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Studying Walecka's mean-field theory we find that one can reproduce the observed binding ener- 
' gy and density of nuclear matter within experimental precision in an area characterized by a line in 

the coupling-constant plane. A Part of this line defines systems which exhibit a phase transition 
around T,-200 MeV for Zero baryon density. The rest corresponds to such systems where the 
phase transition is absent; in that case a peak appears in the specific heat around T-200 MeV. We 
interpret these results as indicating that the hadron phase of nuclear matter alone indicates the oc- 
currence of an abrupt change in the bulk properties around p v  -0 and T - 200 MeV. 

INTRODUCTION 

A long-standing aim of theoretical nuclear physics is to 
describe the bulk properties of hadronic matter. An ambi- 
tious hope is that this task can be accomplished at  least 
numerically by doing lattice QCD calculations in the near 
future. Even if we had such results to date, it is still very 
instructive to study effective theories describing hadronic 
matter in a definite range of temperature and density. 
One of the most successful effective models is Walecka's 
meari-field t h e ~ r v . ' - ~  On the one hand, it describes 
suprisingly well a variety of physical properties of nuclear 
matter and of finite nuclei, and on the other hand it can 
be generalized to contain the lincar U model which is sup- 
posed to be the low-energy effective theory of strong in- 
teractions6 In the following we extrapolate the effective 
theory to the high-temperature region (T>200 MeV). 
This extrapolation may be somewhat misleading, since 
scalar and vector mesons are not sufficient for nuclear in- 
teraction at this temperature. Nevertheless it is of value 
to study the nonlinear behavior of such an effective theory 
under extreme conditions. 

We expect that a phase transition takes place in hadron- 
ic matter at high temperature or density. Having an effec- 
tive theory in the low-temperature or -density region, one 
can study whether this model contains a phase transition. 
This procedure can be contrasted with another strategy, 
according to which two different approximations are used 
(e.g., Walecka's theory and perturbative QCD in the case 
of quark matter) and one tries to match them. 

In this article, we study Walecka's mean-field theory 
with the following results: (i) We can reproduce the ob- 
served binding energy and density of nuclear matter 
within experimental precision in an area characterized by 

a line in the coupling-constant plane. The coupling- 
constant values proposed by Walecka represent a point 
close to the end of this line. (ii) We have found that a part 
of this line defines systems which exhibit a phase transi- 
tion around T ,  -200 MeV for Zero baryon density. The 
rest of this line corresponds to such systems where the 
phase transition is absent but there is a peak in the specif- 
ic heat around T-200 MeV. We interpret these results as 
indicating that the hadron phase of nuclear matter alone 
indicates the occurrence of an abrupt change in the bulk 
properties around pV - 0 and T - 200 MeV. 

DETERMINATION OF COUPLING CONSTANTS 

Walecka's riuclear field theory contains the baryon field 
4 and scalar- and vector-meson fields d[> and V„ respec- 
t i ~ e l ~ . ' , ~  The field Lagrangian is given by 

where M, M s ,  and m V  are the inverse Compton wave- 
lengths of the baryon, scalar meson, and vector meson, 
respectively. Here the field tensor is FpA = apV). -aAVp. 
The equations of motion obtained from Eq. (1) are 

with the scalar - density ps = ?$, the baryon (vector) densi- 
ty pv=jo =$yo4, and the baryon current ?=GY$. Con- 
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sidering a uniform system of baryons the meson fields can 
be replaced by the classical f i e ~ d s . " ~  In this limit Eqs. 
(21-44) reduce to mean-field equations 

[ypap+(M - g s Q > ) + g v ~ o ~ o I l l = o  , ( 5 )  

G=(gS/ms2)ps , (6)  

Fo=(gv/mV2)Pv . (7) 

One can calculate thermodynamical quantities in the 
mean-field approximation and find3 

e = f ( l / ~ ~ ~ ) ( l - x ) ~ + f  cV2nV2 

+[y/(2n-13] $ d 3 k ( k 2 + x 2 ) 1 / 2 [ n ( 8 ) + ~ ( 8 ) ]  , 

(8) 

where e,  p, and n V  are the dimensionless energy density, 
total pressure, and vector (baryon) density. The first two 
terms in Eqs. (8)  and (9) arise from the scalar- and 
vector-meson fields, while the final two contributions are 
those of a relativistic Fermi gas of baryons with an effec- 
tive mass M *  =xM. y is the degeneracy factor ( y  = 4 for 
nuclear matter), n ( 8 )  and K(8) stand for the Fermi func- 
tion for baryons and antibaryons, respectively. 8 defines 
the dimensionless temperature ~ = T / M c ~ .  The nucleon 
effective mass M * = x M  is given by the equation of 
motion of the scalar-meson field @: 

In the original publication,' the coupling constants cs2 ,  
c V 2 ,  were fixed to give cbind= - 15.75 MeV and kF = 1.42 
fm-'. However, the resulting equilibrium density 
p„=0.19 fm-3 and the nuclear incompressibility K-550 
MeV were unrealistically large. We have tried to fix these 
shortcomings by using different sets of coupling con- 
stants. Figure 1 shows the region of the coupling-constant 
plane where the mean-field solution yields the nuclear 
binding energy - 16 < < - 15 MeV at equilibrium 
densities 0.14 < p „  < 0.19 fm-3. However, we observe that 
for any reasonable set of coupling constants the compres- 
sion constant K does not change significantly, even for the 
lowest p„ values. Also the effective baryon mass 
X =M*/M, which is the governing quantity of the mean- 
field approximation, is constant in this region within 1%. 

