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Transport model analysis of femtoscopy data at RHIC energies
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Abstract

The pion source as seen through HBT correlations at RHIC energies is investigated within the

UrQMD approach. We find that the calculated transverse momentum, centrality, and system size

dependence of the Pratt-HBT radii RL and RS are reasonably well in line with experimental data.

The predicted RO values in central heavy ion collisions are larger as compared to experimental

data. The corresponding quantity
√

R2

O − R2

S of the pion emission source is somewhat larger than

experimental estimates.
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In the quest to discover the high temperature phase of Quantum Chromodynamics

(QCD), the Quark Gluon Plasma (QGP), the beam energies of accelerators have been

boosted upwards from SIS, AGS, SPS, to RHIC. However, it is well known that the phase

transition from hadrons to quarks might only occur in a small volume part of the system

and within a rather short timespan in heavy ion collisions (HICs). This implies that the

QGP drops formed at RHIC might be represented only by a few, locally thermally equili-

brated drops of matter, in which quarks and gluons are de-confined. Thus, it is essential to

probe the space-time structure of the (equilibrated?) source – the ”region of homogeneity”.

Unfortunately, the small size and transient nature of the reactions preclude direct measure-

ment of the time and/or position. Instead, correlations of two final-state particles at small

relative momenta provide the most direct link to the size and lifetime of subatomic reac-

tions. A well-established technique, the so-called ”femtoscopy” or ”HBT” in the heavy-ion

community (in reference to Hanbury-Brown and Twiss’s original work with photons) has

been extensively used for HICs with energies from SIS, AGS, SPS, to RHIC [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

Numerous HBT-measurements with various two-particle species have been pursued (see

e.g. [1, 16] and references therein). Identically charged pion interferometry has been most

extensively investigated. Basic, but important systematics of femtoscopic measurements

from the AGS, SPS, and RHIC have been discovered [1, 7, 14, 16], such as the dependence

of the HBT radii on system size, collision centrality, rapidity, transverse momentum, and

particle mass. However, the existence of the so-called HBT-puzzle (i.e., the fact that model

calculations that incorporate a phase transition to a new state of matter with many degrees

of freedom significantly over-predict the observed source sizes) [1, 4, 19, 20, 21, 27, 28, 32, 33]

drives us to a deeper and more systematical theoretical exploration. The Ultra-relativistic

Quantum Molecular Dynamics (UrQMD, v2.2) transport model (employing hadronic and

string degrees of freedom) (for details, the reader is referred to Refs.[34, 35, 36, 37]) and

the analyzing program CRAB (v3.0β) [38, 39, 40] are employed here as tools to analyze

the two-particle interferometry. With this equipment, the excitation functions of the HBT

radii of negatively charged pions are calculated systematically. In this paper, we focus on

RHIC energies, where the biggest challenge is faced by the current theoretical models. The

femtoscopy results at lower energies will be presented in a further study [41].

The correlation function of two particles is decomposed in Pratt’s (so-called longitudinal
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co-moving system ”Out-Side-Long”) three-dimensional convention (Pratt-radii). The three-

dimensional correlation function is fit with the standard Gaussian form:

C(qO, qS, qL) = 1 + λexp(−R2

Lq2

L − R2

Oq2

O − R2

Sq2

S − 2R2

OLqOqL), (1)

in which qi and Ri are the components of the pair momentum difference q = p2 − p1

and the homogeneity length (Pratt-radii) in the i direction, respectively. The λ is the

incoherence factor, which lies between 0 (complete coherence) and 1 (complete incoherence)

in realistic HICs. ROL represents the cross-term and is supposed to vanish at mid-rapidity

under the assumption of a longitudinally boost invariant expansion and is also found to

be negligible in our present calculations. Furthermore, in the present UrQMD calculations

at RHIC energies, the Coulomb and other potential interactions are not considered (the

”cascade mode” is used) due to the excessive computing times which would have been used

otherwise. The Coulomb final state interactions are not taken into account in the analyzing

program CRAB.

Fig. 1 gives the transverse momentum kT dependence (kT = (p
1T +p

2T )/2) of the Pratt-

radii RL (left plots), RO (middle plots), and RS (right plots) at nucleon-nucleon center-of-

mass energies
√

sNN = 30, 62.4, 130, and 200 GeV (plots from top to bottom) in Au+Au

reactions. The experimental results at energies
√

sNN = 62.4, 130, and 200 GeV for central

collisions (< 15%, < 10%, and < 5% of the total cross section σT , respectively) and at

mid-rapidities (|ηcm| < 0.5) are taken from Refs. [22, 23, 24, 25, 26]. The experimental error

bars are shown as the sum of both statistical and systematic errors. The corresponding

calculations with the same trigger- and acceptance- conditions as in the experiments are

shown, as well as the lower energy case
√

sNN = 30 GeV for central collisions (< 15% of

σT ).

Both the absolute values and the decrease of the Pratt-radii RL and RS with transverse

momentum is reproduced by the present model calculations very well. The origin of the

decrease of the Pratt-radii with the increase of transverse momentum is still under discussion:

it may be caused by the strong underlying transverse flow [24], or, by the temperature

inhomogeneities within the hadron source (point of view of the hydrodynamics model) [31].

Here, it is also seen that the calculated kT -dependence of RS is somewhat flatter than that

of RL, which implies that flow effects on the kT -dependence of the Pratt-radii can at least

not be excluded. The UrQMD calculations of RL and RS reproduce the experimental data
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FIG. 1: Transverse momentum kT dependence (at midrapidity) of the Pratt-radii RL, RO, and

RS in Au+Au collisions at
√

sNN = 30, 62.4, 130, and 200 GeV. Experimental data for the latter

three cases are also shown [22, 23, 24, 25, 26]. The experimental errors are the sums of both

statistical and systematic errors.

well within the error bars, while the calculated RO’s are larger than the experimental data

— the RO is about 25% too large. We must conclude that at RHIC, larger ratios of RO and

RS are seen from hadron transport model than expected. Similar observations have also

been reported from other model calculations (c.f. [1, 19, 19, 20, 21, 42, 43, 44]). Ref. [28]

has argued that the origin of this HBT-puzzle might be multifaceted.

