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Phase structure of excited baryonic matter in the relativistic mean field theory 
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We analyze the phase structure of the nonlinear mean-field meson theory of baryonic matter 
(nucleons plus delta resonances). Depending on the choice of the coupling constants, we find three 
physically distinct phase transitions in this theory: a nucleonic liquid-gas transition in the low 
temperature, T, < 20 MeV, low density, p=0.5po, regime, a high-temperature ( T z  150 MeV) finite 
density transition from a gas of massive hadrons to a nearly massless baryon, antibaryon plasma, 
and, third, a strong phase transition from the nucleonic fluid to a resonance-dominated "delta- 
matter'' isomer at p 12po and T, < 50 MeV. All three phase transitions are of first order. It is 
shown that the occurrence of these different phase transitions depends critically on the coupling 
constants. Since the production of pions also depends strongly on the coupling constants, it is 
Seen that the equation of state cannot be derived unambiguously from pion data. 

I. INTRODUCTION 

In a preceding we investigated the phase struc- 
ture of the linear self-consistent relativistic field theoreti- 
cal model of baryonic matter.' We have found that for 
coupling constants which reproduce the observed bind- 
ing energy and density of nuclear matter a phase transi- 
tion occurs for baryon density Zero, i.e., for vanishing 
chemical potential (p=O),  from a gas of massive nu- 
cleons to a plasma of nearly massless nucleons and an- 
tinucleons. This sudden change was signalled by a peak 
in the specific heat. This transition is due to the rapid 
increase of the attractive scalar field at T ~ 2 0 0  MeV, 
which initiates the drov in the effective nucleon mass. 
In the present work we extend our previous investigation 
of the phase structure by explicitly including nonlinear 
terms3 in the scalar interaction which allows a more 
realistic description of nuclear compressibilities and 
effective masses than the linear model. Furthermore, 
isobaric r e s o n a n c e ~ ~ ~ ~  are included. In this approach 
the properties of baryonic matter depend on six parame- 
ters C,, C,, B, C,  c r=g , (A) /g , (N) ,  and ß=g,(A)/g , (N) .  
The strength of the dimensionless coupling constants a 
and ß of the delta resonance to the vector and scalar 
mesons is not known a priori. 

We show in the present paper that the plasma phase 
transition for p=O (Ref. 1) in the linear model does also 
appear at finite baryochemical potentials in the nonlinear 
theory. A liquid-gas phase transition is also observed, but 
at low density and low temperature. We then show that 
for certain values of a and ß density isomers occur which 
are compatible with known nuclear ground-state proper- 
ties: A phase transition from a nucleonic fluid to 
resonance-dominated "delta matter" at p 2 2po with a crit- 
ical temperature T, 5 50 MeV is observed. We also show 
that the plasma transition of Ref. 1 is not directly related 
to such a hypothetical density isomeric state. 

11. THE NONLINEAR RELATIVISTIC MESON 
MEAN-FIELD MODEL 

OF STRONGLY INTERACTING MATTER 

The nucleon field YN and delta field \VA interact in the 
present approach2'3 through a scalar field q: and a vector 
field V„ while the pion and rho meson mean fields vanish 
in symmetric nuclear matter in the mean-field theory. 
The simplest nonderivative coupling of baryons to meson 
fields is given by the Lagrange d e n ~ i t ~ : ~ ? ~  

where the field tensor is defined as 

av, av, F P,, - 
ax, ax, 

and the nonlinear scalar potential3 is written as 

For symmetric, infinite isotropic nuclear matter one 
derives in the mean field approach the following equations 
of motion: 

Here V. is the Zero component of the repulsive vector 
field V„. The effective baryon masses m * ( N )  and m *(Al,  
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ishes. That means that spontaneous particle-antiparticle 
pair production can happen abundantly. This unpleasant 
behavior one could overcome if the SU(6) symmetry is 
considered. If the SU(6) symmetry is exact for baryons, 
then we would be forced to use the same coupling con- 
stant for the baryon decuplet and the baryon octet, just as 
in Ref. 4. but the mass splitting of the multiplets shows 
that the SU(6) symmetry is not exactly fulfilled. There- 
fore one could also assume that the coupling coefficients 
show a splitting similar to that of the mass  littin in^:^ 

For this choice (Fig. 1 )  the effective mass ratios 
m * ( i ) / m ( i )  are equal and positive. But one should stress 
that symmetry arguments can give only tentative indica- 
tions to choose these ratios, since the theory deals with 
effective mesons. 

