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Abstract

We introduce a smooth mapping of some discrete space-time symmetries into

quasi-continuous ones. Such transformations are related with q-deformations of

the dilations of the Euclidean space and with the non-commutative space. We

work out two examples of Hamiltonian invariance under such symmetries. The

Schrödinger equation for a free particle is investigated in such a non-commutative

plane and a connection with anyonic statistics is found.
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Continuous symmetries are generally described in terms of Lie groups and alge-

bras through their irreducible unitary representations acting on the Hilbert space of

states. Among these, the space-time symmetries are expressed as the invariance of the

dynamical equations under transformations of the coordinate frame. One advantage of

continuous symmetries over the discrete ones appears clearly in the Lagrangean field

theories where, due to the Noether theorem, one can define currents and conserved

quantities associated with the time evolution of the dynamical system. The discrete

symmetries arising in physiscs can be clasificated in Z2 graded symmetries consisting

in inversions of the space (parity P, reflexions, mirroring), charge conjugation (C) and

time reversal (T) on one side, and permutations and braids on the other side. The

former act on one-particle states or directly on the space-time manifold. The operators

associated with these symmetries have the square equal with one. The latter ones act

on many-particle states, and they are connected with the statistics of the physical sys-

tem; they are finite or infinite dimensional unitary irreducible representations of some

discrete groups over some Hilbert space of states.

In this paper we introduce a continuous algebra of transformations in which are

embedded some discrete space-time symmetries. A first direct way to construct such a

structure is to introduce an associative continuous algebra of operators, defined by some

commutator relations, containing the identity and the discrete transformations among

its elements. Such an algebraic-continuous structure is more general then Lie algebras or

loop groups. If both the identity and the discrete symmetries could be brought together

in the same smooth algebraic structure, it is possible that new symmetries (associated

with the intermediate steps in between the identity-discrete limits) could occure. We

show in the following that such a structure exists and can be obtained as a q-deformed

algebra. Quantum groups [1-3] (quantized universal enveloping algebras, q-algebras,

q-deformations) have been the subject of numerous recent studies in mathematics and

physics. They represent some special deformations (q 6= 1) of the universal enveloping

algebra of Lie algebras (q = 1) [1-3]. For a recent review see [4]. In the present pa-

per we are both interested in some limiting cases of the q-deformations, which should

meet the discrete original symmetries, and in the intermediate (nongeometric) symme-

tries (joining the discrete elements). The mapping of the discrete symmetries on the

continuous ones results in interesting consequences for the space-time discretisation,
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non-commutative spaces and spontaneous breaking of symmetry.

We introduce the R3 Euclidean (commutative) space generated by (xi) = (x, y, z)

and its tangent space, generated by ∂i = ∂/∂xi. Twelve infinitesimal (Lie) generators

ξ̂ ∈ {∂i, xj∂i}, act on the product space of R3 with its tangent space. With these

generators one constructs different Lie algebras with action on the functions defined

on R3. We associate to each generator ξ̂ a one-real parameter Lie group, g(φ)|φ∈R by

way of the exponential map ξ̂ → g(φ) = exp(φξ̂). In order to play an example, we

restrict to the following discrete transformations, acting on R2: identity 1, infinitesimal

generator of rotations in plane v (or finite rotation of −π/2), reflection against Oy axis

ry and permutation P (or reflection against the line x = y). They satisfy the relations:

r2
y = P 2 = 1, v2 = −1, and (excepting I) they generate a Lie algebra, isomorphic with

su(2), and defined by the commutators:

[v, ry] = 2P, [P, v] = 2ry, [P, ry] = 2v. (1)

The isolated (discrete symmetries) P and ry, can not be regarded as group elements,

since they do not belong to any representation of SU(2), hence they are not realised in

terms of a certain g(φ), for any φ. Consequently, following the Lie approach, one can

not smootly map the identity group element into P or ry. In fact, this conclusion is the

algebraic formulation of the geometric imposibility of continuously mapping the y axis

into the −y axis through a Lie transformations (rotations against the x axis, dilation of

the y axis, etc), in two dimensions only. All such methods always yield to intermediate

situations having algebraic singularities: the number of dimensions increases to three

or decreases to one. From the topological point of view the mirror transformation ry is

similar with the problem of mirroring a knot [5]. The right-handed and the left-handed

coordinate frames of the plane are actualy oriented knots since one of the axis always

undercrosses the other. The coordinate frame is an oriented knot which holds the same

topological informations as the original image. So, the discrete transformation ry of

the coordinate frame, can be realised as a mirror transformation of a knot (the inter-

changing of the roles of undercrossed/overcrossed at each knot of a diagram). There

are examples of (achiral) knots which can be continuously deformed into their mirror

image (Eight knot) and examples of (chiral) knots which can not (Trifoil knot) [5].