The physical reason for this wide latitude in the deter- 

mination of the coupling constant is not completely clear. 
Mathematically the situation is the following: By fixing 
the binding energy one gets a line in the coupling-constant 
plane. Moving along this line the scalar coupling constant 
cs2 and the Fermi momentum kF corresponding to 
minimal energy (at 8=0)  change. These changes are relat- 
ed such that they almost cancel each other in the second 
term of the denominator in the self-consistency equation 
(1 1). In this way the effective mass changes very slowly 
along the line and one has an elongated region in the plane 
of coupling constants giving approximately the same 
and kF .  

PHASE STRUCTURE 

Let us now explore the phase structure for the effective 
Lagrangian at vanishing chemical potential p and vector 
density p, (p=pv=O).  First observe that for p=O the 
vector coupling constant does not appear in the thermo- 
dynamical quantities (8)-(11) calculated in the mean-field 
approximation. It is interesting that this feature is 
preserved by the leading-order quantum corrections as 
we11.~9' 

In contrast to p#O, the Fermi integration can be done 
analytically, yielding for the dimensionless energy density 

with the internal energy density 

I 

100; I-----l-t ~ = ( ~ 8 x ~ / n - ~ ) ~ [ ( - l ) " - ~ / n ] [ ~ ~ ( n x / 8 )  
180 200 380 400 500 C: 

+(38/nx)K2(nx/8) l  
FIG. 1. The region of the coupling-constant plane where the 

mean-field solution reproduces the nuclear binding energy (13) 
- 16 < E < - 15 MeV at equilibrium densities 0.14 < p „  < 0.19 
fm-'. We observe that for any reasonable Set of coupling con- and the total pressure 

stants the compression modulus K does not change significantly. p = - ~ ( ~ / C ~ ~ ) ( I - X ) ~ + ~ ~  , (14) 
Also the effective baryon mass X = M * / M  is constant in this re- 
gion up to 1 %. with the baryonic contribution 



2288 J. THEIS et al. 28 - 

The effective mass M*=xM is defined by the self- 
consistency relation 

l + ( y ~ s 2 ~ ~ / ~ 2 ) ~  [ ( - l ) n - 1 / n ] ~ , ( n x / 8 )  

Here K ,  and K 2  stand for the modified Bessel functions 
of first and second order, respectively. 

Figure 2 contains the solution X of the self-consistency 
equation (16) as a function of the temperature. The gen- 
eral trend of the function X ( 8 )  can be understood as fol- 
lows: The scalar density, which appears as a source for 
the scalar-meson field <i>, increases with increasing tem- 
perature. This leads to an increase of the mean-field value 
of @. Since the scalar meson describes an attractive in- 
teraction of the nucleons, these will be bound more strong- 
ly, and thus the effective mass is reduced. This mecha- 
nism is reinforced by the fact that a decrease of the effec- 
tive mass increases the scalar density again. 

The most striking feature is the sudden drop in X at 
temperature T-200 MeV where the transition from 
x=0.75 to x=0.25 occurs in an interval of AT-5-10 
MeV only. 

We have computed thermodynamical quantities for the 
various coupling constants of the regions shown in Fig. 1. 
For c . ~ ~  > 342 we find a phase transition of first order. 
For Cs2 < 342 the thermodynamical behavior is smooth in 
the temperature but a peak of finite width is found in the 
specific heat (sec Fig. 5 ) .  For Cs2=342 there is a phase 
transition of second order. 

To the best of our knowledge this is the first example in 
the literature of an effective theory in which the order of 
the phase transition directly depends on the strength of 
the coupling constant. 

Figures 3-5 show the temperature dependence of the 
total energy density divided by the high-temperature limit 
of the energy density [Eq. (1211, the pressure, and the 

FIG. 2. For p,=p=O the solution X = M * / M  of the self- 
consistency equation (16) is plotted as a function of temperature 
for different values of es2. The lower graph contains the same 
results but with a stretched temperature axis near the transition 
point. 