A similar result can be obtained with the set of cou- 
pling constants studied in Ref. 5, where a= 1 and ß was 
varied between 1.2 and 1.5. These different choices will 
be studied in the following chapter. The main result is 
that both effective masses are positive for finite tempera- 
ture and chemical potential (Fig. 1) and smaller than for 
the previous choice of the delta coupling constants. In the 
next section we show that for the baryonic plasma 
( p = p ~  = 0 )  the value of the scalar coupling to the delta 
resonance is determined by the restriction of positive 
effective masses: 

For that case both effective masses will converge to Zero 
from above for infinite temperature.8 These considera- 
tions apply only to the scalar coupling, because the 
baryonic plasma does not contain any information about 
the vector coupling. 

Let us now consider the consequences of the different 

FIG. 3. Same as Fig. 2, except that this figure is connected to 
Eq. (13). 

choices in some detail (Figs. 2-41. We have plotted the 
particle density of nucleons, antinucleons, deltas, and an- 
tideltas versus the chemical potential p. The choice of 
Garpman et al.  (Ref. 4) shows a clear delta dominance 
with fewer nucleons and negligible antiparticles (Fig. 2). 
The second choice with mass dependent scalar and vector 
coupling9 predicts a strong suppression of the deltas (Fig. 
3). This is due to the strong vector coupling. The third 
choice with mass dependent scalar and equal vector cou- 
pling53b.8 yields delta dominated matter with suppressed 
nucleons and negligible antiparticle contributions. Here 
negative effective masses do not occur (Fig. 4). These 
three possibilities show that the delta abundance is strong- 
ly dependent on the coupling constants of the delta reso- 
nances to the scalar and vector fields. This result renders 
the proposed method of using the pion ( A )  yields to ex- 
tract the nuclear equation of state from data'O"' virtually 
useless for the mean field equation of state. In this paper 
we will consider mainly the third choice in more detail. 

FIG. 2. The particle densities vs the chemical potential p. 
The solid line corresponds to the nucleon density, the dashed- 
dotted line to the deltas, while the dotted line represents the an- 
tinucleons and the dashed line s t a n d ~  for the antideltas. This FIG. 4. Same as Fig. 2, except that this figure stands for 
figure is connected to Eq. (12). set of Eq. (14). 

the 



IV. THREE PHASE TRANSITIONS 
IN HOT HADRONIC MATTER 

A. Critical phenomena at finite baryochemical 
potential and densities 

Let us study the phase structure of nuclear matter in 
analogy to Ref. 1, but at finite baryochemical potential: 
Figure 5 shows the "equation of state" at T=O MeV, 
i.e., the binding energy per nucleon versus the density, 
for different values of the scalar coupling constant ß 
(ß= 1.3 1 - 1.35 ) and the vector coupling constant a 
( U =  1.0-1.31 1. For U =  1.0 and ß> 1.2, a secondary 
minimum is obtained at  densities ps 2 2po For ß= 1.5 
the second minimum is actually lower than the ground 
state (below - 50 MeV). For ß=m ( A ) / m  ( N )  (a= 1.0 
and ß=1.35), a secondary minimum develops at 
E / A E + 4  MeV and p 3po The reason for this behav- 
ior is the rapid increase of the delta production at 2p, 

C: = 2L6.0, C: = 156.3, B = -1.8d-3, C = +2.87d-1, T=O MeV 
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FIG.  5. Equation of state: Binding energy per nucleon vs 
the baryon density ps /po  for a 2  1.0 and ß=1.31,1.35 and 
vanishing temperature T = O  MeV. The left curve (solid) is the 
nucleonic curve without any delta distribution, but is also valid 
for ß= 1.31 and a 2 I .  2. The second (dashed), third (dashed- 
dotted), and fourth (dotted) curves are plotted for ß= 1.31 and 
a =  1.15,l .  1, and a= 1.0, respectively. For decreasing vector 
coupling strength a the binding energy decreases and a real 
minimum is only reached for a= 1.1. The fifth (solid) curve is 
the only one with ß= 1.35 ( U =  1.0) .  

FIG. 6. Particle density of deltas and nucleons vs the baryon 
density. ß is chosen to be 1.35, that is, the density isomeric case. 

(Fig. 6 ) .  This reflects the strong attraction of the deltas 
by the scalar field, which results in a lowering of the del- 
ta continuum states below the Fermi surface of the nu- 
cleons. Equilibrium is reached when 80% of the 
baryons are in the deltas (with degeneracy y = 16) and 
20% are in the nucleons ( y  =4) .  But also the vector 
coupling constant a has a great influence on the equa- 
tion of state. If we fix the scalar coupling constant to 
ß=1.31 and vary only U, the minimum of the density 
isomer lies higher in energy and vanishes completely for 
a > 1.15. Then the delta resonances do not occur at 
moderate densities. The left curve in Fig. 5 is not only 
valid for this choice but also for the normal nucleonic 
equation of state. 

