — otherwise one of the previous

cases would arise. This sequence
S, stop
−−−−→ ·

S, lbeta
−−−−−→ obviously commutes,

i.e. leads to the same abstraction as
S, lbeta
−−−−−→ ·

S, stop
−−−−→ which forms the

induction base.

The common result of both sequences is let y = } in f (y y) whose
reduction may continue with (cpa) without changing the length of the

sequence by lemma 3.2.26. Thus let y = } in f (y y)
cpa
−−→ f (}}) has

the same approximation reduction to an abstraction and so has f 1} by
lemma 3.2.14, which establishes the claim.

• The induction step is given when the use of (stop) is avoided at this early
stage. Then only (lbeta) is possible at first:

(λy.f (y y)) (λz.f (z z))
[], lbeta
−−−−−→ let y = (λz.f (z z)) in f (y y)

144 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

By lemma 3.2.26, we now may perform (cpa) without changing the length
of the sequence. Recalling f ≡ λx.s, the possible non-(stop)-reductions
are all of type (lbeta) and may clearly be commuted. Hence we may
assume:

(λy.f (y y)) (λz.f (z z))

[], lbeta
−−−−−→ let y = (λz.f (z z)) in f (y y)

[], cpa
−−−−→ f ((λz′.f (z′ z′)) (λz′′.f (z′′ z′′)))

[], lbeta
−−−−−→ let x = ((λz′.f (z′ z′)) (λz′′.f (z′′ z′′))) in s

By lemma 3.2.26 again, we may assume that reduction first proceeds inside
the context let x = [] in s without changing the length of the sequence
at all. But then, since (λz′.f (z′ z′)) (λz′′.f (z′′ z′′)) is syntactically equal
to the original term, we may apply the induction hypothesis to it.

Hence there is a natural number i such that f i} reduces to the same
abstraction as (λz′.f (z′ z′)) (λz′′.f (z′′ z′′)) converges to. Thus the claim

is shown since f i+1}
lbeta
−−−→ let x = (f i}) in s holds.

The reductions performed in the above lemma may also be embedded into
surface contexts, as can be shown using evaluation at strict positions.

Lemma 5.2.6. Let f ≡ λy.p ∈ Λ0
≈ be a closed abstraction and S ∈ S a surface

context. Then S[Y f] ⇓ λz.q implies that there is a natural number i ∈ N such
that also S[f i}] has a reduction to λz.q, i.e. to the same abstraction.

Proof. Assuming S[Y f] ⇓ λz.q lemma 3.2.20 is applicable, since Y and f both
are closed. Hence we have λx.s such that Y f ⇓ λx.s and S[λx.s] ⇓ λz.q
hold. Since for Y f ⇓ λx.s all sensible reduction sequences have to start with

Y f
S
−→

∗

λ≈
(λy.f (y y)) (λz.f (z z)) lemma 5.2.5 may be used. Therefore, there

is a natural number i such that f i}
S
−→

∗

λ≈
λx.s too. This approximation

reduction may be performed within the surface context S, thus S[f i}]
S
−→

∗

λ≈

S[λx.s]
S
−→

∗

λ≈
λz.q proves the claim.

Combining the previous lemma with the Surface Context Lemma comprises
an essential step towards syntactic continuity.

Lemma 5.2.7. Let f ≡ λx.s ∈ Λ0
≈ be a closed abstraction and C ∈ C an

arbitrary context. Then C[Y f] ⇓ =⇒ ∃i ∈ N : C[f i}] ⇓ is valid.

5.2. SYNTACTIC CONTINUITY 145

Proof. Assume f ≡ λx.s ∈ Λ0
≈ to be a closed abstraction. Then, by lemma 5.2.6,

the implication ∀S ∈ S : S[Y f] ⇓ =⇒ ∃i ∈ N : S[f i}] ⇓ holds. Therewith,
the preconditions for lemma 5.2.3 are met.

We are now in a position to prove the following formulation of syntactic
continuity which is also found in [Pit97, San97, Las98b]. Deriving Y f to be the
contextual least upper bound of the ascending chain (f i}) is easy therefrom.

Theorem 5.2.8 (Syntactic Continuity for .c). Let f ≡ λx.s ∈ Λ0
≈ be a

closed abstraction. Then for every context C ∈ C and for every term t ∈ Λ≈ the
equivalence C[Y f] .c t ⇐⇒ ∀i : C[f i}] .c t is true.

Proof. The “if”-part of the equivalence is straightforward, hence solely the
“only-if”-part is shown. Therefore, assume the implication ∀i : C[f i}] .c t to
hold. Furthermore, suppose D[C[Y f]] ⇓ in order to establish D[t] ⇓ for some
arbitrary context D as required by the definition of the contextual preorder.
From lemma 5.2.7 a natural number i is obtained such that D[C[f i}]] ⇓ is
true. By the premise, D[t] ⇓ is implied for every i, thus the claim holds.

What follows, is the discussion of a special case corresponding to the counter-
example that will be given for open similarity. Since similarity tests for abstrac-
tions, we will put Y f under an abstraction λz.[] and exploit that the contextual
least upper bound of the ascending chain λz.(f i}) is obtained.

Corollary 5.2.9. Let f ≡ λx.s ∈ Λ0
≈ be closed. Then for all contexts C ∈ C

with C[λz.(Y f)] ⇓ there is a λz.(f i}) such C[λz.(f i})] ⇓ holds.

Proof. Let C be an arbitrary context such that C[λz.(Y f)] converges. For
the context D ≡ C[λz.[]] we obtain D[Y f] ⇓ since C[λz.(Y f)] ≡ D[Y f].
Hence, by lemma 5.2.7, there exists a f i} such that D[f i}] ⇓ which in fact is
C[λz.(f i})] ⇓ as desired.

A term is needed that produces just the chain λz.(f i}) as its answer set.

Notation. Whenever f denotes some closed abstraction, let Gf stand for the
closed term Gf ≡ (Y (λg.λx.pick (λz.x) (g (f x))))} in the following.

Lemma 5.2.10. Let f ∈ Λ0
≈ be a closed abstraction. Then for ans(Gf), the

answer set, ans(Gf) = {λz.(f i}) | i ∈ N } holds.

146 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

Proof. By induction on the number i of (nd, right)-reductions in a converging

approximation reduction Gf
S
−→

∗

λ≈
λz.q we will show that q ≡ f i} holds. We

therefore unfold the beginning of such a sequence, where we disregard (stop)-
reductions, since they will not contribute anything to an abstraction:

Gf ≡ (Y (λg.λx.pick (λz.x) (g (f x))))}

lbeta
−−−→ (let h = (λg.λx.pick (λz.x) (g (f x))) in (λy.h (y y)) (λy′.h (y′ y′)))}

cpa
−−→ ((λy.(λg.λx.pick (λz.x) (g (f x))) (y y)) (λy′.(λg.. . .) (y′ y′)))}

lbeta
−−−→ . . .

cpa
−−→ ((λg.λx.pick (λz.x) (g (f x))) ((λy′.(λg.. . .) (y′ y′)) . . .))}

S
−→

∗

λ≈
pick (λz.}) w

The induction base is given by λz.} whereas the term w is of a form so that
the induction hypothesis may be applied.

Now it can be shown that Gf may approximate λz.(Y f) arbitrarily precise.

Lemma 5.2.11. Let f be a closed abstraction. Then λz.(Y f) .c Gf is true.

Proof. Assuming f ≡ λx.s ∈ Λ0
≈ and a context C satisfying C[λz.(Y f)] ⇓, we

have to show that C[Gf] ⇓ holds, too. By corollary 5.2.9 there is a number i
such that C[λz.f i}] converges. Furthermore, by lemma 5.2.10, the reduction

Gf
S
−→

∗

λ≈
λz.(f i}) exists, hence λz.(f i}) .b Gf by corollary 4.1.12. From

this we have C[λz.(f i})] .b C[Gf] since .b is a precongruence, and thus, by
the definition of .b, the claim holds.

For similarity, the specific case f ≡ K will be considered as well.

Corollary 5.2.12. The inequation λz.(Y K) (.c) 0 GK is true.

5.2.2 Similarity

In order to show s [η]≈ t the definition of an experiment requires to fix for the
term t a corresponding abstraction for every abstraction s converges to. This
obviously will not be possible if λz.(Y K) and the ascending chain (λz.(Ki}))
are compared. The crucial point is that the term GK constructs this chain.

Lemma 5.2.13. The inequation λz.(Y K) .b GK is false.

5.3. (IN-) EQUATIONAL THEORY 147

Proof. Assume λz.(Y K) .b GK for a proof by contradiction. Since λz.(Y K)
already is an abstraction, there has to be a closed abstraction λz.q ∈ Λ0

≈ such
that GK ⇓ λz.q and λz.(Y K) .b λz.q hold. By lemma 5.2.10, q has to be of
the form q ≡ λz.(Ki}). Fixing some i we obtain (λz.(Y K))} . . .} ⇓ for i + 2
many applications to }, but (λz.Ki})} . . .}, with } . . .} representing the
same argument sequence, does not converge.

This has an easy but significant consequence.

Corollary 5.2.14. Syntactic continuity is not valid w.r.t. similarity.

Furthermore, we may restate and finally prove proposition 5.1.6 which im-
plies that open similarity is strictly contained in contextual preorder.

