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Chapter 1

Introduction

1.1 Motivation

It is commonly agreed that cortical information processing is based on the electric
discharges (‘spikes’) of special nerve cells, the neurons. To investigate the spiking
activity of neuronal cells, their spike times are recorded in discrete time steps
and represented in binary time series S (‘spike trains’; Fig. 1.1):

S(jδ) =

{
1 if (at least) one spike was recorded in [jδ, (j + 1)δ),

0 otherwise,

where j = 0, 1, . . . , T/δ− 1. The time resolution of the spike train is denoted by
δ, and T is a multiple of δ and denotes the length of the analysis window.

 

TIME...spikes

S =          ( 0, 0, 0, 0, 0, 0, 0, 0,1, 1, 1, ... )

0 δ 2δ 3δ ...

Figure 1.1: Formal representation of a spike train with time resolution δ. Recorded spike times
are transformed into a binary time series in discrete time.

Complex information is assumed to be represented and processed in the com-
bined activity of a large number of neurons in the highly connected network of
cells. Therefore, many studies focus on the temporal interaction between the
spike trains of multiple neurons obtained in parallel recordings. Evidence is

1



2 CHAPTER 1. INTRODUCTION

accumulating which suggests that this temporal interaction can take place with
extremely high precision, indicating that the efficiency of cortical processing may
depend crucially on the precise spike timing of many cells (The reader interested
in the neurophysiological background can find a more detailed presentation of
the research field in Appendix A.1).

This work focuses on two temporal properties of parallel spike trains that
attracted growing interest in the recent years: In the first place, delays between
the firing times of two spike trains are investigated. In particular, it is studied
whether small temporal delays can be identified confidently between two spike
trains that have the tendency to fire almost simultaneously. Second, the temporal
relations between multiple spike trains are investigated on the basis of such small
delays between pairs of processes. Since the analysis of all delays among the firing
activity of n neurons is extremely complex, a method is required with which this
highly dimensional information can be collapsed in a straightforward manner
such that the temporal interaction among a large number of neurons can be
represented consistently in a single temporal map. Finally, a stochastic model
is presented that provides a framework to integrate and explain the observed
temporal relations that result from the previous analyses.

1.2 Outline

The CCH In practice, temporal correlations between two spike trains S1, S2

with the same time resolution δ are often analyzed with the so-called cross-
correlation histogram (CCH; Moore et al., 1966; Perkel et al., 1967b, for a dis-
cussion of the terminology see Appendix A.2). With a maximal delay L > 0, a
set of lags

LL
δ := {kδ | k ∈ Z, |kδ| ≤ L}

is specified. For every delay ` ∈ LL
δ , the number of spikes in S2 is counted which

occur ` time units after a spike in S1 (see also App. A.2):

HS1S2(`) :=
∑

j

S1(jδ)S2(jδ + `) (Fig. 1.2). (1.1)

Since a delay ` between a spike pair in S1 and S2 is equivalent to a delay −`
between the same spike pair in S2 and S1, the CCH between S2 and S1 is a mirror
image of the CCH between S1 and S2:

HS2S1(`) = HS1S2(−`). (1.2)



1.2. OUTLINE 3

S1
S2

5δ −6δ 5δ −3δ 9δ 0

CCH S1S2

0−10δ 10δ

Figure 1.2: Schematic representation of the computation of a raw CCH for two spike trains
S1, S2 with time resolution δ and maximal time lag L = 10δ.

The CCH is central for the present work because it is a well-established method of
analysis for the investigation of coordinated neuronal firing activity (e.g., Toyama
et al., 1981; Ts’o et al., 1986; Gray et al., 1989; Nowak et al., 1995; Kreiter
and Singer, 1996). Figure 1.3 shows an exemplary CCH for two spike trains
obtained experimentally. As the counts in a CCH are usually noisy, they are
often smoothed or fitted with a suitable function in order to estimate the relevant
parameters.

A                              

delay [ms]

# 
oc

cu
re

nc
es

0
50

CCH

−50 0 50

B                              

delay [ms]

0
50

−10 −5 0 5 10

Central Peak

Figure 1.3: A: Smoothed shape of a CCH computed for two experimentally derived spike trains
(L = 80 ms). The oscillatory shape indicates preferred delays at ` ≈ 0, ±25 ms, . . ., while
intermediate delays are less frequent. B: Central region of the same CCH (L = 10 ms, δ = 1/32
ms).

This work is motivated by the contrast provided between two different ap-
proaches. On the one hand, the widely used CCH technique is simple and pro-
vides detailed information about temporal relations but is restricted to pairwise
analysis. On the other hand, highly elaborated approaches are available that
deal with multiple spike trains but suffer from the complexity arising with a
high number of processes (Perkel et al., 1975; Gerstein et al., 1985; Gerstein and
Aertsen, 1985; Abeles and Gerstein, 1988; Kaluzny et al., 1991; Martignon et al.,
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1995; Baker and Lemon, 2000; Abeles and Gat, 2001; Grün et al., 2002a,b; Amari
et al., 2003; Schneider and Grün, 2003, for a review see e.g., Brown et al. (2004)).
Simple methods should be available to the experimenter with which additional
information can be extracted from CCHs. Especially, it is investigated whether
interactions between multiple neurons might be visible in CCHs.

Part I
The first part deals primarily with the identification of small temporal delays
between the spike times of pairs of spike trains. As in Figure 1.3 A, many CCHs
take their maximum close to zero, which indicates that the two spike trains tend
to fire nearly simultaneously. However, panel B shows that the maximum of the
peak may deviate slightly from ` = 0. The exact position of the maximum - the
‘phase offset’ - is the central parameter investigated in Part I. Small phase offsets
such as the one in Figure 1.3 B have not been analyzed in the past because they
are usually considered negligible in comparison to the variability of counts in the
CCH (e.g., Roelfsema et al., 1997). However, since neuronal firing activity can
take place with high temporal precision (e.g., Mainen and Sejnowski, 1995; Riehle
et al., 1997; Reinagel and Reid, 2002; Ikegaya et al., 2004), also near-zero phase
offsets might be relevant for information processing. In order to decide whether
a near-zero phase offset can be considered a systematic deviation or whether it
is caused by random fluctuations, it is important to assess the variance with
which a phase offset can be estimated. To this end, a method is presented that
can be used to estimate phase offsets and that allows also the assessment of the
variability of these estimates.

The presented method assumes that the counts in the central peak of a CCH
can be described with a cosine function with independent and normally dis-
tributed noise σZ`

H(`) = A cos(ω(`− ϕ)) + β0 + σZ`, ` ∈ LL
δ .

With these assumptions, the variance of the phase estimate can be approximated
with the δ-method (see Prop. 2 on page 22). The resulting formula (eq. (4.29)-
(4.33)) is composed of two multiplicative terms, V and G. V indicates that the
precision of the phase estimate increases with the oscillation frequency ω, with
the quotient A/σ, and with the number of data points in the CCH, N = 2L/δ+1.
The term G can be interpreted geometrically and depends essentially on the
relation of data points at the edges of the cosine function as compared to the
data points at the extremes (sect. 4.1.2).
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The theoretical formula corresponds well to the variance of the phase estimate
derived with simulations (sect. 4.2.1) and to the variability observed in a sample
data set with n = 14 parallel spike trains obtained experimentally (sect. 4.2.3,
details on stimuli and analysis window are provided in Appendix A.3). In the
sample data set, the absolute value |ϕ̂| of most phase estimates was considerably
larger than the standard deviation σϕ̂, indicating that deviations from zero are
unlikely to be explained by random fluctuations.

Part II
The results obtained in Part I also suggest that near-zero phase offsets can vary
systematically between different stimulation conditions (sect. 4.3). Therefore,
it is investigated in Part II whether temporal relations among n spike trains
can be extracted from the pairwise information given by the set of all

(
n
2

)
phase

offsets associated with these n processes. In particular, it is investigated to which
degree a set of phase offsets can be represented in a lower dimensional structure
with the help of the additivity assumption: If the phases computed among any
triplet of spike trains Si, Sj, Sk are perfectly additive, i.e., if ϕik = ϕij + ϕjk (with
ϕik = −ϕki), the set of phase offsets can be represented in an (n−1)-dimensional
space. In this representation, each spike train Si is assigned a value xi on the real
line such that every phase ϕij equals the ‘model distance’ δij = xj − xi (ch. 6,
Fig. 6.1 B).

Part II investigates whether such an additive structure can represent impor-
tant aspects of the information provided in a set of phase offsets - which are
not necessarily additive. In the framework of a linear model, it is assumed that
every phase ϕij is a noisy measurement of the difference δij between points in an
additive, ‘linear configuration’ C = {x̂1, . . . , x̂n} (ch. 7):

ϕij = δij + σZij ∀ i < j, with Zij ∼ N (0, 1) and (Zij)i<j independent.

With these assumptions, the model distances δij are estimated such that the
phase offsets ϕij are represented as closely as possible, i.e., that the error sum of

squares
∑

(ϕij− δ̂ij)
2 is minimized. The resulting maximum-likelihood estimates

of δij are weighted sums of direct measurements ϕij and indirect measurements
of length 2, ϕi` + ϕ`j (Corollary 3).

In the sample data set, the experimentally obtained phase offsets ϕij could be

represented to a high degree by the estimated model distances δ̂ij (Fig. 8.2 A).
Thus, the presented method allows one to collapse the temporal relations between
all units in a consistent way by estimating the linear configuration. In addition,
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the linear model allows the application of an analysis-of-variance approach with
which k linear configurations C1, . . . , Ck obtained under different stimulation con-
ditions can be tested for differences (sect. 7.2). The resulting analysis suggests
that linear configurations can vary systematically between different stimulation
conditions, indicating a potential role of the extracted temporal maps in infor-
mation processing.

Part III
The methods presented in the Parts I and II provide powerful tools in the anal-
ysis of neurophysiological data because they are based on the widespread CCH
technique and because they allow the efficient analysis of temporal relations be-
tween a high number of parallel spike trains. However, since they are based only
on special CCH parameters, their results do not provide direct information about
the spiking characteristics of the underlying processes. In particular, it remains
unclear which spike train properties are crucial for establishing the observed phe-
nomena of small phase offsets and their linear structure. In order to investigate
this issue, Part III discusses the relation between the properties of the underlying
spike trains and central form parameters extracted from the CCHs. Among these
form parameters, not only the position of the central peak is considered relevant,
but also its height and width as well as the periodically occurring side peaks of
decreasing height that can be observed in oscillatory CCHs (Fig. 10.1) and that
are assumed to originate in spike trains with synchronized periodic spike packets
(e.g., Singer and Gray, 1995).

In order to allow an adequate treatment of the problem, n spike trains
S1, . . . , Sn are modeled as parallel point processes X1, . . . , Xn. A parametric
stochastic model is introduced that can be used to investigate which spike train
properties might be relevant for the emergence of the characteristic shape of os-
cillatory CCHs (ch. 11). In the doubly stochastic model, a single spike train is as-
sumed to emerge as follows: A stationary point process B = (. . . , B−1, B0, B1, . . .)
with preferred interval length E (Bb−Bb−1) = µ and variance Var(Bb−Bb−1) =
σ2 gives rise to independent Poissonian spike packets. For every packet, the
firing intensity rises instantaneously at ‘packet onset’ Bb and then decays expo-
nentially. Different processes may differ in the decay constant τ > 0 but share
the same ‘packet onset process’ B, by which correlations are introduced. Thus,
for given B, n independent and inhomogeneous Poisson processes are generated
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with firing intensities

ρj
B(t) :=

αj

τj

∑
b∈Z,Bb≤t

e
−(t−Bb)

τj + βj, j = 1, . . . , n. (Fig. 11.3, n = 2)

Here, αj ≥ 0 describes the expected number of spikes in a packet in process Xj,
and βj ≥ 0 denotes a constant background firing intensity.

In the framework of this model, important geometric CCH properties of two
processes Xi and Xj can be related to the parameters α, τ, µ and σ (sect. 12.2).
The parameter µ mainly determines the position of the first side peak, while the
speed with which the side peaks decrease in height depends on σ. The parameter
τ determines both the height and width of the central peak, where the height
increases and the width decreases with decreasing τ .

The spike train model suggests a precise relationship between different spike
train statistics. Especially the relation between auto correlation histograms
(ACHs), which are CCHs of two identical copies of a single spike train, and
the corresponding CCHs is investigated. This theoretically predicted relation
between ACHs and CCHs can also be found in the experimental data set. Vari-
ous further comparisons also indicate that the experimental data set complies to
a high degree with the model assumptions (ch. 13).

Finally, non-zero phase offsets between the processes Xi and Xj can be ex-
plained by a difference between the parameters τi and τj (ch. 14): If τi < τj, the
intensity ρi decays faster with respect to each packet onset Bb than the intensity
ρj. As a consequence, the spike times in process Xi tend to be earlier than the
spike times of Xj, producing a positive phase offset in the CCH between Xi and
Xj. In this framework, additivity of phase offsets can be explained directly by
the linear relation of the values τi ∈ R.

In conclusion, the model offers a theoretical explanation for the phenomena
observed in CCHs by providing a connection to the relevant spike train param-
eters. Since the model can be used to investigate temporal properties of single
spike trains as well as correlations between processes, it can be highly useful in
the analysis of temporal interactions between multiple parallel spike trains.
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Assessment of phase offsets
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Chapter 2

Introduction and Results

The first part is concerned with the measurement of phase offsets of central CCH
peaks and with a method that can be used to determine the measurement error.
As the number of phase offsets grows quadratically with the number of units, a
technique is required which can be implemented easily and which also provides
confidence intervals for individual estimates and for sets of measurements. In
the same time, it should allow statistical inferences about differences between
measurements or deviations from theoretical values, in particular from zero.

Chapter 3 is concerned with methods that can be used to measure phase
offsets and with an exemplary analysis of the sample data set (see App. A.3).
In chapter 4, an asymptotic formula with which this error can be quantified is
derived and applied to the phase offsets estimated in the sample data set.

Model 1: Cosine function with random noise
Phase offsets are estimated here with the following stochastic model. Due to the
oscillatory shape of many experimentally obtained CCHs, it is assumed that the
counts H(`) in the central peak of a CCH can be described with a cosine function
with independent and normally distributed noise σZ`:

H(`) = A cos(ω(`−ϕ))+β0+σZ`, ` ∈ LL
δ (Figs. 3.1 D & 3.2 A; cmp. p. 2).

With these assumptions, a nonlinear least squares algorithm with standardized
starting values is applied to the central CCH peak in order to estimate the
parameters A, ω, β0 and the phase offset ϕ. The 91 phase estimates resulting
from the application to the sample data set of 14 parallel spike trains take very
small values between +2 and −2 milliseconds (cf. Fig. 3.2 B).

11
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Variance of ϕ̂: Approximate formula In the given model, the δ-method
implies that if ω is known, ϕ̂ has asymptotic normal distribution with asymptotic
variance

σ̂2
ϕ̂ = V (ω,A/σ, N) ·G(s, f), (eq. (4.29)-(4.33))

where N = 2L/δ + 1 is the number of data points in the CCH. V decreases
monotone in each of its arguments and thus, the precision with which ϕ can
be estimated increases with ω,A/σ and N . The term G depends on the shift
s = ϕ/p of the cosine as a fraction of the period p and on the fraction of the period
f = 2L/p to which the cosine is fitted. Most importantly, G implies that the data
points at the edges of the cosine function, where the slope is maximal, contribute
much information about ϕ, whereas points close to the extremes, where the slope
is close to zero, are less important. Therefore, G depends crucially on the fraction
of data points at the edges of the cosine in relation to the fraction at the extremes.

The scope of the formula In order to investigate whether the approximate
formula yields useful estimates of σ̂ϕ̂ when ω is unknown and for practically
relevant values of N , cosine functions with independent and normally distributed
noise have been simulated, and phase offsets have been estimated by fitting
a cosine function to such simulated peaks. The resulting empirical standard
deviation of ϕ̂, σϕ̂, is compared to the distribution of standard deviations σ̂ϕ̂ that
have been estimated with the formula (Fig. 4.7 F). For a typical set of parameters,
σϕ̂ ≈ 0.2 ms or 1% of a period. The root mean square (RMS) deviation of the
approximate values σ̂ϕ̂ from σϕ̂ was about 6.5% of σϕ̂. Both the RMS deviation
and the empirical standard deviation σϕ̂ increase with σ/A. For all parameter
sets, the normed phase estimate, ϕ̂/σ̂ϕ̂ was approximately normally distributed.
As a consequence, each phase offset can be equipped with a 95%-confidence
interval, which is smaller than one millisecond for the typical set of parameters.
Thus, since the 91 phase estimates in the sample data set take values up to ±2
ms, many among them are unlikely to be explained by measurement error.

In order to investigate whether the approximate formula can grasp the vari-
ability of phase offsets in the experimental data set, the data are divided, and two
independent estimates ϕ̂1, ϕ̂2 are derived for every phase offset. The results sug-
gest that the formula can describe the variability of these estimates because the

distribution of normed differences Z := (ϕ̂1 − ϕ̂2) · (σ̂2
ϕ̂1

+ σ̂2
ϕ̂2

)
1/2

does not show
strong deviations from the standard normal distribution. Therefore, the formula
is used to compare two sets of phase offsets. In the sample data set, phase offsets
show systematic variations between different stimulation conditions.



Chapter 3

Measurement of phase offsets

As shown in Figures 1.3 & 3.1, the phase offset in a CCH may deviate from
zero. However, due to the variability in the CCH, this phase offset cannot be
obtained directly from the graph. Thus, a method is required with which the
phase offset can be estimated and with which the precision of this estimate can
be determined.

3.1 Gabor function

In order to estimate phase offsets, König (1994) proposed a method in which a
damped cosine function (called Gabor function) is fitted to the CCH. The phase
offset is directly available as the position of the maximum of the fitted function.
The Gabor function G(`) consists of three additive parts:

G(`) := O + Gaussian · Cosine + Central Gaussian

= O + exp

(
−
(
|`− ϕ|

σ1

)λ
)
· A cos(2πω(`− ϕ)) + B exp

(
−
(
|`− ϕ|

σ2

)2
)

,

where O describes the offset at the ordinate. Including O, the Gabor function
depends on eight parameters: The cosine depends on the amplitude A, the os-
cillation frequency ω, and on ϕ, the phase offset. It is damped by a so-called
generalized Gaussian with the three parameters ϕ, which denotes the shift of the
maximum, σ1 > 0, the standard deviation, and λ, which describes the shape of
the peak and takes the value 2 for a usual Gaussian. Finally, the central and
usually narrow Gaussian depends on the three parameters B, the amplitude, ϕ,

13
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the shift of the maximum, and σ2 > 0, the standard deviation. The three ad-
ditive parts of the Gabor function are shown in Figure 3.1 C together with the
parameters A, B, O, ω, ϕ, σ1 and σ2.
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CCH B                              
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A B

2π ω
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Cosine function
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β0

A

2π/ω

ϕ

ϕ

Figure 3.1: Example CCH and the parameters of a Gabor and a cosine function. A: CCH with
L = 80 ms in the original time resolution (δ = 1/32 ms, black) and smoothed with a Gaussian
kernel with standard deviation 29δ (gray). B: CCH in A with L = 10 ms. C: Scheme of the
components of a Gabor function. Black: Gaussian (dashed), damped cosine (dotted), central
Gaussian (solid). Gray: Final Gabor function (solid). D: The parameters of a cosine function.

The high number of parameters of G yields very close fits of CCHs, and
many parameters such as the oscillation frequency or the phase shift have a di-
rect interpretation. On the other hand, this high number of parameters evokes
computational difficulties. For example, if one wants to fit such a Gabor function
to a CCH, all eight parameters have to be estimated in parallel. Often, several
sets of starting values have to be chosen until the fitting procedure converges to a
satisfactory result. This prevents a straightforward standardization of the fitting
procedure and thus implies that the resulting estimates are not perfectly repro-
ducible (cf. König, 1994). As a result, the measurement error of the estimated
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parameters cannot be determined.
To resolve this issue, the fitted function is simplified. Since the main interest

is the central peak, only the central part of the CCH is fitted, and the side peaks
are excluded, which are unimportant and can differ in shift or frequency. The
most simple function which can describe a central peak and has interpretable
parameters for the phase offset as well as the oscillation frequency is a cosine
function with the four parameters A, ω, ϕ and β0, where β0 describes the offset
at the ordinate (Fig. 3.1 D).

3.2 Cosine function

3.2.1 Assumptions

As shown in Figure 3.2 A, every data point in the CCH is assumed to be composed
of a systematic component given by the cosine function and a nonsystematic error
component. These errors are assumed to be independent across data points and
normally distributed with variance σ2. Hence, every data point H(`) in the CCH
at time lag ` is described as

H(`) = Cosine + Noise

= A cos(ω(`− ϕ)) + β0 + σZ`, (3.1)

where the {Z`}`∈LL
δ
, are independent with Z` ∼ N (0, 1).

3.2.2 Data Analysis

According to the width of the central peaks of the CCHs in the sample data set,
L was chosen to be 10 ms. The resulting window of 20 ms was big enough to
cover the center peaks but sufficiently small to exclude the side peaks. With the
time resolution of δ = 1/32 ms, this yielded N = 2L/δ + 1 = 641 data points,
and

L10
1/32 = {−320,−319,−318, . . . ,−1, 0, 1, . . . , 318, 319, 320} · 1/32ms. (3.2)

To find the cosine function that fits a given CCH best, the four parameters
A, ω, ϕ and β0 were estimated with the Gauss-Newton method implemented
in the statistical analysis tool R1. This iterative algorithm estimates the four

1www.r-project.org
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parameters in such a way that the sum of squares of the residuals between the
CCH and the cosine function is minimized:∑

`∈LL
δ

(
H(`)− [Â cos(ω̂(`− ϕ̂)) + β̂0]

)2 !
= min.

The Gauss-Newton algorithm requires appropriate starting values for the param-
eters. Due to the oscillatory shape of the CCHs, these starting values are easy
to find. In the sample data set, all peaks were positioned close to zero and thus,
the initial value of ϕ was also set to zero. The initial value of the oscillation
frequency was chosen to correspond to the width of the center peaks in the set
of analyzed CCHs, which was about 20 ms, yielding a frequency of about 50 Hz,
or ω ≈ 0.1π [ms−1]. Since the analysis window covered about one cosine period,
the initial value of the additive constant β0 was set to the mean count in the
analyzed CCH, and the initial value of A was always set to 1. This yielded the
set S∗ of standardized starting values

S∗ := {ϕ∗ := 0, ω∗ := 0.3, A∗ := 1, β∗0 := N−1
∑

`∈LL
δ

H(`)}. (3.3)

This set S∗ was used to fit all central CCH peaks in the sample data set. The
resulting fitted functions agreed closely with the empirical CCHs, suggesting that
the iterative algorithm found the global minimum.

The phase offset estimates that result from the application of this fitting
procedure to all 91 =

(
14
2

)
CCHs of 14 analyzed channels in stimulation condition

1 are shown in Figure 3.2 B. As one can see, they range only up to about 2 ms,
which is only 10% of the average peak width.

The results were highly robust against changes in individual starting pa-
rameters. Local minima with half the oscillation frequency and double ampli-
tude were only obtained if either the additive constant β∗0 was too small (e.g.
β∗0 = min`∈LL

δ
H(`)) or if the starting value ω∗ was chosen too close to half the os-

cillation frequency. Additionally, local minima with double oscillation frequency
may be returned if ω∗ is too close to 2ω.

Justification of assumptions After the estimation of the parameters, it was
investigated whether the assumptions presented in section 3.2.1 are suitable to
describe the given data set. Figure 3.2 C shows one central CCH from the
sample data set together with its fitted cosine function. The residuals plotted
in Figure 3.2 D show no systematic trend, which suggests that the fitted cosine
function essentially grasps the shape of the central peak. The distribution of the
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residuals is shown in Figure 3.2 E and agrees well with the theoretically assumed
normal distribution. Finally, the dependence between residuals was investigated
by computing the serial correlations of the residuals at all time lags up to 10
ms. The resulting correlation between the original CCH and the CCH shifted
by different lags is shown in Figure 3.2 F. For all lags τ ≤ 10 ms, the correlation
between one residual and its τ -next neighbor is smaller than 0.1, suggesting that
correlations between residuals can be considered close to zero for the presented
CCH. Comparable results were obtained in most CCHs in the sample data set.
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Figure 3.2: Analysis of residuals between central CCHs and fitted cosine functions. A: Theo-
retical assumption of independent and normally distributed noise added to the cosine function.
B: Distribution of phase offset estimates obtained from fitting cosine functions to all 91 CCHs
in stimulation condition 1. C: An example CCH obtained experimentally (gray). Counts be-
tween −2/32 ms and 2/32 ms were excluded due to potential artifacts. Black: Cosine function
fitted to the CCH. D: Residuals between the empirical CCH and the fitted cosine function in
C as a function of the time lag. E: Distribution of the residuals in D (histogram) and normal
distribution (curve). F: Temporal correlation of residuals in D expressed as the correlation
between the vector of residuals and itself, shifted by lags up to 10 ms.