Hence we can conclude in agreement with Fig. 5 that 
in addition to the ground state properties there is a great 
influence of the delta coupling constants on the high 
density behavior (Ref. 5). The delta resonances play the 
most important role for the pion production in heavy 
ion collisions from 0 MeV to 2 GeV/nucleon bombard- 
ing energy.12 The present result means that the equation 
of state cannot be unambiguously derived from the pion 
data as was expected b e f ~ r e . ' ~ " ' ~ ' ~  

For finite temperatures (Fig. 7 )  we can See a similar be- 
havior: As the teniperature increases, so does the energy 
per nucleon. For T > 20 MeV the System is unbound and 
for T = 5 0  MeV the two minima have the same d e ~ t h . ~  
While the normal nucleonic minimum vanishes, more and 
more deltas are produced. For T=100 MeV there is 
finally only one broad delta dominated minimum in the 
isotherm. This behavior is due to the smearing effect of 
the temperature on the Fermi level (compare Fig. 8). 
Therefore the delta abundance increases much more 
smoothly, but starts already at Zero baryon density with a 
value above 0 . 2 ~ ~ .  

The velocity of sound tends towards the velocity of 
light for high densities and/or high temperatures as can 
be seen in Fig. 9: The isotherms of P tend towards the 
causality limit P = € .  That means that a ~ / a e = c S  con- 
verges to 1 from below. The second velocity is therefore 
predicted to be always smaller than the light velocity. In 
the same pictiire, two phase transitions can be observed. 
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FIG. 7. Equation of state for finite temperature and ß= 1.35. 
Binding energy per nucleon vs baryon density p~ /PO. 

The first one at an energy density E =  100 ~ e V / f m ~ ,  and 
the second one at ~ ~ 4 0 0  ~ e V / f m ~ .  These phase transi- 
tions are characterized by negative values of C:, i.e., imag- 
inary values of the sound velocity C,. This indicates a 
mechanical instability of the system. The first phase tran- 
sition at E =  100 ~ e V / f m ~  can be identified as the liquid- 
vapor phase transition, as shown in Ref. 1 for the linear 
model. The second phase transition corresponds to the 
delta-density isomeric state.' Here a baryonic phase tran- 
sition from nucleonic to delta matter occurs. Solving the 
Rankine-Hugoniot-Taub relations for this density isomeric 
state the single shock solutions break down and shock in- 
stabilities occur,' similar to those predicted ten year ago.I4 

The equation of state of the baryonic system and the 
appearance of phase transitions can be illustrated best by 
plotting isotherms of pressure versus the chemical poten- 
tial ,U. In such a figure, possible phase transitions can be 

FIG. 9. Pressure vs energy density in a logarithmic scale for 
ß= 1.35 and temperatures from 10 to 100 MeV. 

identified very easily: The Gibbs two phase equilibrium 
is established when two branches of P ( p , T )  Cross, i.e., 
thermal equilibrium ( T ,  = T2 ), chemical equilibrium 
( p i = p 2 ) ,  and mechanical equilibrium (P1 =P2) between 
the two branches are automatically ensured. Observe in 
Fig. 10 that the isotherms separate into four regions 
which can be identified with nucleon-liquid, the 
nucleon-gas, the delta phase, and a fourth phase which 
corresponds to the plasma phase discussed in Ref. 1. 
Regions of instability develop when the incompressibility 
becomes negative. The van der Waals form of the equa- 
tion of state in the low temperature range is due to the 
long range attractive forces and the short range repul- 
sion described in the mean-field model. This first transi- 
tion (liquid-gas) has a critical temperature T, E 17 MeV. 
The critical temperature of the second phase transition 
is T, =41 MeV. At even high temperatures, T - 130 

/ 5 MeV 
-10 

450 500 550 600 650 700 750 800 850 900 950 1000 

(MeV) 

FIG. 8. Particle density of deltas and nucleons vs the baryon FIG. 10. Pressure P vs chemical potential p for ß= 1.35 and 
density for T = 100 MeV. temperatures from 5 to 130 MeV. 
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~ 2 ~ 3 5 3 . 8 9 9  , C!= 268.805 , V =  0 MeV 

FIG. 12. Effective mass m * /m vs temperature T for vanish- 
ing chemical potential p and ß= 0,l .  2 , l .  3 1 , l .  5. 

used. The mathematical structure of the self-consistency 
equation is so simple that is is possible to understand how 
this decoupling happens. First we remark that the specific 
heat is linear in am*/aT .  So whenever we see a sudden 
fall in m * /( T), there is a peak in the specific heat. In ad- 
dition, if we have three solutions of the self-consistency 
equation, similarly the total energy density in that region 
is also triple valued. The fact that we see one or two 
poles or only a peak in am * / a T  means, respectively, that 
we have a phase transition of second or first order or con- 
tinuous thermodynamical behavior. The most important 
point is the occurrence of negative effective nucleon 
masses evaluated for a = l  and ß= 1.20. When the 
effective mass vanishes, there is no energy gap between the 
baryons and the antibaryons. Thus spontaneous particle 
production can occur. In the linear model an analytic 
solution for the high-temperature behavior of the effective 
masses can be derived: 