Proposition. There are s, t ∈ Λ0
≈ so that s (.c) 0 t holds but s .b t does not.

Proof of Proposition 5.1.6. By corollary 5.2.12 and lemma 5.2.13.

5.3 (In-) Equational Theory

This section describes the theory generated by contextual preorder and equiva-
lence respectively. So an overview will be given which equations and inequations
respectively are valid in the λND-calculus. For this, open similarity is a quite
powerful tool. However, because of its strict inclusion in contextual preorder,
logical implications that are valid w.r.t. open similarity can become false for
contextual preorder.

Therefore, we will also look for conditions under which contextual preorder
is sufficient to establish open similarity. E.g., it should be stressed that open
similarity matches contextual preorder whenever the answer set already contains
its own contextual least upper bound, i.e., the answer set has a greatest element.
In order to establish this result, it has to be shown first, that such an answer is
contextually equivalent to the original term in this case.

Lemma 5.3.1. Let s ∈ Λ0
≈ be a closed term such that ans(s) possesses a max-

imum w.r.t. .c, denoted by λx.t. Then s ('c) 0 λx.t is true.

Proof. We have λx.t .c s by corollary 5.1.4, so only the converse needs to
be proven. By the surface context lemma 5.2.3 it is sufficient to prove the
implication ∀S : S[s] ⇓ =⇒ S[λx.t] ⇓. Therefore, we assume an arbitrary
surface context S ∈ S such that S[s] ⇓ holds. We then obtain, by lemma 3.2.20,
some abstraction λy.p such that both s ⇓ λy.p and S[λy.p] ⇓ λz.q are satisfied.

148 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

By the premise, λx.t is the maximum of ans(s) w.r.t. .c and we thus have
λy.p .c λx.t from which, by the definition of .c, the claim follows.

Proposition 5.3.2. Let s′, t′ ∈ Λ0
≈ be closed terms such that ans(t′) has a

greatest element w.r.t. the .c-ordering. Then s′ (.c) 0 t′ =⇒ s′ .b t′ holds.

Proof. By λx.t let the maximum of ans(t′) be denoted. Proving s′ .b t′ by
coinduction requires the condition (.c) 0 ⊆ [(.c) 0]≈ to be established. So
assume s′ (.c) 0 t′ and according1 to (4.1.4) show

∀λy.p ∈ ans(s′) : ∃λz.q ∈ ans(t′) : ∀r ∈ Λ0
≈ : (λy.p) r (.c) 0 (λz.q) r

Let s′ ⇓ λy.p and as t′ ⇓ λx.t holds, only ∀r ∈ Λ0
≈ : (λy.p) r (.c) 0 (λx.t) r

remains to be shown. From s′ (.c) 0 t′ we obtain λy.p (.c) 0 t′ by corol-
lary 5.1.4. Since λx.t is the maximum of ans(t′) we thus have λy.p (.c) 0 λx.t
by lemma 5.3.1 and the claim follows since .c is a precongruence.

Remark 5.3.3. The above proof is based on the argument that .b could equally
well have been defined as the greatest fixed point of an experiment

s [η]≈ t ⇐⇒ ∀λx.s′ ∈ ans(s) : ∃λx.t′ ∈ ans(t) :

∀p ∈ Λ0
≈ : (λx.s′) p η (λx.t′) p

Instead, for .c also a counterpart to proposition 4.1.27 could have been estab-
lished. But that is not the intention of this section since a lot of the foregoing
argumentation would be repeated.

For illustration purposes we give a separate proof for the corresponding
statement of lemma 5.3.1 w.r.t. similarity.

Lemma 5.3.4. Let s ∈ Λ0
≈ be a closed term such that ans(s) possesses w.r.t. .b

a greatest element, denoted by λx.t. Then s 'b λx.t is valid.

Proof. We have λx.t .b s by corollary 4.1.12, so only the converse needs to be
proven. We therefore assume s ⇓ λx.s′ and will show that (λx.s′) r .b (λx.t) r
for an arbitrary closed r ∈ Λ0

≈ holds. By the premises λx.s′ .b λx.t since
λx.s′ ∈ ans(s) and thus by corollary 4.1.28 the claim follows.

1As mentioned there, already the experiment also could have been formulated this way.

5.3. (IN-) EQUATIONAL THEORY 149

The implication r .b t ∧ s .b t =⇒ pick r s .b t from example 4.1.10
is one of the typical cases where similarity must not be replaced simply by
contextual preorder. Though the result may be transferred if ans(t) has a
maximum, it would be more appropriate to rework the example w.r.t. contextual
preorder. In particular, as all results of section 3.2.5 concerning rearrangement
of reduction sequences likewise apply to direct proofs of contextual equivalence.
The same goes for (s .c t ∨ t .c s) =⇒ λx.pick s t .c pick (λx.s) (λx.t)
according to example 4.3.14. This condition can be shown to hold for closed
terms w.r.t. contextual preorder by means of evaluation at strict positions in
conjunction with the Surface Context Lemma.

However, for the opposite inequation it does work, since no restrictions are
imposed on the terms.

pick (λx.s) (λx.t) .c λx.pick s t (5.3.1)

Because of compatibility with contexts, this is just an instance of the following
statement and its symmetric variant which both follow from corollary 5.1.4.

∀t : s .c pick s t (5.3.2)

Establishing pick t t .b
o t for open similarity is trivial and thus pick could be

said to be idempotent by the equation below.

t 'c pick t t (5.3.3)

Similar to example 3.1.18 and 4.1.22 respectively, shifting λ over pick is obvi-
ously not correct in general, since2 abstractions are the only terms that may
be copied. So more than (5.3.1) and the conditional version mentioned above
could not be expected in this regard.

But when switching from a λ-context to surface contexts, the equality for a
pick-shift holds unconditionally.

S[pick s t] 'c pick S[s] S[t] (5.3.4)

The proof is an easy application of the results from section 3.2.5 on the rear-
rangement of reduction sequences. Another interesting example is

s .c t =⇒ pick s t 'c t (5.3.5)

which follows from (5.3.2) in connection with (5.3.3) when the premise s .c t is
inserted into the context pick [] t. More equations and inequations could be
derived using the ideas which have been presented in this section.

2in the original λND-calculus

150 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

5.4 Denotational Semantics

This section aims at describing how a denotational semantics, i.e., a term model
based on contextual equivalence, for the λND-calculus could look like. An in-
depth treatment of denotational semantics goes beyond the scope of this work.
The reader is therefore referred to the literature, e.g. [Sch86, Mos90] for a more
general introduction to denotational semantics and [Bar84, Dav89] for the con-
struction of lambda calculus models.

Roughly, in denotational semantics every language construct is mapped to a
mathematical object. So our primary task will be to talk about which domain
these objects should be taken from. For a so-called term model , that will be
discussed here, this domain is usually the quotient of the set of terms w.r.t. some
equivalence relation. The equivalence, which will be used here, is contextual
equivalence, of course. This should relieve some of the work necessary to obtain
a fully abstract denotational semantics, i.e., a model whose equalities agree with
contextual equivalence.

However, solely from dealing with terms modulo contextual equivalence, one
does not gain more information. The reason is that a key feature of deno-
tational semantics is not supported very well, namely compositionality. The
notion means that the value of compound terms should only depend on the
values of its components. This is essential, since denotational semantics em-
phasises the mathematical value a term is mapped to rather than the way it is
computed. But if a term was mapped to its 'c-equivalence class, how would
e.g. the equivalence class of an application s t be computed from the equivalence
classes of the subterms? We will return to this issue after defining the necessary
notions where D stands for some suitable domain.

Definition 5.4.1 (Variable Assignment). A mapping ρ : V → D from vari-
ables to objects of the domain D is called variable assignment.

Definition 5.4.2 (Denotation). Let t ∈ Λ≈ be a term and ρ : V → D a
variable assignment. Then JtK ρ ∈ D is said to be the denotation of the term t
under the variable assignment ρ. We call the denotations of two terms equal,
written JsK = JtK if and only if JsK ρ = JtK ρ for all variable assignments ρ holds.

Definition 5.4.3 (Adequacy). A denotational semantics is called adequate
if and only if all its equalities are justified by contextual equivalence, i.e., for all
terms s, t ∈ Λ≈ the implication JsK = JtK =⇒ s 'c t is true.

5.4. DENOTATIONAL SEMANTICS 151

Definition 5.4.4 (Full Abstraction). A denotational semantics is said to
be fully abstract if it is adequate and does not distinguish terms which are
contextually equal. That is to say, JsK = JtK if and only if s 'c t holds.

5.4.1 The Domain

In a lazy theory, cf. [Abr90, RDRP04], weak head normal forms are usually
regarded as the meaning of terms. Like [Abr90], for the calculus λ≈ a weak
head normal form is simply an abstraction. But since λ≈ is a non-deterministic
calculus, Λ≈-terms could reduce to several weak head normal forms and thus
sets of abstractions have to be used as elements of the domain.

However, a valuable insight for constructing a denotational domain is pro-
vided by the failure of open similarity to match contextual preorder completely.
The reason of this failure demonstrates that it is not sufficient to consider only
the abstractions a term converges to. More precise, the structure of the counter-
example λz.(Y K) 6.b GK and proposition 5.3.2 indicate that a suitable defini-
tion has to take into account contextual least upper bounds, cf. section 5.2.

