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Using relativistic Green's-function techniques we examined single-electron excitations from the 
occupied Dirac sea in the presence of strong external fields. The energies of these excited states 
are determined taking into account the electron-electron interaction. We also evaluate relativistic 
transition strengths incorporating retardation, which represent a direct measure of correlation effects. 
The shifts in excitation energies are computed to be lower than 0.5%, while the correlated transition 
strengths never deviate by more than 10% from their bare values. A major conclusion is that we 
found no evidence for coilectivity in the electron-positron field around heavy and superheavy nuclei. 
PACS number(s): 12.20.D~ 

I. INTRODUCTION 

In this paper we investigate the possible existence of 
collective excitations of the Dirac vacuum in the pres- 
ence of a strong Coulomb field. We address the question 
of whether the QED ground state possesses excitation 
modes of a collective nature, which is a well-known topic 
of many-body theory [I]. 

As a physical system we consider a completely ionized 
quasiatom of charge Z 5 170, which can be formed for 
a short period of time (of order of 10-21 S) in collisions 
of very heavy ions. The solutions of the Dirac equa- 
tion for stationarv external fields lead to  bound states 
with discrete energies in the energy gap -m 5 E 5 m. 
In addition. one obtains a s~ec t rum of continuum wave 
functions with energies varyi'ng between -CO and -m as 
well as between m and CO. For nuclear charge numbers 
exceeding the critical value Z„ = 170, the lowest discrete 
energy state (1s) dives into the negative-energy contin- 
uum below -m and loses its pure bound-state character. 
It becomes a resonance imbedded into the continuum. 
Such an unoccupied bound state Opens the possibility of 
spontaneous positron creation [2,3] and the QED ground 
state becomes charged [4]. 

However, for nuclear charge numbers Z 5 Z„ the en- 
ergy of the 1s state is just above the negative-energy con- 
tinuum which is completely occupied according to Dirac's 
hole theory. Electron excitations from these negative- 
energy states below -m into the empty bound states 
above the Fermi level lead to interacting particle (e-)-  
hole (e f )  states which in principle allow for collective 
excitation modes. This may correspond to macroscopic 
density fluctuations. According to traditional many- 
body theory we interpret the transition to a collective 

excited state as the creation of a quasiparticle represent- 
ing a coherent superposition of many particle-hole states 
[5,6]. Collective excitations have been studied in con- 
nection with longitudinal waves in plasmas, X-ray ab- 
sorption in metals, Zero sound in dense Systems, giant 
resonances in photonuclear reactions, etc. Several years 
ago it was reported [7] that there is evidence for the ex- 
istence of collective excitations of the Dirac vacuum in 
strong Coulomb fields. A collective excitation is caused 
by the interaction, or, more accurately, by the correlation 
between particles. If this interaction is turned off, a col- 
lective excited state dissociates into individual-particle 
excited states. 

The major theoretical ingredients of our treatment are 
presented in Sec. 11, where the fundamental equations 
are derived. The application of the Bethe-Salpeter equa- 
tion to collective excitations is presented in Sec. 111. The 
general formulas are reduced to a form suitable for the 
numerical analysis in Sec. IV. Sections V and V1 contain 
the discussion of our results and the conclusions, respec- 
tively. 

11. FORMULATION O F  T H E  PROBLEM 

Our starting point is the four-point function which is 
defined by [SI 

where I@)  represents the ground state of the interacting 
system, &X) and 4 t ( z )  are fermion-field operators in 
the Heisenberg picture, and T denotes the time-ordering 
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operator. The arguments of the field operators in the ticle and one hole. As we regard a collective excitation 
above definition denote space-time coordinates and the as a quasiparticle consisting of a particle and a hole, we 
quantum numbers which are appropriate for the consid- choose t2  > t l  and t4 > t3 such that K has the general 
ered system. K(x1, x2,x3,x4) is of course unknown due structure (+t$$t$), describing the p h  propagation. In 
to the fact that we do not know the exact ground state a time-independent external field the function K depends 
of the interacting system. The function K describes the only on time differences and with T = t l  - t3 we obtain 
propagation of two particles, or two holes, or of one Par- from Eq. (1) 

where the fermion-field operators became time independent according to the relation 4 ( r ,  t )  = ezlit q(r )ePilit. We 
denote the ground-state energy of the interacting system by Eo. We define the Fourier transform of this function by 
K(W), 

03 

K(W) = J _ _  d 7 e Y T ~ ( T )  . (3) 

and with Eq. (2) we obtain the Lehmann representation of the four-point function K :  

In order to derive a more convenient form of the last expression, we will use a complete orthonormal basis la) which 
will be specified later. The states la) have the properties 

H I ~ )  =E&); 

>: / a ) ( a l =  1, completeness; ( 5 )  
<Y 

( a  jß) = Sap, orthonormality . 
After inserting this completeness relation into (4) we get the following expression for the p h  propagator in the energy 
representation: 

where E, is the energy of the state Ia) . The quantities in 
the numerators are p h  amplitudes which are of the same 
type as those encountered in the Bethe-Salpeter theory 
[9]. We denote the excitation energies by Eao = E, -Eo 
and introduce the spectral function 

A(r1,r2, r3, r 4 ;  E )  = >:[ ( @ 1 4 + ( r 2 ) 4 ( r l ) l ~ )  
a 

X (a14~(r4)1 i ) ( r3)1@)16(~  - E,o). 