FIG. 3. For p,=p =O the temperature dependence of the nor- 
malized energy densities is shown. E„ U, and Eu, stand for the 
total, nuclear, and scalar-field energy densities, respectively. 
They are divided by the Stefan-Boltzmann limit of E : ~ .  From 
EIB one recognizes that the system reaches its high-temperature 
behavior quite abruptly. Since the effective mass is very small 
at high temperature the system suddenly decouples to almost 
free Zero mass nucleons, i.e., up to the constant first term in the 
energy density and pressure. Now this happens depends on the 
actual values of the coupling constants cx2. The lower graph 
contains the results only for Cs2=365 but with a stretched tem- 
perature axis. 
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FIG. 4. For p,=p=O total pressure divided by the high- 
temperature (Stefan-Boltzmann) limit is plotted versus ternpera- 
ture for different coupling constants Cs2. The lower graph 
shows the transition point. 

specific heat for cs2=307 (p„=0.17) and cs2=365 
@,q=0.145). The total energy density shows (Fig. 3) that 
the system reaches its high-temperature behavior quite 
abruptly around T - 200 MeV. Since the effective mass is 
very small at  high temperature, we can say that the sys- 
tem suddenly decouples to almost free zero-mass nucleons, 
i.e., up to the constant first term in the energy density and 
pressure. How this happens depends on the actual values 
of the coupling constants cs2. It  must be kept in mind, 
though, that this picture Comes from the mean-field ap- 
proximation so that the detailed structure of this sudden 
change (e.g., whether we observe a phase transition or a 
peak of finite width in the specific energy only) may be 
different in the full quantum field theory. 

Another remark concerns the observation that at high 
temperature the system behaves like an almost-free zero- 
mass fermion gas with a constant shift in the energy den- 
sity and in the pressure. This is quite analogous to the ex- 
pected chiral phase transition in high-temperature QCD.~  
However we should keep in mind that there is no libera- 
tion of internal degrees of freedom of hadrons in the 
Walecka model, i.e., the phase transition found here can- 

TE MeV I 
FIG. 5. The dirnensionless specific heat CIHear is shown as a 

function of temperature and for different Cr2. Because of the 
linearity of CIHeat in dx  /dB  and the pole structure of dx  /dB,  the 
specific heat diverges for Cs2=365, but is continuous for 
cs2=307. 

not be interpreted as a transition from baryon to quark 
matter.9 

CRITICAL LINE OF THE MEAN-FIELD THEORY 

The mathematical structure of the self-consistency 
equation is so simple that it is possible to understand how 
this decoupling happens. First we remark that the specif- 
ic heat calculated from (12) is linear in dx /d8. So when- 
ever we See a sudden fall in X ($1, there is a peak in the 
specific heat (see Fig. 5 ) .  In addition, if we have three 
solutions of the self-consistency equation, similarly the to- 
tal energy density in that region is also triple valued. This 
type of temperature dependence leads to a phase transition 
of first order applying the Maxwell construction in order 
to avoid instability. In this way the fact that we See one 
or two poles or only a peak in dx /d8  means, respectively, 
that we have a phase transition of second or first order or 
continuous thermodynamical behavior. 

The next step is to clarify the pole structure of dx /d0 .  
It is easy to express dx /dO as a function of X and 8: 
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The poles of this expression in the (x,O) plane lie on the 
curve determined by the vanishing of the denominator. 
Using Eq. (16) this condition becomes 

The number of intersections of this line with the solution 
of the self-consistency equation tells us how the decou- 
pling happens. The numerical study of this question leads 
to the following results: 

(i) For cs2 < 342 the lines do not cross, so that for such 
coupling constants the decoupling is continuous. 

(ii) For cs2=342 the lines have one point of contact so 
that we have a phase transition of second order at 
T, =205 MeV where X =0.505 (these values come from 
the X ,  T coordinates of the point of contact). 

(iii) For Cs2> 342 the lines cross twice, so in this case 
we have a phase transition of first order. The critical tem- 
perature and X at both end points of the mixed phase are 
given by the X, T coordinates of the intersections. 

Thus the order of the phase transition strongly depends 
on the actual value of the coupling constant Cs2. 

SUMMARY 

We have studied the equation of state of the baryon- 
antibaryon plasma at high temperature and at Zero baryon 
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density. Our result is that around temperature T-200 
MeV the pressure and the internal energy become, up to a 
constant, those of a free-massless-fermion gas having the 
degeneracy factor of nuclear matter. This sudden change 
can be manifested as a peak in the specific heat or as a 
phase transition depending on the actual values of cou- 
pling constants. In addition, we have found that if one 
fixes the coupling constants by fitting the measured bind- 
ing energy and density for nuclear matter to experimental 
values, the possible coupling-constant values determine an 
elongated strip in the coupling-constant plane. This strip 
contains coupling-constant values corresponding to both 
types of the mentioned thermodynamical behavior. We 
interpret these results such that the nuclear field theory, as 
a low-temperature effective theory of hadronic matter, in- 
dicates the occurrence of a sudden change in thermo- 
dynamical behavior around T, -200 MeV at Zero baryon 
density, in analogy to quark deconfinement in lattice 
QCD calculations. 
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