This continuous deformation is a finite succesion of Reidemeister moves of ambiental
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isotopy (transformations in the plane which simulate the corresponding natural topo-

logical transformations in the 3-dimensional space of the unfolded correspondent of the

knot). Consequently, an algebraic treatment of the Reidemeister moves can direct the

problem to the construction of a continuous connection of the discrete mirrorings with

the identity. Since the quantum group glq(2) provides representations of such moves [5],

we construct in the following special q-deformations of the Lie algebra gl(2) in relation

with knots and braids.

In order to use such deformations we introduce the q-deformed commutators in

the form [x, y]q ≡ xy − qyx, [x, y]q=1 = [x, y], [4]. Such relations exist in the universal

enveloping algebra of all the products of the generators, and they generate a special

type of quantum group. By introducing the transformations. Ry = ry + v, V = ry − v

we have the new commutators:

[Ry, P ]q = (1 + q)Ry, [V, P ]q = −(1 + q)V, [Ry, V ]q = 2((1 − q)1 − (1 + q)P ). (2)

We remark that in the last commutator we have obtained a deformed element which

maps 1 into P , when q goes from q1 = −1 to q2 = 1. An example of action of the above

defined deformed commutators on the real line is given by introducing a quantum

analogue of the x coordinate through the operator

x̂ = xQ̂(x∂x, q), (3)

where Q̂(x∂x, q) is a linear operator given by a function of the infinitesimal generator of

dilations x∂x and deppending on the parameter q, such that limq→1 Q̂ = 1. Following

[6,7] the corresponding canonical momentum is defined as

∂̂x = Q̂(x∂x, q)∂x. (4)

From eqs.(3,4) it results the following commutation relation:

[∂̂x, x̂] = 1 + (q2 − 1)x̂∂̂x, (5)

or, written in the formalism of q-deformed commutators,

[∂̂x, x̂]q = 1. (6)
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Eq.(6) becomes the usual commutator relations between the x and ∂x operators, in the

limit q → 1. From eq.(6) the operator Q̂ defined in eq.(4) must satisfy the condition

Q̂2 + Q̂x∂xQ̂ = 1 + q2xQ̂2∂x, (7)

which, applied on integer real functions f(x) =
∑

j fjx
j , reads

(j + 1)Q̂2(j) = 1 + q2jQ̂2(j − 1), (8)

From eq.(8) we obtain the solution

Q̂2(j) = qj [j + 1]

j + 1
, (9)

where [j + 1] is the q-deformation of j + 1, [3,4]. Consequently, we have the realisation

of the new coordinate operator in the form

x̂ = x

√

√

√

√qx∂x
q2x∂x − 1

(q − 1)(x∂x + 1)
. (10)

similarly with the realisation introduced in [7]. In order to evoid the square root oc-

curing in eq.(10) we can modify the q-deformed commutator relations, preserving the

same behaviour in the limit q = 1. If the new coordinates of the phase-space satisfy

[∂̂x, x̂] = q2x̂∂̂x , (11)

by following the same procedure similar with eqs.(6,7) we get for Q̂ a simpler form:

Q̂ = qx∂x , (12)

which gives us just the dilation operator.

In order to generalise the above construction we have to introduce a set of con-

tinuous transformations of the coordinates, depending on one complex parameter q,

having no Lie algebraic equivalent and which, for certain fixed values of q, approache

the space inversions Îx, Îy, Îz. These general structures are nonlocal, non-Lie and non-

linear transformations, i.e. they do not form a Lie group (they are not of the form eǫv

with v a vector field of a Lie algebra not depending on ǫ).