( 7 )  
which finally yields 

Rom this representation it becomes evident that the 
poles of the p h  propagator K provide the excitation 
spectrum of the system. Since we are interested in the 
excitation modes of the Dirac vacuum we will be con- 
cerned with an analysis of the poles of the Green's func- 

I 

tion K(w). As we mentioned before, this function is yet 
unspecified. In order to derive an expression more suit- 
able for our purposes, we will proceed in two steps. In 
the first step we will construct the corresponding Green's 
function in the external field without the p h  interaction 
and in a second step we will use the Bethe-Salpeter equa- 
tion in a certain approximation in order to construct the 
propagator incorporating interaction from the free one. 

The free Green's function Ko has of course the Same 
form as K from Eq. (I),  except for the fact that the 
expectation value of the time-ordered product has to be 
taken with respect to the noninteracting ground state Qo, 
i.e., the free Dirac vacuum. We expand the field operators 
4 and in a complete orthonormal single-particle basis, 

where the first summations comprise all states above the 
Fermi level (electron states) while the second incorporate 
all states below EF = -m (positron states). The &„ 2; 



(bh, bi) are singleelectron (positron) annihilation and 
creation operators, respectively, satisfying the standard 
anticommutator relations for fermions. The summation 
indices p and h  denote the quantum numbers of the dif- 
ferent states. In a spherically symmetric basis, we have 
to deal with a radial quantum number n, a total angu- 
lar momentum quantum number j, a magnetic quantum 
number p,  and parity. The p h  states /U.)  are provided 
by the action of the introduced single-particle operators 
on the Dirac vacuum, 

We make use of the action of the p h  operators on the 
free ground state: 

which are a direct consequence of the fact that the vac- 
uum contains no particles above the Fermi level and no 
holes below it. With these prerequisites we obtain the 
following result for the free Bethe-Salpeter amplitudes: 

where the dots in this amplitude indicate terms which vanish as a consequence of the fermionic anticommutator 
relations and Eqs. (11). 

After inserting these results in Eq. (6) and replacing the interacting vacuum @ by the free one ao, we can represent 
the external field propagator without the p h  interaction by 

where 'pp(ah) are single-electron (positron) states in the external nuclear Coulomb field with eigenenergies E, and 
Eh, respectively. 

As the next step we will consider the Bethe-Salpeter equation for the Green's function, 

or, if one regards the functions K ,  Ko, and V as matrices 
depending on the continuous space-time variables, one 
may write in a symbolic notation (Fig. 1) 

This equation is still exact and iterates the interaction 
kernel V which contains all irreducible self-energy con- 
tributions at infinite order. However, here we are faced 
with a major problem, since the Bethe-Salpeter equation 
with the inclusion of the full interaction kernel cannot 
be solved in practice. At this point we introduce the ap- 
proximation by retaining only the first-order perturbative 
contribution to V, i.e., by considering only one-photon 
exchange between the particle and the hole. In this spe- 
cial case the kernel V becomes energy independent. This 

I 

is known as the instantaneous ladder approximation in 
the Bethe-Salpeter theory [9]. In addition to  the direct 
interaction we will take into account the exchange inter- 
action. Finally the kernel V reads 

where v denotes the Coulomb interaction, while P 5 4  
signifies a permutation operator which provides the ex- 
change interaction. The remaining graphs which are it- 
erated by Eq. (14) are illustrated in Fig. 2. 

We would like to  mention that the inclusion of mag- 

FIG. 1. Diagrammatic representation of the Bethe- FIG. 2. First-order irreducible vertex parts. The dashed 
Salpeter equation. line indicates the Coulomb interaction. 
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FIG. 3. Diagrammatic representation of the homogeneous 
equation for W ( W ) .  

netic and retardation effects as described by the Breit 
interaction [I01 in the iterative expansion would lead to  
erroneous r&ults, since the contributions of the Breit in- 
teraction to  the energy of the system have to be taken 
into account only as a first-order perturbation [ l l ] .  This 
traces back t o  the fact that the Breit interaction was 
constructed from the classical Darwin Lagrangian, which 
takes into account retardation effects by analogy argu- 
ments, and is not rigorously derived from quantum field 
theory. 

Returning to the bare p h  interaction V described 
through the graphs in Fig. 2, it will become clear later 
that their iterative expansion with the aid of Eq. (14) is 
identical with the so-called random-phase approximation 
(RPA), which follows from the time-dependent Hartree- 
Fock equations in many-body theory [12]. 