Chapter 4

Precision of measurement

Since phase offsets can be very small in relation to the cosine period length
(Fig. 3.2 B), such small phase offsets are often considered equivalent to zero
offsets (e.g., Toyama et al., 1981; Gerstein et al., 1985; Ts’o et al., 1986; Gray
et al., 1989; Gochin et al., 1991; Engel et al., 1991; Gray et al., 1992; Roelfsema
et al., 1997), and small deviations from zero are attributed to the variability of
counts in the CCH. Additionally, there is evidence that non-zero phase offsets in
periodic activity may play a role in information processing (König et al., 1995;
Traub et al., 1997). Since recent findings suggest that neurons can coordinate
their firing activity with high temporal precision, one should be able to determine
also the measurement error of very small phase estimates as precisely as possible.
This can be achieved by various methods.

First, one could measure phase offsets repeatedly under identical conditions.
This investigation of the empirical variability allows a straightforward interpreta-
tion of the estimates in the analyzed data set because the approach is parameter
free and can directly assess the variability of estimates between independent
measurements. However, this comparison of independent measurements requires
recording a high number of identical repetitions. Although this is advisable
from the statistician’s perspective, the number of replications may be limited by
experimental constraints. Thus, only a splitting of the available data set is prac-
ticable for the statistical analysis. The resulting analysis performed on a smaller
data set can only be done with lower precision. Additionally, a splitting and a
separate analysis of data sets requires computational effort, and the results are
only relevant for the data set under investigation and thus, hard to generalize.

Second, one could use simulated CCHs to study the variability of phase es-
timates between independent data sets obtained under identical conditions. As

19
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an advantage, there is no limitation in the wealth of surrogate data, and they
can be generated more easily than experimental CCHs. However, simulations re-
quire additional computational effort and are based on model assumptions which
can only describe essential parts of the data and can never grasp all relations
among the data points. Furthermore, the results of simulations can only be ap-
plied to data within the investigated parameter ranges and can thus also not be
generalized without restrictions.

The third possibility to assess the precision of measurement is to provide a
mathematical expression which can be used directly to estimate the variability of
the phase estimate after the fitting procedure. This formula would avoid compu-
tational effort and should be applicable to a wide parameter range. However, the
application of such a mathematical expression requires that the analyzed data
set complies with the assumptions used in the derivation of the formula.

In the following subsections, the three described methods are combined to de-
termine the variability of a phase estimate as precisely as possible. The main goal
is to develop a formula with which this variability can be assessed directly. This
formula should provide practical guidelines concerning the appropriate choice of
the analysis window as well as theoretical insights into the relations between
the cosine parameters and the estimation precision. The scope of the derived
formula is investigated by simulations and by comparison to the empirical vari-
ability of phase estimates computed in independent trials of the same stimulation
condition.

4.1 A formula for the variance of a phase esti-

mate

To develop a formula for the approximate variance of the phase estimate, the
starting point is equation (3.1), which describes the assumption that every data
point in the CCH consists of a cosine component and a random error component:

H(`) = A cos(ω(`− ϕ)) + β0 + σZ` ∀` ∈ LL
δ ,

where all Z` are independent and N (0, 1) distributed.
The question approached here is the following. When cosine functions are fit-

ted to different CCHs with identical parameters A, ω, ϕ, β0 and σ, the estimated
phase offsets vary due to different noise components. Additionally, the size of
σ can affect this variability of the phase estimates in different ways, depending
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on the other parameters of the cosine. For example, the same σ should have a
bigger impact on the estimation precision if the amplitude A is small than when
A is big.

The goal is to answer the following question: How does the variability of
phase estimates depend on the cosine parameters A, ω, ϕ, β0 and σ and on the
number of data points, N = 2L/δ + 1? This section approaches this question by
the derivation of a mathematical formula, which is discussed and interpreted in
section 4.1.2.

Proposition 1 (Asymptotic variance of the phase estimate) For known
ω, the phase estimate has asymptotic normal distribution with asymptotic vari-
ance

Var(ϕ̂)
.
= Ṽar(ϕ̂) := V (ω,N, σ, A) ·G(ω, ϕ, L) as N →∞ (4.1)

with
V (ω,N, σ, A) :=

2

ω2
· 1

N
· σ2

A2
(4.2)

G(ω, ϕ, L) :=
cos2(ωϕ)

D1(ωL)
+

sin2(ωϕ)

D2(ωL)
, (4.3)

D1(ωL) := 1− sin(2ωL)

2ωL
(4.4)

D2(ωL) := 1 +
sin(2ωL)

2ωL
+

2 sin2(ωl)

ω2L2
. (4.5)

Since the symbol ∼ is used here to describe equality in distribution, the symbol
.
= denotes asymptotic equivalence in the sense that aN

.
= bN :⇐⇒ aN/bN → 1

as N →∞.

4.1.1 Proof of Proposition 1

To prove proposition 1, equation (3.1) is first transformed into a linear combina-
tion containing coefficients β0, β1 and β2. This allows to express ϕ̂ as a function
of the estimates β̂1 and β̂2. After this, the main idea is based on the (multidi-
mensional) δ-method with which one can derive the approximate variance of ϕ̂
as a function of the variances of β̂1 and β̂2.

Transformation into a linear combination

A cos(ω(`− ϕ)) = A[cos(ωϕ) cos(ω`) + sin(ωϕ) sin(ω`)]

= β1 cos(ω`) + β2 sin(ω`) (4.6)
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with

β1 = A cos(ωϕ) and β2 = A sin(ωϕ), (4.7)

A2 = A2(cos(ωϕ)2 + sin(ωϕ)2) = β2
1 + β2

2 , (4.8)

ϕ = ω−1 arcsin

(
β2/
√

β2
1 + β2

2

)
for |ωϕ| < π

2
, (4.9)

ϕ = sgn(ϕ)

(
π − ω−1 arcsin

(
β2/
√

β2
1 + β2

2

))
for |ωϕ| ∈

[π
2
, π
]
.

(4.10)

Thus, equation (3.1) can be written as

H(`) = β0 + β1 cos(ω`) + β2 sin(ω`) + σZ`, (4.11)

where the phase estimate can be derived from the coefficients β1 and β2 according
to equation (4.9) if β2 ≥ 0 and with equation (4.10) if β2 < 0.

Multidimensional δ-method If the oscillation frequency, ω, is known, fitting
a cosine function to the CCH is equivalent to estimating the coefficients β0, β1

and β2 with linear regression analysis. Thus, the phase estimate is a function of
the coefficient estimates β̂1 and β̂2. Since the variances of the terms in (4.9) and
(4.10) are identical, the variance of the term given in (4.9) is derived here with
the multidimensional δ-method (e.g., Bishop et al., 1975, p.493):

Proposition 2 Multidimensional δ-method Let θ := (ϑ1, . . . , ϑd) be a d-
dimensional parameter, and let θ̂N := (ϑ̂N,1, . . . , ϑ̂N,d) be a d-dimensional random
vector with the property

L
[√

N(θ̂N − θ)
]

N→∞−→ N (0, Σ(θ)), (4.12)

where Σ(θ) is the d× d asymptotic covariance matrix of θ̂N . Let furthermore be
f : O → R a function defined on an open subset O ⊆ Rd which is differentiable
at θ, i.e., f has the following expansion for x close to θ:

f(x) = f(θ) +
d∑

i=1

(xi − ϑi)
∂f

∂xi

(θ) + o(||x− θ||). (4.13)
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Then the asymptotic distribution of f(θ̂N) is given by

L
[√

N(f(θ̂N)− f(θ))
]

N→∞−→ N

(
0,

(
∂f

∂θ

)
Σ(θ)

(
∂f

∂θ

)T
)

. (4.14)

Thus, if σk`(θ) denotes the element of Σ(θ) in the kth row and `th column, the
asymptotic variance of f(θ̂N) is described by

Var(f(θ̂N))
.
= N−1

d∑
k,`=1

σk`(θ)

(
∂f

∂θk

)(
∂f

∂θ`

)
. (4.15)

The δ-method will be used to compute the asymptotic variance of the phase
estimate. Since ϕ̂ is a function of the coefficient estimates β̂1 and β̂2, the asymp-
totic distribution of those estimates is needed for the application of Proposition
2 and will be derived in Lemmata 1 and 2.

Lemma 1 The coefficient estimates β̂1 and β̂2 have asymptotic normal distribu-
tions with expectation β1 and β2, respectively. Their variances are given by

σ2
1 := Var(β̂1) =

σ2N

N
∑

cos2(ω`)− (
∑

cos(ω`))2
(4.16)

σ2
2 := Var(β̂2) =

σ2∑
sin2(ω`)

, (4.17)

and their covariance Cov(β̂1, β̂2) = 0.
Proof.
Equation (4.11) reads in matrix notation

H(−L)
H(−L + δ)

...
H(L)

 =


1 cos(ω(−L)) sin(ω(−L))
1 cos(ω(−L + δ)) sin(ω(−L + δ))
...

...
...

1 cos(ωL) sin(ωL)


β0

β1

β2

+ σ


Z−L

Z−L+δ
...

ZL


=: Xβ + σZ.

As is known from linear regression analysis,

β̂ ∼ N
(
β, (XT X)−1σ2

)
. (4.18)
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Note that ∑
`∈LL

δ

1 · sin(ω`) =
∑

`∈LL
δ ,`>0

(sin(ω`)− sin(ω`)) = 0

∑
`∈LL

δ ,`>0

sin(ω`) cos(ω`) =
∑

`∈LL
δ ,`>0

cos(ω`)(sin(ω`)− sin(ω`)) = 0.

Therefore,

XT X =

 N
∑

cos(ω`) 0∑
cos(ω`)

∑
cos2(ω`) 0

0 0
∑

sin2(ω`)

 . (4.19)

Thus, β̂1 and β̂2 are uncorrelated, and the diagonal elements (XT X)−2
(2,2) and

(XT X)−2
(3,3) are σ2

1 and σ2
2 as given in equations (4.16) and (4.17), respectively.

�

To simplify the formulas for σ2
1 and σ2

2, the sums in equations (4.16) and
(4.17) are approximated by their corresponding integrals, yielding the asymptotic
formulas in Lemma 2.

Lemma 2 For large N , σ2
1 and σ2

2 can be approximated by

σ2
1

.
=

2σ2

N

(
1 +

sin(2ωL)

2ωL
− 2 sin2(ωL)

ω2L2

)−1

=
2σ2

N
· 1

D2(ωL)
(4.20)

σ2
2

.
=

2σ2

N

(
1− sin(2ωL)

2ωL

)−1

=
2σ2

N
· 1

D1(ωL)
(4.21)

Proof.
It suffices to show the asymptotic formulas for the following sums:∑

`∈LL
δ

cos2(ω`)
.
=

N

2

[
1 +

sin(2ωL)

2ωL

]
(4.22)

∑
`∈LL

δ

cos(ω`)
.
= N · sin(ωL)

ωL
(4.23)

∑
`∈LL

δ

sin2(ω`)
.
=

N

2

[
1− sin(2ωL)

2ωL

]
(4.24)
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Note first that ∫ L

−L

cos2(ωx)dx = L +
sin(2ωL)

2ω∫ L

−L

cos(ωx)dx = 2/ω · sin(ωL)

∫ L

−L

sin2(ωx)dx = L− sin(2ωL)

2ω
.

Approximating
∑

cos2(ω`) with its corresponding integral yields∑
`∈LL

δ

cos2(ω`) = δ−1
∑
`∈LL

δ

cos2(ω`) · δ

= δ−1

[∫ L

−L

cos2(ωx)dx + R

]
=

N − 1

2

[
1 +

sin(2ωL)

2ω

]
+

R

δ
,

with
R ≤ δ(cos2(ωL) + ωL).

The term cos2(ωL) ·δ is caused by the right border point, L, which adds an extra
rectangle of size cos2(ωL) · δ that cannot be used to approximate the integral.
The term

ωL · δ = (ωδ) · (δ) · 1/2 · (N − 1)

originates in the maximal approximation error in each of the N − 1 summands:
Since the maximal slope of cos2(ωx) is ω:

max
x

(cos2(ωx))′ = max
x

(−2 cos(ωx) sin(ωx)ω) = max
x

(−ω sin(2ωx)) = ω,

the size of the rectangle originating from the maximal slope is (1/2)ωδ2. Hence,∑
`∈LL

δ

cos2(ω`) =
N

2

[
1 +

sin(2ωL)

2ω

]
+ R1

with

R1 ≤ cos2(ωL) + ωL +
1

2
+

sin(2ωL)

4ω
.



26 CHAPTER 4. PRECISION OF MEASUREMENT

R1 does not depend on N and is thus neglected in equation (4.22). The approx-
imations (4.23) and (4.24) can be derived analogously. �

Corollary 1

L
[√

N

(( β̂1 − β1

β̂2 − β2

))]
N→∞−→ N

(
0,
( 2σ2/D2(ωL) 0

0 2σ2/D1(ωL)

))
(4.25)

Corollary 2

Var(ωϕ̂)
.
=

2

N
· σ2

A2
·
(

cos2(ωϕ)

D1(ωL)
+

sin2(ωϕ)

D2(ωL)

)
. (4.26)

Proof.
With Proposition 2 and Conclusion 1, with d = 2 and

θ :=
β2√

β2
1 + β2

2

f((β1, β2)) := arcsin
( β2√

β2
1 + β2

2

)
O :=

{
(β1, β2) :

β2√
β2

1 + β2
2

< π
}

,

it follows that

Var(ωϕ̂) = Var

(
arcsin

(
β̂2/

√
β̂2

1 + β̂2
1

))
= Var(f(θ̂))

.
= N−1

(
2σ2

D2(ωL)

(
∂f

∂β1

)2

+
2σ2

D1(ωL)

(
∂f

∂β2

)2
)

=
2σ2

N(1− β2
2/(β

2
1 + β2

2))

(
β2

1β
2
2

D2(ωL)(β2
1 + β2

2)
3

+
(1− β2

2/(β
2
1 + β2

2))
2

D1(ωL)(β2
1 + β2

2)

)

=
2

N
· σ2

A2

(
cos2(ωϕ)

D1(ωL)
+

sin2(ωϕ)

D2(ωL)

)
,

which completes the proof of Proposition 1. �
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Thus, equation (4.1) approximates the variance of ϕ̂ if N is large and if ω
is known. Before the discussion of the practical usefulness of the formula, its
formal and geometric implications are investigated more closely.

4.1.2 Formula asymptotic variance: Interpretation

4.1.2.1 Parameterization

To understand the derived formula for the approximate variance of phase offsets
(4.1), note that the term G = G(ω, ϕ, L) in (4.3) depends on the two quantities
(ωϕ) and (ωL). Therefore, the following parameterization is more suitable to
describe G. Let

s :=
ϕ

p
=

ωϕ

2π
(4.27)

denote the shift of the cosine expressed as a proportion of one cosine period, p
(Fig. 4.1 A), and let

f :=
2L

p
=

ωL

π
(4.28)

denote the fitted part of the cosine, expressed as a fraction of p (Fig. 4.1 B).
Since f and s describe geometric quantities, the term G is also referred to as the
‘geometric term’. The asymptotic formula now reads

Ṽar(ϕ̂) = V (ω,N, σ, A) ·G(f, s) (4.29)

with

V (ω,N, σ, A) =
2

ω2
· 1

N
· σ2

A2
(4.30)

G(s, f) =
cos2(2πs)

D1(f)
+

sin2(2πs)

D2(f)
(4.31)

D1(f) = 1− sin(2πf)

2πf
(4.32)

D2(f) = 1 +
sin(2πf)

2πf
+

2 sin2(πf)

π2f 2
. (4.33)

Note that Ṽar(ϕ̂) is defined unless one of the parameters ω, N , A or f equals
zero. This is no restriction because trivially, without data points (N = 0),
without oscillation (ω = 0 or A = 0) or with an analysis window of size zero
(f = 0), no cosine can be fitted.
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Figure 4.1: Illustration of the parameters s and f . A: An example with s = 10 % of the cosine
period. B: Visible fractions of a period for a centered cosine function (s = 0), depending on
the window size.

4.1.2.2 The parameters of V

Most parameters of the term V are directly interpretable. Keeping all other
parameters constant, an increase in the number of data points (Figs. 4.2 A &
B) and a decrease in the relation of the noise σ to the amplitude A (Figs. 4.2 C
& D) increase the precision of the estimate.

A                     

delay [ms]

co
si

ne
 +

 n
oi

se

−L 0 L

N=21 B                     

delay [ms]
−L 0 L

N=101 C                     

delay [ms]
−L 0 L

σ /A=2.5 D                     

delay [ms]
−L 0 L

σ /A=0.5

Figure 4.2: Influence of N and σ/A on the estimation precision of ϕ. Simulated noisy cosine
functions with parameters ϕ = 0, A = 1, f = 1. A, B: For constant σ, the estimation precision
increases with N (σ = 0.55). C, D: For constant N , the estimation precision decreases with
growing σ/A (N = 300).

The number of data points In the preceding paragraph, the influence of the
number of data points, N , was discussed independent of the parameter σ, i.e.,
the variability of data points around the cosine. However, for a given analysis
window, N determines the time resolution, or ‘bin size’, and σ thus depends on
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N . The following two paragraphs provide heuristic arguments for two claims: (i)
Although the precision of the phase estimate is not affected by a change of the
bin size, (ii) the variance of the phase estimate can be determined less precisely
for a lower time resolution.

(i) If the bin size is increased by an integer factor k by averaging counts of
k adjacent bins, the new values σ2

N/k and NN/k are given by

σ2
N/k = Var

(
σ2/k

ik∑
l=i1

Z2
l

)
= σ2/k and NN/k = N/k. (4.34)

Thus, the quotient remains constant and does not depend on k:

σ2
N/k

NN/k

=
σ2

N
∀ k ∈ N, (4.35)

which means that a change of the bin size should not affect the precision of ϕ̂.

(ii) However, a decrease in N may affect the usefulness of the asymptotic
approximation as well as the precision with which σ can be estimated. Again, a
simplified computation shows:
Let Z1, . . . , ZN be independent and N (0, σ2)-distributed, denoting the noise in
the N bins. Estimating the variance with

σ̂2 := 1/N
N∑

i=1

Z2
i implies Var(σ̂2) = σ4/N. (4.36)

Thus, the difference (σ̂2 − σ2) is of the size σ2/
√

N , or 1/
√

N · 100% of σ2. Let
now be N a multiple of k and let the binned error counts be given by

Y1 :=1/k
k∑

j=1

Zj, Y2 := 1/k
2k∑

j=k+1

Zj, . . .

Then, Yj ∼ N (0, σ2/k), j = 1, . . . , N/k.

The variance of Y1, . . . , YN/k is estimated with

σ̂2/k :=
1

N/k

N/k∑
j=1

Y 2
j , which yields Var(σ̂2/k) = σ4/N · 1/k. (4.37)
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Here, the difference (σ̂2/k−σ2/k) is of the size
√

k/N ·100 % of σ2/k. Thus, the

relative estimation error of the variability grows with
√

k, where k is the number
of data points that are averaged.

The practical influence of the bin size on the variability of phase estimates
as well as on its estimation precision will be investigated in practice in section
4.2.2.

The oscillation frequency, ω. Finally, V depends on ω. V increases with
a decrease in the oscillation frequency because the precision decreases when the
peak is broadened. In addition, since the geometric parameters s and f both
depend on ω, the geometric term G is also affected. The next paragraph describes
the dependence of the geometric term, G, on f and s.

4.1.2.3 The parameters of G

The dependence of G on f is first discussed for s = 0. In this case, G simplifies
to

G(0, f) = D1(f)−1 =
1

1− sin(2πf)
2πf

. (4.38)

The graph of G(0, f) is plotted in Figure 4.3 A. As one can see both in the graph
and in equation (4.38),

lim
f→∞

G(0, f) = 1, G(0, n/2) = 1 ∀n ∈ N, and lim
f→0

G(0, f) = ∞.

Thus, G(0, f) tends to 1 and is close to 1 (i.e., |G(0, f) − 1| < 0.2) for f > 0.5.
Clearly, G is large if the phase shift is estimated from a window that comprises
less than half of the cosine period.

The oscillatory shape of G originates in the term sin(2πf). To understand this
oscillation, consider the case where the parameters ω, A, σ and N are constant,
in which the variance of the phase estimate depends only on G. In this case,
the variance is minimal for f ∗ ≈ 0.72 and has local minima that reoccur with a
period of about 1. Vice versa, the maximal variance for f > 0.5 is obtained for
f o ≈ 1.23, and G has local maxima that reoccur after about 1 unit of f . The
corresponding analyzed data points (for N = 25) of the cosine for the minimal
f ∈ {0.72, 1.74} and the maximal f ∈ {1.23, 2.24} are illustrated in the Figures
4.3 B & C, respectively. One can see that those constellations with minimal
variance contain many data points at the ‘edges’ of the cosine function, i.e.,
at the points with maximal slope (Fig. 4.3 B). On the other hand, those f for
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which the variance reaches local maxima are characterized by a high number of
data points at the extremes, i.e., at the points with minimal slope (Fig. 4.3 C).
Thus, the data points of the cosine function with maximal slope contribute more
information about the phase offset than the data points with minimal slope.
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Figure 4.3: Geometric interpretation of the dependence of G on f for s = 0 and constant N .
A: The curve of G(0, f). Two local minima are indicated by stars, and the corresponding data
points for f = 0.72 and f = 1.74 are illustrated in B (N = 25). Small circles in A indicate
local maxima, and the corresponding data points for f = 1.23 and f = 2.24 are indicated in C
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Given this key principle, one can conclude the following properties of the ge-
ometric term G(s, f) for s 6= 0. These properties can also be observed in Figures
4.4 A-C, which show the graphs of G(s, f) for the values s ∈ {0.06, 0.12, 0.2}.

1. For integer f , the data points are positioned equidistant and uniformly
across the whole cosine period. Thus, no shift should affect the value
of G. This can be confirmed by a simple computation: For all n ∈ N,
D1(n) = D2(n) = 1, implying

G(s, n) = cos2(2πs) + sin2(2πs) = 1 = G(0, n) ∀n ∈ N,∀s ∈ R.

2. For constant f , G(s, f) is periodic in s with period 1/2 because a shift of
50% of a cosine period results in an identical cosine function which is only
multiplied with -1.

3. For small f , i.e., f < 0.5, any shift should decrease G and thus improve
the estimation precision because shifting includes additional data points at
the edges and excludes data points at the maximum.
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4. Similarly, at the f -values where G(0, f) reaches local maxima, any shift
s 6= 0 should decrease G, and the maximal decrease should be obtained for
s = 0.25 because this exchanges the numbers of points at the edges and
the extremes. The same holds true for the local minima of G(0, f).
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Figure 4.4: Dependence of G on the visible part of the period for s 6= 0. Graphs of G(s, f) for
s = 0.06 (A), s = 0.12 (B) and s = 0.2 (C). Gray curves indicate G(0, f) (Fig. 4.3 A).

The window size In the preceding paragraph, the influence of f was discussed
for constant V , i.e., N was kept constant. This led to important insights into the
geometric properties of G. However, to investigate the practical influence of f
on the variability of ϕ̂, one has to take into account that in practice, the number
of data points N increases with the size of the analysis window, which depends
on f . Thus, not only G but also V depends on f . Writing N as a function of
f , the variability of the phase estimate as a function of f can be described with
the following expression if ω, σ, δ and A are kept constant:

Ṽar(ϕ̂) = c · 1

f 2π
ωδ

+ 1
·
(

cos2(2πs)

D1(f)
+

sin2(2πs)

D2(f)

)
. (4.39)

The graphs of this function are shown in Figures 4.5 A-C for different s. One
can see that the variance of ϕ̂ decreases constantly with f if the number of data
points is increased with f . Thus, every data point adds information about the
position of the peak. However, for a centered cosine (Fig. 4.5 A), the slope is
zero for integer f , which means that the data points close to the maxima and
minima of the cosine do not improve the phase estimate. This phenomenon does
not occur for s 6= 0 because the windows are asymmetric with respect to the
maximum.
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Figure 4.5: Decrease in the variance of ϕ̂ as a function of f (equation (4.39)) for the parameters
s = 0 (A), s = 0.06 (B) and s = 0.12 (C) and for constant A, σ, ω and δ. y-axis limits identical
in all panels.

4.1.3 Formula asymptotic variance: Implications for
practical application

The most important points discussed in sections 4.1.1 and 4.1.2 are summed up
here with respect to the application of the formula to experimental data.

Choice of the analysis window The data points close to the maxima or
minima of the cosine do not contribute much information about the position of
the peak. In contrast, the data points located at the maximal slope of the cosine
are highly informative. For a peak centered close to zero, one should use the
maximal possible analysis window because every data point adds information
about the position of the peak. In practice however, the cosine shape is not
continued in a CCH for bigger time lags than f ≈ 1, implying that the analysis
window should not exceed the area of the center peak considerably.

Application of the approximate formula The variability of the phase es-
timate in an experimentally obtained CCH can be approximated as follows:

1. Choose a time resolution δ (as fine as possible) and an analysis window
that contains slightly more than the central peak. This yields the maximal
time lag L and the number of data points, N = 2L/δ + 1.