Fig. 2 shows the kT -dependence of the Pratt-radii in Au+Au reaction at
√

sNN = 200

GeV for four centralities: 0− 5%, 10− 20%, 30− 50%, and 50− 80% of total cross section.

Here, a pseudo-rapidity cut |ηcm| < 0.5 has been chosen. For better visibility, we have

shifted in the figure the values of the radii by 0, 5, 10, and 15 fm for the four centralities. It

is very interesting to see that our calculations for the centrality dependence of Pratt-radii

are in reasonably good agreement with the experimental data. The important observation,

however, is that the calculated RO values tend to deviate from the data for central reactions
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FIG. 2: Midrapidity kt-dependence of Pratt-radii in Au+Au reaction at
√

sNN = 200 GeV for four

centralities: 0− 5%, 10− 20%, 30− 50%, and 50− 80% of the total cross section, which are shifted

by 15, 10, 5, and 0 fm, respectively. Experimental data are taken from Ref. [24].

by ≈ 20%, while they agree at midcentral and peripheral collisions.

The centrality dependence of the Pratt-radii can be seen more clearly from Fig. 3 ,

which shows the Pratt-radii at kT = 250 ∼ 350MeV/c as a function of the number of

participants Npart. The quantity
√

R2

O − R2

S is also shown for comparison. In spite of the

reasonable results on the centrality dependence of the Pratt-radii, the calculated quantity
√

R2

O − R2

S obviously deviates from that extracted from data for the most central collisions:

it is about twice as large as measured by experiments. The pion freeze-out volume Vf has

been investigated thoroughly experimentally [7]. Vf can be expressed as Vf = (2π)3/2RLR2

S.

The linear increase of Vf with Npart is expected. It can be explained reasonably well by the

present model, although a smaller ”thermal ellipse” is predicted due to a little shorter RL

and RS values, as shown.

The calculations for central Cu+Cu collisions are shown in Fig. 3 (solid dots), which are in

line with the centrality dependence of the HBT space-time structure calculated for Au+Au
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FIG. 3: Centrality dependence of the Pratt-radii ((a)-(c)), the quantity
√

R2

O − R2

S (in (d)), and

the freeze-out volume Vf ((e)) at kT = 250 ∼ 350MeV/c, in Au+Au collisions at
√

sNN = 200 GeV.

Experimental data are taken from Ref. [24]. The calculated results for central Cu+Cu collisions

shown with solid dots are perfectly located on the Au+Au systematic curves.

collisions. This implies that the participant multiplicity is a very good scaling variable, which

drives the geometry (HBT radii) at mid-rapidity, at least for mid-size to heavy systems. In

order to check this, the kT -dependence of the ratios of the Pratt-radii between different

systems is shown in Fig. 4 . The radius ratios shown are from (a), Cu+Cu vs. p+p, (b),

Au+Au vs. p+p, and (c), Au+Au vs. Cu+Cu. In order to read the figure more conveniently,

the RO and RS ratios are shifted by 5 and 10, respectively. In the p+p calculation, the non-

femtoscopic correlations at large relative momenta are also seen, that is, the pion correlations

function saturates at large relative momentum, but the value is not equal to 1, which was
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FIG. 4: kT -dependence of the ratios of Pratt-radii between different systems: (a), Cu+Cu vs. p+p,

(b), Au+Au vs. p+p, and (c), Au+Au vs. Cu+Cu. Central collisions at
√

sNN = 200 GeV and a

mid-rapidity cut are chosen. In (a) and (b), the ratios are shifted by 5 and 10, respectively. The

preliminary experimental data are taken from Ref. [14].

also implied by the preliminary data reported recently by Ref. [14]. We eliminate this effect

by multiplying a constant into the parametrization of the correlation function. The RL and

RS values in p+p collisions can be reproduced well, while the calculated RO values are again

larger than the experimental data, similar to the nucleus-nucleus collisions. This might be

the origin of the whole puzzle, namely that the HBT-correlations are somewhat incorrectly

put into the model in the elementary p+p dynamics. Figs. 4 (a) and (b) show that the

calculated RL and RS ratios, reproduce the experimental data reasonably well. They are

almost flat as a function of kT , which means the kT -dependence of the Pratt-radii still exists

in the elementary p+p collisions at RHIC energies. Since the UrQMD model gives too large

a RO value in p+p collisions, the calculated RO-ratio between Au+Au (or Cu+Cu) and

p+p is smaller than the experimental data, in particular at low transverse momenta. This

phenomenon disappears when we consider the Pratt-radii-ratios between two heavy systems,

for examples, between Au+Au and Cu+Cu, in Fig. 3 (c). It is interesting to see that for
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the Pratt-radii-ratios between Au+Au and Cu+Cu collisions, all radii-ratios are flat with

kT and approach ∼ 1.4, which is equal to the ratio between the initial radii of nuclei.

To summarize, by using the CRAB program, we analyzed the evolution of the Pratt-

radii RL, RO, and RS at RHIC energies in collisions simulated by the UrQMD transport

model. The calculated transverse momentum-, centrality-, and system dependence of the

Pratt-radii are in reasonable agreement with the experimental data. The calculated RO

values for central collisions are ∼ 25% larger as compared to experimental data. As a

consequence, the extracted quantity
√

R2

O − R2

S of the pion emission source is somewhat

larger than experimental estimates.
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