It is useful to  write explicitly the iterative expansion of 
Eq. (15) with the kerne1 V replaced by expression (16): 

where we introduced an energy-dependent effective inter- 
action W(w) [6], defined by the infinite sum in the curly 
brackets, i.e., 

This last equation for the effective p h  interaction repre- 
sents the vertex iteration encountered in auantum field 
theory [13]. We are aiming at a precise determination of 
the excitation energies of the system. These are just the 
poles of the propagator K(w) including the interaction 
[see Eq. (8) and the discussion below]. From Eq. (17) it is 
obvious that the poles of the function K are provided by 
the known poles of Ko which are located at the positions 
of the unperturbed p h  energies and by the poles of the in- 
troduced energy-dependent interaction W(w), which are 

FIG. 4. Lowest-order contributions to the effective inter- 
action W ( w ) .  

a direct consequence of the p h  interaction. A brief in- 
spection of Eq. (18) for W(w) manifests that the poles of 
Ko correspond to roots of W(w), since the formal solu- 
tion of this equation is simply W (W) = V/[1 - iVKo(w)] . 
Thus, the advantage provided by the introduction of the 
energy-dependent effective interaction W (U) becomes ev- 
ident, since Eq. (18) has no poles located at the positions 
of the unperturbed p h  energies. Consequently, for the 
determination of excitation energies in which we are in- 
terested, we will investigate Eq. (18) for W(w). To be 
more precise, we will be concerned with the homogeneous 
form of this equation, since in the vicinity of a pole of 
W(w) one can ignore the inhomogeneity V, which is en- 
ergy independent. The resulting homogeneous equation 
is illustrated diagrammatically in Fig. 3. In addition, 
the lowest-order contributions to  the effective interaction 
which are iterated by Eq. (18) are depicted in Fig. 4. 

111. REDUCTION OF THE EQUATION 
FOR THE EFFECTIVE INTERACTION 
IN COORDINATE REPRESENTATION 

In this section we will deal with the analytical reduc- 
tion of the homogeneous Bethe-Salpeter equation (18) for 
the effective p h  interaction. To accomplish this, first it is 
neccessary to study the coordinate representation of this 
equation. After inserting the coordinate representation 
of the external field propagator Ko from Eq. (13) we get 

where V(r i ,  r3) is the instantaneous Coulomb interaction including exchange, while (F* and Q h  are particle (elec- 
tron) and hole (positron) Dirac spinors, as provided by the single-particle Dirac equation incorporating the nuclear 
Coulomb potential. Of Course, it is a complicated task to determine directly the solutions of the homogeneous integral 
equation (19) in six dimensions. Therefore we first project the above equation into the p h  space and consider the 
various matrix elements. In the resulting equation for the associated matrix elements: which will be investigated in 
spherical coordinates, one can perform all angular integrations analytically, getting thus an equation in the two radial 
coordinates. This final equation will then be analyzed numerically in Sec. IV. 

First, we define the occupation number n, according to 



E, I EF (holes) 
na = {O : E, > EF (particies) 

which we insert in Eq. (18). This yields 

where the summation indices a s  and a g  run over all single-particle states, which are designated by the external field 
Dirac spinors $. The above equation possesses nontrivial solutions only if the state a 6  contains a particle and the 
state a 5  a hole, or vice versa, since this equation describes p h  propagation by construction. Next we project Eq. (21) 
into the p h  channel by defining the following matrix elements: 

Finally we derive the following equation of the effective interaction, which is equivalent to the original Eq. (21): 

Here the matrix element of the bare interaction V is un- 
derstood to be antisymmetrized, thus taking into account 
exchange effects, 

where ' ~ ( r l ,  r2) = a/lrl - rz l  is the instantaneous 
Coulomb interaction, while a = e2/(47r) 5 1/137 is the 
fine-structure constant. Now, we have to specify explic- 
itly the single-particle states (rlai) = $„(r), in order to 
implement the symmetries and conservation laws. The 
external field is assumed to possess spherical symmetry 
and the functions $,(r) are eigensolutions of the Dirac 
equation for the nuclear Coulomb potential. The nuclear 
charge distribution is assumed to be a homogeneously 
charged sphere of radius R, i.e., 