We introduce over R3 the infinitesimal generators of the dilation d̂i = xi∂xi
and

their corresponding one-dimensional Lie groups D̂k(s) = qd̂k = eisd̂k , [D̂k, D̂j] = 0,
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where we use a complex deformation in the form q = eis with s ∈ [0, π]. The action of

the dilation operators on analytical functions on R3 is continuous with respect to s. In

the limit q → 1 (s → 0) we have D̂i → 1 and in the limit q → −1 (s → π) we have

D̂i → Îi. Consequently, in the range s : [0, π] the operators D̂i smoothly map the unit

element into the corresponding inversion operator Îi, D̂i(π) = Îi generating in this way

all the inversions of R3. A q-deformed operator integer function Q̂(d̂i, s) =
∑

k Ck(s)d̂
k
i

has the action on real integer functions f(xi) =
∑

j fjx
j
i , Q̂(d̂i, s)f(xi) =

∑

j fjQ̂(j, s)xj
i

which approaches f(xi) for Q̂(d̂i, 1) = 1. This operator should be linear and should

have the following limits: Q̂(d̂i, 1) = 1, Q̂(d̂i,−1) = eiπd̂i = Îi.

In the following we we want to find the most general one-dimensional Hamiltonian

having a symmetry for these types of transformations. In the one-dimensional case

(xi = x) a Hamiltonian Ĥ is invariant to the symmetry introduced by the operator

Q̂ = Q̂(d̂i, s) if [Ĥ, Q̂] = 0. We choose a general one-dimensional Hamiltonian in the

form

Ĥ = −∂2
x + V (x) + W (x∂x), (13)

and the corresponding Schrödinger equation Ĥf(x) = Ef(x). The Hamiltonian consists

of the sum of the kinetic energy term, a local potential V (x) =
∑

j Vjx
j and an effective

potential W (x∂x) =
∑

Wj(x∂x)
j. The last term commutes with Q̂.

The condition of symmetry of Ĥ under the transformation Q̂, [Q̂, Ĥ ]f(x) = 0

applied to an arbitrary integer function f(x) =
∑

fkx
k, after identification of the cor-

responding powers of x, reads

fk+2(k + 1)(k + 2)(Q̂(k) − Q̂(k + 2)) =
k−1
∑

j=0

Vk−jfj(Q̂(k) − Q̂(j)). (14)

Eq.(14) must be solved together with the Schrödinger equation for f which, expanded

in powers of x, reads:

fk+2(k + 1)(k + 2) =
k

∑

l=0

flVk−l − Efk + fkW (k). (15)

In the simplest case Q̂ = D̂x eq.(14) becomes

fk+2 =

∑k−1
j=0 Vk−jfj(1 − qj−k)

(1 − q2)(k + 1)(k + 2)
. (16)
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Eqs.(14,15) give the conditions for the existence of the continuous symmetry described

by the operator Q̂. Both these equations are identities for Q̂ = 1. In the case of the

inversion x → −x, Q̂ → Îx, i.e. Q̂(k) = (−1)k, eq.(14) asks for Vk = fk = 0, for k odd,

(V (−x) = V (x), f(x) = f(−x)) like in the traditional case. In the free particle case we

have V (x) = 0 and from eq.(14) we get

Q̂(k) = Q̂(k + 2), (17)

and Q̂(kodd) = ±1 and Q̂(keven) = 1. This restricts the allowed symmetries for the

free particle to inversion only. For any potential of the form V (x) = xn we obtain

the corresponding invariance condition qn = 1. In this case the number of admissible

discrete symmetries between 1 and Îx is finite (n roots of the unity) and still there is

no way of continuous mapping of the identity into the mirroring.