Furthermore, because of the condition s .c t =⇒ pick s t 'c t from (5.3.5),
only down-closed sets should be used as denotations. I.e., a term is contained
only if all of its derivatives, where a subterm is replaced with a smaller term,
are included, too. Otherwise Jpick s tK could be distinguished from JtK in the
model. One advantage of the domain will be, that ordinary subset inclusion can
be used as an ordering.

For a closed term t ∈ Λ0
≈, let [t]'c

stand for its ('c) 0-equivalence class.

The class ⊥
def
= [Ω]'c

represents just the set {t ∈ Λ0
≈ | t 6⇓} of non-converging

closed terms. To make notation easier, we understand the answer set as being
extended to sets of terms, i.e., ans(S) =

⋃
{ ans(s) | s ∈ S } in the following.

The domain D for the denotational semantics comprises the power-set of ⊥ and
all ('c) 0-equivalence classes of closed abstractions.

Definition 5.4.5. The partial order (D,⊆) is defined by

D
def
= P

((
ans(Λ0

≈)/('c) 0

)
∪ {⊥}

)
(5.4.1)

We omit the details of proving that (D,⊆) is indeed appropriate as a domain
in favour of a more intuitive discussion. E.g., it seems evident that fundamental
equations like Jpick s tK = JsK∪ JtK can be satisfied in the model. Furthermore,
the domain obviously permits the construction of infinite ascending chains, es-
pecially like (f i}) from section 5.2, and thus seems capable of representing
contextual least upper bounds.

152 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

5.4.2 Denotation

After defining the domain we turn straight to the denotation itself. Basically, a
term will be mapped to the set of all ('c) 0-equivalence classes of abstractions
that are contextually smaller. Note that ⊥ is added, otherwise the denotation
will not be down-closed. A closed term r ∈ Λ0

≈ should adhere to the equation

JrK =
{

[λx.s]'c
| λx.s ∈ Λ0

≈ ∧ λx.s .c r
}
∪ {⊥} (5.4.2)

In order to transfer this to open terms we need a mechanism to derive (sets
of) closed terms from open terms equipped with a variable assignment. Every
variable assignment ρ corresponds in a natural way to a set of pseudo-valued
substitutions. We therefore interpret variable assignments as mapping terms to
sets of equivalence classes in the following.

Definition 5.4.6. Let r ∈ Λ≈ be a term. Then its denotation JrK ρ w.r.t some
variable assignment ρ is defined as below.

JrK ρ
def
=

{
[λx.s]'c

| λx.s ∈ Λ0
≈ ∧ ∃[t]'c

∈ ρ(r) : λx.s .c t
}
∪ {⊥} (5.4.3)

This is well-defined. Moreover, by use of the contextual preorder .c, there
is no need to add an extra club-operator or so. Taking the club is “built” into
the contextual preorder, so to speak.

Instead of such a direct approach also an inductive definition would have
been possible. However, the more concise representation above is preferred,
because it gives a better clue of how to establish adequacy and full abstraction.

5.4.3 Adequacy and Full Abstraction

In this section we will prove the denotational semantics to be adequate and
fully abstract. The proof will be for closed terms only, since for open terms it
is rather technical but seems not very difficult because of the above mentioned
correspondence between variable assignments and pseudo-valued substitutions.

Lemma 5.4.7 (Adequacy). The denotation J·K is adequate, i.e., for all closed
terms s, t ∈ Λ0

≈ the equality JsK = JtK implies s ('c) 0 t.

Proof. By symmetry it is enough to show JsK ⊆ JtK =⇒ s .c t. So JsK ⊆ JtK
and a context C such that C[s] ⇓ is assumed. By the Surface Context Lemma
C may be supposed to be a surface context. Then, by lemma 3.2.20, there a two
possibilities: Either C[}] ⇓ and nothing has to be shown. Or the evaluation of

5.4. DENOTATIONAL SEMANTICS 153

s may be performed first, i.e., C[s]
S C,
−−−→

∗

λ≈
C[λz.q] ⇓ holds. As λz.q .c s

by corollary 5.1.4, its equivalence class is contained in JsK by definition. Hence
from JsK ⊆ JtK we also have [λz.q]'c

∈ JtK which implies that λz.q .c t holds.
Thus C[λz.q] .c C[t] by compatibility in contexts and the claim is shown.

Theorem 5.4.8 (Full Abstraction). The denotation J·K is fully abstract: Let
s, t ∈ Λ0

≈ be closed terms. Then s ('c) 0 t if and only if JsK = JtK holds.

Proof. Since the “if”-part is just the adequacy of lemma 5.4.7, we concentrate
on the “only-if”-part. By symmetry, s .c t =⇒ JsK ⊆ JtK suffices. So
assume s .c t and some closed abstraction λz.q ∈ Λ0

≈ whose equivalence class
is contained in JsK, i.e., [λz.q]'c

∈ JsK holds. By definition, λz.q .c s and from
transitivity λz.q .c s .c t follows. Thus [λz.q]'c

∈ JtK is true.

5.4.4 Denotational Equations

As mentioned before, the definition of the denotation is not compositional. But
this is not really a flaw, since we could prove the appropriate equations. The
example Jpick s tK = JsK ∪ JtK was already given. It is listed together with the
remaining equations which could be formulated as follows.

The case for an abstraction is omitted, since there is no obvious way to
construct a set of terms from a map on the domain.

JxK ρ = ρ(x) if s ∈ V is a variable (5.4.4)

J}K ρ = {⊥} (5.4.5)

Jlet x = s in tK ρ = JtK ρ[(JsK ρ)/x] (5.4.6)

Js tK ρ =
⋃
{ Js′K (ρ[(JtK ρ)/x]) | [λx.s′]'c

∈ JsK ρ } ∪ {⊥}

(5.4.7)

Jpick s tK ρ = (JsK ρ) ∪ (JtK ρ) (5.4.8)

However, the equations given above provide a sensible basis for further studies
of the denotational semantics. We prove Jpick s tK = JsK ∪ JtK as an example.

Since s .c pick s t and t .c pick s t by the reductions pick s t
nd, left
−−−−→ s

and pick s t
nd, right
−−−−−→ t respectively, the inclusion JsK ∪ JtK ⊆ Jpick s tK is triv-

ial. For the converse, suppose λz.q .c pick s t and show that either λz.q .c s
or λz.q .c t is true. We therefore apply the Surface Context Lemma and assume
that S[λz.q] ⇓ as well as S[pick s t] ⇓ holds. Then by lemma 3.2.20 either S[}] ⇓
for which S[s] ⇓ and S[t] ⇓ are clear. Or pick s t ⇓ λy.p such that S[λy.p] ⇓ λz.q

154 CHAPTER 5. CONTEXTUAL AND DENOTATIONAL SEMANTICS

is valid. Hence either pick s t
nd, left
−−−−→ s ⇓ λy.p or pick s t

nd, right
−−−−−→ t ⇓ λy.p

and the claim is shown.
Exploiting the algebraic properties of set union it is now straightforward to

derive further equations for pick, e.g., commutativity and associativity.

Jpick s tK ρ = Jpick t sK ρ

Jpick r (pick s t)K ρ = Jpick (pick r s) tK ρ

5.4.5 Future Work

As we have seen in the case of pick, the strength of the denotational equations
from the previous section lies in enabling an algebraic style of reasoning. Hence
it would be desirable to prove further of those equations.

Moreover, in the spirit of [Wad78], it might be possible to replace the con-
dition λx.s .c r in the definition of the denotation JrK by an approximation
λx.s ∈ ans(r). The key would be to establish a kind of result which is called
“limit theorem” in [Dav89, Theorem 5.6.8], namely that the value of a term can
be computed as the limit of its approximants.

JsK ρ =
⊔
{ Jλx.tK ρ | λx.t ∈ ans(s) }

Since, as we have learned in section 5.2, not every least upper bound is contin-
uous w.r.t. contexts, denotation and domain had to be adjusted accordingly.

Chapter 6

Possible Extensions of the
Base Calculus

The previous chapters contain a quite complete treatment of a non-deterministic
call-by-need lambda calculus. Section 3.1 has defined the small-step reduction
semantics of the λND-calculus and with the approximation calculus λ≈ of sec-
tion 3.2 an alternative representation has been developed in which the outcomes
of an evaluation do not have to carry around a let-environment.

Founding on the equivalence of these calculi from section 3.3, a sensible no-
tion of similarity has been devised in chapter 4. There, using the lcs-framework
of chapter 2, open similarity was shown to be a precongruence, enabling its use
for proving correctness of program transformations. Furthermore, chapter 5 has
demonstrated that the contextual preorder possesses a rich theory from which
also a fully abstract denotational semantics was derived.

It has been pointed out before that the calculus λND was intentionally de-
signed to be powerful while keeping the presentation of the rather complex ma-
terial as simple as possible. Since it shall serve as a starting point, it is rather
basic in at least two respects. First, it does not cover data types, i.e., construc-
tors and a case common in modern functional programming languages like,
e.g., Haskell [PJ03] and ML [MTH90]. Secondly, at least the aforementioned
languages support (mutual) recursive bindings in their let-construct. The let-
operator in the calculus λND is non-recursive and recursion has therefore to be
expressed using fixed point combinators, e.g., the Y-combinator.