{(. . P + ßm + Vmc(r)) $a(r) = EaSa(r)  , (25) 

with 

Here we used the parametrization R = roA1/3, rO = 1.2 
fm, and A = 2.52, the relation between the mass num- 
ber A and the charge number Z being valid for the heavy 
nuclei considered in this Paper. In a spherically symmet- 
ric external field the Dirac spinors $, are simultaneously 
eigensolutions of the energy operator H, the total angu- 
lar momentum operatpr J2, its projection on the z axis 
J„ and the operator K = ß(a . L + 1) with the eigenval- 
ues E,, j ,  p,  -K, respectively [14]. For the wave functions 
$J, we make the usual spherical ansatz 

where g,(r) and fK(r)  are radial functions, while x , ~ ( R )  
are two-component spherical spinors defined as [14] 

xnp(R) = ( -~) ' /~- ' -p  ' ) ~,p-m(fi)21/2,m 1 p - m  m -p 
m=&1/2 

where 1 is the orbital momentum quantum number, X,,-,(R) are spherical harmonics, and the are two- 
component Pauli spinors, respectively. The index cr in the ansatz (27) denotes the set of quantum numbers n,  rc ,  and 
p. Next, we introduce the multipole decomposition of the Coulomb interaction 1151 

where r <  = min(rl, r2) ,  etc. With these preliminaries the direct interaction D can be written as 
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where we introduced the abbreviations 

The matrix elements of the spherical harmonics are de- 
fined as (dO= sinddbdv; -7r/2 5 8 5 7~12, 0 s (P s 27r) 

These angular integrals can be evaluated by means of the 
Wigner-Eckhart theorem. As an example we consider 

The factor P(12 + 11 + L) in Eq. (33) is equal to 1 or 0 
depending on whether 12 + ll + L is an even number or 
not. This is a direct consequence of parity conservation. 
With these relations we evaluate the angular integrals 
from Eq. (31) and obtain finally the following result for 
the direct term in Eq. (30): 

\ f 

~ ( ~ I I I Y L ~ I K . ~ ) P ( ~ ~  + 11 + L),  (33) 
where ß denotes the quantum numbers n and j .  The 

where the reduced matrix element on the right-hand side reduced matrix element in Eq. (35) displays the explicit 
of this expression is M independent: structure 

where we defined the radial two-component functions R,(r) according to 

A similar evaluation of the second term from Eq. (24) yields the following antisymmetrized matrix element for the 
complete p h  interaction which enters into Eq. (23): 

In order to obtain a more compact form for this last expression we define reduced matrix elements for the complete 
bare interaction according to  



By comparing Eqs. (39) and (38) we obtain the following relation between the reduced matrix elements of VL and v ~ :  

The term which contains the infinite sum over the angular momentum L' represents the exchange interaction. In the 
remaining part of this section we will implement these results into Eq. (23), which will provide an equation for the 
reduced matrix elements of the effective interaction W. We define these matrix elements in analogy to Eq. (39): 

After inserting the multipole decompositions (41) and (39) into the original Eq. (23) one obtains after a lengthy but 
straightforward calculation the following equation for the reduced matrix elements of the effective interaction W: 

The reduced matrix elements of the bare interaction VL 
are presented in Eqs. (36) and (40). We would like to 
note that the above equation is valid independently for 
each value of the angular momentum L. 

As we argued in Sec. 11, the physical content of 
our approach is completely equivalent to the relativistic 
random-phase approximation, which already has been ex- 
tensively employed in the investigation of many-particle 
systems. To verify this, we consider the original equa- 
tion (23) for the matrix elements of W. Since the sum- 
mation on the right-hand side of this equation describes 
the situation in which a5 is a hole and a 6  a particle and 
vice versa, there are actually two independent summ* 
tions which are contained in this term. In the following 
we labe1 explicitly the particle states by n , m  and the 
hole states by i ,  j. An inspection of Eq. (23) shows that 
there are two coupled equations, depending on whether 
the index a describes a particle (a = m, n,  . . .) or a hole 
( a  = i ,  j, . . .) state, respectively. It  is instructive to con- 
sider these two equations explicitly: 

(i) ai = m (particle) , a 2  = i (hole): 

(ii) ai = i (hole) , a 2  = m (particle): 

We emphasize the explicit appearance of the different 
types of couplings contained in the above equations, i.e. 
pp, p h ,  and h-h interactions. Next, we perform the 
following substitutions: 

which we insert into the set of Eqs. (43) and (44). This 
leads to 

where we employed the symmetry (121V134) = (211V143) 
etc., of the matrix elements of the Coulomb interaction. 
The two sets of coupled equations (46) are exactly the 
eigenvalue equations of the random-phase approximation 
for the energy-dependent RPA amplitudes x,j and ynj 
[16]. These amplitudes describe physically the transition 
probability of particle-hole pairs between excited RPA 
states /&PA) and the RPA-correlated vacuum IOR~A). 
We would like to mention that the Tamm-Dancoff equa  
tion [17] follows immediately from Eqs. (46) in the case 
that these decouple. This happens when the amplitudes 
ynj  can be ignored: 

The range of applicability of this equation is determined 
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by the condition (V ) / (w  - E,,, + E,) « 1, i.e., the expec- 
tation value of the bare p h  interaction has to  be small 
compared with the difference between the excitation en- 
ergies w of the various p h  configurations and the unper- 
turbed p h  eigenenergies E, - Eh. As a consequence of 
neglecting these so-called backgoing amplitudes y,j, the 
Tamm-Dancoff approximation allows only for one parti- 
cle and one hole in the intermediate states [Fig. 5(a)]. 
This feature is different in the RPA, where in the inter- 
mediate states any number of particle-hole pairs may be 
present [Fig. 5(b)]. 