We want to solve eqs.(14-15) in the simple case of Q̂ = D̂. From eq.(14) we note

that a full invariance of the wavefunction f(x) occures if the potential V (x) depends also

on q. Hence, we introduce and arbitrary potential V 0(x) =
∑

k V 0
k xk independent of q,

and we write the potential of the Hamiltonian in eq.(13) in the form of a transformation

V (x) → V (x, q) =
∑

k

Vk(q)x
k =

1

2

∑

k

kV 0
k

q2 − 1

1 − q−k
xk, (18)

where the coefficients V 0
k (independent of q) determine the limit V (x, 1) =

∑

k V 0
k xk =

V 0(x). Due to this choice, eq.(14) does not depend any more on q and one can obtain the

coefficients fk as function of V 0
k only. This procedure makes sense only if the coefficients

1 − qk−j in eq.(16) are not zero. This condition depends on j, k and consequently on

the nonzero coefficients of V (x, q) in its Taylor expansion, and on the values of q. If we

do not have such singularities (e.g. for s irrational multiples of π) the corresponding

wavefunctions do not depend on q, i.e. do not depend on the global transformation Q̂,

for any q, from the identity (q = 1) to the inversion (q = −1):

fk+2 =

∑

k V 0
k−jfj

(k + 1)(k + 2)
. (19)

The physical system remains in the same quantum state under the action of all Q̂′s

from 1̂ to Îx. With the coefficients fk of the wavefunction obtained from eq.(19) we

can determine the coefficients W (k) and E in eq.(15). Thus, we obtain a dynamical
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symmetry for the Hamiltonian in eq.(13) under Q̂(x∂x, q), with its eigenfunctions f(x)

and eigenvalues E independent of q. As a consequence, the transformations Q̂(x∂x, q)

keep invariant the physical states. However the associated potential transforms with q,

like in the case of a gauge transformation. The transformations of the potential, given

by eq.(18), can be written explicitely in the form of a nonlocal operator applied on

V 0(x), for |q| < 1:

V (x, q2) =
q2(q + q−1)

2
qx∂x

∫

dV 0(x)

dx
dqx, (20)

that is the q-primitive of the derivative of V 0, evaluated in q1/2x, [8]:

∫

f(x)dqx = (q−1 − q)x
∞
∑

n=0

q2n+1f(q2n+1x). (21)

For q = 1 the q-primitive tends to the normal integration and eq.(20) describes the

action of the identity operator on V . This transformation of the potential is a sort of

a nilpotent operation: one acts first with an operator (the derivative and a scaling in x

with the factor q1/2) and then with a q-deformation of the inverse of this operator (q-

integration). The result is not the indentity but a sort of a ”defect” of the identity: an

infinitesimal derivative followed by a finite-difference integration and scaling. All these

results obtained for V (x) and W can be generalised to three dimensions, too. For q ∈ R

the effect of the transformation introduced in eq.(29) is a scalling in x. For potentials

having a pole in x0 the transformation moves the pole in x0/q
1/2 and for q → 0 the pole

is eliminated. For q ∈ C the transformed potential becomes complex and the poles are

translated into the imaginary extension of the x axis. We present such an example, for

a Coulomb-like potential, for real deformations in Fig.1 and for complex deformations

in Figs.2. In the complex case (q = eis, s ∈ R) the real part of the q-deformed (Q̂-

invariant) potential behaves completely different from the original Coulomb potential,

for q not a root of the unity, and transforms into a bounded potential. In the limit

q = −1, s = π the pole is translated from 1 to −1, as the general formalism asks.

We analyse now the situation when s goes from 0 to π and provides zeros for

q2(k−j) − 1 in eq.(16). We introduce the concept of quasi-continuous transition between

the discrete symmetries. Let us define a discrete equidistant partition of the interval

[0, π], △N , by the points sn,N = n
N

π, n = 0, 1, ..., N and consider that s goes from 0

to π taking only the values sn,N . In this case, for any partition △N , we can define a

8



complete invariant potential V (x, sn,N) denoted VN(x)

VN(x) =
∞
∑

j=0

Ajx
2jN +

∞
∑

j=0

Bjx
(4j+1)N +

∞
∑

j=0

Cjx
(4j+3)N , (22)

with arbitrary coefficients Aj, Bj and Cj. The coefficients Aj do not contribute in

eq.(14), since [(j − k)/2]s=sn,N
= 0. In the same way we note that the coefficients Bj ,

Cj occure in eqs.(14,16) as 1 and −1, respectively. Hence, we can write, in the partition

△N , eqs.(14,16) in the form:

fk+2 =

∑

[

k−3

4

]

j=0

(

Bjfk−4j−1 − Cjfk−4j−3

)

eisn,N sin(sn,N)(k + 1)(k + 2)
, (23)

where the right brakets in the limit of the sum represent the integer part. In each

partition △N , eqs.(14,16) allow the obtaining of the eigenfunctions from the potential

coefficients only, without any dependence on s. By introducing the obtained coefficients

fj in eq.(15) we can solve all the system, i.e. we deduce the W (j)’s. In this case we

have an exact quasi-continuous symmetry for the transformation Q̂ in the partition

△N . It is exact because all functions, the Hamiltonian and the wavefunctions, do not

depend on any value of s in the given partition, and it is quasi-continuous because s

takes only discrete values. For higher values of N this symmetry becomes very close to

a continuous one.