2. Estimate the parameters ω, A, β0 and ϕ by fitting a cosine function to the
data points in the chosen analysis window.
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3. From the fitted cosine function, estimate the standard deviation (σ) of the
residuals between the cosine and the CCH.

4. Estimate the variance of the phase estimate by insertion of the estimated
parameters into the formula given in (4.1), i.e.,

σ̂2
ϕ̂ =

2σ̂2

ω̂2NÂ2
·

(
cos2(ω̂ϕ̂)

1− sin(2ω̂L)
2ω̂L

+
sin2(ω̂ϕ̂)

1 + sin(2ω̂L)
2ω̂L

+ 2 sin2(ω̂L)
ω̂2L2

)
. (4.40)

5. If the theoretical formula yields reliable estimates of the variability of the
phase estimate in the given CCH, then

[ϕ̂− 2σ̂ϕ̂, ϕ̂ + 2σ̂ϕ̂]

should be an approximate 95% confidence interval for the phase estimate
in the CCH.

6. As a rule of thumb, the measurement error of the phase estimate is rel-
atively small if the variability of data points around the cosine is small
compared to the amplitude and if the analysis window contains many data
points in those areas of the cosine with high slope.

4.2 The scope of the formula

The existence of a mathematical expression for the measurement error of phase
estimates has many advantages. For example, the computational effort can be re-
duced, and confidence intervals can be constructed in a straightforward manner.
However, the derivation of the formula is based on several assumptions.

One of those assumptions states that the oscillation frequency, ω, is known
before the cosine is fitted to the CCH. In practice, this is not the case, and ω
needs to be estimated together with the other parameters ϕ, σ and A. It is thus
necessary to investigate whether the formula also approximates the variance of
the phase estimate if ω has to be estimated. Additionally, the formula is derived
on the basis of the assumption that the number of data points is sufficiently large
to neglect higher-order terms in the Taylor expansion. In practice, the number of
data points is limited and thus, one should investigate whether N is sufficiently
large to apply the asymptotic formula.
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The two issues concerning the number of data points and the estimation of ω
are investigated in section 4.2.1. After the extraction of the relevant parameter
ranges from the experimental data, noisy cosine functions are simulated, and the
estimated variance of the phase estimate is compared to the empirical variance
observed in the simulations.

Finally, experimentally obtained CCHs do not have to comply with the as-
sumptions in the cosine model. Therefore, the experimentally obtained variabil-
ity of phase estimates is compared in section 4.2.3 to the variability predicted by
the formula.

4.2.1 Simulations

4.2.1.1 Parameter ranges

The parameter ranges for which simulations are performed are extracted from
the CCHs in the sample data set (see App. A.3) in order to ensure that the results
are applicable to this data set. Figure 4.6 shows the empirical distributions of
the parameter estimates σ̂/Â, f̂ and ŝ obtained from fitting all 91=

(
14
2

)
CCHs

in stimulation condition 1. The mean estimated fraction σ/A was about 1.2,
this quotient ranging up to 2.9. The mean fraction of the cosine period, f , was
about 110%, ranging between 0.9 and slightly more than 1.3. The estimated
phase shifts, s, were approximately uniformly distributed on the interval [0, 0.1].
Therefore, the parameter ranges used to simulate noisy cosine functions were

σ ∈ {0.5, 1, 1.5, 2}, A = 1, f ∈ {0.9, 1, 1.1, 1.2} and s ∈ {0, 4%, 8%}.

The simulations were performed for all combinations of these parameters. De-
tailed results are shown for the typical parameter set

At = 1, σt = 1, f t = 1.1, st = 0. (4.41)

As described in section 3.2.2, the number of data points was N = 641.

4.2.1.2 Results for typical parameter values

For every parameter set {A, f, s, σ}, 10,000 surrogate CCHs were simulated by
adding independent and normally distributed noise with variance σ2 to each of
the N = 641 data points of a cosine segment parameterized by A, f and s.
After this, a cosine function was fitted to each of the noisy cosine segments as
described in section 3.2.2. In a third step, the variability of the phase estimate
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Figure 4.6: Distributions of parameter estimates σ̂/Â (A), f̂ (B), ŝ (C) obtained from fitting
cosine functions to all 91 CCHs in stimulation condition 1.

was estimated for every simulated CCH by insertion of the parameter estimates
into equation (4.1).

The distributions of the estimated parameters {A, σ, f, s} are shown in Fig-
ures 4.7 A, B, D and E for the typical parameter set (4.41), the true parameter
values being indicated by vertical lines. As one can see, the estimated phase shift
(measured in percent of the period) typically deviates by less than 1% of the pe-
riod from the true value zero. From the estimates of A and σ, the estimated
signal-to-noise ratio, σ̂/Â, is derived and shown in Figure 4.7 C. Additionally,
the estimates of f and s are scaled in milliseconds for the analysis window given
by L = 10 ms (Figs. 4.7 G & H, respectively). In this setting, the estimated
phase shifts typically deviate from zero by less than 0.2 ms (empirical standard
deviation σϕ̂ ≈ 0.17 ms indicated by arrow). This empirically derived value is
used as a reference in Figure 4.7 F (indicated by black line), where it is compared
to the distribution of estimated standard deviations of ϕ̂ as computed with equa-
tion (4.40). As one can see, the distribution of the estimated standard deviations
is very close to the empirically derived value. The root mean square (RMS) error
measures the typical deviation of the estimates σ̂ϕ̂ from the empirically derived
value, σϕ̂. For convenience, it is expressed in % of σϕ̂:

100%

σϕ̂

·

√∑
i(σ̂

i
ϕ̂ − σϕ̂)2

10, 000
. (4.42)

For the typical parameter set, the RMS deviation is only 6.5 % of σϕ̂ as indicated
in Figure 4.7 F. Thus, equation (4.40) yields relatively precise estimates of the
measurement error of ϕ̂ in a CCH with the typical parameters.

Finally, it was investigated whether the standardized phase estimates are
approximately standard normally distributed. The distribution of the values
ϕ̂/σ̂ϕ̂ is shown in Figure 4.7 I together with the curve of the standard normal
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distribution. The distribution of the standardized phase estimates is very close
to the standard normal distribution for the typical parameter set, indicating
that equation (4.40) can be used to build approximate confidence intervals for
the phase shift. The results were comparable for all investigated parameter
combinations.
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Figure 4.7: Distributions of estimates resulting from 10,000 simulations with the typical pa-
rameter set (4.41). A-D, G: Distributions of the estimates of A, σ, σ/A, f and p, respectively.
Real parameters are indicated by vertical lines. E: Distribution of ŝ in % of a period with
indicated empirical standard deviation. H: Distribution of ϕ̂ in ms with indicated empirical
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bution of estimated standard deviations of ϕ̂ computed with equation (4.40). Arrow indicates
RMS deviation of the estimates σ̂ϕ̂ from σϕ̂. I: Distribution of phase estimates normalized by
their estimated standard deviations (histogram) and theoretical standard normal distribution
(curve).
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4.2.1.3 Applicability of the formula

After the discussion of the simulation results for the typical parameter set, three
main issues are studied in this section for all simulated parameter combinations.
First, the dependence of the empirical standard deviation, σϕ̂, on the variability
of data points in relation to the amplitude, σ/A (compare Figs. 4.2 C & D),
is investigated. Second, the dependence of the RMS deviation of σ̂ϕ̂ from σϕ̂

on σ/A is investigated. In the third step, the usefulness of equation (4.40) is
evaluated with respect to the construction of confidence intervals.

Empirical standard deviation of phase estimates, σϕ̂ For the typical
parameter set (4.41), the standard deviation σϕ̂ is about 0.17 ms, or 0.92%
of a period (indicated by arrows in Figs. 4.7 E & H and by the vertical line
in Fig. 4.7 F). The dependence of σϕ̂ on σ/A is shown in Figure 4.8 A for
σ/A ∈ {0.5, 1, 1.5, 2}, f = 1.1, s = 0, and A = 1. The right y-axis indicates
units of milliseconds, while the left y-axis shows units of percent of a period.
As predicted in the theoretical formula (4.1), the standard deviation of ϕ̂ grows
linearly with σ/A if all other parameters are kept constant. The slope depends
on the parameter f but varies only slightly in the investigated parameter ranges.
Likewise, small variations in s cause only negligible changes in the results.

The root mean square deviation of σ̂ϕ̂ from σϕ̂ is indicated in Figure 4.8
A by vertical bars. The deviation of σ̂ϕ̂ from the empirical standard deviation
σϕ̂ also grows with σ/A, indicating that not only ϕ but also its variability, σϕ̂,
are harder to estimate when the noise is big in relation to the amplitude. For
the rightmost data point with σ/A = 2, the RMS error amounts to about 13%
of σϕ̂, which is already twice as large as the value 6.5% obtained for σ/A = 1.

Confidence intervals Finally, the confidence intervals produced with the es-
timate σ̂ϕ̂ from equation (4.40) are investigated. The points in Figure 4.8 B
indicate the percentages of simulations in each parameter set in which

ϕ ∈ CI1 := [ϕ̂− σ̂ϕ̂, ϕ̂ + σ̂ϕ̂] and ϕ ∈ CI2 := [ϕ̂− 2σ̂ϕ̂, ϕ̂ + 2σ̂ϕ̂].

They match closely the theoretical percentages 68.3% and 95.4% indicated by
horizontal lines. The empirical percentages tend to be slightly smaller than the
theoretical values, which corresponds to an underestimation of σϕ̂ in the mean.
This phenomenon can also be observed in Figure 4.7 F in which the mean of the
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Figure 4.8: Usefulness of asymptotic formula for different parameter ranges and construction of
confidence intervals. A: Dots indicate empirically derived standard deviation of phase estimates
in 10,000 simulations for the parameters s = 0, f = 1.1, N = 641 and σ/A ∈ {0.5, 1, 1.5, 2}.
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indicate percentages of simulations with ϕ ∈ [ϕ̂ − σ̂ϕ̂, ϕ̂ + σ̂ϕ̂] and ϕ ∈ [ϕ̂ − 2σ̂ϕ̂, ϕ̂ + 2σ̂ϕ̂] for
all simulated parameter ranges. Horizontal lines indicate theoretical percentages.

distribution of σ̂ϕ̂ is slightly smaller than the empirical value σϕ̂. However, this
phenomenon is negligible compared to the RMS deviation of σ̂ϕ̂ from σϕ̂. Thus,
for CCHs that comply with the cosine assumption in the investigated parameter
ranges, formula (4.1) can be used to approximate the variance of ϕ̂ and to build
confidence intervals for the phase shift.

4.2.2 Binning

‘Binning’ describes the reduction of the time resolution that is caused by merging
adjacent data points, so-called ‘bins’. This reduces the computational effort
but has well-known disadvantages because it also reduces the precision of the
data. Since spike trains or CCHs are often binned to a time resolution of a few
milliseconds, the effect of binning on the estimation precision of ϕ and of σϕ̂

is studied here for an exemplary set of parameters. Starting with the typical
parameter set

At = 1, σt = 1, f t = 1.1, st = 0, N = 641, δ = 1/32 ms, L = 10 ms,
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the time resolution δ is reduced to the values {1/4, 1/2, 1, 2, 2.5, 5} ms, re-
sulting in N ∈ {81, 41, 21, 11, 9, 5} and in a new variability of data points
σ2

new ∈ {1/8, 1/16, 1/32, 1/64, 1/80, 1/160}σ2. Note the side effect that due to
the merging of bins, the set of new data points contains slightly more informa-
tion because the borders, −L and L, result from merging data points up to a lag
of |L + δ/2|. Again, 10,000 simulations are performed for each parameter set.

Analogous to Figure 4.7 F, the distribution of σ̂ϕ̂ was compared to the em-
pirical standard deviation, σϕ̂. The results for a bin size of δ ∈ {0.5, 2.5} ms are
shown in Figures 4.9 A & B. First, one should note that the empirical standard
deviation of ϕ̂, indicated by thick vertical bars, does not change with the bin size.
This can also be observed in Figure 4.9 C. The empirically obtained standard
deviations of ϕ̂ are indicated by dots and stay constant for all values of δ used
in the simulation. However, the error with which σϕ̂ can be estimated grows
with the bin size. This is indicated by the error bars in Figure 4.9 C and by the
RMS errors shown in Figure 4.9 D. For δ = 0.5 ms, the RMS deviation from the
empirical standard deviation is about 13%, which is already twice as much as
was observed for the original time resolution. For the broader time resolution of
δ = 2.5 ms, the RMS error amounts up to 32% of the empirical variability.
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Figure 4.9: Application of the asymptotic formula (4.1) to binned data (10,000 simula-
tions with parameters A = 1, σ = 1, f = 1.1, s = 0, N = 641, L = 10 ms and δ ∈
{1/32, 1/4, 1/2, 1, 2, 2.5, 5} ms). A, B: Distributions of σ̂ϕ̂ in ms for δ = 1/2 ms (A) and
δ = 2.5 ms (B). The empirical σϕ̂ is indicated by vertical bars. C: Points indicate empirical σϕ̂

as a function of the bin size. Error bars indicate RMS deviation of estimates from empirical
σϕ̂. D: RMS deviation of σ̂ϕ̂ from σϕ̂ in % of σϕ̂ as a function of the bin size.
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Thus, although the precision of ϕ̂ does not depend on the bin size, this pre-
cision is harder to estimate if the time resolution is decreased. As was described
earlier, errors in the determination of the estimation precision can result in erro-
neous confidence intervals for the phase offset. One should thus use the original
sampling frequency in which the data were recorded whenever possible.

4.2.3 Comparison to experimental variability

The studies in section 4.2.1 suggest that formula (4.1) can be used to estimate
the variance of the phase estimate for data which (i) comply with the cosine
assumption, i.e., cosine functions with independent and normally distributed
random noise, and (ii) whose parameter values are within the investigated in-
tervals. This also suggests that the formula is applicable to the experimentally
obtained CCHs because (i) the data analysis in section 3.2.2 did not indicate de-
viations from the cosine assumption and because (ii) the investigated parameter
ranges were derived from the empirical estimates. However, one cannot prove
that the experimentally obtained CCHs comply with the cosine assumption. It
is therefore necessary to investigate whether formula (4.1) can also grasp the
variability of phase estimates obtained experimentally.

To approach this question, the spike trains that were used to compute one
phase offset ϕ are divided into two independent sets of equal size. For each of
the two sets, a CCH is computed and a cosine function is fitted separately. Thus,
two estimates of ϕ are derived. To investigate whether the asymptotic formula
can describe the variability between the two estimates, equation (4.1) is used to
estimate the variance of ϕ̂ in one half of the data. This theoretical variability is
then compared to the empirical difference between the two estimates.

The assumptions are as follows. Let ϕ1, . . . , ϕn denote the phase offsets.
Then, by splitting the data sets, one gets two sets of estimates

S1 := {ϕ̂(1)
1 , . . . , ϕ̂(1)

n } and S2 := {ϕ̂(2)
1 , . . . , ϕ̂(2)

n }.

Let the estimates ϕ̂
(1)
1 , . . . , ϕ̂

(1)
n , ϕ̂

(2)
1 , . . . , ϕ̂

(2)
n be independent and

ϕ̂
(k)
i ∼ N (ϕi, σ

2
ϕ̂i

) ∀ k = 1, 2, ∀ i = 1, . . . , n.

A standardization of the difference of estimates yields standard normally dis-
tributed random variables

ϕ̂
(1)
i − ϕ̂

(2)
i√

2σϕ̂i

∼ N (0, 1) i = 1, . . . , n. (4.43)
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To investigate whether equation (4.1) can be used to estimate the variability of
phase estimates, σϕ̂i

is estimated with equation (4.1), and the distribution of the
resulting values

Zi :=
ϕ̂

(1)
i − ϕ̂

(2)
i√

2σ̂ϕ̂i

, (4.44)

which should be approximately N (0, 1)-distributed, is compared to the standard
normal distribution.

In practice, the data analysis is performed as follows: From the 14 recorded
channels, n = 91 pairwise CCHs and phase offsets are derived. Originally, every
phase offset in stimulation condition 1 is computed from the responses to 20
identical presentations of the same stimulus (trials 1,. . .,20). These trials are
divided into the two independent sets of odd and even trials ({1,3,. . .,19} and
{2,4,. . .,20}), and CCHs and phase offsets are derived separately. This results
in the two sets of phase offsets S1 and S2 measured in the odd and even trials,
respectively. The standard deviation of a single phase offset is then estimated
from the CCH in the odd trials by application of formula (4.1). This yields
n = 91 Z-values derived with equation (4.44). Since it is irrelevant whether Zi is
positive or negative and since there are only 91 values, the absolute values |Zi| are
compared to the nonnegative part of the standard normal distribution. Figure
4.10 A shows that the distribution of the |Zi|-values is close to the standard
normal distribution. Also the corresponding normal plot of Zi-values in Figure
4.10 B shows high agreement between the sample and the theoretical quantiles.
This indicates that the approximate formula (4.1) can describe the variability of
phase estimates for noisy cosine functions as well as grasp the measurement error
of phase shifts in experimentally obtained CCHs in the sample data set. Thus,
the theoretical formula can be used for practical applications such as statistical
decisions concerning deviations of single phase offsets from zero or statistical
comparisons of sets of phase measurements. An exemplary analysis of the latter
will be performed in the following section.

4.3 Application: A significance test

Chapter 4 showed that the measurement error of phase estimates in CCHs in the
sample data set can be estimated quickly and precisely with formula (4.1). This
allows answering the questions posed in the beginning of this chapter. One of the
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Figure 4.10: Comparison of the variability of phase offsets as derived experimentally and
as estimated with the formula. A: Distribution of 91 absolute differences of phase offsets
in odd and even trials in stimulation condition 1, standardized with the estimated standard
deviation. The black curve indicates the theoretical standard normal distribution. B: Q-Q-plot
of standardized phase offset differences from A.

most striking issues concerns the small size of measured phase offsets, which range
only up to a few milliseconds. With the help of confidence intervals estimated
with the theoretical formula (4.1), it is now possible to evaluate deviations of
phase offsets from zero. As could be observed for the typical parameter set,
95 % confidence intervals can be smaller than one millisecond, which allows
conclusions about phase offsets in the millisecond range.

Even more interesting is the question whether or not these small phase offsets
might play a role in information processing. In order to investigate this issue,
one needs to be able to study changes of sets of phase offsets across different
stimulation conditions. To this end, a formula is proposed which allows the
comparison of two sets of phase offsets by a simple test statistic and avoids
multiple testing.

The null hypothesis of the statistical test is similar to the situation de-
scribed on page 41. Consider two independent sets of n measurements,
S1 := {ϕ̂(1)

1 , . . . , ϕ̂
(1)
n } and S2 := {ϕ̂(2)

1 , . . . , ϕ̂
(2)
n }, which are paired such that for

all i = 1, . . . , n,
ϕ̂

(k)
i ∼ N (ϕi, (σ

(k)
ϕ̂i

)2), k = 1, 2.

Note that according to this null hypothesis, two paired measurements do not
necessarily have the same variance. The terms

Zi :=
ϕ̂

(1)
i − ϕ̂

(2)
i√

(σ̂
(1)
ϕ̂i

)2 + (σ̂
(2)
ϕ̂i

)2

(4.45)

have an approximate standard normal distribution, where (σ̂
(k)
ϕ̂i

)2 denotes the

estimated variance of ϕ̂
(k)
i in the set Sk. Since the sum of squares of n stan-
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dard normally distributed random variables has χ2-distribution with n degrees
of freedom, we get an approximate χ2(n)-distribution of the test statistic

S :=
n∑

i=1

Z2
i (4.46)

under the null hypothesis that differences between measurements in the sets S1

and S2 are only caused by measurement errors. If on the other hand differences
between paired measurements are too big to be explained by measurement errors,
the test statistic S grows, which yields smaller p-values.

Application of the test to the sample data set simply requires choosing the
two sets of measurements S1 and S2 that are to be compared. For example, one
can test sets of phase offsets derived from independent repetitions of the same
stimulation condition to investigate differences of phase offsets across repeated
presentations of the same stimulus. To this end, the 20 presentations of the same
stimulus are again divided into the two sets of odd and even trials, the 2n phase

offsets (ϕ̂
(1)
i , ϕ̂

(2)
i )i=1,...,n and their approximate variances

(
(σ̂

(1)
ϕ̂i

)2, (σ̂
(2)
ϕ̂i

)2
)

i=1,...,n

are estimated independently for each of the two sets of trials. From these esti-
mates, the test statistic S is computed, and the corresponding probability that
a χ2(n)-distributed random variable is at least as big as S is derived from the
χ2-distribution.

The results of this analysis applied to stimulation conditions 3 and 5 are
presented in the rows 1 and 2 of Table 4.1. In row 3, phase offsets that were
measured in stimulation conditions 3 and 5 are compared with the same tech-
nique. The big p-values in rows 1 and 2 are in agreement with the hypothesis
that phase offsets stay stable across repeated measurements of stimulation con-
ditions 3 and 5 in the sample data set. On the other hand, the changes in phase
offsets between stimulation conditions 3 and 5 are unlikely to have occurred by
chance, which is indicated by the small p-value in the last row.

Comparison S p
odd - even trials, cond. 3: 89.8 0.516
odd - even trials, cond. 5: 104.1 0.165

Cond. 3 - cond. 5 285.0 < 0.0001

Table 4.1: Application of the statistical test to two stimulation conditions from the sample
data set; n = 91 phase offsets in each set of measurements.



Chapter 5

Conclusion – Part I

In summary, a method was presented with which the phase shift in a CCH can
be estimated by fitting a cosine function to the central CCH peak. The pre-
sented technique is sufficiently simple to allow standardization of the starting
parameters and of the estimation procedure. Therefore, a formula is derived
which approximates the variance of the phase estimate as a function of the co-
sine parameters and additional geometric parameters. This formula describes the
variability of phase offsets in simulations with parameter ranges similar to those
in the experimental data set and predicted the variability obtained experimen-
tally. It can thus be applied in the construction of confidence intervals for single
phase offsets and in statistical tests of differences between sets of measurements.

As a limiting factor, the derived formula is based on the assumptions pre-
sented in section 3.2.1, i.e., that the counts in a CCH peak can be described with
a cosine function with independent and normally distributed noise. Moreover,
the formula has been tested here only for a limited set of parameters. For ex-
ample, if CCHs are more noisy than those given in the sample data set - which
may be the case in recordings of single units - it may be necessary to bin CCHs
prior to further analysis. This increases the error with which σ can be estimated.
Thus, an application of the derived formula should also consider the parameter
range.

A central question concerns the interpretation of phase offsets in a formal
and in a physiological sense. Formally, phase offsets can be interpreted as indi-
cating the most frequent delay recorded between two units. However, this delay
does not occur exclusively. In contrast, spike delays of two units are broadly
jittered around this delay, which is reflected in the width of the central peak.
Also, no conclusions are drawn about the source of correlation between two spike
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trains that causes the peak. As discussed by several authors, CCHs can only be
interpreted in a straightforward manner if the spike trains can be considered
stationary in the sense that the joint distribution of the numbers of spikes in
fixed intervals is invariant under translation (Cox and Lewis, 1966; Perkel et al.,
1967b)1. If spike trains are not stationary in time, central peaks can be caused by
a covariation of excitability such as a variability of response onset (‘latency vari-
ability’) or covariations in the firing rate (Perkel et al., 1967a,b; Brody, 1999a,b;
Baker and Gerstein, 2001; Ventura, 2004). On the other hand, central peaks can
be caused by precisely coordinated synchronous discharges which occur within a
few milliseconds and thus irrespective of a detectable increase in the firing rate.
In the investigation of central CCH peaks performed in this part, the mechanism
that causes a peak is irrelevant. In fact, the method is not restricted to CCHs
but can be applied to any noisy and peak-shaped function that complies with the
model assumptions given in section 3.2.1. Thus, the method of fitting a cosine
function combined with the formula for the approximate variance of the phase
estimate provides an analytic tool for the investigation of temporal properties in
neuronal discharges.

Physiologically, it might be possible to encode additional information with the
help of small phase offsets. Accordingly, Hopfield (1995) proposed a theoretical
coding mechanism that requires oscillatory activity and uses the relative phase of
firing as a carrier of information. Going one step further, it has been argued that
information might be encoded in the relative temporal order of single spikes of
different neurons within a population (Traub et al., 1997; Van Rullen et al., 1998;
Delorme and Thorpe, 2001; Delorme, 2003). It is commonly agreed that this
coding mechanism has great computational power and speed, providing efficient
object representation and robustness against noise or a change of the stimulus
(Van Rullen and Thorpe, 2001; Johansson and Birznieks, 2004).

Such approaches, which combine the relative phase of firing with a temporal
order code, motivate the investigations in Part II. The phase offsets analyzed in
this Part provide the basis for the further analysis of temporal relations between
the discharge times in large networks.

1This restriction gave rise to time-resolved extensions such as the joint peri-stimulus time
histogram (JPSTH, Gerstein and Perkel, 1969, 1972; Aertsen et al., 1989) with which dynamic
temporal relations between pairs of units can be investigated.