At the end of this section we study multipole transi- 
tions in the spherically symmetric external nuclear field. 
We will present the general formulas which describe the 
influence of p h  correlations on the line intensity for the 
transition of an electron from an initial state 12) to  a fi- 
nal state I f ) .  If the corresponding values differ strongly 
from their bare values without the p h  interaction, one 
can conclude that correlation effects are strong, and as 
a consequence, that these correlations may lead t o  the 
formation of collective excited states in the considered 
system. 

The interaction of the electron with the quantized ra- 
diation field is described by the matrix element [I31 

where U ,  is a polarization vector and the vector a des- 
ignates the Dirac matrices. After expanding the photon 
field into multipoles, the transition rate per unit time rif 
becomes [18] 

with (L = -ir X V )  

FIG. 5. Intermediate states in the Tamm-Dancoff approx- 
imation (a) and in RPA (b). 

After averaging over the magnetic quantum numbers of 
the final state we find 

with 

2ji + 1 
fL(m) = 7 B ( - 4 ,  " f ,  L)ML , 

where j = 1 nl - i, while the functions B are those given 
in Ref. [M], 

We note that the argument - ~ i  in the function B from Eqs. (52) and (53) requires a definition of the orbital momentum 
quantum number 1 as 1 = K. for K > 0 and 1 = -K - 1 for K < 0, respectively. The radial matrix elements are 



jL(wr) denotes the spherical Bessel functions. For con- excited states, respectively, while X$) and y$) are the 
venience we considered in our calculations the quantities eigensolutions of Eqs. (46). Employing this last relation, 
f~ from Eqs. (52) multiplied by the ~ h o t o n  energy the one easily incorporates the p h  interaction into the radial 
advantage being that the resulting quantities are dimen- matrix elements (54) which provide the corresponding 
sionless. The corresponding quantities with p h  correla- quantities (52) with the inclusion of correlations. 
tions fL can be obtained by consid+ng the expansion of 
a general single-particle operator 0 in terms of the p h  
operators [19] IV. NUMERICAL ANALYSIS 

(qo 10lqn) = C {(hldlp)s. + (plblh)y$)) , (55) 
First we discuss the solution of Eq. (42) for the re- 

duced matrix elements of the effective p h  interaction 
p,n 

WL. Some computational details will be also given. It is 
where 1S)o) and I$,) represent the ground and RPA- useful to  regard this equation in the following form: 

This represents a homogeneous system of algebraic equations which admits solutions only if the determinant of the 
matrix in the curly brackets is equal t o  Zero. Thus, if we define the matrix M with corresponding elements 

the condition 

det [ ~ ( w ) ]  = 0 (58) 

determines the eigenvalues W for which Eq. (56) exhibits 
nontrivial solutions. We note that the four indices in 
Eq. (57) are independent. There is only the restriction 
that if two of them refer to  states above the Fermi level, 
the other two have to  represent states below it. If we 
denote the number of particle states by Np and the num- 
ber of hole states by Nh , the dimension of the matrix 
M is exactly ( N p  X Nh)2. Since in principle the matrix 
M is infinite dimensional, a truncation has to  be intro- 
duced. Some aspects of this truncation will be discussed 
later when we evaluate the line intensities, which are inti- 
mately connected with the transition probabilities. The 
numerical treatment consists of two steps. In a first step 
we calculated the matrix elements of the b a r e p h  inter- 
action, which explicitly enters into the matrix M(w) from 
Eq. (57), while in a second step we determine the eigen- 
values W which are the roots of Eq. (58). The states which 
enter into the matrix elements are solutions of the radial 
single-particle Dirac equation with the external nuclear 
potential which follows from Eq. (26): 

G(r) = r g(r) and F ( r )  = r f (r)  are the so-called 
large and small radial wave functions which enter into 
the spherical ansatz (27), respectively. Depending on 
whether the single-particle energy E is located in the 

gap (-m 5 E 5 m), or not (/EI > m), the radial func- 
tions exhibit totally different properties. For the investi- 
gated superheavy systems, the bound-state solutions are 
highly localized and decrease rapidly with large values 
of r. The bound-state wave functions are conventionally 
normalized according to 

where p(r) = $t(r)+(r) represents the density. The con- 
tinuum states are described by oscillatory wave functions 
with typical sine and cosine behavior in the asymptotic 
region. In contrast to Eq. (60), these wave functions are 
normalized on the energy scale, i.e., 

Convergence problems arise in the evaluation of the ra- 
dial interaction matrix elements as a consequence of the 
behavior of continuum wave functions at r + m. In 
order to circumvent this difficulty, we have discretized 
the continuum by constructing relativistic wave packets 
[20]. Relativistic wave packets have been extensively ex- 
ploited in calculations of electron excitation processes, 
where it was demonstrated that they are well suited for 
the description of the continuum. The wave packets are 
obtained from the radial continuum wave functions after 
an integration on the energy scale, i.e., 
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where E. is the energy of the state which is described by 
the functions ul (r)  and u2 (T). Equations (62) imply the 
normalization 

which is evidently of the same type as Eq. (60) for the 
bound states. This is possible, because these wave pack- 
ets fall off as l/r in the asymptotic region, where the 
amplitude of the oscillation is dampened out as r -+ W. 