By generalising eqs.(3,4,10) to the continuous operators x̂i = xiQ̂i(d̂i, q) and p̂i =

Q̂i(d̂i, q)∂i we have:

Q̂x = Q̂(d̂x, s)q
d̂y+d̂z , Q̂y = Q̂(d̂y, s)q

d̂z , Q̂z = Q̂(d̂z, s),

Q̂(d̂i, s) = exp(
sd̂i

2
)[d̂i + 1]1/2(d̂i + 1)−1/2, (24)

where [x] = sin(sx)
sin(s)

represents the q-deformation of the object x (a c-number, an operator,

etc.), [3-8]. In the limit q → 1 (s → 0) we have Q̂i → 1 and in the limit q → −1 (s → π)

we have

Q̂x → ÎyÎz = −Îx, Q̂y → Îz, Q̂z → 1. (25)

The generators Q̂i form an associative commutative algebra, [Q̂i, Q̂j ] = 0. Consequently,

in the range s : [0, π] the operators Q̂i map smoothly the unit element into a certain
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reflection operator and Q̂i(π) generate in this way, together with the rotations of the

space, all possible inversions in R3.

A first interpretation for the operators given in eq.(24) comes out from traditional

quantum mechanics. To the classical coordinate observables (x, y, z) one associates

some operators, not like in the traditional way (multiplicative coordinate functions

x̂i = xi1̂) but through the q-deformed operators x̂i = xiQ̂i. The action of Q̂(d̂i, s)

on integer functions of xi is given by Q̂(d̂i, s)x
k
i = Q(k, s)xk

i . Using also the fact that

exp(isd̂i)xj = exp(is)xjδi,j , we obtain the action

Q̂ixj =
(

√

q2 + 1

2
δi,j + q(δi,j−1 + δi,j−2) + δi,j+1 + δi,j+2

)

xj ,

for Q̂i = Q̂x, . . .. For some limiting cases we get exactly the discrete mirror opera-

tors: Q̂x(x, y, z)|s=π → (x,−y,−z), Q̂x(x, y, z)|s=π/2 → (0, iy, iz), Q̂y(x, y, z)|s=π →
(x, y,−z), Q̂y(x, y, z)|s=π/2 → (x, 0, iz), Q̂z(x, y, z)|s=π → (x, y, z), Q̂z(x, y, z)|s=π/2 →
(x, y, 0). We can see that these operators behave also like projectors, cancelling some

space components, or like analytical prolongations of the real coordinates into the com-

plex plane. A second interpretation is that the operators x̂i are the new coordinates of

a q-deformed non-commutative space. In this case [6,7,9] we introduce the relations

x̂ix̂j = qx̂jx̂i, i < j (26)

which generate a space in these new non-commutative coordinates. We can express these

new coordinates in the limit s → π: x̂ → Îxx, ŷ → Îzy and ẑ → z. Similarly one may

introduce the momentum operators associate with the non-commutative coordinates x̂i

in the form

∂̂x = qd̂y+d̂zQ̂(d̂x, s)∂x, ∂̂y = qd̂zQ̂(d̂y, s)∂y, ∂̂z = Q̂(d̂z, s)∂z. (27)

In the limiting cases we have ∂̂i(s → 0) = ∂i and ∂̂x(s → π) = −Îx∂x, ∂̂y(s → π) = Îz∂y,

∂̂z(s → π) = ∂z. Consequently, the new coordinates and the corresponding derivatives

obey the non-commutative calculus [6,9]:

∂̂ix̂j = q∂̂j x̂i

∂̂ix̂i − q2x̂i∂̂i = 1 + (q2 − 1)
∑

j>i

x̂j ∂̂j

10



∂̂i∂̂j = q−1∂̂j ∂̂i, (28)

with i 6= j. Both eqs.(3) and (27) are invertible with respect to the map x̂i(xj , ∂k),