Part II

The structure of phase offsets
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Chapter 6

Introduction and Results

6.1 Motivation

This part deals with the analysis of temporal relations among the spike trains of
different neurons in large networks. Many available methods face the problem
of high computational effort since the number of possible temporal relations
increases exponentially with the number of units. The approach described here
circumvents this problem by restricting the investigation of temporal patterns
to the predominant delays measured between pairs of units, i.e., phase offsets.
On the basis of these pairwise measurements, temporal relations among all units
are investigated. On the one hand, this restriction to pairwise analysis reduces
the computational effort because among n units1, only

(
n
2

)
phase offsets are

computed. On the other hand, this restricted but complex pairwise information
has to be integrated in order to analyze temporal relations among all units.

The presented method is based on the idea that the preferred delays are
additive. Figure 6.1 A shows three phase offsets ϕ12, ϕ23 and ϕ13 between the
units 1, 2 and 3. These are additive if the sum ϕ12+ϕ23 corresponds to the direct
offset ϕ13. If this condition is satisfied for all phase offsets computed among a set
of n neurons, all phase offsets can be represented as differences between points
on a line, which is referred to as the time axis . Accordingly, in Figure 6.1 B,
six units are positioned on the time axis, and the difference between two units
indicates the phase offset - or the ‘preferred spiking delay’ between these units.
Therefore, the positions of the units on the time axis are called ‘preferred relative
firing times’ (PTs). Note that preferred delays between two units can be positive
or negative. In particular, ϕij = −ϕji.

1Note that in Part II, n denotes the number of units, whereas the resulting number of phase
offsets,

(
n
2

)
, was denoted by n in Part I.
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If a set of phase offsets is completely additive, it is also highly redundant,
and the units can be positioned easily on the time axis on the basis of only a few
measurements. In practice, however, phase offsets are measured with an error
and can thus never be completely additive. Therefore, it is necessary to develop
a model with which the set of unit positions on the time axis can be estimated on
the basis of additive but noisy phase offsets. The model should furthermore allow
the estimation of the measurement error. In chapter 7, a model is presented with
which the set of unit positions and the measurement error can be estimated. This
allows the extraction of a simple and low-dimensional temporal structure for the
firing activity of a large group of neurons if the set of phase offsets complies with
the model assumption of additivity and unsystematic noise.

● ● ● ● ● ●
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Figure 6.1: Structure in phase offsets. A: Three units and their phase offsets. B: Main model
assumptions: Units are represented as points on the time axis, while pairwise phase offsets
represent noisy measurements of differences between unit positions. C: Additivity of delays
can arise when systematic delays between different units refer to identical spikes. D: If unit
pairs fire at different times, additivity is not given by default.

However, phase offsets are not necessarily additive. While additivity can
arise for example if every unit spikes once within a small time window (Fig. 6.1
C), additivity is not necessarily given if systematic delays between pairs of units
occur in a temporally independent manner (Fig. 6.1 D). It is therefore necessary
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to investigate whether the model can provide a reasonable representation of the
structure given in a set of phase offsets. In chapter 8, the mathematical formulas
and results are applied to the sample data set, and the applicability of the model
to a set of experimentally obtained phase offsets is investigated.

6.2 Results

Model II: Noisy pairwise differences between points on the real line
In order to investigate the degree to which a set of

(
n
2

)
phase offsets can be

represented by additive distances between points on the real line, a linear model
is used. It is assumed that every phase ϕij represents the noisy measurement of
the difference δij = xj − xi between points xi, xj ∈ R. All measurement errors
are assumed to be independent and normally distributed with expectation 0 and
variance2 σ2:

ϕij = δij + σZij ∀ 1 ≤ i < j ≤ n (Fig. 6.1 B).

Since only distances are specified, the condition
∑

i xi = 0 is required for unique-
ness. A set of points C = {x1, . . . , xn} on the real line is called a ‘linear configu-
ration’.

Estimates The maximum-likelihood estimate for the position xk is given by

x̂k =
1

n

∑
i6=k

ϕik. (Lemma 3)

This estimate is unbiased also if several model assumptions are not satisfied, e.g.
if phase offsets are not normally distributed or have different variances. The
resulting estimates of the model distances δij are derived as a weighted sum of
direct measurements ϕij and indirect measurements of length 2, ϕi` + ϕ`j:

δ̂ij = x̂j − x̂i =
1

n

(
2ϕij +

∑
` 6=i,j

(ϕi` + ϕ`j)
)

(Corollary 3).

These estimates minimize the error sum of squares, Q :=
∑

i<j (ϕij − δ̂ij)
2, with

which the deviation from the optimal linear configuration is measured and with

2Note that in Part II, σ2 denotes the measurement error of a phase estimate, which was
denoted by σ2

ϕ̂ in Part I.
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which an unbiased estimate of σ can be derived as σ̂ = Q/
(

n−1
2

)
(Lemma 4). In

the geometric interpretation, the vector of estimated model distances ∆̂ repre-

sents the orthogonal projection of the vector of phase offsets, Φ ∈ R(n
2), onto

an (n − 1)-dimensional model space Mn. With this procedure, ∆̂ is estimated
such that the squared distance Q := ||∆̂−Φ||2 is minimized. Application of the
derived formulas to the set of 91 phase offsets measured in the sample data set
yields a linear configuration in which the phase offsets can be represented to a
high degree by the estimated model distances δij (cf. Fig. 8.2 A, and Fig. 8.5 B
for permuted phase offsets).

Analysis of variance In order to investigate whether differences between k
linear configurations can be explained by random variations, the linear model is

extended, and the vector of phase offsets, (Φ1, . . . , Φk) ∈ Rk(n
2) is decomposed

by two orthogonal projections. First, individual estimates (x̂
(`)
i )`=1,...,k are de-

rived for each of the k configurations. Second, global estimates xi are derived
by projection onto the (n − 1)-dimensional model space which represents the
null hypothesis that all k configurations C1, . . . , Ck are independent realizations
of one and the same linear structure {x1, . . . , xn} on R. For the given linear
model, the squared length of specific vectors is χ2-distributed, and their quotient
is F -distributed. This can be used to investigate differences between the config-
urations. In the sample data set, differences between linear configurations that
result from repeated presentation of the same stimulus are small, whereas big dif-
ferences can be observed between configurations obtained in different stimulation
conditions. This suggests that a linear configuration extracted from near-zero
phase offsets can vary systematically between different stimulation conditions.

In addition to the model extension used for the statistical analysis, another
model extension is presented in which maximum-likelihood estimates of the unit
positions are derived for incomplete sets of phase offsets in which not all unit
pairs (i, j) are assigned a measurement ϕij. This case is of special importance
in practice if some phase offsets cannot be estimated. A necessary and sufficient
condition is provided for the uniqueness of ML-estimates (Thm. 1).



Chapter 7

Stochastic model

In this chapter, the mathematical framework is provided for the model illustrated
in Figure 6.1 B. Section 7.1 describes the basic form of the model. Formulas are
derived for the estimation of the preferred firing times of the units as well as
for the measurement error. The presented linear model allows the application
of analysis of variance, which is discussed in section 7.2. Section 7.3 provides
extensions of the basic model that deal with heteroscedasticity and incomplete
data sets. The results provided in section 7.3 can be useful in the analysis of
experimental data in which the general assumptions of the basic model are not
given as well as in the investigation of the impact that these assumptions have
on the resulting linear configuration. Finally, section 7.4 provides a summary of
the basic model and its extensions as well as references to all results presented
in this chapter that may be important for data analysis.

7.1 Framework and results

The basic model Let n ∈ N be the number of units, x1, . . . , xn ∈ R be their
positions on the time axis, also called PTs. Since only the distances between
the units are specified, let

∑n
i=1 xi = 0.

The set C := {x1, ..., xn} of PTs on the time axis is called a (linear) configu-
ration. Define the model distance δij between the PTs of units i and j as

δij := xj − xi ∀ 1 ≤ i, j ≤ n, which implies (7.1)

δij = −δji and δii = 0. (7.2)
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A phase offset is assumed to be composed of the corresponding model distance
and random measurement error:

ϕij := δij + σZij ∀ 1 ≤ i < j ≤ n, (7.3)

where σ ∈ R+ and {Zij}1≤i<j≤n are independent and N (0, 1)-distributed random
variables. Since only one phase offset can be computed for each pair of units, let

ϕji := −ϕij ∀ 1 ≤ i < j ≤ n and ϕii := 0 ∀ i = 1, . . . , n.

The estimates In this setting, the preferred firing times x1, . . . , xn, the model
distances, δij, and the measurement error, σ, are to be estimated from the set
of measured phase offsets, {ϕij}1≤i<j≤n. The following formulas are directly
applicable to experimentally derived phase offsets:

Lemma 3 The maximum-likelihood estimate of the vector of PTs
x := (x1, . . . , xn) is given by

x̂k =
1

n

n∑
i=1

ϕik ∀ k = 1, . . . , n.

Corollary 3 The maximum-likelihood estimate ∆̂ of the vector of model dis-
tances, ∆ = (δ12, . . . , δn−1,n), is given by

δ̂ij =
1

n

(
2ϕij +

n∑
`=1

` 6=i,j

(ϕi` + ϕ`j)

)
∀ 1 ≤ i < j ≤ n.

Corollary 4 The position xk of unit k can be estimated with variance

σ2
x̂ := Var(x̂k) =

n− 1

n2
σ2 ∀ 1 ≤ k ≤ n.

Lemma 4 An unbiased estimate of the measurement error σ2 is given by

σ̂2 =
1(

n−1
2

) ∑
1≤i<j≤n

(ϕij − δ̂ij)
2.
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7.1.1 Proofs

Proof of Lemma 3 To derive the likelihood function, note that according to
equation (7.3), the vector of phase offsets,

Φ := (ϕ12, . . . , ϕn−1,n),

is assumed to be normally distributed in R(n
2), with

E (ϕij) = xj − xi, Var(ϕij) = σ2 ∀ 1 ≤ i, j ≤ n, and (7.4)

Cov(ϕij, ϕi′j′) = 0 ∀ (i, j) 6= (i′, j′), (i, j) 6= (j′, i′).

Thus, the likelihood function is

L(x, σ) =
1

(2πσ2)
1
2(

n
2)
· exp

(
− 1

2σ2

∑
1≤i<j≤n

(ϕij − (xj − xi))
2

)
. (7.5)

Maximizing the likelihood function for constant σ is equivalent to minimizing
the error sum of squares,

Q(x) :=
∑

1≤i<j≤n

(ϕij − (xj − xi))
2 =

∑
1≤i≤j≤n

(ϕij − (xj − xi))
2. (7.6)

The partial derivatives of Q(x) are

∂Q(x)

∂xk

= 2
n∑

i=1

(ϕki − xi + xk) = 2
n∑

i=1

ϕki − 2
n∑

i=1

xi + 2nxk.

With the constraint
∑n

i=1 xi = 0, the gradient of Q(x) equals zero for the es-
timates given in Lemma 3. The second partial derivatives of Q(x) are given
by

∂2Q(x)

∂xk∂xl

=

{
0 k 6= l,

2n k = l,

which implies that the estimates in Lemma 3 minimize Q(x) and thus maximize
the likelihood function L(x, σ) for constant σ. Corollary 3 follows by insertion
of Lemma 3 into equation (7.1), and Corollary 4 can be computed directly with
Lemma 3 and the assumptions in (7.4). �
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Proof of Lemma 4 To prove E [σ̂2] = σ2, the expectation of one summand
of Q(x̂), E [(ϕij − (x̂j − x̂i))

2] = E [(ϕij − δ̂ij)
2], is computed first. For any pair

(i, j) with 1 ≤ i, j ≤ n,

ϕij − δ̂ij =
1

n

[
(n− 2)ϕij −

∑
` 6=i,j

(ϕi` + ϕ`j)

]
=

1

n

∑
` 6=i,j

(ϕij + ϕj` + ϕ`i).

Thus,

E
[
ϕij − δ̂ij

]
=

1

n
E
(∑

` 6=i,j

(xj − xi) + (x` − xj) + (xi − x`)

)
= 0

E
[
(ϕij − δ̂ij)

2
]

= Var
[
ϕij − δ̂ij

]
=

σ2

n2

[
(n− 2)2 + 2(n− 2)

]
=

n− 2

n
σ2.

Therefore,

E
[
σ̂2
]

=
1(

n−1
2

) · (n
2

)
· E

[
(ϕij − δ̂ij)

2
]

=
2

(n− 1)(n− 2)
· n(n− 1)

2
· (n− 2)

n
σ2 = σ2.

�

Note: The Maximum Likelihood estimate of σ2, σ̂2
ML, differs from the

estimate given in Lemma 4: Computing the log-likelihood and its derivative,

log L(x̂, σ) = −
(

n
2

)
log(

√
2π) −

(
n
2

)
log(σ)− 0.5σ−2Q(x̂)

∂ log L(x̂, σ)

∂σ
= σ−1

(
−
(

n
2

)
+ σ−2Q(x̂)

)
,

one can see that the derivative equals zero only for

σ̂2
ML =

1(
n
2

)Q(x̂) =
1(
n
2

) ∑
1≤i<j≤n

(ϕij − (x̂j − x̂i))
2, (7.7)

where the second derivative is negative:

∂2 log L(x̂, σ̂2
ML)

∂2σ2
= σ̂−2

ML

( (
n
2

)
− 2σ̂−2

MLQ(x̂)
)

= −
(

n
2

)2
(Q(x̂))−1.

Thus, the ML-estimate σ̂2
ML differs from the unbiased estimate by the factor(

n−1
2

)
/
(

n
2

)
.
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7.1.2 The geometric perspective

In this subsection, the additivity model and its estimates are interpreted in a
geometric way. The presented model is a linear model of the form

Φ = ∆ + σZ, (7.8)

where Φ is the vector of phase offsets, ∆ contains the corresponding model dis-
tances, and Z = (Z12, . . . , Zn−1,n) ∼ N (0, I(n

2)
) is a vector of independent and

standard normally distributed random variables (In denotes the n × n-identity
matrix). According to the additivity assumption, all model distances δij are ad-
ditive, i.e., the vector ∆ is assumed to be an element of the (n− 1)-dimensional

model space Mn ∈ R(n
2)

Mn :=
{

(c2 − c1, c3 − c1, . . . , cn − cn−1)
∣∣∣ c1, . . . , cn ∈ R,

n∑
i=1

ci = 0
}

. (7.9)

To estimate the vector of model distances, ∆, the vector of phase offsets, Φ, is
decomposed by orthogonal projection onto Mn:

Φ = PMnΦ + PM⊥
n
Φ =: ∆̂ + R,

where ∆̂ := PMnΦ represents the orthogonal projection of Φ onto Mn, and
R := PM⊥

n
Φ is the residual component, i.e., the orthogonal projection of Φ onto

the orthogonal complement of Mn. According to the orthogonal projection, the
length of R is the minimal distance between Φ and Mn:

min
v∈Mn

||Φ− v||2 = ||R||2 =
∑

1≤i<j≤n

(ϕij − δ̂ij)
2 = Q(x̂).

Thus, the estimate ∆̂ resulting from orthogonal projection is also the ML-
estimate that results from Corollary 3 because it minimizes the error sum of
squares. Therefore, the decomposition Φ = ∆̂ + R reads componentwise

ϕij = δ̂ij + (ϕij − δ̂ij) = δ̂ij + rij

=
1

n

(
2ϕij +

∑
` 6=i,j

(ϕi` + ϕ`j)

)
+

1

n

∑
` 6=i,j

(ϕij + ϕj` + ϕ`i).

The model distances δij are estimated by a linear combination of the direct mea-
surement, ϕij, and all indirect measurements of size two, ϕi` + ϕ`j (cf. Fig. 7.1).
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xjxi ijj

ϕi`1

ϕi`2

ϕ`1j

ϕ`2j

Figure 7.1: Estimation of model distances by the direct distance and all indirect measurements
of size two.

In this linear combination, the direct distance is counted twice because it is only
affected by one error of measurement, while the indirect distance is affected by
two measurement errors: Var(ϕi` + ϕ`j) = 2σ2 = 2Var(ϕij).

The residual component, R, is estimated by ‘circles’ of phase offsets,
ϕij + ϕj` + ϕ`i, which are zero for additive phase offsets. In the linear model
where phase offsets are additive apart from a measurement error of size σ2, this
error is estimated according to Lemma 4 with:

σ̂2 =
1(

n−1
2

)Q(x̂) =
1(

n−1
2

) · ||R||2.
As shown with elementary calculations in section 7.1.1,

(
n−1

2

)−1||R||2 is an unbi-
ased estimate of σ2. Geometrically, unbiasedness of σ̂2 can be concluded easily
from the dimension of the subspace Mn:

Recall: Φ = ∆ + σZ, Φ ∈ R(n
2), ∆ ∈Mn, Z ∼ N (0, I(n

2)
).

Since ∆ ∈Mn, R = PM⊥
n
Φ = PM⊥

n
σZ. Hence,

σ−2||R||2 = σ−2||PM⊥
n
σZ||2 ∼ χ2(dim(M⊥

n )) = χ2
( (

n
2

)
− dim(Mn)

)
.

This implies

E (||R||2) = σ2 ·
(

n−1
2

)
, which yields E

[
σ̂2
]

= σ2.

The framework of this linear model and the homoscedasticity assumption that
every phase offset is measured with the same variance σ2 allows the application
of analysis of variance.
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7.2 Analysis of variance

To apply analysis of variance to the linear model described in section 7.1.2, the
framework is extended by introduction of an additional hypothesis space H.
Consider the more general model

Φ = µ + σZ,

where Φ ∈ Rm, M is a subspace of Rm and denotes the model space with µ ∈M,
and Z ∼ N (0, Im). To test the null hypothesis H0 : µ ∈ H, where H is a subspace
of M and denotes the hypothesis space, against the alternative H1 : µ ∈M, the
vector Φ is decomposed by orthogonal projection onto H and M:

Φ = PHΦ + PEΦ + PM⊥Φ,

where E denotes the orthogonal complement of H in M, i.e., M = H ⊕ E
(cf. Fig. 7.2). Then, the lengths of PEΦ and PM⊥Φ are compared. Under both
H0 and H1, µ ∈M and thus, PM⊥µ = 0. Therefore,

PM⊥Φ = PM⊥σZ =⇒ σ−2||PM⊥Φ||2 ∼ χ2(dim(M⊥)).

Under H0 : PEΦ = PEσZ =⇒ σ−2||PEΦ||2 ∼ χ2(dim(E)),

and under H1 : ||PEΦ||2 = ||PEµ + PEσZ||2 > ||PEσZ||2.

Thus, under H0,

F =
||PEΦ||2/ dim(E)

||PM⊥Φ||2/ dim(M⊥)
(7.10)

has Fisher distribution with dim(E) and dim(M⊥) degrees of freedom, whereas
F is increased systematically under H1.

The application of this result to specific problems only requires choosing the
appropriate model space, M, and the hypothesis space, H. As an example,
analysis of variance is used here to investigate differences between linear config-
urations derived under different experimental conditions.

7.2.1 Application: Differences between configurations

Analysis of variance is applied to investigate differences between k linear config-
urations, denoted by

C1 := {x(1)
1 , ..., x(1)

n }, . . . , Ck := {x(k)
1 , ..., x(k)

n },
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0

E

Φ
PM⊥Φ

M

H

PMΦ

PHΦ

PEΦ

Figure 7.2: Decomposition of Φ by orthogonal projection onto the model space, M, and the
hypothesis space, H.

that originate from k sets of measurements, {ϕ(1)
ij }1≤i<j≤n, . . . , {ϕ(k)

ij }1≤i<j≤n. The

null hypothesis states that phase offsets ϕ
(`)
ij between the same pair of units (i, j)

but from different measurements ` = 1, . . . , k are random copies of the same
distance δij = xj − xi between the units i and j:

H0 : ϕ
(`)
ij ∼ N (xj − xi, σ

2),
∑

xi = 0
∀ 1 ≤ i < j ≤ n,
∀ ` = 1, . . . , k.

(7.11)

The alternative hypothesis is represented by

H1 : ϕ
(`)
ij ∼ N (x

(`)
j − x

(`)
i , σ2),

∑
x

(`)
i = 0

∀ 1 ≤ i < j ≤ n,
∀ ` = 1, . . . , k,

(7.12)

and not all (x
(`)
i ), ` = 1, . . . , k, are equal. H1 states that the phase offsets

obtained from different measurements ` represent noisy pairwise distances in
different linear configurations C1, . . . , Ck. In this case, we have

Φ = ∆ + σZ,

where Φ ∈ Rk(n
2) is the merged vector of phase offsets in k independent measure-

ments. The model space

M = Mn × . . .×Mn︸ ︷︷ ︸
k

=
{
(v1, . . . , vk)

∣∣ v1, . . . , vk ∈Mn

}
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represents the assumption that phase offsets of different measurements are
additive but may belong to different linear configurations. Note that
dim(Mn) = n− 1 and therefore, dim(M) = k(n− 1) and dim(M⊥) = k

(
n−1

2

)
.

The hypothesis space is given by

H =
{
(v1, . . . , vk)

∣∣v1 = . . . = vk ∈Mn

}
and represents the assumption that phase offsets of different sets of measurements
are additive and originate from the same linear configuration, i.e., C1 = . . . = Ck.
Obviously, dim(H) = n− 1 and dim(E) = (k − 1)(n− 1).

Projection onto H: The orthogonal projection of Φ onto H is given by
the components

(PHΦ)
(`)
ij =

1

k

k∑
`=1

δ̂
(`)
ij , (7.13)

with δ̂
(`)
ij =

1

n

(
2ϕ

(`)
ij +

n∑
r=1

r 6=i,j

(ϕ
(`)
ir + ϕ

(`)
rj )

)
. (7.14)

Thus, if all configurations are identical, the estimated model distances are aver-
ages of the estimated model distances in the separate measurements. The proof
is analogous to the computations in section 7.1.1: The error sum of squares,

QH(x) =
k∑

`=1

∑
i<j

(ϕ
(`)
ij − (xj − xi))

2,

is minimized by the estimates given in equation (7.13).

Projection onto M: The orthogonal projection of Φ onto M is given by
the components

(PMΦ)
(`)
ij = δ̂

(`)
ij . (7.15)

This means that if phase offsets are additive but if different measurements belong
to different linear configurations, model distances are estimated separately for
every set of measurements. Again, this can be shown directly with the ML
method using

QM(x) =
k∑

`=1

∑
i<j

(ϕ
(`)
ij − (x

(`)
j − x

(`)
i ))2.
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Sums of squares From equations (7.13) and (7.15) we get

(PEΦ)
(`)
ij = δ̂

(`)
ij −

1

k

k∑
r=1

δ̂
(r)
ij and (7.16)

||(PEΦ)
(`)
ij ||2 =

k∑
`=1

∑
i<j

(δ̂
(`)
ij −

1

k

k∑
r=1

δ̂
(r)
ij )2, (7.17)

i.e., the nominator of the test statistic F represents the deviations of single linear
configurations from the global linear configuration. The sum of squares in the
denominator is given by

(PM⊥Φ)
(`)
ij = ϕ

(`)
ij − δ̂

(`)
ij (7.18)

=⇒ ||(PM⊥Φ)
(`)
ij ||2 =

k∑
`=1

∑
i<j

(ϕ
(`)
ij − δ̂

(`)
ij )2, (7.19)

i.e., the denominator represents the deviations between raw phase offsets and
estimated model distances computed separately for each data set.

The statistic F can be derived now with the provided components. To con-
struct a short representation, let σ̂2

` denote the estimated variance in measure-
ment `:

σ̂2
` =

(
n−1

2

)−1
∑
i<j

(ϕ
(`)
ij − δ̂

(`)
ij )2.

F can be simplified to

F =

∑k
`=1

∑
i<j (δ̂

(`)
ij − 1

k

∑k
r=1 δ̂

(r)
ij )2/(k − 1)(n− 1)∑k

`=1

∑
i<j (ϕ

(`)
ij − δ̂

(`)
ij )2/k

(
n−1

2

)
=

1∑
` σ̂2

`

· k

(k − 1)(n− 1)
·
∑

`

∑
i<j

(
δ̂
(`)
ij −

1

k

∑
r

δ̂
(r)
ij

)2

(7.20)

∼ Fisher
(
(k − 1)(n− 1), k

(
n−1

2

))
.

Thus, to test differences between k linear configurations, one has to compute
separate model distances, δ̂

(`)
ij , the measurement errors, σ̂2

` , and to compare the
value resulting from equation (7.20) with a Fisher-distributed random variable
with (k − 1)(n− 1) and k

(
n−1

2

)
degrees of freedom.
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7.3 Model assumptions and model extensions

The general framework of a linear model presented in the previous section can
be useful for further data analysis because it provides easy and straightforward
formulas with which linear structure inherent in sets of measured phase offsets
can be investigated. However, when interpreting the results of such an analysis,
the special properties of the model have to be taken into account.