All numerical intergrations were performed by Gaussian 
quadrature. The radial matrix elements from Eq. (40) 
exhibit the general structure 

where the functions R,(r) are the two-component radial 
functions defined in Eq. (37). Although the integration 
kerne1 formally is not separable, one can express these 
matrix elements as products of one-dimensional integrals: 

where PKinj ( r )  = GKi(r) GKj(r)+ FKi(r)  FKj(r).  This 
allowed us to  apply fast and highly accurate Gauss- 
Legendre integration routines. 

V. DISCUSSION O F  THE RESULTS 

After reviewing the theoretical framework for the de- 
scription of correlation effects in the QED vacuum we 
now present various numerical results for superheavy 
quasiatoms. In addition to  the equation (42) for the 
effective interaction we have solved the RPA equations 
(46) directly, since this constitutes an essential test of 
the field-theoretical methods used in the present work 
as well as of the numerical computations. The solu- 
tions of these equations also provide the p h  amplitudes, 
which are needed for the evaluation of radiative transi- 
tion strengths including correlation effects. 

We begin the discussion with the single-particle wave 
functions which constitute our basis set. In Fig. 6 we 
compare the radial density distribution pr2 of a K-shell 
electron in the Coulomb field of a lead nucleus ( Z  = 82) 
with that for the superheavy atom with Z = 169. The in- 
crease of the nuclear charge causes a striking localization 
of the 1s wave functions within one Compton wavelength 
of the electron, while the maximum of is located in 
the vicinity of the nucleus. For large nuclear charge num- 
bers the so-called small component F exhibits the same 
magnitude as the large component G. 

FIG. 6. Radial densities of a K-shell electron in hydrogen- 
like systems with Z = 82 and 169, respectively, as functions 
of the radial coordinate r .  Natural units (6 = C = m = 1) are 
employed. 

In Figs. 7(a) and 7(b) we display the radial components 
of the s continuum wave function (n = -1) for Z = 169 
with the energies E = 2.15 and -2.15, respectively. The 
sine and cosine behavior is obvious. Note that for the 
negative-energy state (E = -2.15) the small component 
F exceeds in magnitude the large component G, in con- 

FIG. 7. Radial continuum wave functions ( n  = -1) for 
Z = 169 and for the energies (a) E = 2.15m and (b) E = 
-2.15m, respectively. Natural units (ti = C = m = 1) are 
employed. 



trast to  the positive-energy state. We note that Coulomb 
distortion effects are more important for negative-energy 
states [Fig. 7(b)]. 

In Fig. 8 the s wave-packet components ul and u2 are 
depicted as functions of the radial coordinate r .  We have 
chosen the same parameters as in Fig. 7 in order to  point 
out the striking difference between a wave packet and 
a continuum wave function. The characteristic shape 
of a wave packet is determined by the superposition of 
monochromatic waves according to Eqs. (61). The inte- 
grations on the energy scale were performed numerically 
ki th  a Gaussian quadrature. The number of grid points 
was varied in order to  achieve an accurate error control. 
Rom Fig. 8(a) it is evident that the integration over the 
continuum wave functions damps out the amplitude of 
the oscillations leading to a typical l / r  decline of the 
wave packet. In Fig. 8(b) we have plotted the radial den- 
sity ,or2 - U: + U; for the wave packet describing the 
negative-energy s state with E = -2.3. The positrons 
experience a strong Coulomb repulsion, in contrast to the 
electrons which are attracted by the nuclear potential. 

Having calculated the single-particle wave functions we 
are able to  evaluate the matrix elements of the bare p h  

FIG. 8. Relativistic wave-packet components (a) and ra- 
dial density (b), respectively, for s states depending on the 
radial coordinate T .  (a) E = 2.15m and AE = 0.3m,  (b) 
E = -2.3m and AE = 0.2m. Natural units ( h  = C = m = 1 )  
are employed. 

FIG. 9. Radial matrix elements depending on the energy 
of one of the continuum states. Both involved bound states 
correspond to 1s wave functions. 

interaction from Eq. (40). The numerical computations 
were performed by the method described in the preced- 
ing section. In Fig. 9 several bound-free matrix elements 
are plotted as function of the energy of one of the two 
involved continuum states. The bound wave function is 
the K-shell wave function of the system with Z = 169, 
corresponding to the eigenenergy Ei, = -0.957. The 
continuum states are described by wave packets with a 
level spacing A E  = 0.2, i.e., 100 keV. First, we notice 
that generally these matrix elements attain their maxi- 
mum value for diagonal elements (i = j). 