∂̂i(xj , ∂k) ↔ xi(x̂j , ∂̂k), ∂i(x̂j , ∂̂k), [7]. The action of the operators Q̂(d̂i, s) on integer

functions f(xi) =
∑

j fjx
j
i is given by:

Q̂(d̂i, s)f(xi) =
∑

j

fjQ̂(j, s)xi
j
i =

F (q2xi) − F (xi)

q(q − q−1)x
= D̂q

(
∫

f(xi)dxi

)

q−1x
, (29)

where F (xi) =
∫

f(xi)dxi is the primitive of f , and the operator D̂qf(x) = f(qx)−f(q−1x)
(q−q−1)x

is the q-derivative [3-8] and reduces to the normal derivative in the limit q = 1, s = 0.

In the limit s → s1,2 = 0, π, we have in the first order in s, for s ≃ 0, π:

Q̂(d̂i, s ≃ 0) ≃ 1 +
is

2
d̂i

Q̂(d̂i, s ≃ π) ≃ 1 − i(π − s)

2
d̂i. (30)

By using eqs.(27,30) and qd̂i ≃ 1 + isd̂i, we have in the same limiting cases:

∂̂x ≃ ∂x ± iǫ(
1

2
x∂2

x + y∂x∂y + z∂x∂z),

∂̂y ≃ ∂y ± iǫ(
1

2
y∂2

y + z∂z∂y),

∂̂z ≃ ∂z ± iǫ
1

2
z∂2

z . (31)

where the first sign holds for ǫ = s ≃ 0 and the second sign holds for ǫ = π − s ≃ 0.

In the following we analyse a simple effect of non-commutativity of the coordinate

space on the non-relativistic dynamics of a quantum particle. In order to get some

physical information about such a model, in comparison with the normal plane, we

investigate some properties of the operators of momentum and of the z component of

the angular momentum, defined by L̂z = (~r × ~̂p)z. The quantum non-commutative

plane, with its non-commutative differential structure is defined from eqs.(26-28) by

the commutation relations:

xy = qyx, p̂x = −iq2∂x, p̂y = −iq∂y , (32)
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and hence

p̂xy = qyp̂x, p̂yx = qxp̂y, p̂yp̂x = qp̂xp̂y

p̂xx = −iq2 + q2xp̂x + q(q − 1)yp̂y, p̂yy = −iq + q2yp̂y. (33)

In the commutative plane, the generators: P̂x = ∂x, P̂y = ∂y (translations or −i times

the momentum operators), and R̂ = y∂x − x∂y (rotation or the L̂z component of the

angular momentum operator) fulfil the commutator relations:

[R̂, P̂x] = P̂y, [R̂, P̂y] = −P̂x, [P̂x, P̂y] = 0, (34)

and result in a differential realisation of the Euclidean (Lie) algebra E(2), of trans-

lations and rotations in the plane. From the quantum mechanical point of view,

(P̂x,y, R̂ → p̂x,y, L̂z), on the Hilbert space of states in the (x, y) representation, we

have an uncertainty relation between p̂y and L̂z in the form 4 < p̂2
y >< L̂2

z >≥< p̂2
x >.

In the non-commutative plane, eqs.(34) do not close under the commutator relations

and we have not a closed q-algebra, like the case of Eq(2):

[p̂x, p̂y] = (1 − q)p̂xp̂y,

[p̂x, L̂z] = iqp̂y + (q − 1)L̂zp̂x − q(q2 − 1)yp̂2
y, (35)

[p̂y, L̂z] = −iqp̂x − (q3 − 1)L̂zp̂y + q(q2 − 1)xp̂2
y,

where L̂z = −iq(qy∂x − x∂y). Eqs.(35) reduce to eqs.(34) when q → 1 . These commu-

tator relations are quadratic and, in order to close this q-deformed algebra, one needs

to introduce the coordinate operators, too. When q → 1 eqs.(35) become:

[p̂x, p̂y] = 2p̂xp̂y, [p̂x, L̂z] = −ip̂y − 2L̂zp̂x, [p̂y, L̂z] = ip̂x + 2L̂zp̂y, (36)

and the q-algebra closes. It is a quadratic deformation of the algebra eqs.(34). In the

commutative case, from the second commutator relation in eqs.(34), the RHS is zero on

a subspace of the (x, y)−representation of the Hilbert space, given by wave functions

Ψ(x, y) = Ψ(y). In this case both L̂z and p̂y, due to the above uncertainty relation,

can be measured with the same precision, i.e. there is no macroscopic motion in the

y direction. The wave function is a constant with respect to x which forbids it to
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belong to L2(R). We have full delocalisation in the x direction and p̂xΨ = 0. In the

non-commutative case we look for such subspaces, wich annihilate the RHS in the third

commutator relation in eqs.(35) and we get a nontrivial partial differential equation for

Ψ(x, y)

(

−q∂x + q(q3 − 1)y∂x∂y − (q2 − 1)x(∂2
x + ∂2

y) − q2(q − 1)∂2
y

)

Ψ(x, y) = 0,

which, in the limit q → −1 becomes

(∂x + 2y∂x∂y + 2x∂2
y)Ψ(x, y) = 0. (37)

We search solutions in the form Ψ(x, y) = g(x)f(y). By introduction this form in

eq.(37), performing the derivations by taking care of the order of the operation in x

and y, we obtain one bounded L2(R) exact solution, in the form

Ψ(x, y) = e−αx2√
yI1/4

(

αy2

2

)

e−
αy2

2 , (38)

where I1/4 is the Bessel function of imaginary argument and α is an arbitrary real

parameter. This solution represents a bounded function at ∞ but has one pole at

y = 0. Its asympthotic behaviour for y → ∞ is given by: Ψ(x, y) ≃ e−αx2

and describes

a wavefunction which is constant with respect to y. The wave function is localised in

the x direction and < L̂z > |Ψ =< p̂x > |Ψ =< p̂y > |Ψ = 0. Consequently, the non-

commutative plane provides a behaviour for the free particle similar with the existence

of a potential valley in the x direction.

We note that in the general case, for an arbitrary q 6= ±1, eq.(37) becomes a finite-

difference - partial differential equation, since, due to the order dependent operations

on x, y, the unknown function will appear in these equations in the forms Ψ(x, y) and

Ψ(x, qy), too.

We are interested to find out what implications result from the use of the two

different systems of coordinates (xi, t) and (x̂i, t), the first being commutative and the

second non-commutative. We take a free non-relativistic particle described by the

Schrödinger equation, which in the coordinates associated with the non-commutative

space reads:

ih̄
∂Ψ

∂t
=

1

2m

(

p̂2
x + p̂2

y + p̂2
z

)

, (39)
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where p̂xi
= −ih̄∂i are the non-commutative momentum operators defined in eqs.(27).

In the limits s → 0, π we are looking for solutions of eq.(39) in the perturbative form

Ψ(~r, t) = (Φ0+ǫΦ(~r, t))ei(~k~r−ωt) where Φ0 is a constant and ǫ = 0 for s ≃ 0 and ǫ = π−s

for s ≃ π. By taking into account eqs.(30,31) for s ≃ 0 and π, we calculate, in first order

in ǫ the approximate form of eq.(39), expressed back in the commutative coordinates.

In this case we introduce a shift in the momentum operator of the form

∂̂i = ∂i + Ai, (40)

with

~A = ∓sh̄
(

k2
x

2
x + kxkyy + kxkzz,

k2
y

2
y + kykzz,

k2
z

2
z
)

, (41)

obtained from the action of the operator ∂̂i from eq.(31) on the exponential function,

i.e. ∂̂xexp(i~k~r) ≃ (ikx ∓ is(1
2
xk2

x + ykxky + zkxkz))exp(i~k~r), etc. The transformation of

the coordinates and momenta, eqs.(3,24,27), results in the occurence of a non-integrable

phase in the wave function

Ψ = Ψ
′

exp
(

i
∫

Aidxi

)

, (42)

with curl ~A = ∓sh̄(−kykz, kxkz, kxky) 6= 0. If the motion is confined into a plane (xi, xj)

than the vector curl ~A is always orthogonal to this plane. A consequence of this approach

is the occurence of an anisotropy of the wavefunction with respect to the coordinates,

resulting from the anysotropy of the non-commutative space, eq.(24). Consequently,

the non-integrable phase factor depends on the direction of motion, i.e. on the wave

function.