However, it is well-known, cf. [Lau93], that this causes a different behaviour

155

156 CHAPTER 6. POSSIBLE EXTENSIONS OF THE BASE CALCULUS

in the execution of functional programs. Hence the λND-calculus is not capable
to reflect this behaviour accurately. Albeit not measuring space or time usage,
an example in section 6.2 will make this visible exploiting non-determinism.
There, we also discuss some of the representation issues. Since a letrec binds
more than just one variable, it cannot be encoded directly as an operator in a
lazy computation language.

Fortunately this is not a problem for constructors and case which will be
treated in section 6.1. Before we describe the manner in which the base cal-
culus could be extended, we briefly summarise the most relevant parts of the
proof that open similarity is a precongruence. One of the crucial notions was
the extension of relations to open terms, or more precisely, how it could be
defined the right way for a calculus with sharing. The fact that the correspond-
ing parts of the proof nicely fit together, demonstrates that the admissibility of
the open extension is essential. Indeed it is based on the equivalence of clos-
ing let-environments and pseudo-valued substitutions, cf. proposition 4.1.27,
and the Substitution Lemmas w.r.t. the precongruence candidate for just the
pseudo-values. This suggests the following “recipe” for a let-calculus: First
determine which terms may be copied – enriched by } these form the pseudo-
values. Then, one should be able to show that pseudo-valued substitutions have
the same power as arbitrary closing let-environments for distinguishing open
terms. Moreover, for the precongruence candidate the corresponding substitu-
tion lemmas have to be established.

6.1 Lambda Calculi with case and Constructors

When introducing data types into a lambda calculus, some topics have to be
clarified. First, in contrast to e.g. [Pit97, Gor99] we will not discuss a typed
language. This means, though data types and a case-construct are provided,
not every term will have to be well-typed. So we emphasise the intent of such a
calculus as an intermediate product in the compilation of a high-level language:
We assume that the program has already been type-checked, as e.g. for Haskell,
and simply regard terms with type errors as non-converging. The reason is not
only to simplify the presentation but also to ensure that no contextual equiva-
lences would be excluded, solely because the type system was too restricted.

Furthermore, like in algebraic reasoning, there is some choice whether the
data constructors should be partitioned into disjoint sets, types or sorts so to
speak, where every type A possesses a distinct caseA-construct. Some work,
cf. [Sch00, SSSS04], pursues this view while other calculi, e.g. [SS03a], provide

6.1. LAMBDA CALCULI WITH CASE AND CONSTRUCTORS 157

only a single case-construct which all data constructors belong to. In the fol-
lowing, we will give multiple sorts priority over the approach with a single case,
since the latter can always be implemented within the former.

Note that the converse is in general not true, i.e., just dropping the type in-
formation from the different case-constructs will make certain contextual equiv-
alences false. The example below, inspired by [SSSS04], illustrates this.

Example 6.1.1. Assume constructors cA,1, cA,2 ∈ A and cB ∈ B belonging to
the two data types A, B respectively. Then the terms

s ≡ λf.caseA (f cA,1) of cA,1 -> cA,2
cA,2 -> caseA (f cB) of cA,1 -> cA,2

cA,2 -> Ωand

t ≡ λf.caseA (f cA,1) of cA,1 -> Ω
cA,2 -> caseA (f cB) of cA,1 -> Ω

cA,2 -> cA,2

are contextually equivalent because every possible f has to use either caseA or
caseB to examine its function argument and thus runs into a type error.

Dropping the distinction between the types A and B using only a single case-
construct for A ∪ B, the terms s and t are obviously be distinguished by the
context C ≡ ([] (λx.caseA∪B x of (cA,1 -> cA,1) (cA,2 -> cA,1) (cB -> cA,1))).

Another design issue is the existence of a strictness operator. In a calculus
without constructors, adding such an operator has no impact on the contextual
equalities, whereas the following example taken from [SS03b] shows that with
data constructors and case the situation becomes different.

Example 6.1.2. As in example 6.1.1, let again A be a type with data construc-
tors cA,1 and cA,2. Now consider the terms s ≡ D[Ω] and t ≡ D[λx.Ω] given
by the context D ≡ λf.caseA (f []) of (cA,1 -> cA,1) (cA,2 -> cA,1). Assuming
sequential evaluation by the operator seq obeys the equalities

s seq t 'c

{
Ω if s 'c Ω

t otherwise

the terms s and t will be distinguished by the context C ≡ [] (λy.(y seq cA,1)).

Intuitively, the reason for the failure of contextual equivalence lies in “hiding”
the term Ω and λx.Ω respectively in the first argument of a case. As λx.Ω

158 CHAPTER 6. POSSIBLE EXTENSIONS OF THE BASE CALCULUS

is a functional expression, choosing f ≡ I would clearly produce a type error1.
Hence seq is the only way to obtain cA,1 or Ω depending on the term under the
case. One could say that seq acts like a case but for “function types”. That’s
why case in FUNDIO [SS03a] has a an extra pattern for abstractions.

6.1.1 A λ-let-calculus with case, Constructors and pick

After we have shed some light on design issues, we will propose a concrete non-
deterministic call-by-need lambda calculus with case and constructors. Fig-
ure 6.1 describes its syntax where c stands for arbitrary data constructors. Fur-
thermore, we write |A| for the cardinality of a data type, i.e. the number of data
constructors associated with it while ar(c) denotes the arity of a constructor,
i.e. the number of its arguments. The expression (c E1 . . . Ear(c)) in the gram-

E ::= V | (λV.E) | (E E) | (let V = E in E)

| (pick E E) | (E seq E)

| (c E1 . . . Ear(c))

| (caseA E of P1 . . . P|A|)

P ::= (c V1 . . . Var(c)) -> E

Figure 6.1: Syntax for expressions in the language ΛND+con

mar of figure 3.1 indicates that constructor applications are always saturated.
Analogously for the case-construct, i.e., caseA E of P1 . . . P|A| means that ev-
ery case is equipped with a complete list of all patterns which are possible for
its type. We therefore enumerate the constructors of A by cA,1, . . . , cA,|A|.

Since data constructors do not bind variables, the arity of a constructor
directly corresponds to its arity in the representation of a lazy computation
language. Also the case-construct perfectly fits in this framework, all except
the first argument binding as many variables as the corresponding constructor

1So the terms D[Ω] and D[λx.Ω] can already be distinguished without using seq, when
type errors and Ω are not identified. However, this will not be discussed here.

6.1. LAMBDA CALCULI WITH CASE AND CONSTRUCTORS 159

has arguments. So the arities for the new language operators are given below.

α(c)
def
= 〈 0, . . . , 0︸ ︷︷ ︸

ar(c)

〉

α(caseA)
def
= 〈 0, ar(cA,1), . . . , ar(cA,|A|) 〉

We will frequently have to deal with large nested let-environment and there-
fore introduce the following notation.

Notation. Let I be an index set. We write {{ let xi = ti in s }} to designate
the term let x1 = t1 in (let x2 = t2 in . . . (let xn = tn in s)). For an empty
index set I the term s is denoted.

Although it might seem that an interpreter can provide more information for
a non-well-typed term than for a term whose reduction does not terminate, those
terms will not be distinguished. The reason is simply that those terms do not
converge and that the contextual equivalence we have in mind will only consider
convergence. It was mentioned before that, apart from this, we understand our
calculus as a core language for functional programs which have already been
type-checked.

Since it represents a call-by-need calculus, we have to explain when or which
kind of constructor terms may be copied. Certainly there is also an interde-
pendence w.r.t. the style of the case-rules. Usually case just decomposes its
first argument and chooses the right pattern. So for a case-expression of a
constructor application one would expect the rule below.

caseA (cA,i t1 . . . tn) of . . . (cA,i xi1 . . . xin
) -> si . . .

case-c
−−−−→ {{ let zj = tj in si[zj/xij

] }} (case-c)

Note that the let-bindings are necessary to preserve sharing. However, what if
case is applied to a variable which is bound to a constructor expression in a sur-
rounding let-environment? We will not discuss the issue at full length here, but
notice that unrestricted copying of full constructor terms breaks sharing. This
somewhat relates to the fact that not every constructor term may be considered
“cheap” in the sense of [GHC03]. So there are chiefly two possibilities:

• To make the rule (case-c) applicable, at least the constructor must be
known to the case-expression. Therefore, constructor applications of vari-
ables may be copied. To obtain such a constructor term the arguments

160 CHAPTER 6. POSSIBLE EXTENSIONS OF THE BASE CALCULUS

of a general constructor application may be “abstracted”. This works as
follows: A constructor term of the form (c t1 . . . tar(c)) may be replaced
by {{ let xi = ti in (c x1 . . . xar(c)) }} where xi = ti represent the appro-
priate bindings for the arguments of the original constructor application.
In this way, we obtain two rules, one for the abstraction operation and the
other for copying constructor applications of variables.

Note that albeit the abstraction operation appears a bit unusual, it has a
counterpart w.r.t. function application: E.g. [MSC99a] consider a language
with a restricted syntax where only variables are allowed in the argument
positions of functions.