In Fig. 10 we depict the same type of matrix elements 
as in Fig. 9, except that the 2s wave function was con- 
sidered as bound state. Compared to Fig. 9 we observe 
no significant difference. 

In contrast, Fig. 11 exhibits a quite different behavior 
of the matrix elements. Here we considered 1s and 2s 
wave functions, respectively, which are the off-diagonal 
elements of the determinant from Eq. (58) with (57), or 

FIG. 10. The same as in Fig. 9. Both involved bound 
states correspond to 2s wave functions. 
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FIG. 11. The Same as in Figs. 9 and 10. 2s and 1s bound 
states are involved. 

alternatively of the RPA matrix from Eqs. (46). The first 
important feature which we want to point out is that 
these matrix elements are at least three orders of mag- 
nitude smaller than the diagonal matrix elements from 
Figs. 9 and 10, respectively. In addition, they display a 
more or less oscillatory behavior as functions of the con- 
tinuum energy. This large difference between the magni- 
tudes of the diagonal and off-diagonal elements will have 
important implications on the amount of mixing of the 
p h configurations. 

In Table I the excitation energies of the system with 
Z = 169 are listed. We considered the L = 0 component 
of Eq. (42) and thus investigated the possible existence 
of a monopole excitation mode. The 1s and 2s states 
were taken above the Fermi level, while 15 wave pack- 
ets describing continuum states were taken into account. 
The width of the wave packets was taken as A E  = 0.2, 
such that the deepest lying hole state corresponds to the 
energy Eh = -3.9, or approximately -2 MeV. The first 

TABLE I. Excitation energies W taking into account the 
p h  interaction and unperturbed p h  energies E, - Eh in nat- 
ural units. 

column contains the unperturbed particle-hole energies, 
while the second one lists the corresponding excitation 
energies with p h  correlations taken into account as re- 
sulting from the numerical solution of the Bethe-Salpeter 
equation for W ( w ) .  We have also solved the RPA eigen- 
value equations in order to check the numerical compu- 
tations. From Table I it can be seen that the shifts of the 
energies due to  the p h  interaction are rather negligible. 
The largest relative difference between the free and cor- 
related p h  excitation energies is smaller than 0.3%. It is 
worthwhile to remark that with increasing absolute value 
of the positron energy, the relative energy shifts decrease 
steadily. For the deepest lying negative-energy state the 
relative modification of the energy shift amounts only to 
about 0.03%. All unperturbed energies are shifted by less 
than 1 keV. This implies that there is no indication that 
one or more states of the interacting system are formed 
as a coherent superposition of many single-particle exci- 
tations, in which each excitation has about equal weight. 

In order to achieve a better understanding of the 
typical collective behavior, we have also considered a 
schematic model [21]. Here all matrix elements are set ad 
hoc equal to a common value ß. As a major advantage 
all calculations can be carried out analytically. 

In Fig. 12 we have depicted the determinant from Eq. 

FIG. 12. The determinant from Eq. (58) as a function 
of the frequency W in the case of the schematic model. All 
interaction matrix elements are chosen t o  be (a) 0 = 0.01 
and (b) ,B = 0.1, respectively. 



(58) as a function of the frequency W for this special case. 
We have considered only one particle state with energy 
E, = -0.957 and six hole states with energies Eh = -1.1, 
-1.15, -1.2, -1.25, -1.3, and -1.35, respectively. The 
intersections of the dashed vertical lines with the hori- 
zontal line passing through Zero represent the positions 
of the unperturbed excitation energies E, - Eh, while the 
intersections of the full lines with the Same horizontal line 
provide the corresponding shifts which are a consequence 
of the p h  interaction. These are exactly the roots of the 
secular equation (58). From Fig. 12(a), where we con- 
sidered the situation with ß = 0.01. it can be deduced 
that the different excitation'energies are shifted by about 
the Same amount of magnitude. This behavior is changed 
drastically in Fig. 12(b), where we fixed ß = 0.1. It is evi- 
dent that one particular level is pushed to a much higher 
energy than the other levels. The corresponding state 
displays a collective character, i.e., it carries contribu- 
tion from all other single-particle excitations which are 
involved with practically equal weight in its formation. 
One can understand the existence of such a collective 
state in terms of the relative difference between the diag- 
onal and off-diagonal matrix elements of the interaction 
matrix, since it is just the magnitude of the off-diagonal 
terms which is responsible for the amount of mixing of 
the different p h  configurations. For our system under 
investigation the off-diagonal elements are about three 
orders of magnitude smaller than the diagonal elements, 
demonstrating that correlation effects are of minor im- 
portance for the QED vacuum. 