Linear configurations are not necessarily stable Most importantly, the
presented model can be used to investigate whether a set of measured phase off-
sets is inherently consistent and additive in such a way that a linear configuration
can be estimated with the results provided in section 7.1. However, this linear
configuration is not necessarily stable throughout the analysis window. Con-
sider the following example: Let C1 := {x(1)

1 , ..., x
(1)
n } be the linear configuration

in the first half of each trial, and let C2 := {x(2)
1 , ..., x

(2)
n } be a different linear

configuration in the second half of each trial. Then, by dividing the spike trains
accordingly, one could get pairwise measurements of distances between unit pairs

m
(1)
ij = x

(1)
j − x

(1)
i + σ1Z

(1)
ij and m

(2)
ij = x

(2)
j − x

(2)
i + σ2Z

(2)
ij

that belong to C1 and to C2, respectively. In this case, every global value ϕij

represents a combination of the separate measurements m
(1)
ij and m

(2)
ij . If ϕij is

simply the average of m
(1)
ij and m

(2)
ij , ϕij can again be divided into an additive

component and measurement error:

ϕij =
1

2
(m

(1)
ij + m

(2)
ij )

=

(
1

2
(x

(1)
j + x

(2)
j )− 1

2
(x

(1)
i + x

(2)
i )

)
+

1

2

(
σ1Z

(1)
ij + σ2Z

(2)
ij

)
.

As a consequence, the set of phase offsets {ϕ12, . . . , ϕn−1,n} is assigned the linear
configuration

C =

{
1

2
(x

(1)
1 + x

(2)
1 ), ...,

1

2
(x(1)

n + x(2)
n )

}
, with σ =

1

2

√
σ2

1 + σ2
2.

Thus, the linear configuration estimated on the basis of this set of phase offsets
is only the mean linear configuration in which every unit is assigned its average
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position within the two configurations C1 and C2. Consequently, any linear con-
figuration may represent only an average of different configurations that emerge
throughout the analysis window. Systematic variations in the unit positions
should then be investigated with the analysis-of-variance approach presented in
section 7.2.

Assumptions on measurement errors Another important aspect that con-
cerns the interpretation of a linear configuration is related to violations of the
model assumptions with respect to measurement errors. In the linear model,
measurement errors are assumed to be independent and normally distributed
and to have the same variance σ2. Violations of these model assumptions may
affect the estimates of the unit positions in Lemma 3, the estimated precision
of a unit position in Corollary 4, and the results of the statistical analysis when
comparing linear configurations.

Since expectation is linear, the unit positions derived with Lemma 3 remain
unbiased even if all three assumptions concerning measurement errors are vi-
olated. However, the estimates can no longer be called Maximum-Likelihood
estimates. If only the homoscedasticity assumption is violated, one can use the
estimates of the measurement errors of single phase offsets as described in Part
I to derive Maximum-Likelihood estimates of the unit positions. The respective
formula is provided in section 7.3.2.

In addition, the variance of a unit position may differ from the value given in
Corollary 4 if measurement errors are dependent or if their variances are unequal.
In the latter case, every phase offset ϕij is affected by a measurement error with
variance σ2

ij, and the variance of the estimated unit position x̂k is

Var(x̂k) =
1

n2

∑
i6=k

σ2
ik ∀ 1 ≤ k ≤ n (see Lemma 3).

Application of this equation requires the estimation of individual measurement
errors σ2

ij from an independent source such as formula (4.1) provided in Part I.
Effects of dependent measurement errors cannot be discussed in general but

are of special importance for the situation described on page 63, namely when
different linear configurations exist within the analysis window. In this case,
the configurations that exist during the trial deviate from the final average
linear configuration, which could be interpreted as measurement error. Since
these deviations originate from linear configurations, they are additive and
therefore, dependent. However, the estimate of σ2 as derived with Lemma 4
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only takes into account the agreement between measured phase offsets and
model distances and thus, only measures the deviation of phase offsets from the
closest linear structure. Therefore, σ2 does not incorporate the variability of the
unit positions across the analysis window and thus, this source of dependence is
not considered a measurement error. As a consequence, also Corollary 4 cannot
take into account the variability of a unit position across different configurations
that may evolve during the analysis window but can only describe the precision
of a unit with respect to the internal additivity of the data set. Analogously,
when linear configurations that originate from different data sets are com-
pared with the analysis-of-variance approach, differences between configurations
are only measured in terms of the internal additivity in each of the two data sets.

Finally, application of the presented model requires that phase offsets have
been measured for all pairs of units. If this is not possible, the estimates of
the unit positions and the variance provided in Lemmata 3 and 4 are no longer
applicable. Moreover, additional requirements are needed to ensure that the
parameters can be estimated at all. These issues are discussed in section 7.3.1.

7.3.1 Missing data

7.3.1.1 Framework

The model described in section 7.1 is modified here such that also incomplete
sets of phase offsets can be investigated. Let

Pn := {{i, j} | 1 ≤ i < j ≤ n}

denote the set of all unit pairs, |Pn| =
(

n
2

)
. Let further

E ⊂ Pn and M := Pn \ E

denote the set of pairs with measured distances (Edges) and the set of pairs with
missing data (M issing edges), respectively. The basic model is restricted to the
subset of unit pairs of which phase offsets were measured:

ϕij = δij + σZij ∀ {i, j} ∈ E.

If {i, j} ∈ E, the units i and j are called directly connected , i.e., they share an
edge. Let furthermore denote

Ek :=
{
i
∣∣ {i, k} ∈ E

}
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the set of all units which share an edge with unit k. The set of edges, E, is called
connected on {1, . . . , n} if between any two units i, j ∈ {1, . . . , n} there exists at
least one path of edges:

Definition 1 E is called connected on {1, . . . ,n} if ∀ (i, j)1≤i<j≤n

∃ w ∈ {2, . . . , n} and ∃ k1 = i, k2, . . . , kw−1, kw = j ∈ {1, . . . , n}

with {kr, kr+1} ∈ E ∀ r = 1, . . . , w − 1.

If E is not connected, then {1, . . . , n} can be partitioned into disjoint subsets U1

and U2 such that no edge connects units of different subsets, i.e., (u1, u2) ∈ M
∀ u1 ∈ U1, u2 ∈ U2.

Unique ML-estimates of the units’ positions do not exist for all subsets E ⊂
Pn. In fact, the connectedness of E on the set {1, . . . , n} is a necessary and
sufficient condition for both existence and uniqueness of the ML-estimates of the
units’ positions. This will be shown in Theorem 1.

7.3.1.2 Existence and uniqueness of estimates

The function to be minimized by the ML-estimates is

QE(x) =
∑

{i,j}∈E

(ϕij − (xj − xi))
2, again with

n∑
i=1

xi = 0.

Theorem 1 The minimum of the function QE exists and is unique for∑n
i=1 xi = 0 ⇐⇒ E is connected on {1,. . . ,n}.

The proof makes use of the following observations

• The quadratic function QE has an extremum.

• If E is connected, one can define a compact set C outside of which the func-
tion is bigger than inside and thus conclude that the extremum is a mini-
mum, m. As the area is compact, there is an xm ∈ C with QE(xm) = m.
(Lemma 5)

• The uniqueness of xm is proven by contradiction. Any pair x(1) 6= x(2)

with QE(x(1)) = QE(x(2)) = m is located on a straight line, g, crossing C.
Since QE(x) > m ∀x /∈ C, QE|g is a parabola in R2, which has a unique
minimum, leading to a contradiction. (Lemma 5)
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• If E is not connected, divide the set {1, . . . , n} into disjoint components
U1, . . . , Uk such that there is no edge connecting any two units from different
subsets. QE can be split up accordingly into sums of squares QE,1, . . . , QE,k.
Together with the constraints

∑
i∈U`

xi = 0 ∀ ` = 1, . . . , k, there is a unique
solution for every QE,`, and as QE = min ⇐⇒ QE,` = min ∀ ` = 1, . . . , k,
this is also a global solution. It is then used to give all possible solutions.
(Lemma 6)

Lemma 5 Let E be connected, and let T := max{i,j}∈E |ϕij|. Let C denote the
compact set

C :=
{
x ∈ Rn

∣∣ max
(i,j)∈E

|xj − xi| ≤ (n2 − 1)T ∧
∑

xi = 0
}
.

Then,
(i) QE has a global minimum, m, on C.
(ii) Within C, this minimum is unique, i.e., if x(1),x(2) ∈ C with
QE(x(1)) = QE(x(2)) = minx∈C QE(x), then x(1) = x(2).

Proof.
(i). Since QE is a quadratic function, it must have an extremum. If it can be
shown that ∃ x∗ ∈ C with QE(x∗) < QE(x) ∀ x /∈ C, then QE must have a
global minimum in C.

Take x∗ := 0 ∈ C and note that QE(0) =
∑

{i,j}∈E ϕ2
ij <

(
n
2

)
T 2. For any

x /∈ C ∃ {i, j} with |xj − xi| > (n2 − 1)T . Due to the connectedness of E, there
is a path connecting the two units i and j, given by a length w ∈ {2, . . . , n} and
units k1 = i, . . . , kw = j with edges {kr, kr+1} ∈ E ∀ r = 1, . . . , w − 1, and ∃ `
denoting the longest edge on this path:

|xk`+1
− xk`

| > (n2 − 1)T

w − 1
≥ (n2 − 1)T

(n− 1)
= (n + 1)T.

According to the definition of T := max{i,j}∈E |ϕij|, it follows

|ϕk`k`+1
− (xk`+1

− xk`
)| ≥ nT and thus, QE(x) ≥ n2T 2 > QE(0) ∀ x /∈ C.

Thus, as C is compact and QE is continuous, QE has a global minimum m inside
C, i.e., ∃ xm ∈ C with QE(xm) = m, and ∀ x /∈ C, QE(x) > m.
(ii) Suppose the minimum is not unique, i.e., ∃ x(1) 6= x(2) ∈ C with
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QE(x(1)) = QE(x(2)) = m. Then consider the straight line connecting x(1) and
x(2):

g(λ) := λx(1) + (1− λ)x(2), λ ∈ R.

As C is compact, it is also bounded, and ∃ λ1 < 0, λ2 > 1 with g(λ1) /∈ C and
g(λ2) /∈ C,

QE(g(λ1)) > m = QE(x(1)) = QE(x(2)) = m < QE(g(λ2)).

Therefore, QE(g(λ))λ∈R describes a parabola that has its minimum inside C.
Hence, x(1) 6= x(2) implies that

QE(g(1/2)) = QE

(
1/2(x(1) + x(2))

)
< m,

which is a contradiction to the fact that m is the global minimum of QE. �

Lemma 6 If E is not connected, the solution to QE(x)
!
= min is not unique.

Proof.
If E is not connected, the set of edges can be split into disjoint subsets which
are connected on subcomponents of {1, . . . , n}. The units of every connected
subcomponent can be positioned in a unique way relative to each other but not
relative to other subcomponents. Thus, the unit positions of every subcomponent
can be shifted on the real axis without increasing the error sum of squares,
yielding multiple solutions.

If E is not connected, the set {1, . . . , n} can be split into disjoint subsets
U1, . . . , Uk of {1, . . . , n} with ∪k

`=1U` = {1, . . . , n} such that the subsets are
connected and that no edge connects units from different subsets.

Thus, E can be split into disjoints subsets

F` :=
{
{i, j} ∈ E

∣∣ i, j ∈ U`

}
of edges between units in U` such that E = ∪k

`=1F` and every F` is connected on
U`. This implies a corresponding decomposition of the error sum of squares:

QE(x) =
k∑

`=1

∑
{i,j}∈F`

(ϕij − (xj − xi))
2 =

k∑
`=1

QF`
(x),

with
QF`

(x) :=
∑

{i,j}∈F`

(ϕij − (xj − xi))
2.
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Note that QF`
(x) depends only on the components xi with i ∈ U`. Therefore,

the notation is simplified by defining a vector of unit positions

x` := (x`1 , . . . , x`n`
) for each connected subset U` := {`1, . . . , `n`

}

and identifying QF`
(x) with QF`

(x`). The joint vector of all unit positions is
denoted by

x := (x1, . . . ,xk).

Since QE(x) =
∑k

`=1 QF`
(x`) and F1, . . . , Fk are disjoint,

QE(x) = min ⇐⇒ QF`
(x`) = min ∀ ` = 1, . . . , k.

As F` is connected on U`, QF`
(x`)

!
= min has a unique solution x`,0 under the

restriction
∑

i∈U`
xi = 0. Since QF`

(x) depends only on distances between units,

QF`
stays minimal also when x`,0 is translated such that the mean of the units

in U` equals c` 6= 0. In this case, QF`
(x`)

!
= min has the unique solution

x`,c` = x`,0 + c`, with |U`|−1
∑
i∈U`

xi = c` ∀ c` ∈ R,

and the minimum of QF`
stays invariant: QF`

(x`,0) = QF`
(x`,c`) ∀ c` ∈ R.

Thus, the global solutions to QE(x) = min under the restriction
0 =

∑n
i=1 xi =

∑k
`=1

∑
i∈U`

xi =
∑k

`=1 |U`|c` are given by

(x1,c1 ,x2,c2 , . . . ,xk,ck) with
k∑

`=1

|U`|c` = 0.

�

Thus, if E is connected, QE(x) has a unique solution under
∑

xi = 0, and
if E is not connected, one can find multiple minima of QE(x) under

∑
xi = 0,

which proves Theorem 1. �

7.3.1.3 ML-estimates

The ML-estimates resulting from a connected set of edges E are characterized
in Lemma 7 with a system of linear equations. Applications to simple examples
are discussed in Corollaries 5-7.
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Lemma 7 Let E be connected on {1, . . . , n}, let xm ∈ Rn with
∑

i x
m
i = 0 and

QE(xm) = minx∈Rn QE(x). Then, the following relations hold:∑
i∈Ek

(xm
k − xm

i ) =
∑
i∈Ek

ϕik, ∀ k = 1, . . . , n. (7.21)

Thus, for every unit k, the sum of all measured distances ϕik must be represented
exactly by the sum of all corresponding model distances δik = (xk−xi) with i ∈ Ek.

Proof.
As shown in Lemma 5, xm satisfies

∂QE(xm)

∂xk

= 0 ∀ k = 1, . . . , n.

The computation of the partial derivatives directly yields the claim:

∂QE(x)

∂xk

= 2

(
−
∑
i∈Ek

ϕik +
∑
i∈Ek

(xk − xi)

)
.

�

This result is used in the following to investigate the estimates of the unit
positions and the model distances in specific cases.

Corollary 5 Let |M | = 1, i.e., one edge is missing. That means ∃ `1 6= `2 :
M = {{`1, `2}}. Then, the ML-estimates for the distances are

δ̂`1`2 = x̂`2 − x̂`1 =
1

n− 2

(
n∑

i=1
i/∈{`1,`2}

(ϕ`1i + ϕi`2)

)
(7.22)

δ̂`1r =
1

n

(
2ϕ`1r +

n∑
i=1

i/∈{`1,`2}

(ϕ`1i + ϕir) + δ̂`1`2 + ϕ`2r

)
for r 6= `2 (7.23)

δrs =
1

n

(
2ϕrs +

n∑
i=1

i/∈{r,s}

(ϕri + ϕis)

)
for {r, s} ∩ {`1, `2} = ∅. (7.24)
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Proof.
For k /∈ {`1, `2}, equation (7.21) reads as in the case with complete data sets:

∑
i∈Ek

ϕik =
n∑

i=1
i6=k

(xk − xi) =
n∑

i=1
i6=k

xk −
n∑

i=1
i6=k

xi

P
xi=0
= (n− 1)xk + xk = nxk.

Thus, the position of any unit k with |Ek| = n− 1 is computed as usual (Lemma
3). To estimate δ`1,`2 , note that E`1 = {1, . . . , n} \ {`1, `2} = E`2 . Hence,

(n− 1)x`1 =
∑

i∈E`1
(ϕi`1)− x`2

(n− 1)x`2 =
∑

i∈E`1
(ϕi`2)− x`1

}
(n− 2)(x`2 − x`1) =

∑
i/∈{`1,`2}

(ϕ`1i + ϕi`2),

which gives equation (7.22). The proof of equation (7.23) is analogous. �

Corollary 5 says that if only one edge (`1, `2) is missing, the corresponding
distance δ`1,`2 is estimated by the average of all indirect distances of length 2.
Furthermore, to estimate distances δ`1r, we usually use the direct distance ϕ`1r

and all indirect distances with two steps. One of these indirect distances has not
been measured and is therefore replaced by its ML-estimate. Distances between
units r, s with full measurements, |Er| = |Es| = (n − 1), remain unaffected and
are estimated as usual.

Corollary 6 Let |M | = 2 with adjacent edges, i.e. wlog ∃`1 < `2 < `3 : M =
{{`1, `2}, {`2, `3}}. Then

δ̂`1`3 =
1

(n− 1)

2ϕ`1`3 +
∑

i/∈{`1,`2,`3}

(ϕ`1i + ϕi`3)

 (7.25)

δ̂`2`3 =
1

(n− 3)

 ∑
i/∈{`1,`2,`3}

(ϕ`1i + ϕi`3) + ϕ`1`3 − δ̂`1`3

 (7.26)

Proof.
Solve the system of equations (7.21) for the given M . �

Corollary 6 states that whenever exactly two adjacent edges `1 → `2 → `3

are missing, the distance δ`1`3 is estimated as usual, only the indirect distance
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(ϕ`1`2 +ϕ`2`2) is left out because neither ϕ`1`2 nor ϕ`2`3 were measured. Equation
(7.26) can be read as follows: Estimate the distance δ`2`3 by the mean of all
indirect distances of length 2, of which both parts have been measured, add
the existing part (ϕ`1`3) of the indirect distance (ϕ`2`1 + ϕ`1`3) and subtract its
estimate δ̂`1`3 .
The last example deals with a minimal data case where |E| = n− 1.

Corollary 7 Let E be connected on {1, . . . , n} with |E| = (n− 1) such that the
units can be renumbered such that E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}. Then

δ̂i,i+1 = ϕi,i+1 ∀ i = 1, . . . , n− 1. (7.27)

Proof.
For the borders 1 and n the claim is trivial, as |E1| = |En| = 1, and equations
(7.21) yields the result. Induction from the first or from the last edge yields: If
(xk − xk−1) = ϕk−1,k, the (k − 1)th component of equation (7.21) yields

(xk−1 − xk) + (xk−1 − xk−2) = ϕk,k−1 + ϕk−2,k−1

⇐⇒ (xk−1 − xk−2) = ϕk−2,k−1

�

In the minimal data case, every measured distance is exactly represented by
the corresponding model distance. Therefore, all measurements are needed to
position the units, and the measurement error σ cannot be estimated. In general,
the formula for the estimation of the measurement error in the case with missing
data is analogous to the full data case:

7.3.1.4 Global variance

Lemma 8 Let E be connected on {1, . . . , n}, and let x̂ = (x̂1, . . . , x̂n) be the
ML-estimates of the unit positions under E. As usual, the error sum of squares
is given by

QE(x̂) =
∑

{i,j}∈E

(ϕij − (x̂j − x̂i))
2.

Then,

σ̂2 :=
1

|E| − (n− 1)
·QE(x̂) (7.28)

is an unbiased estimate of σ2.
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Proof.
The argument is analogous to the one used in the geometric interpretation in
section 7.1.2: To determine the ML-estimate x̂ of the unit positions, the vector
Φ ∈ R|E| is split by orthogonal projection. The resulting vector ∆̂ has compo-
nents δ̂ij = x̂j − x̂i and lies in the (n− 1)-dimensional subspace Mn, and for the

residual R = Φ− ∆̂, ||R||2 = QE(x̂) holds. Under the model assumptions

Φ = ∆ + σZ, ∆ ∈Mn, Z ∼ N (0, I|E|),

σ−2QE(x̂) = σ−2||R||2 = σ−2||PM⊥
n
Φ||2 = ||PM⊥

n
Z||2 ∼ χ2(|E| − (n− 1)).

Hence, E
(

QE(x̂)

|E| − (n− 1)

)
= σ2.

�

Thus, in a situation in which not all phase offsets can be measured, Lemma
7 can be applied to compute the ML-estimates of the unit positions, and Lemma
8 can be applied to estimate the measurement error, σ2.

7.3.2 Heteroscedasticity

The assumption of homoscedasticity, i.e., that every phase offset ϕij is measured
with the same measurement error, σ2, leads to simple formulas both for the
positions of the units on the time axis and for the model distances. It further
allows application of analysis of variance. However, homoscedasticity does not
need to be given in experimentally obtained phase offsets. If measurement errors
do not have equal variances, ML-estimates of the unit positions can be obtained
with the following model:

ϕij = (xj − xi) + σijZij ∀ 1 ≤ i < j ≤ n,

with independent and standard normal random variables Zij. The vector of
variances of measurement errors is denoted by ~σ := (σ12, . . . , σn−1,n).

Position estimates To estimate the unit positions under heteroscedasticity,
the likelihood function from equation (7.5) is modified to

L(x, ~σ) =
1

(
√

2π)(
n
2)
∏

i<j σij

· exp

(
−1

2

∑
1≤i<j≤n

1

σ2
ij

(ϕij − (xj − xi))
2

)
.
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One thus needs to minimize the term

Q~σ(x) :=
∑

1≤i<j≤n

1

σ2
ij

(ϕij − (xj − xi))
2

for constant ~σ. The partial derivatives

∂Q~σ(x)

∂xk

= −2
∑
i6=k

ϕik

σ2
ik

+ 2
∑
i6=k

xk − xi

σ2
ik

(7.29)

characterize the minimum. Together with
∑n

i=1 xi = 0, the system of equations
given by (7.29) can be solved by any statistical package if all ϕij and σ2

ij are
given.

In practice, phase offsets and variances of measurement errors can be esti-
mated with the methods described in part I. With the estimates from equation
(7.29), the linear configuration resulting from the homoscedasticity assumption
can be compared to the linear configuration obtained from the analogous model
which incorporates different measurement errors. Furthermore, the distribution
of the variances σ2

ij can be compared to the estimate of the global variance σ2

derived under the homoscedasticity assumption because both the global σ̂2 and
the separate σ2

ij represent independent estimates of the same quantity. In fact,
if homoscedasticity is not fulfilled but the homoscedasticity assumption is used
to estimate the unit positions and the global variance σ2 (Lemma 4), the expec-
tation of the global σ̂2 is simply the mean of the individual variance estimates,

E
(
σ̂2
)

=
1(
n
2

)∑
i<j

σ2
ij. (7.30)

Proof.
With the estimates x̂k from Lemma 3,

ϕij − (x̂j − x̂i) =
1

n

(
(n− 2)ϕij +

∑
` 6=i,j

(ϕj` + ϕ`i)

)

=⇒ E (ϕij − (x̂j − x̂i)) =
1

n
E
∑
` 6=i,j

(ϕij + ϕj` + ϕ`i) = 0

=⇒ E
(
(ϕij − (x̂j − x̂i))

2
)

= Var(ϕij − (x̂j − x̂i))

=
1

n2

(
(n− 2)2σ2

ij +
∑
` 6=i,j

(σ2
j` + σ2

`i)

)
.
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Thus,

E (σ̂2) =
1(

n−1
2

) · 1

n2
·
∑
i<j

{
(n− 2)2σ2

ij +
∑
` 6=i,j

(σ2
j` + σ2

`i)

}

=
1(
n
2

) · 1

n(n− 2)

∑
i<j

σ2
ij[(n− 2)2 + 2(n− 2)] =

1(
n
2

)∑
i<j

σ2
ij.

�

7.4 Model summary

Chapter 7 was concerned with the development of a stochastic model with which
an additive set of phase offsets can be represented. The main idea was to reduce
the set of

(
n
2

)
phase offsets to an (n−1)-dimensional representation by positioning

n units on the time axis such that pairwise distances represent phase offsets as
closely as possible and that the mean of the positions is zero.

The basic model uses the assumptions presented in section 7.1:

ϕij = (xj − xi) + σZij = δij + σZij ∀ 1 ≤ i < j ≤ n

with x1, . . . , xn ∈ R and
∑

xi = 0. This model assumes homoscedasticity, i.e.,
that the measurement errors of all phase offsets have the same variance σ2.
Measurement errors are furthermore assumed to be independent and normally
distributed. Lemma 3, Corollary 3 and Lemma 4 provide ML-estimates of the
unit positions xk, of the model distances δij and an unbiased estimate of the
measurement error σ2. The estimates are relatively robust against violations of
the model assumptions that concern the measurement errors. The basic model
yields parameter estimates that are relatively simple and directly interpretable.
Furthermore, the homoscedasticity assumption allows the application of analysis
of variance as discussed in section 7.2.

An interpretation of the resulting linear configuration has to take into ac-
count that unit positions are not necessarily stable across the analysis window
because a configuration extracted from a set of pairwise measurements only rep-
resents the average unit positions in the analyzed period. The measurement
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error only takes into account the deviations of the data set from the closest lin-
ear structure and does not include the variability of the unit positions across the
analysis window.

Missing data The most important model extension concerns the situation in
which not all phase offsets can be measured (section 7.3.1). If phase offsets are
assumed to be missing due to an unsystematic, purely random cause, Theorem
1 states that ML-estimates of the unit positions exist if and only if each pair of
units is connected by a path of non-missing phase measurements. The estimates
are provided by the system of equations given in Lemma 7. The global variance
can be estimated with Lemma 8 but requires a higher number of non-missing
phase offsets.

In the following chapter, the theoretical results are applied to the sample data
set. The basic model is of major interest, and extensions are only considered as
far as the investigation of model assumptions of the basic model are concerned.