• The two steps which have previously been described may also be per-
formed at once. Thus obtaining a rule which decomposes the constructor
term bound to the variable to be cased. But since these two steps could
generally happen at different locations, the formulation of such a reduction
rule may be tedious unless letrec is used.

The reason is that in order to find the binding to the constructor term
several indirections might have to be followed. Whereas in languages
with letrec usually a normalisation takes place in that only one large
environment has to be considered. This makes lookup for bindings easier.

The first approach consists of introducing two rules, in particular the constructor
abstraction, for which reduction diagrams have to be constructed potentially.
So we prefer the second approach while simplifying the presentation by resolving
indirections in advance: Since corollary 4.1.4 has established the correctness of
copying variables, it is sensible to adopt this as a reduction rule. Of course, a
rule to shift case through let-expressions has to be provided, too. Figure 6.2
shows the reduction rules which make up the λND+con-calculus. We briefly
sketch how the normal-order and reduction context would be affected:

• The rule (cp) is applied in the same context as before, but additionally if
the term the variable is bound to is another variable. Compared to λND

this changes the normal-order reduction also for terms of the form

let x = λz.q in (let y = x in R[x])

6.1. LAMBDA CALCULI WITH CASE AND CONSTRUCTORS 161

let x = (let y = ty in tx) in s
llet
−−→ let y = ty in (let x = tx in s) (llet)

(let x = tx in s) t
lapp
−−−→ let x = tx in (s t) (lapp)

(λx.s) t
lbeta
−−−→ let x = t in s (lbeta)

(let x = r in s) seq t
lseq
−−→ let x = r in (s seq t) (lseq)

(λx.s) seq t
eseq
−−→ t (eseq)

pick s t
nd, left
−−−−→ s (nd, left)

pick s t
nd, right
−−−−−→ t (nd, right)

let x = r in D[x]
cp
−→ let x = r in D[r]

where r is a variable or an abstraction (cp)

case (let x = s in t) of a
lcase
−−−−→ let x = s in (case t of a) (lcase)

caseA (cA,i t1 . . . tn) of . . . (cA,i xi1 . . . xin
) -> si . . .

case-c
−−−−→ {{ let zj = tj in si[zj/xij

] }} where zj are fresh (case-c)

let x = (cA,i t1 . . . tn) in D[caseA x of . . . (cA,i xi1 . . . xin
) -> si . . .]

case-in
−−−−−→ {{ let zj = tj in (let x = (ci z1, . . . , zn) in D[si[zj/xij

]]) }}
(case-in)

Figure 6.2: The reduction rules of the λND+con-calculus

162 CHAPTER 6. POSSIBLE EXTENSIONS OF THE BASE CALCULUS

which in the λND-calculus reduces normal-order like

let x = λz.q in (let y = x in R[x])
n, cp
−−−→ let x = λz.q in (let y = λz.q in R[x])
n, cp
−−−→ let x = λz.q in (let y = λz.q in R[λz.q])

but involves less copies of λ-terms in the λND+con-calculus:

let x = λz.q in (let y = x in R[x])
n, cp
−−−→ let x = λz.q in (let y = x in R[y])
n, cp
−−−→ let x = λz.q in (let y = x in R[λz.q])

• reduction contexts now also exhibit case-expressions, i.e.

X ::= caseA [] of . . .

Z ::= AL | X

R ::= L∗
R[Z∗] | L∗

R[let x = Z∗ in R[x]

The Approximation Calculus

It is clear that in the λND+con-calculus surface contexts also extend over con-
structor terms, i.e., if the rule for constructor abstraction was used the argu-
ments of constructors would be located in let-bindings.

So approximation reductions have to be performed inside all these contexts.
Furthermore, in the λND+con-calculus, abstractions, variables and, implicitly in
rule (case-in), constructor applications to variables are copied by the normal-
order reduction. Hence it seems possible to show that it is correct to copy
variables, abstractions or constructor terms built from these terms, i.e. terms
according to the grammar below.

B ::= V | λx.T | (c B1 . . . Bn)

Therefore the corresponding (cpa)-rule in the approximation variant of the cal-
culus λND+con should be defined to copy these terms. It is worth mentioning
that this corresponds to the notion of a “cheap” term in [GHC03].

6.2. LAMBDA CALCULI WITH RECURSIVE LET 163

6.2 Lambda Calculi with recursive let

It was mentioned before that the let-operator in the calculus λND is non-
recursive. Thus in λND, recursion must be represented by a fixed point combi-
nator, e.g. Y. In functional programming this would be tedious and is usually
avoided by permitting recursive bindings via letrec, cf. [PJ03, MTH90].

However, it is well-known, that by means of recursive bindings more sharing
can be obtained in contrast to the use of fixed point combinators. In [Lau93],
Launchbury gives the term letrec t = (if e then Nil else Cons 1 t) in t as an
example for this. Here, the evaluation of e is only performed once and shared
between all recursive calls to t. If Y (λt.if e then Nil else Cons 1 t) was used
as an encoding in the λND-calculus, the term e would be evaluated repeatedly
as the abstraction λt. . . . is copied during reduction.

Since we do not measure space or time usage but only consider convergence,
the above terms would be contextually equivalent. Though, non-determinism
provides a way to discover that a straightforward translation of letrec into
the calculus λND is not possible. In addition, the following example does not
involve data types and thus demonstrates that the issue already comes up in
basic calculi without case or constructors.

Example 6.2.1. Consider the term letrec t = pick K2 (λg.g t) in t when
successively applied to the arguments I ≡ λx.x and Ω:

(letrec t = pick K2 (λg.g t) in t) IΩ

lapp
−−−→ ·

lapp
−−−→ ·

nd, left
−−−−→ letrec t = K2 in t IΩ

cp
−→ letrec t = K2 in K2IΩ 'c Ω

(letrec t = pick K2 (λg.g t) in t) IΩ

lapp
−−−→ ·

lapp
−−−→ ·

nd, right
−−−−−→ letrec t = (λg.g t) in t IΩ

cp
−→ ·

lbeta
−−−→ letrec t = (λg.g t) in (letrec g = I in g t)Ω

lapp
−−−→ ·

llet
−−→ ·

cp
−→ letrec t = (λg.g t), g = I in I tΩ

lbeta
−−−→ ·

cp
−→ ·

lapp
−−−→ ·

llet
−−→ letrec t = (λg.g t), g = I, x = t in xΩ

cp
−→ ·

cp
−→ letrec t = (λg.g t), g = I, x = (λg.g t) in (λg.g t) Ω

Thus letrec t = pick K2 (λg.g t) in t does not converge in the context [] IΩ,
since both alternatives yield terms where Ω is the normal-order redex.

164 CHAPTER 6. POSSIBLE EXTENSIONS OF THE BASE CALCULUS

Now regard the naive translation s ≡ Y (λt.pick K2 (λg.g t)) using the Y-
combinator. Plugged into the context [] IΩ, it may converge as follows:

Y (λt.pick K2 (λg.g t)) IΩ

lbeta
−−−→ ·

cpa
−−→ (λx.(λt.pick K2 (λg.g t)) (x x)) (λy.λt. . . . (y y)) IΩ

lbeta
−−−→ ·

cpa
−−→ (λt.pick K2 (λg.g t)) ((λy.. . .) (λy′.. . .)) IΩ

lbeta
−−−→ ·

nd, right
−−−−−→ let t = ((λy.. . .) (λy′.. . .)) in (λg.g t) IΩ

Starting from here, after a few further reduction steps, a term which is contex-
tually equivalent to let t = ((λy.. . .) (λy′.. . .)) in tΩ can be produced. Since
the binding for t still has the potential of a non-deterministic choice, we may
obtain a term like K2Ω which obviously converges.

Hence, this example illustrates that the original letrec-term is contextually
smaller than its naive translation. However, this should not be misunderstood:
It does in no way represent a deficiency of the letrec-calculus, since also the
corresponding Y-term can be represented. Therefore, rather the converse is
true, i.e., the letrec-calculus is more expressive and the example points out
that its contextual equivalence possesses a finer structure than in a calculus
where let is non-recursive.

6.2.1 Representation in a Lazy Computation Language

So we have seen the motivation for a calculus with recursive bindings but we
have not yet discussed how letrec could be represented in the framework of
lazy computation languages.

As is known, the non-recursive let x = s in t represented as let(x.t, s) has
arity 〈1, 0〉 which means that its first operand binds just a single variable. But
if the binding was recursive, the variable x would be bound in s too.

Obviously, a construct like let(x.s, x.t) appears not to be an appropriate
representation. Apart from this, the issue of mutual recursive bindings as, e.g.,
in letrec x = C[x, y], y = D[x, y] in t has to be solved. However, this would
be possible if a countably infinite set of letrec-operators, i.e., for each number
of bindings one with the corresponding arity, was used instead of a single one.

6.2.2 Approximating Recursive Bindings

Because in letrec x = s in t the term s may contain an occurrence of the
variable x, the binding cannot be deleted even if s is an abstraction. This means,

6.2. LAMBDA CALCULI WITH RECURSIVE LET 165

the rule (cpa) in its original form is not applicable to a letrec-calculus. It might
be conceivable to add an alternative for (cpa) which keeps the environment, thus
obtaining three variants of the rule as below.

let x = } in t
cpa−}
−−−−→ t[}/x] (cpa-})

let x = λy.s in t
cpa−λ
−−−−→ t[λy.s/x] if x /∈ FV(s) (cpa-λ)

let x = λy.s in t
cpa−µ
−−−−→ let x = λy.s in t[λy.s/x] (cpa-µ)

If we had done so, we would just run into the problem of loosing sharing as
explained in the foregoing section by means of example 6.2.1. This demonstrates
that the present technique of the approximation calculus, i.e., using (cpa) to
eliminate let-bindings, is no longer feasible.