At this point we would like to  mention that in Refs. 
[22,23] it has been suggested that QED may possess a 
new vacuum state which can be formed in heavy-ion col- 
lisions. Indeed, it has been demonstrated in Refs. [24,25] 
that QED has a phase in which chiral symmetry is bro- 
ken, provided the coupling constant a exceeds the crit- 
ical value ac E 7r/3. According to Ref. [26] the criti- 
cal value of U: depends on the electric charge number Z. 
Thus, we have also considered the possibility that collec- 
tive states can be formed for a QED coupling constant 
which is greater than its value in the real world. The 
purpose of the discussion of this phase transition in the 
context of our work is solely to  motivate our calculation 
with a coupling constant which is greater than its value 
in conventional QED. Of Course, this calculation has no 
implications on the QED phase transition. The question 
which we want to study at this point is whether a QED 
coupling constant greater than its value of a E & allows 
for the formation of collective excited states of the Dirac 
vacuum. In Table I1 we present the energy shifts caused 
by the p-h interaction for the two values of the coupling 
constant a = 0.1 < ac for Z = 1 and a = 1.11 > a, for 
Z = 13 , respectively. These results demonstrate that 
except for the fact that all excitation energies are shifted 
by a larger amount, which is proportional to the modifi- 
cation of a, the situation remains just the same as before, 
i.e., there is no indication concerning the existence of col- 
lective states. 

In the remaining part of this section we would like to 
present our res-ts concerning the dimensionless transi- 
tion strengths fL with correlations. In order to check 

TABLE 11. Excitation energies W and corresponding un- 
perturbed p h  energies E, - Eh for different values of the 
coupling constant ( a )  a = 0.1 and (b) a = 1.11, respectively. 

our numerical integration routines: first we computed 
electronic transition amplitudes of multipolarities M I ,  
M2, and El, respectively, which we have compared with 
previous work. The systems with charges 2=82, 145, 
and 164 were considered, respectively. Our results agree 
within 15% with those presented in Ref. [27], where 

TABLE 111. Dimensionless strengths for M 1  transitions 
for Z = 169. f ~ ( m )  are the bare strengths, while fL(m) 
include particle-hole correlations. 

Transition (MI) fl (m) TI (m) 
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Dirac-Hartree-Fock wave functions have been utilized, in 
contrast to  the Coulomb wave functions employed in this 
work. 

In Table I11 we present dimensionless transition 
strengths for electronic transitions of multipolarity M 1  
from s states below the Fermi level into the 1s and 2s 
bound states for Z = 169, respectively. The first column 
contains the specific transition, while in the second and 
third columns we list our results for the quantities fL(m) 
(bare strengths) and .fL(m) (with the inclusion of correla- 
tions) from Eqs. (52), (54), and (55), respectively. It  can 
be concluded from this table that the p h  interaction has 
only a minor influence on the bare transition strengths. 
The relative difference between f ~ ( m )  and fL(m) does 
not exceed 10%, and in most cases is of the order 1%. 
Consequently, these results support our conclusion con- 
cerning the minor importance of correlations in the QED 
vacuum of superheavy quasiatoms. 

VI. CONCLUSIONS 

As a major objective of our investigation we examined 
the possibility that the QED ground state in the field 
of a large charge possesses collective excitation modes, 
which would be similar to those encountered in various 
many-particle systems. The Green's function technique 
has proven to be a powerful tool for the exploration of 
collective effects in interacting many-body systems with a 
wide range of applicability. Our treatment incorporates 
the same physical ingredients as the standard random- 
phase approximation. 

R o m  the results presented in the preceding section we 
deduce that the p h  correlations display only a minor ef- 
fect on the electron-positron excitation energies in the 
field of a superheavy nucleus. The shifts of the energies 

do not exceed 1 keV and the relative difference between 
the energies of the free and interacting p h  configurations 
is smaller than 0.5%. We found no indication for the exis- 
tence of collective excited states. Our results concerning 
the transition strengths with and without the inclusion of 
the p h  interaction clearly support this conclusion. They 
provide a direct measure for the amount of mixing of 
the involved configurations, which was also found to  be 
small. 

The application of the RPA to the infinite electron gas 
and to nuclei yields collective states, i.e., states that rep- 
resent coherent superpositions of many single-particle ex- 
citations with each excitation having about equal weight. 
This behavior is determined by the relative difference be- 
tween the diagonal and off-diagonal elements which are 
involved in these systems. The unperturbed spectrum of 
a nucleus consists of a group of states which are closely 
spaced. Since correlations are rather important, strong 
mixing occurs with the consequence that collective states 
are formed. However, the excitation spectrum of the sys- 
tem we have investigated, i.e., the Dirac vacuum in the 
presence of a strong Coulomb field, is spread over the en- 
tire energy range, whereas the nuclear energy spectrum 
is bunched. Consequently, the existence of collective ex- 
citation modes in the QED vacuum is, a priori, much less 
likely: and our calculation actually verifies this hypothe- 
sis. 
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