Chapter 8

Data analysis

The linear model presented in chapter 7 is applied here to the sample data set.
As described in Appendix A.3, spiking activity of 14 units was recorded in 20
repetitions of each of six stimulation conditions with single and conflicting moving
bars. In the exemplary analysis, three comparable stimuli with conflicting bars
(conditions 1, 3 and 5) are investigated.

In section 8.1, the additivity model discussed in section 7.1 is applied to the
phase offsets obtained from the CCHs in stimulation condition 1. This results in
a linear configuration of the 14 units on the time axis together with an estimate
of the error with which phase offsets were measured. The linear configuration
is investigated more closely in order to evaluate whether the model assumptions
can be used to represent the data set.

In section 8.2.1, the homoscedasticity assumption is investigated by a com-
parison of the global estimate σ̂2 to the measurement errors of individual phase
offsets derived in part I. To this end, the distribution of individual measurement
errors is compared to the global variance derived with the homoscedasticity as-
sumption. Furthermore, the linear configuration obtained under the homoscedas-
ticity assumption is compared to the ML-estimates derived under the assumption
of inequality of variances. Finally, it is investigated whether the global variance
represents only measurement error or whether it has an additional component
which indicates deviations from the additivity assumption.

Section 8.2 investigates whether the additivity model provides a reasonable
description of the data structure. To this end, the configuration resulting from
experimentally derived phase offsets is compared to the configuration obtained
from randomly permuted phase offsets.

Finally, section 8.3 approaches the crucial question whether the configurations

77
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that can be extracted with the presented method may be related to information
processing. To this end, linear configurations extracted from independent sets of
trials are compared with the help of analysis of variance as shown in section 7.2.

8.1 Positions of the units on the time axis

With the help of the formulas presented in section 7.1, the set of temporal posi-
tions of the units on the time axis can be estimated easily. Starting with a set
of phase offsets measured for all 91 pairs of units in stimulation condition 1, the
ML-estimate of unit k’s position, xk, is estimated with Lemma 3:

x̂k =
1

n

n∑
i=1

ϕik ∀ k = 1, . . . , n.

These ML-estimates of the preferred firing times, which are chosen such that they
have mean zero, are represented as big gray points in Figures 8.1 A and B. In
order to get an idea of the precision with which each unit’s position is estimated,
Figure 8.1 A also shows normal density functions which have a standard deviation
of σ̂x̂ ≈ 0.05 ms (derived with Lemma 4) and indicate the estimated variability
of each position estimate. One can see that the PTs can be determined with an
error that is much smaller than one millisecond.

To get a more detailed impression of the precision of one unit’s position esti-
mate, Figure 8.1 B shows the residuals between measured phase offsets and model
distances, ϕij− δ̂ij. This representation can be used to investigate whether some
phase offsets disagree with the linear structure given by all phase offsets. If this is
the case, single residuals deviate remarkably from zero because the correspond-
ing phase offset cannot be represented as closely by its model distance as the
other phase offsets. Figure 8.1 B shows that the phase offsets from stimulation
condition 1 yield residuals which are smaller than 0.5 ms and relatively homo-
geneous. Additionally, close vertical clustering of residuals (e.g. around unit 1)
indicates that there is high agreement about the position of this unit among the
phase offsets between the respective unit and all other units.
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Figure 8.1: Linear configuration of units in stimulation condition 1. A: Numbers indicate
temporal positions of units estimated with Lemma 3. Normal density functions indicate the
variance of the position estimates (Corollary 4). B: Gray points indicate the same unit positions
as in A. For every unit, the black points above and below its temporal position indicate the
differences between measured phase offsets and the corresponding model distances.

The residuals between phase offsets and model distances can be compared to
investigate the extent to which phase offsets can be represented in the model.
Recall that the unit positions minimize the error sum of squares (equation (7.6))

Q(x̂) =
∑

1≤i<j≤n

(ϕij − δ̂ij)
2.

Thus, the units are positioned such that phase offsets are represented as closely as
possible by model distances. Therefore, the agreement between these quantities
is a useful criterion for the suitability of the model. Figure 8.2 A shows a scatter
plot of phase offsets and model distances. The close clustering of the points at
the main diagonal and the high correlation of r = 0.98 indicate that the model
distances extracted with the additivity model mirror the set of measured phase
offsets to a high degree. One reason for this close correspondence is the high
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agreement between direct phase offset measurements, ϕij, and corresponding
indirect measurements of length two, ϕi` + ϕ`j (shown in Fig. 8.2 B), because
these quantities provide the data basis with which the model distances δij are
estimated (cf. Corollary 3).
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Figure 8.2: Representation of phase offsets by model distances in stimulation condition 1. A:
Every measured phase offset ϕij is plotted against the corresponding model distance δ̂ij . B:
Every direct phase measurement, ϕij , is plotted against all indirect measurements with two
components, (ϕi` + ϕ`j)` 6=i,j .

This internal consistency of the data set can also be observed in the following.
To investigate the degree to which subsets of phase offsets agree about the global
linear configuration, the set of units is split into a target set, T := {1, 2, . . . , 6}
that is to be positioned on the time axis and two reference sets, R1 := {7, 8, 9, 10}
andR2 := {11, 12, 13, 14}, with which the positions of the targets are determined.
The ML-estimates of Lemma 3 are modified to estimate the unit positions for
all units t ∈ T :

x̂
(1)
t =

1

|R1|+ 1

∑
r∈R1

ϕrt as seen from R1, (8.1)

x̂
(2)
t =

1

|R2|+ 1

∑
r∈R2

ϕrt as seen from R2. (8.2)

Thus, for each reference set, the position of unit t is estimated only on the basis
of those phase offsets given between the units in the reference set and unit t. This
does not result in position estimates with mean zero because positions are shifted
according to the perspective of the reference set. Therefore, the estimates are
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re-centered at zero, and the resulting position estimates are shown in Figure 8.3.
One can see that although each position is estimated on the basis of only four
measurements, the temporal order and the positions of the target units extracted
from the two sets R1 and R2 are nearly identical. Thus, already small fractions
of the given set of phase offsets yield reliable and consistent estimates of the
global linear structure.

                                                    

time axis [ms]

re
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nc

e
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{11, 12, 13, 14}

{7, 8, 9, 10}

2 5 36 4 1
target

set

Figure 8.3: Linear configurations of target units extracted from independent reference sets R1

(top) and R2 (bottom) according to equations (8.1) and (8.2) after centering at zero.

8.2 Investigation of linear configurations

8.2.1 Heteroscedasticity versus global variance

The preceding analysis is based on the homoscedasticity assumption, i.e., every
phase offset is assumed to be distorted by a measurement error with the same
variance σ2. This assumption is now examined in more detail. The results from
Part I are important in this analysis because approximations of the true mea-
surement errors of single phase offsets are provided there and can be compared
to the global variance σ2 estimated with the linear model from section 7.1.

First, although the estimates of the unit positions from Lemma 3 are unbiased
even if the variances of the measurement errors differ across phase offsets (p.
64), it is interesting to investigate the size of the differences between the linear
configurations derived under homo- and under heteroscedasticity. To this end,
the results of section 7.3.2 are applied to the phase offsets by making use of
their individual variances σ2

ϕ̂ij
estimated in part I, which are denoted here by

σ2
ij. Figure 8.4 A shows the temporal maps derived under homoscedasticity
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(Lemma 3) and under heteroscedasticity (linear system of equations given by
eq. (7.29) and

∑
xi = 0). The temporal order of units is identical, and also the

distances between the positions do not change considerably. In particular, the
unit positions under heteroscedasticity do not deviate more from the original
positions than is allowed by the estimation imprecision indicated in Figure 8.1.
Thus, for the given data set, the homoscedasticity assumption yields a sufficiently
accurate representation of the unit positions. Therefore, the global variance is
used in the following since it provides straightforward position estimates and
allows application of analysis of variance.

●● ●●●● ●●● ●●●● ●

A                                                  

time [ms]
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B                                                  
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Figure 8.4: Results of model extension under heteroscedasticity. A: Linear configurations
derived under homoscedasticity (bottom) and under heteroscedasticity (top). B: Distribution
of individual phase offset variances, σ2

ij . Mean σ̄2
ij indicated by gray arrow. The global variance

estimated in the linear model under homoscedasticity assumption is indicated by black arrow.

The second issue which has to be considered when using the global variance
deals with confounded errors. The global variance is assumed to represent pure
measurement error of additive phase offsets but can be increased further if phase
offsets are not additive. Thus, it confounds measurement error and deviations
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from the additivity assumption. In order to investigate whether the global vari-
ance is increased by deviations from additivity, the distribution of individual
measurement errors derived in Part I is compared to the estimate of the global
variance. Figure 8.4 B shows the distribution of individual measurement errors
of phase offsets together with the mean, σ̄2

ij, and the global variance estimate,
σ̂2. According to equation (7.30), σ̂2 has expectation σ̄2

ij if phase offsets are ad-
ditive. For non-additive phase offsets, σ̂2 is increased because it does not only
contain the measurement error but also the error caused by the lack of additiv-
ity. In the data analyzed here, the global variance is even smaller than the mean
measurement error and thus, there is no indication of deviations from the model
assumptions as far as the variance estimate is concerned.

8.2.2 Permutation test

In the previous paragraph, it was hypothesized implicitly that the analyzed set
of phase offsets has an additive structure and that non-additive phase offsets
cannot be represented in a similar manner by model distances on the time axis.
This hypothesis is plausible, especially since the agreement between direct and
indirect phase offsets in Figure 8.2 B is unlikely to be observed for non-additive
phase offsets. Yet, it remains to be investigated to which extent the linear model
can represent non-additive data sets in a pseudo-linear structure. To this end,
the 91 phase offsets from stimulation condition 1 are permuted randomly and
thus assigned to random pairs of units. Then, the units are positioned on the
time axis according to Lemma 3. The results of one such permutation are shown
in Figures 8.5 A & B, which are analogous to Figures 8.1 A & 8.2 A. One can see
that the temporal positions of the units are clustered much closer around zero
because the positions are estimated by a sum of certain phase offsets (Lemma
3), which is close to zero for random phase offsets because randomly assigned
positive and negative values tend to average out.

As a consequence, phase offsets with a high absolute value cannot be repre-
sented by model distances because the distances between the units are too small.
This can be observed in Figure 8.5 B in which the permuted phase offsets are
plotted against the model distances derived from the permuted data set. The
model distances are smaller than 1 ms and cannot represent bigger phase offsets.
Additionally, the correlation between model distances and phase offsets is only
0.26, and the cloud of points is horizontal instead of being clustered at the main
diagonal.
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Comparable results were obtained for 10,000 analogous permutations. The
distribution of correlation coefficients between phase offsets and model distances
is shown in Figure 8.5 C. The arrow indicates r = 0.98 obtained for the original
set of phase offsets. One can see that the experimentally obtained set of phase
offsets yields a linear configuration which represents the original phase offsets
much more closely than all permuted data sets. Thus, it is highly unlikely that
a temporal map comparable to the one observed for the experimental data set is
obtained by chance.
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Figure 8.5: Application of the linear model to randomly permuted phase offsets. A: Estimated
positions of the units on the time axis with normal density functions (cf. Fig. 8.1 A). B:
Scatter plot of phase offsets and model distances (cf. Fig. 8.2 A). C: Distribution of correlation
coefficients of permuted phase offsets and model distances in 10,000 permutations. The arrow
indicates r = 0.98 obtained in the original data set.
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8.3 Differences between linear configurations

The previous section was concerned with the investigation of the suitability of
the model assumptions. The recorded units were positioned on the time axis
according to their temporal order of firing given by the measured phase offsets.
The resulting model distances could represent the measured phase offsets with a
correlation of 0.98, a much larger value than those obtained from permuted data
sets. Thus, the described model seems to be suitable to describe an important
aspect of the data structure in the given set of phase offsets.

In this section, the analysis-of-variance approach presented in section 7.2.1 is
applied to the sample data set to investigate changes across linear configurations.
Moreover, an additional graphical method is used which provides information
about the identity of units which change their temporal position.
Two linear configurations on the time axis,

C1 :=

{
x̂

(1)
1 , . . . , x̂(1)

n

∣∣∣∣∑
i

x
(1)
i = 0

}
and C2 :=

{
x̂

(2)
1 , . . . , x̂(2)

n

∣∣∣∣∑
i

x
(2)
i = 0

}
that are extracted from two sets of phase offsets,

S1 := {ϕ(1)
12 , ϕ

(1)
13 , . . . , ϕ

(1)
n−1,n} and S2 := {ϕ(2)

12 , ϕ
(2)
13 , . . . , ϕ

(2)
n−1,n},

are to be tested for differences. To this end, the results of section 7.2.1 are spec-
ified for k = 2. The test statistic F from equation (7.20) requires the estimation
of the model distances for both data sets,

δ̂
(1)
ij = x̂

(1)
j − x̂

(1)
i and δ̂

(2)
ij = x̂

(2)
j − x̂

(2)
i ,

and of the variances,

σ̂2
1 =

(
n−1

2

)−1
∑
i<j

(ϕ
(1)
ij − δ̂

(1)
ij )2 and σ̂2

2 =
(

n−1
2

)−1
∑
i<j

(ϕ
(2)
ij − δ̂

(2)
ij )2.

Then, under the null hypothesis that C1 and C2 are identical, the test statistic

F =
2

(σ̂2
1 + σ̂2

2)(n− 1)
·
∑
`=1,2

∑
i<j

(δ̂
(`)
ij −

1

2

∑
r=1,2

δ̂
(r)
ij )2

=
1

n− 1
· 1

σ̂2
1 + σ̂2

2

·
∑
i<j

(δ̂
(1)
ij − δ̂

(2)
ij )2

is Fisher-distributed with (n− 1) and 2
(

n−1
2

)
degrees of freedom.
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As in Part I, the phase offsets extracted in stimulation conditions 1, 3 and
5 are analyzed here. Note again that the linear configuration extracted for one
stimulation condition can represent only an average set of unit positions if these
positions change during the recorded period. Therefore, this linear configuration
is not necessarily stable across time. However, for a linear configuration to be
relevant for information processing, it should replicate with repeated presenta-
tions of the same stimulus. In order to minimize other sources of variability, the
20 trials of one stimulation condition are divided into the two sets of odd and
even trials. Comparisons between responses to different stimuli are based on all
20 trials in each stimulation condition. Since n = 14 units are analyzed, the
degrees of freedom are n− 1 = 13 and 2

(
n−1

2

)
= 156 (cmp. (7.20) on p. 62).

Table 8.1 shows F -values and corresponding p-values for responses to iden-
tical and to different stimuli. As indicated by the small p-values on the right,
differences between linear configurations derived under different stimulation con-
ditions are highly unlikely to be observed by chance. On the left hand side, the
p-values are much bigger. However, the comparisons within stimulation condi-
tions 1 and 5 indicate that the changes observed across odd and even trials are
slightly bigger than is accounted for by the deviations from additivity within the
two data sets. This suggests that an additional source of variability affects the
unit positions and produces changes across repeated measurements of the same
stimulation condition.

The variability of the unit positions is, however, relatively small, as can be
seen in the graphical representation of the data. Figure 8.6 shows scatter plots
of unit positions in odd and even trials in stimulation condition 1 (panel A)
and a comparison of stimulation conditions 1 and 3 (panel B). To measure the

difference between two temporal positions of the same unit k, x̂
(1)
k − x̂

(2)
k , the

variance of the latter term is estimated as

σ̂2
D := Var(x̂

(1)
k − x̂

(2)
k ) =

n− 1

n2
· (σ̂2

1 + σ̂2
2), (see Cor. 4 on p. 54) (8.3)

and the borders of ±2σ̂D are drawn around the main diagonal. Numbers outside
of this error band indicate a change in the position of the respective unit.

One can see in Figure 8.6 that for identical stimuli, all units except for one
remain inside of the±2σ̂D-borders, while eight out of 14 units show a considerable
change between stimulation conditions 1 and 3. Thus, the graphical method
indicates that in the sample data set, changes of linear configurations across
stimulation conditions are bigger than differences between repeated presentations
of the same stimulus.
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Identical stimuli Different stimuli
condition F p

1 vs. 1 2.0 0.03
3 vs. 3 1.2 0.28
5 vs. 5 1.9 0.03

condition F p
1 vs. 3 22.5 < 10−16

1 vs. 5 26.7 < 10−16

3 vs. 5 6.7 < 10−9

Table 8.1: Results of analysis of variance applied to investigate changes in temporal maps in
stimulation conditions 1, 3 and 5.

One should keep in mind that the graphical analysis cannot be used as rig-
orous statistical tool because it does not correct for multiple testing and disre-
gards covariances between the unit positions. Therefore, analysis of variance and
graphical method should be combined when comparing linear configurations. In
particular, the graphical approach is required for the interpretation of differences
that are detected by the analysis of variance. It also provides supplementary in-
formation by identifying specific units that change their positions.
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Figure 8.6: Graphic comparison of configurations. Scatter plot of preferred firing times (‘PTs’)
of 14 units (indicated by numbers) obtained from independent sets of phase offsets. Gray lines
indicate ±2σ̂D-borders computed with equation (8.3). A: Comparison of odd and even trials,
stimulation condition 1. B: Comparison of stimulation conditions 1 & 3.
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Chapter 9

Conclusion – Part II

Part II was concerned with the extraction of a spatiotemporal structure from raw
phase offsets that were measured among a large group of neurons. A method
was presented that makes use of a linear model to determine a specific temporal
pattern, a linear configuration. This pattern is considered predominant among
the recorded set of neurons because it reflects phase offsets, i.e., the predominant
firing delays observed between pairs of units.

The present method is based on the assumptions that phase offsets are ad-
ditive and that measurement errors are independent, normally distributed and
have equal variance σ2. If the method is to be applied to experimentally ob-
tained data sets, the suitability of these assumptions has to be investigated in
order to ensure a reasonable interpretation of the resulting linear configuration.
One should also keep in mind that the application to a non-additive data set also
results in a linear configuration, in which, however, the data set is represented
poorly (cf. sect. 8.2.2). It is therefore necessary to determine the degree with
which the measured phase offsets can be represented by ‘model distances’. Al-
though the existence of additive structure cannot be supported rigorously due to
the lack of a sufficiently general alternative hypothesis, high agreement between
phase offsets and model distances ensures that the additivity assumption renders
a faithful image of the data structure.

Plausible coding mechanisms related to this data structure have been pro-
posed recently and assume that the temporal order of firing may be relevant for
stimulus encoding (Hopfield, 1995; Van Rullen et al., 1998). In particular, a lead
in phase is considered an indication of optimal activation of the respective cells
(Hopfield, 1995; König et al., 1995; Traub et al., 1997; Wennekers and Palm,
2000). The data analysis performed here cannot provide sufficient information
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about the role of additive near-zero phase offsets in the coding of stimulus prop-
erties, which would require further investigations as well as single-unit analysis.
Instead, the application of the linear model to the sample data set was presented
to illustrate the method’s practical use in the study of spatiotemporal patterns.

One of the most important advantages of the method is its compatibility
with analysis of variance. Among other issues, this allows studying the relevance
of temporal maps by investigating differences between configurations. Second,
the fact that the widely applied cross-correlation technique is used to determine
phase offsets is another advantage of the method because CCHs, which have been
restricted to the analysis of pairwise interactions, can now be used to analyze
interactions among a high number of units. Finally, the equations provided in
the methods section can be applied easily, and the resulting linear configuration
yields a straightforward (n− 1)-dimensional representation of a large set of pair-
wise measurements. Thus, data complexity is reduced without computational
effort by cutting down the temporal relations to the predominant firing pattern
indicated by pairwise phase offsets.

Interestingly, such a predominant firing pattern can be determined with ex-
tremely high precision (σx̂ ≈ 0.05 ms, compare to section 8.1). This is a con-
sequence of both the high redundancy of additive phase offsets and the high
precision with which phase delays can be measured (cf. Part I). However, this
precise determination of the linear configuration is not necessarily reflected in
repetitive and precise firing patterns in the respective spike trains (e.g., Abeles
et al., 1993). In contrast, measuring phase offsets with a cosine function even
requires firing delays to jitter around a preferred delay. Therefore, the role of
phase offsets as small as one millisecond remains largely unclear, in particular
because they originate in spiking delays that may jitter by a few milliseconds.
Moreover, not only the connection of phase offsets to spiking delays but also the
origin of their potential additive structure remains unexplained. It is therefore
the goal of the following part to develop a stochastic model of synchronous oscil-
latory firing activity with which near-zero phase offsets and other essential CCH
features can be explained and related to spike train properties.



Part III

How spike train properties shape
CCHs
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Chapter 10

Introduction and Results

10.1 Motivation

This part is concerned with essential properties of an oscillatory CCH and with
the development of a model which can describe how these properties arise in
terms of spike train statistics. The question concerning the way in which near-
zero phase offsets and their additive structure might be reflected in the underlying
spike trains is first formulated in a more fundamental way: What are the relevant
parameters with which spike trains should be described in order to predict the
shape of an oscillatory CCH? Or vice versa: Which spike train properties can be
inferred from the geometric parameters of a CCH? Among the principal CCH
features one usually distinguishes between properties related to the central peak
and properties arising with oscillatory activity (called e.g. primary and secondary
effects by Moore et al., 1970). Figure 10.1 illustrates these principal features in
an example CCH from the sample data set. Both panels show the same smoothed
CCH, and in panel A, the raw counts obtained in the original time resolution of
1/32 ms are depicted additionally.

Features in a CCH Oscillatory activity is indicated in Figure 10.1 A by
arrows. These arrows point out a pattern of re-occurring peaks whose height
decreases with increasing delay. In experimentally obtained CCHs, the ‘strength
of oscillation’ has been quantified on the basis of the number and height of these
side peaks (Gray et al., 1989, 1992; Karmon and Bergman, 1993; König, 1994;
Nowak et al., 1995).

The center peak can be characterized by its height and width marked by
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the two arrows in Figure 10.1 B. For quantification purposes, the peak height
is usually related to a baseline value (horizontal line in Fig. 10.1) (Aertsen and
Gerstein, 1985; Melssen and Epping, 1987; König, 1994; Nowak et al., 1995). The
width of the peak has been quantified by fitting a Gaussian to the peak region
and determining its standard deviation or its width at half height (Nowak et al.,
1995). Other approaches focus on the peak area, also quantified as the relative
number of counts in a pre-defined peak region (Wiegner and Wierzbicka, 1987;
Usrey and Reid, 1999).

Further properties associated with the shape of the center peak are illustrated
in the central triangle of Figure 10.1 B. This triangle is asymmetric with respect
to zero delay. Its tip is slightly shifted to the left, the counts decrease faster on
the right than on the left and take smaller values in the right side valley. Finally,
the variability of counts is another property of a CCH, which is indicated by the
rightmost arrow in Figure 10.1 A.
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Figure 10.1: Features of oscillatory CCHs. A: CCH computed from the sample data set. Gray:
original time resolution of δ = 1/32 ms. Black: smoothed with a Gaussian kernel with a
standard deviation of 1 ms. Arrows indicate oscillatory peaks of decreasing height (illustrated
by peak-shaped curve). Rightmost arrow indicates variability of data points. B: Smoothed
CCH from A. Peak asymmetry is indicated by the central triangle. Dashed gray line marks
zero delay. Arrows indicate peak height and peak width at baseline.

Approaches for analysis Early approaches of statistical analysis of these
CCH features used the null hypothesis of independent and stationary Poisson
processes to determine the significance of the described CCH features.1 Oscil-
latory peaks are interpreted as indicating a common oscillatory spiking rhythm,

1In many cases, CCHs have been used to investigate the physiological connectivity (e.g.,
Abeles, 1982a; Aertsen and Gerstein, 1985). However, the connectivity structure is not directly



10.2. RESULTS 95

where the decrease in the peak height is assumed to originate in a varying period
length. The central peak is taken as an indicator of near-coincident firing. Its
height is used to measure the ‘strength of synchrony’, and its width has been
considered related to bursting (Gochin et al., 1991; Eggermont et al., 1993). In
addition, suitable verbal descriptions of spike trains are available with which
the central peak and the oscillatory behavior of CCHs is commonly associated.
Singer and Gray (1995) write e.g. “The spike trains consist of repetitive burst
discharges at semiregular 15- to 30- ms intervals”. Analogously, Engel et al.
(1992) speak of “. . . recurrent synchronous bursting [. . .], with a fluctuation of
the burst frequency over a broad range [. . .].”

Program Such verbal descriptions provide useful insights into the significance
of these CCH features for raw spike trains but represent only qualitative descrip-
tions. Additionally, the spike train models used for statistical analysis are usually
renewal processes such as Poisson processes2 (e.g., Moore et al., 1966; Perkel et
al., 1967b; Abeles, 1982a, 1991; Grün et al., 2002a) or more regular processes in
which inter spike intervals are the waiting times until the kth event of a Pois-
son process3 (Baker and Gerstein, 2000; Ventura, 2004) or other generalizations
(Bair et al., 1994; Kass and Ventura, 2001). These spike train models cannot
be considered sufficient to model and quantify oscillatory bursting behavior. It
is therefore the aim of this part to develop a model which describes oscillatory
firing properties and with which one can explain and quantify the described CCH
features.