On the other hand, we have already learned by example 3.1.18 that reduc-
tion to weak head normal forms followed by application to arguments does not
possess the same power in distinguishing terms as contextual equivalence. So in
order to develop a suitable similarity for a letrec-calculus an appropriate way
to represent terms by sets of approximants is still necessary.

For their letrec-calculus with case and constructors, Schmidt-Schauß et
al. propose in [SSSS04] to keep the environments and successively reduce within
them. That is, there exists an analogous rule to (stop) and evaluation stops
when terms have reached a certain form. This process is continued recursively,
creating some kind of “stratified” letrec-bindings in this manner.

However, it seems that in a letrec-calculus even a method like this cannot
eliminate the necessity for the (llet)-rule. Recall that proving the precongru-
ence candidate stable under just this rule seemed infeasible. Hence it is unknown
whether the rule (llet) becomes more tractable in a letrec-calculus because of
its simpler structure there. Moreover, the approach in [SSSS04] introduces sev-
eral special rules and reduction steps, e.g., garbage collection and normalisation
of letrec-environments. It would be probably easier to introduce only (stop)
as a new rule and permit reductions within surface contexts like in this work.

166 CHAPTER 6. POSSIBLE EXTENSIONS OF THE BASE CALCULUS

Chapter 7

Conclusion and
Future Work

The subject of this work was similarity in a non-deterministic call-by-need
lambda calculus and how to prove it a precongruence. Building upon the sem-
inal work of Howe [How89, How96], chapter 2 has set out the framework of
lazy computation systems for proving similarity a precongruence. For this pur-
pose, the original work had to be extended to reflect sharing properly. This
chiefly concerns the issue how a relation on closed terms should be extended to
open terms. We have therefore introduced the admissibility of an open exten-
sion in order to decouple the precongruence proof from a certain view to open
terms. This has turned out to be the vital notion for the proof of theorem 2.2.13
which has established substantial conditions for determining when a relation is
a precongruence. This result is achieved by means of the precongruence candi-
date relation and corresponds to [How96, Theorem 3.1]. Thus we have proven
in chapter 2 that it is possible to generalise the already highly abstract lazy
computation system framework insofar that it is not necessary to fix the open
extension in advance.

Of course, admissibility of the open extension has to be established for ev-
ery concrete calculus in order to make theorem 2.2.13 applicable. To lay the
foundation for this, chapter 3 has presented a thorough treatment of two non-
deterministic call-by-need lambda calculi. In section 3.1, the operational se-
mantics of the λND-calculus has been defined in terms of small-step reduction
and contextual equivalence. One key result is the Context Lemma, which states

167

168 CHAPTER 7. CONCLUSION AND FUTURE WORK

that in order to determine contextual equivalence, observing the termination of
evaluation within reduction contexts is sufficient. Whereas from example 3.1.18
we have learned that a sensible definition of similarity in the calculus λND is
impossible since application to arguments is not enough to distinguish weak
head normal forms. Thus, an alternative representation had to be developed:
The approximation calculus λ≈ of section 3.2 in which let-environments are
eliminated from weak head normal forms. The Approximation Theorem in sec-
tion 3.3 is one of the main results. It not only has established the equivalence of
the calculi λND and λ≈ but has also pointed out how terms may be represented
by sets of abstractions.

The Approximation Theorem was the essential precondition for basing the
development of similarity on the λ≈-calculus. Thus proving open similarity a
precongruence, one of the main contributions of this work, has demonstrated
that the approximation calculus λ≈ is in fact sensible. The proof was carried
out in chapter 4 and benefitted greatly from the results on the rearrangement of
reduction sequences in section 3.2.5. Moreover, it should not be forgotten how
the enhanced lcs-framework of chapter 2 has guided the proof. In particular,
we have seen that the open extension in a call-by-need calculus must not be
defined using all closing substitutions. Rather pseudo-values only may be sub-
stituted, i.e., those terms that may be copied anyway. Proposition 4.1.27 has
shown how this corresponds nicely to the use of all closing let-environments
and to the style of Abramsky’s applicative bisimulation. Admissibility of the
open extension has been obtained together with Substitution Lemmas for the
pseudo-values. We thus have demonstrated admissibility to be a viable notion.
Furthermore, the Substitution Lemmas were of significance for proving the pre-
congruence candidate stable under (cpa)-reductions. In section 4.3.1 stability of
the precongruence candidate under reduction was treated. It formed the basis
for the proof of the Precongruence Theorem.

In order to establish mutual open similarity as a proof method for contextual
equivalence, the Main Theorem in section 5.1.2 has combined two of the major
results, namely the Precongruence Theorem and the Approximation Theorem.
Apart from this we have learned in chapter 5 that open similarity fails to match
contextual equivalence completely, since it does not support syntactic continuity.
Moreover, section 5.4 has demonstrated the usefulness of the approximation
calculus λ≈ in defining a fully abstract denotational semantics.

However, in order to really turn the denotational semantics into a handy
tool further steps have to be taken. At first more denotational equations have
to be established. Secondly, the results from the λ≈-calculus could probably
be used to represent a term as the limit of a set of abstractions in the spirit of

169

Wadsworth’s “approximate normal forms” [Wad78].
Some further topics for future research have already been mentioned. E.g.,

comprising an (automatable) method for equality analysis as discussed in sec-
tion 4.4.2. The extensions of the base calculus described in chapter 6 seem
even more desirable. On the basis of the explanations in section 6.1.1 we feel
confident that the method presented in this work is powerful enough to treat a
calculus with case and constructors. Moreover, implementing recursive bind-
ings natively in terms of a letrec-construct is of importance, as the discussion
in section 6.2 has pointed out that the naive translation of letrec via the fixed
point combinator Y is inappropriate. However, neither the representation as
a lazy computation language nor the design of the respective approximation
calculus seem a straightforward task.

What has gained only little attention up to now is the treatment of infinite
reduction sequences in the contextual semantics. In this respect it seems quite
promising to define a similarity relation for divergence, or must convergence
respectively, and to show its inclusion in the corresponding contextual preorder
separately. The “upper similarity” in [Las98b] represents this kind of approach.

170 CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[Abr90] Samson Abramsky. The lazy lambda calculus. In David A. Turner,
editor, Research Topics in Functional Programming, University of
Texas at Austin Year of Programming Series, chapter 4, pages 65–
116. Addison-Wesley, 1990.

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-
Jacques Lévy. Explicit substitutions. Journal of Functional Pro-
gramming, 1991.

[AF97] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda
calculus. Journal of Functional Programming, 7(3):265–301, 1997.

[AFM+95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky,
and Philip Wadler. A call-by-need lambda calculus. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 233–246. ACM Press, January
1995.

[And02] Peter B. Andrews. Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof, volume 27 of Applied Logic Se-
ries. Kluwer Academic Publishers, Dordrecht, second edition, 2002.

[Aug84] Lennart Augustsson. A compiler for lazy ML. In LFP ’84: Pro-
ceedings of the 1984 ACM Symposium on LISP and functional pro-
gramming, pages 218–227, New York, NY, USA, 1984. ACM Press.

[Bac78] John Backus. Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs. Com-
munications of the ACM, 21(8):613–641, August 1978.

171

172 BIBLIOGRAPHY

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus, Its Syntax and
Semantics. Elsevier Science Publishers, 1984.

[Bar91] H. P. Barendregt. Introduction to generalized type systems. Journal
of Functional Programming, 1(2):125–154, April 1991.

[Ber98] Karen L. Bernstein. A congruence theorem for structured opera-
tional semantics of higher-order languages. In Logic in Computer
Science, pages 153–164, 1998.

[BKvO98] Marc Bezem, Jan Willem Klop, and Vincent van Oostrom. Di-
agram techniques for confluence. Information and Computation,
141(2):172–204, March 1998.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[Bou94] Gérard Boudol. Lambda-calculi for (strict) parallel functions. In-
formation and Computation, 108(1):51–127, January 1994.

[BS02] Manfred Broy and Johannes Siedersleben. Objektorientierte
Programmierung und Softwareentwicklung: Eine kritische Ein-
schätzung. Informatik Spektrum, 25(1):3–11, February 2002.

[CH88] Thierry Coquand and Gerard Huet. The calculus of constructions.
Information and Computation, 76(2-3):95–120, February/March
1988.

[Chu36] Alonzo Church. An unsolvable problem of elementary number
theory. American Journal of Mathematics, 58:345–363, 1936.
Reprinted in [Dav04].

[Chu41] Alonzo Church. The calculi of lambda conversion. Annals of Math-
ematics Studies, 6:1–37, 1941. Princeton University Press.

[Dav89] Ruth E. Davis. Truth, Deduction, And Computation. Computer
Science Press, 1989.

[Dav04] Martin Davis, editor. The Undecidable: Basic Papers on Undecid-
able Propositions, Unsolvable Problems and Computable Functions.
Dover Publications, February 2004.