It is obvious that the sign of the effective masses depends 
on the sign of the quantity inside the large parentheses, 
but in an opposite way. So we have three different possi- 
bilities in choosing ß. The first one is to choose ß > 1.3 1, 
so that we get a positive effective nucleon mass, but then 
the effective delta mass becomes negative. The second 
one is to choose ß < 1.3 1. Then we will get a positive 
effective delta mass, but have to cope with negative 
effective nucleon mass. The third possibility is ßz 1.3 1, 
as we had discussed analytically for the baryonic plasma, 
in which case both effective masses will ao to Zero in the " 
high temperature regime, i.e., we will get chiral symme- 
try. This only happens if ß is equal to the ratio of the 
delta mass to the nucleon mass [Eq. (1411. This result is 

only valid for the scalar coupling constant, because the 
vector meson does not contribute to the effective masses. 
Thus the only way to get rid of the unrealistic negative 
masses is to choose ß = m ( A ) / m ( N ) ~ 1 . 3 1 ,  so that both 
effective masses converge to Zero for T +  m. This re- 
quirement does not imply that ß should be chosen in this 
way in all mean-field calculations: The extrapolation to 
high T must certainly be questioned for the present ap- 
proach. It must be kept in mind that this picture is the 
result of a mean-field approximation. Hence the detailed 
structure of the phase transitions will certainly be 
different in the full quantum field theory. Another re- 
mark concerns the observation that at  high temperature 
the system behaves like an almost free Zero mass fermion 
gas with a constant shift in the energy density and in the 
pressure. This is quite analogous to the expected chiral 
phase transition in high temperature quantum chromo- 
dynamics (QCD). However, there is no liberation of 
internal degrees of freedom of hadrons in the linear 
mean-field model. 

Summarizing this section we may state that around the 
temperature T =  100-200 MeV the pressure and the inter- 
nal energy become, up to a constant, those of a free mass- 
less fermion gas having the degeneracy factor of nuclear 
matter. We interpret these results such that the nuclear 
field theory, as a low temperature effective theory of ha- 
dronic matter, indicates the occurrence of a sudden 
change in the thermodynamical behavior around 
T= 100-200 MeV at Zero baryon density, in some analo- 
gy to quark deconfinement in lattice QCD calculations. 
The last result is that this phase transition occurs for 
different ß (ß= 1.2- 1.5 ), and in the special case ß~ 1.3 1 
for all possible values of C?. While this phase transition 
was parameter dependent in the normal linear and non- 
linear mean-field theory (Ref. I), it is now always present. 
This is due to the delta-scalar coupling which reduces the 
effective nucleon mass very strongly. The critical value 
for ß= 1.35 is C: = 20. For such a low scalar coupling 
one obtains an effective nucleon mass above 0.9 for the 
ground state or a compressibility of 2000 MeV, which are 
both much too high. 

V. CONCLUSION 

A detailed analysis of the phase structure in the non- 
linear mean field model including delta resonances shows 
that with parameters which reproduce the properties of 
ground state nuclear matter, the model predicts a low- 
temperature nucleonic liquid-vapor phase transition at 
T, = 15-20 MeV, and another one at temperatures above 
100 MeV connected with the critical conditions in the 
high-temperature baryon, antibaryon plasma. These tran- 
sition are quite similar to those found in the linear mean- 
field model, but the critical temperature T, in the high- 
temperature regime is reduced. The location of this high- 
temperature phase transition is strongly parameter depen- 
dent. For a system of nucleons and delta resonances, we 
do observe this state for all coupling constants which de- 
scribe nuclear ground-state properties. Thus the inclusion 
of nonlinear scalar interactions or delta-meson couplings 
into the mean-field Lagrangian does not alter this critical 
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behavior of the model. Additional problems enter by a mers for certain choices of the vector coupling constant 
third phase transition, which results from the delta in- ( a  <D). 
teraction with the meson fields. T h e  first problem is the 
nucleon-delta phase transition a t  T,  5 4 5  MeV, and the ACKNOWLEDGMENT 
second one the creation of negative effective masses for 
ß # m ( A ) / m ( N ) .  One can only get rid of this unrealistic We thank Dirk Rischke for allowing us to use his re- 
behavior by demanding the scalar-delta coupling to be sults concerning the phase transition from quark gluon 
proportional to the mass ratio. This can yield delta iso- plasma to hadronic matter (Fig. 11). 
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