10.2 Results

ACHs Since CCHs can primarily describe interactions between pairs of pro-
cesses, they only provide indirect information about the properties of individual

related to the shape of a CCH because CCH peaks can be caused by several mechanisms and
can vary with the stimulus (König, 1994; Vaadia et al., 1995; Pauluis, 2000). Therefore, CCH
properties are usually interpreted as indicating functional interactions.

2The modeling of spike trains by renewal processes is motivated by the mechanism that each
spike resets the membrane potential. Since renewal processes can be characterized with the
distribution of their inter spike intervals, many spike train analyses focus on interval statistics
(Gerstein, 1960; Gerstein and Kiang, 1960; Rodieck et al., 1962; Wyman, 1965; Tam et al.,
1988).

3Due to the resulting Gamma distribution of inter arrival times, such processes are also
called ‘Gamma processes’.
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spike trains. Therefore, the analysis is extended onto the auto correlation his-
tograms (‘ACHs’; Perkel et al., 1967a), which are CCHs of two identical copies
of a single spike train and thus describe properties of a single process. In con-
trast to a CCH, the peak of an ACH cannot be asymmetric because the ACH is
necessarily symmetric with respect to zero. However, ACHs of processes which
show oscillatory CCHs when paired with suitable other spike trains usually also
show prominent peaks close to ` = 0 and periodically occurring side peaks of
decreasing height (Fig. 13.4). The central peak suggests that spikes tend to oc-
cur in packets because small intervals are preferred. Furthermore, the regular
side peaks indicate that packet intervals tend to take values close to a preferred
interval, and the decrease in height shows a certain variability in the inter packet
intervals. These properties can also be observed qualitatively in the raw spike
trains (Fig. A.1).

Model III: Doubly stochastic point processes
In order to describe the observed properties of processes with semiperiodically
occurring spike packets, a doubly stochastic model is used (ch. 11). Spike trains
S1, . . . , Sn are modeled as discrete time versions of continuous time point pro-
cesses X1, . . . , Xn. Each point process X is assumed to emerge in two steps: A
random walk on R with independent and N (µ, σ2)-distributed intervals (σ > 0)
produces a stationary point process B := (. . . , B−1, B0, B1, . . .). Every point Bb

gives rise to an independent Poissonian spike packet with exponentially decreas-
ing firing intensity. Thus, for given B, XB is an inhomogeneous Poisson process
with intensity

ρB(t) :=
α

τ

∑
b∈Z,Bb≤t

e
−(t−Bb)

τ + β.

The correlation between n parallel point processes X1, . . . , Xn is caused by the
assumption that all processes share the same packet onset process B (Fig. 11.3,
n = 2). As a consequence, the parameters µ and σ are global parameters, whereas
α, τ and β may differ between processes but are assumed to stay constant across
time. The parameter αj denotes the expected number of spikes in a packet of
process Xj, τj denotes the speed of the exponential decay as well as the mean
interval between the packet onset Bb and a spike of that packet in Xj, and βj

describes the background firing intensity. It should be noted that B is the only
source of correlation between the processes.
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ACF and CCF In the framework of this model, a formula is derived for the
intensity of spike pairs with delay s ∈ R (eqs. (12.1) & (12.2), ch. 12). Analogous
to the terminology used for the CCH of discrete time spike trains, this value is
called the auto (or cross) correlation function (‘ACF/CCF’) at shift s. The ACF
of a process X is derived as the normed distribution of spikes in X, conditioned
on the event to observe a spike at time t, which is equivalent to the normed
Palm distribution of the process X. For the given doubly stochastic processes,
the ACF can be decomposed into different summands (curves in Fig. 12.2), which
reflect the intensity of spike pairs that originate in packets with a specific position
relative to each other.

Interpretation of parameters The derived formula is used to investigate
the dependence of the shape of ACF and CCF on the different parameters
(sect. 12.2). The parameter µ describes the approximate position of the first
side peak, and the strength of oscillation decreases with increasing σ. Both the
height and width of the central peak depend on τ , and the width increases and
the height decreases with increasing τ . In addition, differences between τi and τj

provide the only source of asymmetry in the CCF between the processes Xi and
Xj: If τi < τj, the peak decays faster on the left than on the right and reaches
smaller counts in the respective side valley. Thus, it is possible to explain the
central properties of a CCH and to relate them to the characteristics of the un-
derlying processes on the basis of only a few parameters, which have a direct
interpretation.

Data analysis (ch. 13) In order to find out whether the proposed doubly
stochastic model can be used for the description and analysis of experimentally
obtained data sets, theoretical ACFs are fitted to the experimentally derived
ACHs. All ACHs can be fitted very closely with the theoretical functions, with
global parameters µ and σ. With the parameters estimated from the fitted ACFs,
the CCFs, which depend on the same sets of parameters, are predicted on the
basis of the model and compared to the empirically derived CCHs. The CCFs
between those units for which the parameters have been estimated with high
precision can be predicted very precisely with the model assumption that all
processes share the same packet onset process B. In addition, parallel processes
simulated with the model assumptions are highly comparable to experimentally
derived spike trains, and the variability of data points in simulated CCHs agrees
closely with the variability found in the experimental CCHs. These results sug-
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gest that the doubly stochastic model can render a faithful description of essential
characteristics of the observed point processes and CCHs.

Conclusion: Small additive phase offsets in the spike train model The
proposed model allows one to relate the results from the Parts I and II to proper-
ties of the underlying spike trains (ch. 14). If a cosine function was fitted to the
central peak of a CCH of two processes Xi and Xj that comply with the model
assumptions, the resulting phase offset differs from zero if and only if τi 6= τj.
In particular, the difference τj − τi is directly related to the phase ϕij: First,
due to the asymmetric central peak, ϕij is positive if and only if τi < τj, i.e.,
τj − τi > 0. Second, τi is the expected delay between a packet onset and a spike
in process Xi and thus, the expected difference between a spike in Xi and a spike
in Xj is related to the difference τi − τj. Assigning such a ‘preferred firing time’
τi to every process Xi yields a temporal map that is comparable to the linear
configuration derived in Part II. With this heuristic interpretation, additivity of
pairwise differences τj − τi results canonically from the linear structure of the
real line, R.

With the given interpretation, small phase offsets between pairs of processes
result from differences in the speed of decay of the firing intensity, which cannot
be observed in small analysis windows but become visible only in the long run.
Therefore, efficient coding mechanisms, which are assumed to work within a sin-
gle oscillation cycle, are unlikely to use differences in the τi as central parameters
in information processing. However, the structure of the model might be used
more efficiently in the framework of large neuronal networks, in which a high
number of parallel processes needs to be integrated.



Chapter 11

A spike train model

In this chapter, a model is presented with which spike trains with ‘repetitive,
semiregular synchronous burst discharges’ (Singer and Gray, 1995) can be de-
scribed, quantified and replicated. Similar to other characterizations by Smith
and Smith (1965); Kaneoke and Vitek (1996) and Bair et al. (1994), the model in
its basic form contains a characterization of two components: clusters of events
(which are referred to as ‘packets’) and inter packet intervals (‘IPIs’). Mathe-
matically, a doubly stochastic model is used to describe the two components. In
the first step, a stationary packet onset process (‘POP’) is produced, and every
packet onset gives rise to a Poissonian cluster with exponentially decaying firing
intensity.

11.1 Assumptions

Packet onset process (‘POP’) When IPIs have a preferred length, packets
reoccur in a regular, periodic manner. Therefore, the POP is assumed here to be
a stationary point process with expected interarrival time µ. Here, this process
is modeled as a random walk on the real line with independent and normally dis-
tributed increments with variance σ2. This assumption evokes pseudo-oscillatory
activity with period µ and ‘semiregular’ IPIs. Finally, packet onsets are assumed
to occur simultaneously across all units.

All assumptions are motivated by observations in experimental data. The
position of the first side peak of a CCH is often interpreted as indicating a
(dominant) oscillation frequency, which is modeled here by the preferred IPI
length. Next, the variability of IPIs can be a plausible cause of the decrease in
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the height of the side peaks. Finally, the center peak indicates that spikes tend
to occur simultaneously across units. All model assumptions are investigated
when applying the model to experimental data in chapter 13.

Packets In addition to the IPIs, it is necessary to describe the model assump-
tions concerning the spike packets. A packet can be characterized by the number
of spikes, the time from the first to the last spike or the distribution of spikes
in that interval (see e.g., Smith and Smith, 1965; Legendy and Salcman, 1985).
Thus, to describe the firing activity in a packet, one parameter, α ≥ 0, is re-
quired for the number of spikes and one parameter, τ > 0, for the length of the
packet. To characterize the distribution of spikes in a packet only with these two
parameters, an exponentially decaying function is chosen here, which causes the
density of spikes in the beginning of the packet to be higher than in the end:

f(x) =
α

τ
e−

x
τ (cf. Fig. 11.1).

This assumption is in accordance with experimental findings that inter spike in-
tervals increase during a packet (Eggermont et al., 1993; Reinagel et al., 1999),
which was also found to be reflected in recurring spatio-temporal spiking patterns
(see e.g., Abeles and Gerstein, 1988; Lestienne and Tuckwell, 1998). On differ-
ent time scales, exponentially decaying functions have been used successfully to
study the effect of excitatory post synaptic potentials on the firing rate of the
subsequent neuron (Abeles, 1982a) or in single trial rate estimation (Nawrot et
al., 1999).

α
τ

B TIME

Figure 11.1: The firing intensity within a packet is assumed to decrease exponentially from
the time B of the packet onset. The parameter α determines the expected number of spikes in
each packet, and τ determines the speed of decay, or the ‘length’ of the packet.
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11.2 The single spike train

Mathematically, a spike train is modeled as a cluster point process, or a doubly
stochastic Poisson process (Cox process) in three steps as follows (Figure 11.2):

The first step produces the POP, which is modeled as a random walk B on
the real line with independent and normally distributed IPIs:

B := (. . . , B−1, B0, B1, . . .), with Bb+1 −Bb ∼ N (µ, σ2) ∀ b ∈ Z.

One should note that the normal distribution of IPIs can only be a first
approximation because negative IPIs do not occur in practice but have a positive
probability in any normal distribution. However, the normal distribution has two
important advantages. First, it allows straightforward computation of statistics
related to the CCH, as is shown in chapter 12. Second, its mode µ allows for
the production of pseudo-oscillatory activity with preferred IPI µ. Furthermore,
negative IPIs are virtually ruled out if σ � µ.

The second step Starting from the stationary point process B, an exponen-
tially decaying firing intensity f of the form

fBb
=

{
α
τ
e−

(t−Bb)

τ t ≥ Bb

0 t < Bb

(cf. Fig. 11.1)

is attached to each packet onset Bb ∈ B. The overall firing intensity ρB is then
defined as the sum of all fBb

:

ρB :=
∑
b∈Z

fBb
(cf. Fig. 11.2).

In the third step, an inhomogeneous Poisson process with intensity ρB is
constructed such that the expected number of spikes in every interval [a, b]a<b is
given by

Ea,b :=

b∫
a

ρBdt. (11.1)
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σ

µ

B4B3B2B1B0B−1

B

ρB

XB

Figure 11.2: Doubly stochastic construction of a single spike train: A random walk produces
a stationary point process, B, on the real line. Every Bb ∈ B gives birth to a Poisson(α)-
distributed number of children Nb whose times

(
Y

(b)
j

)
j=1,...,Nb

are Exp(τ)-distributed with
respect to the packet start Bb.

The resulting process XB has a random intensity measure ρB, and for given
B, XB is an inhomogeneous Poisson process. Thus, XB is a Cox process (e.g.,
Stoyan et al., 1987). It can be formalized as

XB =
∑
b∈Z

Nb∑
j=1

δ
Bb+Y

(b)
j

,

where all Y
(b)
j are independent and Exp(τ)-distributed, and Nb is an independent

random variable describing the number of spikes in packet b. Nb is Poisson(α)-
distributed because α describes the expected number of spikes in each packet:

α

τ

∞∫
0

e−
x
τ dx = α.

The parameter τ determines the maximal intensity at packet onset and the speed
of the decay. Both increase with decreasing τ :

f0(0) =
α

τ
and f0(log(2) · τ) =

1

2
· α

τ
=

1

2
· f0(0).
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Additionally, the parameter τ determines the center of mass of the exponential
distribution, as

∞∫
0

x

τ
e−

x
τ dx

y:=x/τ
= τ

∞∫
0

ye−ydy = τ.

Thus, a spike occurs in expectation τ time units after packet onset.

11.3 Parallel spike trains

To describe parallel spike trains, the model assumes that packet onsets occur
simultaneously across all units. Thus, all spike trains are assumed to share the
same POP. As a consequence, the parameters µ and σ are defined globally. In
contrast, the parameters α and τ may differ across units and describe special
firing characteristics of the different units.

In addition to the spikes in the packets, a constant background firing intensity
β ≥ 0 is introduced, which may also differ across units. The parameters of unit
j (j = 1, . . . , n) are denoted by αj, βj and τj. Different levels of activation are
described by the parameters αj and βj, and different decay constants τj account
for more or less bursty firing.

Table 11.1 shows a summary of all introduced parameters. To make sure
that the firing intensity of the preceding packet is low at the onset of the next
packet, exp (−x/τ) should be small for x = µ. Thus, reasonable values of τ are
smaller than µ/2 because exp (−µ/(µ/2)) = exp (−2) ≈ 0.14. Another constraint
concerns the relation between the mean IPI µ and its standard deviation σ. Since
negative IPIs cannot be observed, σ should be smaller than µ/2.

Model part parameter range meaning defined

Periodicity µ ∈ R+ mean osc. period global
σ ∈ R+

0 , σ < µ
2

std. dev. of IPIs global
Packets αj ∈ R+

0 spikes per packet unit j
τj ∈ R+, τ < µ

2
‘length’ of packet unit j

βj ∈ R+
0 background intensity unit j

Table 11.1: Summary of model parameters.
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Model summary The firing intensity of unit j at time t is described by

αj

τj

nt∑
b=−∞

e
−(t−Bb)

τj + βj, (11.2)

where Bnt denotes the last packet onset before t. Figure 11.3 illustrates the
firing intensities of two units as described with the model. For packet onset times
. . . , B1, B2, B3, . . ., the firing intensity rises at packet onset according to equation
(11.2) and decreases exponentially. Potential processes X1, X2 belonging to the
plotted intensities are shown below the horizontal arrows.

In
te

ns
ity

TIME

B1 B2 B3

1

2

α1

α2

τ1

τ2

β1

β2

0

0

Figure 11.3: Summary of spike train model for two units. Packet onset times . . . , B1, B2, B3, . . .
occur simultaneously across units and define the time of an instantaneous increase in firing
intensity, followed by an exponential decay. Packet and background intensities may differ
across units but are assumed to stay constant over time. Black vertical bars below horizontal
arrows indicate potential spikes belonging to the intensity curves.

Chapter 12 shows how ACHs and CCHs of spike trains that comply with
the assumptions presented in this chapter can be derived and how their shapes
depend on the parameters.



Chapter 12

Auto and cross correlation

In this chapter, auto and cross correlation functions are discussed that result from
processes that comply with the model assumptions in chapter 11. In section 12.1,
formulas are derived that describe the expected shape of ACHs and CCHs as a
function of the parameters µ, σ, αj, βj and τj. This shape is investigated in
section 12.2, which yields an interpretation of the parameters with respect to
several properties such as the height and width of the central peak, the decay in
height of the side peaks or the cause of asymmetry.

Recapitulation: ACHs & CCHs Recall that for two spike trains (S1(jδ))j

and (S2(jδ))j in discrete time with the same time resolution δ, the CCH at lag
` ∈ LL

δ = {` : |`| ≤ L, `/δ ∈ Z} indicates the number of spikes in S1 that are
followed by a spike in S2 with delay `, i.e., after `/δ bins (cf. eq. (1.1)):

CCHS1S2(`) := HS1S2(`) :=
∑

j

S1(jδ)S2(jδ + `).

Accordingly, the ACH counts the number of spike pairs in S1 with delay `:

ACHS1(`) := HS1S1(`) :=
∑

j

S1(jδ)S1(jδ + `).

These quantities are derived from two finite, binary processes S1 and S2 in
discrete time. Therefore, they cannot be compared directly to statistics of cluster
point processes of infinite length and in continuous time as have been described
in chapter 11. For the latter, a concept analogous to the ACH is available.
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12.1 ACF & CCF in the spike train model

For a single point process X that has a point at time t, consider the intensity of
events on R \ {t}. This distribution of points on R \ {t}, given a point at time
t, is the reduced Palm distribution, P !

0 (Stoyan et al., 1987).
For a stationary point process X, the intensity of spike pairs (xt, xt+s) with

delay s is the product of the intensity λ of X and the Palm intensity of X. This
intensity of spike pairs is closely related to the ACH and is therefore called here
the auto correlation function (ACF) of the process X.

Analogous to the ACF, the cross correlation function of two processes X1 and
X2 is the product of the intensity of X1 and the intensity of points in X2, given a
point in X1 at time t. Theorem 2 provides formulas with which the ACF and the
CCF can be computed for processes that comply with the model assumptions in
chapter 11. Since the ACF is symmetric and the CCF between X1 and X2 is the
mirror image of the CCF between X2 and X1, the computations are restricted
to nonnegative delays s ≥ 0. In the following,

Φ(x) :=

x∫
−∞

1√
2π

e−
t2

2 dt

denotes the standard normal distribution function,

µi := i · µ and σ2
i := |i| · σ2.

Theorem 2 Let X1, X2 be two Cox processes as specified in chapter 11: For a
random walk B with independent and N (µ, σ2)-distributed increments Bi+1 −Bi

between the packet onsets, the firing intensity of Xj is described by

αj

τj

nt∑
i=−∞

e
−(t−Bi)

τj + βj j = 1, 2.

Then, the ACF at shift s ≥ 0 of Xj, j = 1, 2, is given by

FXjXj
(s) =

2αjβj

µ
+ β2

j +
α2

j

2τjµ

{
e
− s

τj +
∑

i∈Z\{0}

e
s−µi

τj
+

σ2
i

2τ2
j Φ

(
µi − s− σ2

i /τj

σi

)
(12.1)

+
∑

i∈Z\{0}

e
µi−s

τj
+

σ2
i

2τ2
j Φ

(
s− µi − σ2

i /τj

σi

)}
.
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The CCF at shift s ≥ 0 between X1 and X2 is

FX1X2(s) =
α1β2

µ
+

α2β1

µ
+ β1β2 (12.2)

+
α1α2

µ(τ1 + τ2)

{
e
− s

τ1 +
∑

j∈Z\{0}

e
s−µj

τ1
+

σ2
j

2τ2
1 Φ

(
µj − s− σ2

j /τ1

σj

)

+
∑

j∈Z\{0}

e
µj−s

τ2
+

σ2
j

2τ2
2 Φ

(
s− µj − σ2

j /τ2

σj

)}
.

For s < 0, FXjXj
(s) = FXjXj

(−s) and FX1X2(s) = FX2X1(−s).

12.1.1 Proof of Theorem 2

Although equation (12.1) follows directly from (12.2), the ACF is derived first
to explain the main computational steps. In the first step, β is set to zero.

12.1.1.1 Auto correlation function

The ACF of a process X with parameters α, β = 0, τ , µ and σ is derived by
decomposition into the intensity and the reduced Palm distribution. The latter
is computed in three steps:

1. Starting from a spike at time t, the packet onset B0 of the corresponding
packet is constructed by backward integration over

1/τ · e−
t−b
τ db. (cf. Fig. 12.1, step 1)

2. For a given B0, the random walk B is constructed forward and backward
in time starting from B0 such that the distribution of intervals between B0

and all other packet onsets Bi is given by

(Bi −B0) ∼ N (µi, σi) ∀ i ∈ Z \ {0} (cf. Fig. 12.1, step 2)

3. For the given stationary point process B, spike times are constructed ac-
cording to an inhomogeneous Poisson process with intensity

ρB =
α

τ

∑
i∈Z,i≤nt

e
−(t−Bi)

τ . (cf. Fig. 12.1, step 3)
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Thus, the underlying ‘family structure’ of the process (cf. Liemant et al., 1988,
sect. 1.9) is used in the computation, where spikes that originate in the same
packet are referred to as ‘sister points’, while spikes that originate in different
packets are called ‘cousin points’.

1 3

2

t

B4B3B2B1B0B−1

B

ρB

XB

Figure 12.1: Derivation of the Palm distribution of a Cox process from chapter 11. Given a
spike at time t, the respective packet onset B0 is constructed backwards in time (1). Starting
from B0, a random walk is performed in both directions (2). With the resulting stationary
process B, a Poisson process with firing intensity ρB is constructed (3).

In the following computations, D0i(s) := DB0Bi
(s) denotes the density of

spikes in a packet with onset Bi that occur at s + t, given a spike in a packet
with onset B0 at time t. Obviously, step 2 is not necessary for the derivation of
D00, i.e., for the sister spikes that originate in the same packet as the spike at t.
Thus, the computation can be split up into the density of sister points, D00, and
the density of cousin points that belong to different packets, D(0i)i6=0

:

p!
0(s) = D00(s) +

∑
i∈Z\{0}

D0i(s), (12.3)

where p!
0 is the density of the intensity measure of the Palm distribution P !

0. An
analogous decomposition of the reduced Palm distribution by the use of the Palm
distribution of the mother process can be found in Møller and Torrisi (2005).

Sister points According to the steps 1 and 3, the distribution of sister points
is computed by construction of the packet onset, B0, followed by the creation of
the Poisson process with intensity α/τ · exp (−(t + s−B0)/τ):

D00(s) =

t∫
−∞

1

τ
e−

t−b
τ · α

τ
e−

t+s−b
τ db =

α

τ 2
e−

2t+s
τ

t∫
−∞

e−
2b
τ db =

α

2τ
e−

s
τ . (12.4)
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Cousin points - Fixed distance u To construct the distribution of cousin
points in one packet with onset Bi, all three steps must be performed. The
derivation can be simplified by first fixing Bi := B0 + u, u ∈ R, and by thus
leaving out step 2 in the first place. The computation is then analogous to
the one for the sister points, with the following modifications: Since the second
packet does not start at B0 but at B0 + u, the delay s may also be smaller than
u. Therefore, the latest possible time for the first packet B0 is t + s− u because
otherwise, the spike at t + s would occur before the packet at B0 + u, which is
impossible. Thus, it is necessary to distinguish between s < u and s ≥ u:

Ds<u
0u (s) =

t+s−u∫
−∞

1

τ
e−

t−b
τ · α

τ
e−

(t+s)−(b+u)
τ db =

α

2τ
e−

u−s
τ . (12.5)

Ds≥u
0u (s) =

t∫
−∞

1

τ
e−

t−b
τ · α

τ
e−

(t+s)−(b+u)
τ db =

α

2τ
e−

s−u
τ . (12.6)

Cousin points - Random distance Finally, step 2 is incorporated by ac-
counting for the fact that the distance U between B0 and Bi is N (µi, σi)-
distributed. For U > s, the integration starts at s:

DU>s
0i (s) =

∞∫
s

 t+s−u∫
−∞

1

τ
e−

t−b
τ · α

τ
e−

(t+s)−(b+u)
τ db

 · 1√
2πσi

e
− (u−µi)

2

2σ2
i du

(12.5)
=

∞∫
s

α

2τ
e−

u−s
τ

1√
2πσi

e
− (u−µi)

2

2σ2
i du (12.7)

=
α

2τ
e

s−µi
τ

+
σ2

i
2τ2

∞∫
s

1√
2πσi

e
− (u−(µi−

σ2
i

τ ))2

2σ2
i du.

Substitution y := 1
σi

(u + σ2
i /τ − µi) yields

DU>s
0i (s) =

α

2τ
e

s−µi
τ

+
σ2

i
2τ2

∞∫
s−µi+σ2

i
/τ

σi

1√
2π

e−
y2

2 dy =
α

2τ
e

s−µi
τ

+
σ2

i
2τ2 Φ

(
µi − s− σ2

i /τ

σi

)
.
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U ≤ s is computed analogously:

DU≤s
0i (s) =

α

2τ
e

µi−s

τ
+

σ2
i

2τ2 Φ

(
s− µi − σ2

i /τ

σi

)
.

Therefore,

D0i(s) = DU>s
0i (s) + DU≤s

0i (s) (12.8)

=
α

2τ
e

σ2
i

2τ2

{
e

s−µi
τ Φ

(
µi − s− σ2

i /τ

σi

)
+ e

µi−s

τ Φ

(
s− µi − σ2

i /τ

σi

)}
.

This yields the expressions for the terms in equation (12.3). Note in addition
that the intensity of XB is α/µ because the POP is a random walk without
memory that can take any value b ∈ R since the normal distribution of increments
is continuous and non-lattice as long as σ2 > 0 (general renewal theorem, Feller,
1971, p. 381). Thus, with equation (12.3) and the consideration that the ACF
is the product of the intensity α/µ and the reduced Palm intensity, this yields

FXX(s) =
α

µ
·

D00(s) +
∑

i∈Z\{0}

D0i(s)

 , (12.9)

which equals the result given in (12.1) for β = 0.