BIBLIOGRAPHY 173

[DP92] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, Cambridge, 1992.

[dP95] Ugo de’Liguoro and Adolfo Piperno. Nondeterministic extensions
of untyped λ-calculus. Information and Computation, 122(2):149–
177, November 1995.

[DP01] Nachum Dershowitz and David A. Plaisted. Rewriting. In Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume 1. Elsevier Science, 2001.

[FH88] A.J. Field and P.G. Harrison. Functional Programming. Addison
Wesley, 1988.

[GHC03] The GHC Team. The Glasgow Haskell Compiler User’s Guide,
Version 5.04, 2003. http://haskell.cs.yale.edu/ghc/docs/5.04.3.

[Gor94a] Andrew D. Gordon. Functional programming and input/output.
Distinguished Dissertations in Computer Science. Cambridge Uni-
versity Press, September 1994.

[Gor94b] Andrew D. Gordon. A tutorial on co-induction and functional pro-
gramming. In Functional Programming, Glasgow 1994, Workshops
in Computing, pages 78–95. Springer-Verlag, 1994.

[Gor99] Andrew D. Gordon. Bisimilarity as a theory of functional program-
ming. Theoretical Computer Science, 228(1-2):5–47, October 1999.

[GP98] Andrew D. Gordon and Andrew M. Pitts, editors. Higher Order
Operational Techniques in Semantics. Publications of the Newton
Institute. Cambridge University Press, 1998.

[GV92] Jan Friso Groote and Frits Vaandrager. Structured operational se-
mantics and bisimulation as a congruence. Information and Com-
putation, 100(2):202–260, October 1992.

[Hen90] Matthew Hennessy. The Semantics of Programming Languages: An
Elementary Introduction using Structural Operational Semantics.
John Wiley & Sons, Inc., 1990.

[HNSSH97] Nigel W. O. Hutchison, Ute Neuhaus, Manfred Schmidt-Schauß,
and Cordelia V. Hall. Natural expert: A commercial functional
programming environment. Journal of Functional Programming,
7(2):163–182, March 1997.

174 BIBLIOGRAPHY

[HO80] Gérard Huet and Derek C. Oppen. Equations and rewrite rules:
A survey. In Ronald V. Book, editor, Formal Language Theory,
Perspectives and Open Problems, pages 349–405. Academic Press,
1980.

[How89] Douglas J. Howe. Equality in lazy computation systems. In Pro-
ceedings, Fourth Annual Symposium on Logic in Computer Science,
pages 198–203, Asilomar Conference Center, Pacific Grove, Califor-
nia, 5–8 June 1989. IEEE Computer Society Press.

[How96] Douglas J. Howe. Proving congruence of bisimulation in func-
tional programming languages. Information and Computation,
124(2):103–112, 1 February 1996.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and appli-
cations to term rewriting systems. Journal of the ACM, 27(4):797–
821, October 1980.

[KBdV03] Jan Willem Klop, Marc Bezem, and Roel de Vrijer, editors. Term
Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[Klo92] J. W. Klop. Term rewriting systems. In S. Abramsky, Dov M. Gab-
bay, and S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2 – Background: Computational Structures, pages
1–116. Oxford University Press, Inc., 1992.

[KSS98] Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic
call-by-need lambda calculus. In International Conference on Func-
tional Programming 1998, pages 324–335. ACM Press, 1998.

[Kut99] Arne Kutzner. Ein nichtdeterministischer call-by-need Lambda-
Kalkül mit erratic Choice: Operationale Semantik, Programmtrans-
formationen und Anwendungen. PhD thesis, Johann Wolfgang
Goethe-Universität, Frankfurt, October 1999.

[KvOvR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raams-
donk. Combinatory reduction systems: introduction and survey.
Theoretical Computer Science, 121(1–2):279–308, December 1993.

[Lan65a] P. J. Landin. A correspondence between ALGOL 60 and church’s
lambda-notation: Part I. Communications of the ACM, 8(2):89–
101, February 1965.

BIBLIOGRAPHY 175

[Lan65b] P. J. Landin. A correspondence between ALGOL 60 and church’s
lambda-notation: Part II. Communications of the ACM, 8(3):158–
167, March 1965.

[Las98a] S. B. Lassen. Relational reasoning about contexts. In Gordon and
Pitts [GP98], pages 91–136.

[Las98b] Søren Bøgh Lassen. Relational Reasoning about Functions and Non-
determinism. PhD thesis, University of Aarhus, Department of
Computer Science, Ny Munkegade, building 540, DK-8000 Aarhus
C, December 1998.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 144–154. ACM Press,
1993.

[LP00] Søren Bøgh Lassen and Corin Pitcher. Similarity and bisimilar-
ity for countable non-determinism and higher-order functions. In
Andrew Gordon, Andrew Pitts, and Carolyn Talcott, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 10. Elsevier,
2000.

[Man04] Matthias Mann. Towards Sharing in Lazy Computation Systems.
Frank report 18, Institut für Informatik, J.W. Goethe-Universität
Frankfurt am Main, December 2004.

[Man05] Matthias Mann. Congruence of bisimulation in a non-deterministic
call-by-need lambda calculus. Electronic Notes in Theoretical Com-
puter Science, 128(1):81–101, May 4, 2005.

[Mil71] Robin Milner. An algebraic definition of simulation between pro-
grams. In D. C. Cooper, editor, Proceedings of the 2nd International
Joint Conference on Artificial Intelligence, pages 481–489, London,
September 1971. William Kaufmann.

[Mil77] Robin Milner. Fully Abstract Models of Typed lambda-Calculi.
Theoretical Computer Science, 4(1):1–22, 1977.

[Mil78] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375, 1978.

176 BIBLIOGRAPHY

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall
International Series in Computer Science. Prentice Hall, 1989.

[MN98] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems
and their confluence. Theoretical Computer Science, 192:3–29, 1998.

[Mor68] J.H. Morris. Lambda-Calculus Models of Programming Languages.
PhD thesis, MIT, 1968.

[Mos90] Peter D. Mosses. Denotational semantics. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages
575–631. Elsevier Science Publishers, 1990.

[MOW98] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need
lambda calculus. Journal of Functional Programming, 8(3):275–
317, May 1998.

[MS99] Andrew Moran and David Sands. Improvement in a lazy context:
an operational theory for call-by-need. In POPL ’99: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 43–56. ACM Press, January 1999.

[MSC99a] A. K. Moran, D. Sands, and M. Carlsson. Erratic Fudgets: A se-
mantic theory for an embedded coordination language. In the Third
International Conference on Coordination Languages and Models;
COODINATION’99, number 1594 in Lecture Notes in Computer
Science, pages 85–102. Springer-Verlag, April 1999. Extended avail-
able: [MSC99b].

[MSC99b] A. K. Moran, D. Sands, and M. Carlsson. Erratic Fudgets: A
semantic theory for an embedded coordination language (extended
version). Extended version of [MSC99a], February 1999.

[MST96] Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. From oper-
ational semantics to domain theory. Information and Computation,
128(1):26–47, July 1996.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of
Standard ML. IT Press, Cambridge, Massachusetts, 1990.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer-Verlag, 1999.

BIBLIOGRAPHY 177

[Ong93] C.-H. Luke Ong. Non-determinism in a functional setting. In Logic
in Computer Science, pages 275–286, 1993.

[Par81] David Park. Concurrency and automata on infinite sequences. In
Peter Deussen, editor, Theoretical Computer Science, volume 104 of
Lecture Notes in Computer Science, pages 167–183. Springer, 1981.

[Pau89] Lawrence C. Paulson. The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5:363–397, 1989.

[Pit97] A. M. Pitts. Operationally-based theories of program equivalence.
In P. Dybjer and A. M. Pitts, editors, Semantics and Logics of
Computation, Publications of the Newton Institute, pages 241–298.
Cambridge University Press, 1997.

[PJ87] Simon L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages. Prentice-Hall International, 1987.

[PJ03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries.
Cambridge University Press, 2003.

[PJS89] Simon L. Peyton Jones and Jon Salkild. The spineless tagless g-
machine. In FPCA ’89: Proceedings of the fourth international
conference on Functional programming languages and computer ar-
chitecture, pages 184–201, New York, NY, USA, 1989. ACM Press.

[Pla93] David A. Plaisted. Equational reasoning and term rewriting sys-
tems. In Dov M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Program-
ming, volume 1 – Logical Foundations. Oxford University Press,
Inc., 1993.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. The-
oretical Computer Science, 1(?):125–159, 1975.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5(3):223–255, December 1977.

[PS00] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence
in the polymorphic pi-calculus. Journal of the ACM, 47(3):531–584,
May 2000.

178 BIBLIOGRAPHY

[PvE93] Rinus Plasmeijer and Marko van Eekelen. Functional Programming
and Parallel Graph Rewriting. Addison-Wesley, 1993.

[PvE99] Rinus Plasmeijer and Marko van Eekelen. Keep it Clean: A unique
approach to functional programming. SIGPLAN Notices, 34(6):23–
31, June 1999.

[RDRP04] Simona Ronchi Della Rocca and Luca Paolini. The Paramet-
ric Lambda Calculus, A Meta-Model for Computation. Texts in
Theoretical Computer Science. An EACTS Series. Springer-Verlag,
Berlin, Heidelberg, New-York, 2004.