The similarity between the q-deformed momentum operators, and the kinetic

momentum operators:

− ih̄∂̂k ≃ −ih̄∂k −
e

c
Ak, (43)

is that one of a particle with charge e moving in an external magnetic field [7]. Using

this analogy, we can say that the behaviour of a free particle in a non-commutative

system of coordinates, as described by the Schrödinger equation, would be like that of

a particle with charge e moving in a self-generated magnetic field given by

Bk ≃ − h̄c

e
skjkl, (44)
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with (k, j, l) a permutation of (1, 2, 3). We also note that from eq.(41) results that this

associated magnetic field is not reducible to zero by performing a gauge transformation,

i.e. Ai can not be written in the form of a gradient. We note here a possible connection

between this approach and the anyon statistics, [10]. The fractional statistics in the

plane is obtained if the particles carry both charge and a magnetic flux. Due to the fact

that this flux is not involved in any restriction (neither integer nor half-integer) such par-

ticles are anyons of fractional statistics. In our case, i.e. the quantum plane, the essential

feature is that fractional statistics is implemented by means of the non-commutativity

of the space. In fact, rather than affixing by hand an internally prescripted vector

potential ~A to an ordinary particle, which is then transmuted into an anyon, we claim

that the apparition of ~A is the consequence of the non-commutativity of the space.

More, the corresponding Hamiltonian for a free particle in the non-commutative case,

expressed in terms of the commutative coordinates is similar with some typical exam-

ples of Hamiltonians of the fractional quantum Hall effect [11]. However, in the present

case the magnetic field is spreaded allover the plane, different from the case of anyons

and cyons, where the magnetic field is confined only in a neighborhood of each parti-

cle. Consequently, a different type of statistics occures here , since the non-integrable

phase-factor from eq.(42) depends on the contour of integration. We can calculate the

general exact solution for the Schrödinger equation eq.(39) for the free particle in the

non-commutative space with the help of eqs.(27). The solution of eq.(39) is given by a

q-deformed exponential, instead of the normal exponential, Ψ(~r, t) = constant ei(~k~r−ωt)
q .

As q → 1 this wavefunction reduces to the trivial plane waves of the commutative free

space [8]. Another application of this result is the connection of this solution with the

solution for free electrons with quantum friction. It is known that in this latter case for

one-dimensional space, the wavefunctions have the form of a q-deformed exponential,

too [8].

In conclusion, the idea of a smooth connection between the discrete and continuous

transformations, could lead to new implications in the structure of space-time. First

the space-time coordinates turn out to be non-commutative (of course in a sensible

way only at very high energies) and invariant at q-deformed groups of transformations.

The algebraic properties with physicalsemnifications remain only those invariant under

such nongeometric symmetries of the physical system. The request of invariance under
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such symmetries lead to modifications in the dynamics of quantum extended particles

and of free quantum particles. Loosely speaking, the broadening of the symmetries

from Lie to q-deformations (in order to provide an appropriate algebraic frame for both

the discrete and continuous transformations) could modify the statistics of identical

particles in such spaces, and could restrict the freedom of motion of the particles due

to the unceratinty of observation of the three coordinates, simultaneously.
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Figure captions

Fig.1

Real deformations of the Coulomb potential VC(x) = 1
x−1

, obtained with eq.(27),

are plotted for different values of the deformation parameter q = es, s = 0, −0.1, −0.25,

−0.5 and −0.75, on a logaritmic scale. One can see that the pole of the q-deformed

potential is translated in the positive direction of the x-axis.

Fig.2

Complex deformations of the same Coulomb potential as in Fig.1, for different

values of the deformation parameter q = eis: s = 0 (the original V (x) potential),

−0.15, −0.25, −0.5, −π/4, −π/2, −π and −10 for the real part of V (x, q), Fig.2a, and

s = 0 (no imaginary part), −0.15, −0.3, −9 and −10 for the imaginary part, Fig.2a.

The pole at x = 1 is eliminated for s 6= πZ. The values of the −s parameter are shown

next to each curve.
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