[Sab03] David Sabel. Realising nondeterministic I/O in the Glasgow Haskell
Compiler. Frank report 17, Institut für Informatik, J.W. Goethe-
Universität Frankfurt am Main, December 2003.

[San91] D. Sands. Operational theories of improvement in functional lan-
guages (extended abstract). In Proceedings of the Fourth Glasgow
Workshop on Functional Programming, Workshops in Computing
Series, pages 298–311, Skye, August 1991. Springer-Verlag.

[San94] Davide Sangiorgi. The lazy lambda calculus in a concurrency sce-
nario. Information and Computation, 111(1):120–153, 15 May 1994.

[San97] David Sands. From SOS rules to proof principles. Technical report,
Chalmers University of Technology and Göteborg University, 1997.

[San98] D. Sands. Improvement theory and its applications. In Gordon and
Pitts [GP98], pages 275–306.

[Sch86] David A. Schmidt. Denotational semantics: a methodology for lan-
guage development. Allyn and Bacon, 1986.

[Sch00] Marko Schütz. Analyzing Demand in Non-Strict Functional Pro-
gramming Languages. Dissertation, Johann Wolfgang Goethe-
Universität, Frankfurt, 2000.

[SGM02] David Sands, Jörgen Gustavsson, and Andrew Moran. Lambda
calculi and linear speedups. In T. Æ. Mogensen, D.A. Schmidt,
and I. Hal Sudborough, editors, The essence of computation: com-
plexity, analysis, transformation, number 2566 in Lecture Notes in
Computer Science, pages 60–82. Springer-Verlag, Berlin, 2002.

BIBLIOGRAPHY 179

[SS92] Harald Søndergard and Peter Sestoft. Non-determinism in Func-
tional Languages. The Computer Journal, 35(5):514–523, 1992.

[SS03a] Manfred Schmidt-Schauß. FUNDIO: A Lambda-Calculus with a
letrec, case, Constructors, and an IO-Interface: Approaching a
Theory of unsafePerformIO. Frank report 16, Institut für Infor-
matik, J.W. Goethe-Universität Frankfurt, September 2003.

[SS03b] Manfred Schmidt-Schauß. Funktionale Programmierung 1.
www.ki.informatik.uni-frankfurt.de, Summer 2003. Lecture Notes.

[SSSS04] Manfred Schmidt Schauß, Marko Schütz, and David Sabel. On the
Safety of Nöcker’s Strictness Analysis. Frank report 19, Institut für
Informatik, J.W.Goethe-Universität Frankfurt, Germany, 2004.

[Tur36] Alan M. Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230–265, 1936. Reprinted in [Dav04].

[Tur79] D. A. Turner. A new implementation technique for applicative
languages. Software—Practice and Experience, 9(1):31–49, January
1979.

[Tur85] D. A. Turner. Miranda: A non-strict functional language with poly-
morphic types. In Functional Programming Languages and Com-
puter Architecture, number 201 in Lecture Notes in Computer Sci-
ence, pages 1–16. Springer-Verlag, 1985.

[Wad78] Christopher P. Wadsworth. Approximate reduction and lambda
calculus models. SIAM Journal of Computing, 7(3):337–356, Au-
gust 1978.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages:
An Introduction. Foundations of Computing. MIT Press, Cam-
bridge, Massachusetts, 1993.

Index

admissible, 24
answer, 26, 48
answer set, 26
applicative bisimulation, 109
applicative-order, 7

behavioural equivalence, 37
bisimulation, 9, 37

applicative, see ∼ bisimulation
bound variable, see variable

call-by-name, 7
call-by-need, 7
call-by-value, 7
closure under composition, 20
compatible

with contexts, 21
confluence, 28
congruence, 21
context, 20

environment, 48
multi-, 20
reduction, see reduction context
surface, see surface context

context free grammar
ΛND+con-language, 158
Λ≈-language, 58
ΛND-language, 47

specifying contexts, 20
contextual equivalence, 5, 29
contextual least upper bound, 141
contextual precongruence, 37
contextual preorder, 37
contractum, 27, 50
convention

variable, 19
convergence, 26

may, see may convergence
must, see must convergence

conversion, 27
convertibility, 8, 28
convertible, see convertibility
critical pair, 28

dense, 36
divergence, 138

may, see may divergence

environment context, see context
equality, 21
equivalence

behavioural, see ∼ equivalence
contextual, see ∼ equivalence
observational, see ∼ equivalence

experiment, 36
extension

180

INDEX 181

of a relation to open terms, 22
extensionality, 110

fixed point
greatest, 36
post-, 36

free variable, see variable

labelled transition systems, 9
lazy computation language, 18, 47
lazy computation system, 26
lcl, see lazy computation language

may convergence, 54
may divergence, 54
must convergence, 54
mutual open similarity, 112
mutual similarity, 37

Newman’s Lemma, 28
normal form, 7
normal-order, 2
normalisation, 78

observational equivalence, 37
open similarity, 112

mutual, see mutual ∼
open simulation, 112
operand, 18
operator-respecting, 22

peak, 28
precongruence, 21

candidate, 23
proving .b

o a, 124
preorder, 21
program transformation, 29
pseudo-value, 101

redex, 7, 27, 50

reduct, 27, 50
reduction, 7, 27

internal, 52
normal-order, 51

reduction context, 50
weak, 50

maximal, 50
restriction

to closed terms, 21

similarity, 36, 106
mutual, see mutual similarity
open, see open similarity

simulation, 35, 36, 105
open, see open simulation
up-to, 40

strict, 75
strict position, 75
substitutive, 28
surface context, 59

non-closing, 75
syntactic continuity, 142

term, 18
canonical, 26
closed, 19
open, 19

term model, 150

variable
bound, 19
free, 19

variable capture, 19
variable convention, see convention

weak head normal form, 7, 48

182 INDEX

Curriculum Vitae

Matthias Mann

Weinstr. 8c
D-60435 Frankfurt
Germany

Date of birth: 9th of April, 1972
Place of birth: Frankfurt/Main, Germany

Education

1999–2005 Postgraduate under supervision of Prof. Dr. Manfred Schmidt-
Schauß, Artificial Intelligence and Software Technology

1992–1999 Studies of computer science at Johann-Wolfgang-Goethe Uni-
versität Frankfurt, Degree in computer science. Thesis:

“Gleichheitsanalyse von Ausdrücken in nicht-strikten funk-
tionalen Programmiersprachen unter Verwendung der Kontext-
analyse” supervised by Prof. Dr. Manfred Schmidt-Schauß

1982–1991 Heinrich-von-Gagern Gymnasium Frankfurt (comprehensive
secondary school), University-entrance diploma

1978–1982 Werner-von-Siemens Grundschule (primary school), Maintal

	German Abstract
	Preface
	Introduction
	Survey and Related Work
	Classical Lambda-calculus
	Variants of the Theory
	Equality
	Extended Lambda Calculi

	Outline

	Lazy Computation Systems
	Language
	Preorders and the Precongruence Candidate
	Reduction and Evaluation
	Convertibility and Confluence
	Contextual Equivalence
	Reduction Diagrams

	Simulations
	Proving Similarity a Precongruence
	Simulation up to

	Future Work

	Non-deterministic Lambda-calculi
	The Call-by-need Calculus Lambda-ND
	Language
	Reduction and Evaluation
	Contextual (Pre-) Congruence

	The Approximation Calculus Lambda-Approx
	Language
	The (cpa)-reduction
	Internal (stop)-reductions
	The (lbeta)-reduction
	Rearrangement of Reduction Sequences
	The evaluation of Seq

	Approximation of Lambda-ND-terms in Lambda-Approx
	Transforming approximation- into normal-order-reduction sequences
	Transforming normal-order- into approximation-reduction sequences
	Proof of the Approximation Theorem

	Related Work
	Non-deterministic choice as a Constant
	Approximation and Call-by-Value Evaluation

	Similarity in Lambda-Approx is a Precongruence
	Similarity in the Lambda-Approx-Calculus
	The Open Extension in the Lambda-Approx-Calculus
	Representations for Similarity
	Open Simulations and Open Similarity
	Soundness of (cp), (llet) and Two Further Reductions

	Admissibility of the Open Extension
	The Precongruence Candidate Revisited
	Substitution Lemmas

	Proving Open Similarity a Precongruence
	Precongruence Candidate Stable Under Reduction
	Establishing the Precongruence Theorem

	Future Work
	Reduction Strategies for the Lambda-Approx-Calculus
	Similarity Checking
	Deterministic Subterms

	Contextual and Denotational Semantics
	Contextual (Pre-) Congruence
	Correspondence of Equality in Lambda-ND and Lambda-Approx
	Open Similarity implies Contextual Preorder

	Syntactic Continuity
	Contextual Preorder
	Similarity

	(In-) Equational Theory
	Denotational Semantics
	The Domain
	Denotation
	Adequacy and Full Abstraction
	Denotational Equations
	Future Work

	Possible Extensions of the Base Calculus
	Lambda Calculi with case and Constructors
	A -let-calculus with case, Constructors and pick

	Lambda Calculi with recursive let
	Representation in a Lazy Computation Language
	Approximating Recursive Bindings

	Conclusion and Future Work
	Bibliography
	Index