Background In the last step, background is added to the computation. Each
of the two spikes in a pair with delay s may also belong to the background.
Since the point process is an independent superposition of a stationary Poisson
process with constant rate β and an inhomogeneous Poisson process with packet
intensity α/µ, the intensity of spike pairs of which at least one spike originates
in background is

2αβ

µ
+ β2 ∀ s ≥ 0.

Thus, equation (12.1) results from

FXX(s) =
α

µ
·

D00(s) +
∑

i∈Z\{0}

D0j(s)

+
2αβ

µ
+ β2, (12.10)

which yields the first part of Theorem 2. �



12.1. ACF & CCF IN THE SPIKE TRAIN MODEL 111

12.1.1.2 Cross correlation function

To compute the CCF for two processes X1 and X2, all computations are analo-
gous because both processes are assumed to be based on the same packet onset
process B. Again, the computation is restricted to non-negative shifts s because
the CCF of X1 and X2 is the mirror image of the CCF of X2 and X1. Here,
the term D0i(s) := DB0Bi

(s) denotes the density of spikes in X2 in a packet with
onset Bi at time t + s, given a spike in X1 in a packet with onset B0 at time t.

Sister points Analogous to equation (12.4), the distribution of sister points is
given by

D00(s) =

t∫
−∞

1

τ1

e
− t−b

τ1 · α2

τ2

e
− t+s−b

τ2 db =
α2

τ1τ2

e
− t

τ1
− t+s

τ2

t∫
−∞

e

“
1
τ1

+ 1
τ2

”
·b
db =

α2

τ1 + τ2

e
− s

τ2 .

Cousin points For the cousin points, the computation is analogous to the one
given in (12.7):

DU>s
0i (s) =

∞∫
s

 t+s−u∫
−∞

1

τ1

e
− t−b

τ1 · α2

τ2

e
− (t+s)−(b+u)

τ2 db

 · 1√
2πσi

e
− (u−µi)

2

2σ2
i du

=
α2

τ1 + τ2

· 1√
2πσi

∞∫
s

e
−u−s

τ1 e
− (u−µi)

2

2σ2
i du (12.11)

=
α2

τ1 + τ2

e
s−µi

τ1
+

σ2
i

2τ2
1 Φ

(
µi − s− σi/τ1

σi

)
.

The formula analogous to equation (12.8) thus reads for two processes

D0i(s)=
α2

τ1 + τ2

{
e

s−µi
τ1

+
σ2

i
2τ2

1 Φ

(
µi − s− σ2

i /τ1

σi

)
+ e

µi−s

τ2
+

σ2
i

2τ2
2 Φ

(
s− µi − σ2

i /τ2

σi

)}
.

Thus, the CCF can be computed as

FX1X2(s) =
α1

µ
·
(

D00(s) +
∑

i∈Z\{0}

D0i(s)

)
+

α1β2

µ
+

α2β1

µ
+ β1β2, (12.12)

where background activity has been included as in equation (12.10). This con-
cludes the proof of Theorem 2. �
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12.1.1.3 Note: Distribution of IPIs

In Theorem 2, IPIs are assumed to be independent and normally distributed
with expectation µ and variance σ2. Thus, also sums of intervals are normally
distributed, and expectations and variances add up. Therefore, µi = i · µ and
σ2

i := |i| ·σ2 describe the relevant parameters for sums of IPIs, which are required
in equations (12.1) and (12.2).

This model can be extended easily by changing the distribution of IPIs as
long as IPIs remain normally distributed. For example, packets in different units
might not start exactly at the global onset times but might vary around the
global packet onset. In this case, one additional parameter, σD, is required, which
defines the standard deviation with which individual packet onsets vary around
the global onsets. Then, the packet onset times (O

(k)
i )i∈Z in unit k relative to the

global onsets (Bi)i∈Z are shifted by adding another independent and normally
distributed random variable with variance σ2

D:

O
(k)
i = Bi + σDZ

(k)
i , with Z

(k)
i ∼ N (0, 1) and {Bi, Z

(k)
i }i∈Z independent.

In this exemplary case, sums of IPIs are still normally distributed, with

µi = i · µ ∀ i ∈ Z and σ2
i = |i| · σ2 + 2σ2

D for i ∈ Z \ {0},

σ2
0 = 0 in equation (12.1) and σ2

0 = 2σ2
D in equation (12.2).

Thus, model extensions that affect the mean and variance of sums of IPIs can
be incorporated easily in the formulas presented in Theorem 2.

12.1.2 Practical remarks

Spike trains in discrete time Theorem 2 describes the density of spike pairs
with distance s ∈ R for Cox processes that comply with the spike train model
from chapter 11. In practice, spike trains can only be recorded in discrete time
with time resolution δ. As a consequence, the analysis is restricted to spike pairs
separated by ` bins, with ` ∈ Z. Conditioning on the event to observe a spike at
time t, the expected number of spikes in the interval [t + s, t + s + δ) is given by

s+δ∫
s

F (x)dx,
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which is approximated here by the box area δ · F (s). Thus, the ACFs and
CCFs of spike trains in discrete time with time resolution δ are approximated
by multiplying the formulas given in Theorem 2 with the bin size δ.

Nonstationary firing rates In Theorem 2, it is assumed that both the back-
ground rate and the firing intensity of packets remain constant throughout the
process. In practice, however, firing rates can vary in time, and it is therefore
investigated how the ACF and the CCF are affected by changes in the firing rate.

For technical reasons, it is assumed here that firing rates change according to
a step function, which stays constant except for mT equidistant jumps. Thus, let
0 = J0 < J1 < ... < JmT−1 < JmT

= T denote the jump times at which either the
background rate or the packet intensity change, and let αkj and βkj denote the
packet and the background intensity of unit j, j = 1, 2, in the interval (Jk, Jk−1),
where Jk − Jk−1 ≡ c ∀ k. If spike pairs that cross jumps are neglected, the ACF
of unit j can be approximated by the mean of the ACFs in the periods (Jk, Jk−1)
of constant rate:

m−1
T

∑k α2
kj

µ
·
(

D00(s) +
∑

i∈Z\{0}

D0i(s)

)
+

2
∑

k αkjβkj

µ
+
∑

k

β2
kj

 .

The corresponding CCF is given by

m−1
T

∑k αk1αk2

µ

(
D00(s) +

∑
i∈Z\{0}

D0i(s)

)
+

∑
k αk1βk2 + αk2βk1

µ
+
∑

k

βk1βk2

.

As a consequence, the relation between the height of the ACF and the height of
the CCF is affected. Consider for example the case βkj = 0 ∀ k, j. When predict-
ing the CCF with the parameters estimated from the ACF and the assumption
of constant rate, the true term

∑mT

k=1 αk1αk2 would be estimated erroneously as(∑mT

k=1 α2
k1

∑mT

k=1 α2
k2

)1/2
. Due to the Cauchy-Schwarz inequality,

mT∑
k=1

αk1αk2 ≤
( mT∑

k=1

α2
k1

mT∑
k=1

α2
k2

)1/2

,

and the CCF is reduced in height unless the covariance of the rates equals 1.
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12.2 Shape of ACF and CCF

After the presentation of the formulas which describe the ACF and CCF of
point processes that comply with the model assumptions presented in chapter
11, this section deals with the shape of these functions and its dependence on the
parameters. Since the ACF is a special case of a CCF for α1 = α2, τ1 = τ2 and
β1 = β2, only the shape of CCFs is discussed here. Furthermore, the background
intensities β1 and β2 only increase the height of the CCF by an additive constant.
Therefore, the background is set to zero in this section, the investigation focussing
on that part of the CCF which consists of spike pairs originating exclusively in
the packet process.

12.2.1 Decomposition of a CCF

Recall that with β1 = β2 = 0, equation (12.2) states that the CCF of X1 and X2

at shift s ≥ 0 is described by

FX1X2(s) =
α1

µ
·
(

D00(s) +
∑

i∈Z\{0}

D0i(s)

)
,

where D00(s) =
α2

τ1 + τ2

e
− s

τ2

and D0i(s) =
α2

τ1 + τ2

{
e

s−µi
τ1

+
σ2

i
2τ2

1 Φ

(
µi − s− σ2

i /τ1

σi

)

+ e
µi−s

τ2
+

σ2
i

2τ2
2 Φ

(
s− µi − σ2

i /τ2

σi

)}
.

In this decomposition, D00 describes the spike pairs which originate in packets
that start at the same time. D0i describes the spike pairs whose second spike
belongs to the ith-next packet after the packet of the first spike.

Figure 12.2 A illustrates this decomposition for one set of parameters. To
get results that are comparable to experimentally obtained CCHs, µ is set to
25 ms, which corresponds to an oscillation frequency of 40 Hz. The parameters
τ and σ are adjusted in relation to µ. In Figure 12.2, τ1 = τ2 = 0.2µ, i.e., the
packets are relatively short compared to the mean IPI, and σ = 0.24µ = 6 ms.
The parameters α1 = α2 = 2 affect the shape of the CCF only by multiplication
with a scalar.
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Figure 12.2: Decomposition of a CCF with parameters α1 = α2 = 2, τ1 = τ2 = 5 ms,
β1 = β2 = 0, µ = 25 ms, σ = 6 ms. A: Graph of the CCF (medium gray), single summands
D00, D01 and D02 (black), and other summands (light gray). B: Illustration of the computation
of a CCH. Each summand in panel A counts the delays from the reference spike in the reference
packet to spikes in one specific packet.

Maxima of summands The graphs of D00, D01 and D02 are plotted in black
in Figure 12.2 A. Given a spike at t = 0, the density of spikes that originate
in the same packet, D00, is maximal at s = 0 and decreases fast with s. This
holds for the ACF as well as for the CCF because the packet onset process
B = (. . . , B−1, B0, B1, . . .) is assumed to be the same for all units.

The density of spike pairs which originate in successive packets, D01, is max-
imal at s = µ. In fact, the maximum of D0i is µi = iµ for all i ∈ Z if τ1 = τ2:

∂D0i(s)

∂s
=

α1α2

τ1 + τ2

{
e

s−µi
τ1

+
σ2

i
2τ2

1 Φ
(

µi−s−σ2
i /τ1

σi

) 1

τ1

− e
µi−s

τ2
+

σ2
i

2τ2
2 Φ
(

s−µi−σ2
i /τ2

σi

) 1

τ2

}
Thus, for τ1 = τ2 = τ , the partial derivative equals zero for s = µi:

∂D0i(s)

∂s
=

α1α2

2τ 2
e

σ2
i

2τ2

{
e

s−µi
τ Φ

(
−σi

τ

)
− e

µi−s

τ Φ

(
−σi

τ

)}
s=µi= 0.

The maximum of D01 at s = µ is lower than the maximum of D00 at s = 0,
and the distribution is broader. The reason for this effect is the parameter σ, the
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variance of IPIs. Therefore, in contrast to D00, in which the packet onsets of the
corresponding spikes are simultaneous, the IPIs between successive packets have
variance σ2. The maximum of D02 is even lower because the variance of the sum
of two independent IPIs is 2σ2, i.e., twice the variance of one IPI.

Symmetry properties of summands On the left side of Figure 12.2 A, the
graphs of D00, D01 and D02 are plotted for s < 0, i.e., for the reverse CCF. Since
the parameters α, β and τ do not differ between the units in this example, the
curves are symmetric with respect to s = 0. Moreover, due to the symmetry in
equation (12.2), the term (D0i)

X1X2(s) from the CCF between X1 and X2 equals
(D0(−i))

X2X1(−s) from the CCF between X2 and X1:

(D0i)
X1X2(s) · τ1 + τ2

α1α2

=

= e
s−iµ

τ1
+
|i|σ2

2τ2
1 Φ

(
iµ− s− |i|σ2/τ1√

|i|σ

)
+ e

iµ−s
τ2

+
|i|σ2

2τ2
2 Φ

(
s− iµ− |i|σ2/τ2√

|i|σ

)

= e
−s+iµ

τ2
+
|i|σ2

2τ2
2 Φ

(
−iµ + s− |i|σ2/τ2√

|i|σ

)
+ e

−iµ+s
τ1

+
|i|σ2

2τ2
1 Φ

(
−s + iµ− |i|σ2/τ1√

|i|σ

)
= (D0(−i))

X2X1(−s) · τ1 + τ2

α1α2

.

Thus, every curve D0i(s) is continued also for s < 0, where it reflects the term
D0(−i)(|s|) for the reversed CCF.

Figure 12.2 B illustrates how the delays between a spike in one spike train
(located at shift s = 0) and the spikes in the other spike train are counted in the
CCH. Delays to spikes in the same packet are likely to be counted in the central
peak, whereas delays to spikes in succeeding and preceding packets are reflected
in the side peaks on the right and on the left.

The whole CCF is summed over all D0i, i ∈ Z and plotted in gray in Figure
12.2 A above the decomposed summands. In addition to the properties men-
tioned above, one should note that the maximum of the first side peak occurs at
a slightly bigger shift than at s = µ because D02 is broader than D00 and thus
contributes more density around s = µ. Furthermore, the CCF approaches a
limit value for growing s. This limit value is also called ‘baseline’-level and can
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be computed as the product of the firing intensities of the two involved units:

baseline:

(
α1

µ
+ β1

)(
α2

µ
+ β2

)
=

α1α2

µ2
+

α1β2

µ
+

α2β1

µ
+ β1β2. (12.13)

The shape of the CCF is similar to the experimentally derived CCHs (e.g.,
Fig. 10.1). Before the model is compared to experimental data, the dependence
of the CCF shape on the parameters is investigated in more detail.

12.2.2 Interpretation of parameters

12.2.2.1 ‘Strength of oscillation’

To illustrate the dependence of the CCF shape on the parameter σ, Figure 12.3
shows three decomposed CCFs which differ only in the parameter σ (all other
parameters as in Fig. 12.2). In panel A, σ = 0, i.e., the spike train is fully
periodic, and the length of all IPIs equals µ. In this case, D0Bi

has the same
shape as D00 and is only shifted by iµ for all i ∈ Z. Therefore, the peak height
of the side peaks does not decrease with increasing s, and spike delays at s = iµ
are just as likely for all i ∈ Z as they are for s = 0. Thus, the CCF is fully
periodic with period µ.

If the variability σ of IPIs increases (panel B, σ = 0.25µ), the length of IPIs
varies and thus, the graphs of D0j decrease in height, the maxima getting smaller
with increasing number of IPIs. Again, the maxima of D0i (i > 0) are located at
iµ, but the maxima of the side peaks of the CCF occur at slightly bigger shifts
because the D0i on the right contribute more density than the summands on the
left. This effect is even more pronounced in panel C, where the curves of D02 and
D0(−2) are so broad that the second side valleys nearly disappear. One can also
see that the speed with which the CCF approaches the baseline level increases
with σ because adjacent summands D0i overlap to a higher extent.

The broadness of the side summands also causes the central peak to increase
in height because, if σ is big enough, not only the term D00 is relevant for small
s. This effect is, however, relatively small even for a big value of σ = 0.5µ.

In conclusion, the parameter σ mainly determines the speed of decay of the
side peaks and valleys towards the baseline level. This speed of decay, i.e., the
number of visible side peaks, has also been called the ‘strength of oscillation’
(Gray et al., 1989; Karmon and Bergman, 1993; König, 1994; Nowak et al.,
1995). For σ = 0, no decay occurs, while for σ = 0.5µ, the decay is so fast that
only one side valley and half a side peak can be observed.
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σ = 0
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C

Figure 12.3: Dependence of the CCF shape on σ. Decomposed CCFs for the parameters
α1 = α2 = 2, τ1 = τ2 = 5 ms, β1 = β2 = 0, µ = 25 ms, and (A) σ = 0 ms, (B) σ = 10 ms, (C)
σ = 20 ms. y-axis limits identical for all panels.

12.2.2.2 Central peak

The dependence of the CCF shape on the parameter τ = τ1 = τ2 is il-
lustrated in Figure 12.4, which shows the decomposed CCFs for the values
τ ∈ {2.5, 6.25, 12.5} ms (σ = 7.5 ms, other parameters as in Figure 12.3). The
most pronounced effect of τ concerns the height of the central peak. Obviously,
the peak increases with decreasing τ/µ. This can be explained formally. As a
first approximation, consider the height of the central term, D00, at s = 0, which
approximates the value of the CCF at s = 0 unless τ or σ are too close to 0.5µ:

α1

µ
D00(0) =

α1α2

µ(τ1 + τ2)

α1=α2
τ1=τ2=

α2

2µτ

Obviously, this value decreases with increasing τ , but also with decreasing α.
More important in this context is the height of the peak relative to the baseline
level. According to equation (12.13), this index can be approximated in the
model by

α1α2/µ(τ1 + τ2)

α1α2/µ2
=

µ

τ1 + τ2

τ1=τ2=
µ

2τ
, (12.14)

if the central peak is approximated by D00.
The peak width is also increased with τ . This can be quantified with the

shift s1/2 at which the term D00 reaches half height:

e−
s1/2

τ = 1/2 ⇐⇒ s1/2 = τ log 2.
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Thus, the smaller τ , the smaller s1/2, and the earlier the peak reaches half height.
The slope is thereby simply characterized by the function e−s/τ . Similarly, a
decrease in τ increases the height of the side peaks and the depth of the side
valleys relative to baseline.

Thus, a decrease of the parameter τ has two main effects on the central peak.
It increases its height and decreases its width because the spikes of the packets
are concentrated more densely at the packet onsets. This can be interpreted as
a higher degree of synchronous firing. One should note, however, that the only
coordination across units is caused by the global POP and that precise spike
timing is not assumed to be additionally synchronized.

τ = 0.1µ

s [ms]
−80 −40 0 40 80

A τ = 0.25µ

s [ms]
−80 −40 0 40 80

B τ = 0.5µ

s [ms]
−80 −40 0 40 80

C

Figure 12.4: Dependence of the CCF shape on τ . Decomposed CCFs for the parameters
α1 = α2 = 2, β1 = β2 = 0, µ = 25 ms, σ = 7.5 ms=0.3µ, and τ1 = τ2 = 0.1µ = 2.5 ms (A),
τ1 = τ2 = 0.25µ = 6.25 ms (B), τ1 = τ2 = 0.5µ = 12.5 ms (C). Y-axis limits are identical for
all panels.

12.2.2.3 Asymmetry

As explained above, the CCF for two units with the same parameters τ1 = τ2,
α1 = α2 and β1 = β2 is symmetric. Furthermore, equation (12.2) shows that the
parameters α1, α2, β1 and β2 cannot affect the symmetry because the formula
remains unchanged by exchanging α1 and α2 as well as β1 and β2. Thus, only
differences in the parameters τ1 and τ2 can affect the symmetry of a CCF in the
present model.

Figure 12.5 A shows a CCF for the parameters τ1 = 3 ms and τ2 = 7.5 ms
(all other parameters as in Figure 12.4). One can see that the difference in the
parameters τ1 and τ2 has several consequences concerning the asymmetric shape
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Figure 12.5: Asymmetric shape of CCFs. Decomposed CCF for the parameters α1 = α2 = 2,
β1 = β2 = 0, µ = 25 ms, σ = 7.5 ms, τ1 = 3 ms, and τ2 = 7.5 ms. A: Function for left and
right side of central peak indicated by formulas, width of peak at baseline indicated in black.
B: Baseline and peak height relative to baseline indicated by vertical arrows and formulas on
the right. Decrease in height of side peaks indicated by left arrow.

of the CCF. First, the slope of the central peak differs on the right and on the
left hand side. On the side with the smaller τ , the peak is steeper, the side valley
is deeper, and the width of the peak is smaller. Taking again the term D00 as an
approximation of the central peak, the asymmetry concerning width and slope
of the peak can be explained with the following computation (cf. Fig. 12.5 A):

For s ≥ 0, the central term is described by
α1α2

τ1 + τ2

· e−
|s|
τ2 ,

while for s < 0, the respective term is
α1α2

τ1 + τ2

· e−
|s|
τ1 .

Thus, the right and the left side of the central peak differ only in the exponent.
As a consequence, the speed of decay is faster and the width is smaller on the
side with the smaller τ . In fact, the ratio between the width s1 on the left and
the width s2 on the right equals τ1/τ2 for any height if only the term D00 is taken
into account:

Let s1 and s2 be such that e
− s1

τ1 = e
− s2

τ2 . This implies
s1

s2

=
τ1

τ2

.

The horizontal line in the peak area of Figure 12.5 A indicates this quotient.
The summands D0i with i 6= 0 have a similar shape as D00, i.e., their slopes on

the left and on the right hand side show the same asymmetry as D00. As described
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earlier, they are broadened by the variability σ2 of IPIs. As a consequence of the
combination of the normal distribution with the asymmetric shape, the maximum
of D0i is not necessarily at iµ but can be shifted to the right or left, depending
on the parameters σ, µ, τ1 and τ2.

Three quantities that remain largely unaffected by the asymmetry are the
height of the central peak, the decay of the side peaks and the baseline level
(indicated in Fig. 12.5 B). The peak height relative to baseline is described by
µ/(τ1 + τ2) (equation (12.14)), and the baseline level is α1α2/µ

2.

12.3 Summary

In this chapter, formulas for the ACF and CCF of processes that conform with
the model from chapter 11 were derived, and the shape of ACFs and CCFs
was discussed with respect to the relevant parameters. Section 12.2 shows that
variations in very few parameters can account for a high variability in the shape
of these functions. For example, the parameter τ influences both the height and
width of the central peak as well as the slope of its flanks. As a consequence,
differences between τ1 and τ2 produce all aspects of asymmetry discussed in
chapter 10: different slopes, different depths of the side valleys as well as different
widths with respect to zero delay. Furthermore, the parameter σ determines
the speed of decay of the side peaks towards baseline level, and µ corresponds
roughly to the position of the first side peak and thus to the dominant oscillation
period. As a further advantage, the model allows the approximation of important
quantities by simple formulas, including the baseline level or the peak height
relative to baseline.

After the presentation of the model on a theoretical basis, the following chap-
ter deals with practical issues. In order to investigate whether the model can be
useful for the description of experimental data, the parameters are estimated on
the basis of ACHs of the sample data set, and theoretically predicted properties
are compared to experimentally obtained quantities. In this respect, it is partic-
ularly interesting that a single parameter can determine multiple aspects of the
CCF simultaneously. Thus, a good agreement between the theoretical model and
experimental data can be obtained only if the variability of shapes that can be
treated theoretically corresponds to the shapes observed in experimental data.
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Chapter 13

Practical usefulness

In order to investigate whether the model presented in chapter 11 and the cor-
responding formulas for the theoretical ACFs and CCFs from chapter 12 can be
useful in the analysis of experimental data, the model is applied to the sample
data set. In the first place, section 13.1 investigates whether independence and
normal distribution of IPIs and exponentially decaying firing intensity are plau-
sible candidates for the description of the spike trains in the sample data set.
In section 13.2, the parameters α, τ , β, µ and σ are estimated for all units by
simultaneously fitting theoretical ACFs to the empirically derived ACHs. The
goodness of fit of these ACFs can indicate the degree to which the theoretical
model can describe the experimentally observed variability of ACH shapes. As
a next step, section 13.3 deals with the relation between the fitted ACHs and
the CCHs computed across pairs of units. Since the model assumes that packets
occur simultaneously across units, predictions can be derived about the shape of
the CCHs, and the suitability of such predictions can be investigated by a com-
parison to experimentally obtained CCHs. Both agreement and disagreement
of the predictions with the empirical CCHs can lead to important insights into
interactions between different units. Finally, it is important whether, in addition
to describing only the shapes of ACHs and CCHs, the model can also be used
to simulate data that are comparable to experimental recordings. Section 13.4
therefore deals with a comparison of raw spike trains obtained from simulations
and from experimental recordings. In addition, it is investigated whether the
variability of counts in a CCH can be replicated by artificial spike trains that
comply with the model assumptions.

123
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13.1 Investigation of model assumptions

Concerning the appropriateness of the model assumptions, three main aspects
have to be considered. First, IPIs are assumed to be independent and normally
distributed. Although, as described in section 11.1, the normal distribution is
motivated by the experimental observation that packets reoccur with a preferred
interval, the mechanism of ‘pseudo-oscillation’ introduced by independent and
normally distributed IPIs may differ from ‘real’ oscillatory activity. For example,
independence of IPIs is not necessarily granted in oscillatory activity. On the
one hand, successive IPIs might be positively correlated due to an increase or
decrease in the oscillation frequency in time. On the other hand, IPIs might
also be negatively correlated because a shift in one cycle increases the preceding
while decreasing the succeeding IPI, or vice versa. Therefore, independence
and normal distribution of IPIs is investigated in section 13.1.1. Second, the
spike intensity within packets is assumed to decay exponentially with respect to
packet onset. This assumption is motivated by the observation that inter spike
intervals increase during packets, and it makes use of a suitable decaying function
that can be described with two parameters. However, firing intensities do not
have to decay exponentially. Therefore, this assumption is investigated in section
13.1.2. Finally, since the relation between ACFs and CCFs may deviate from the
theoretical prediction if the firing rates of the units vary in time (cf. sect. 12.1.2),
the variability of firing rates across time is studied in section 13.1.3.

13.1.1 Distribution and independence of IPIs

The distribution of IPIs is investigated by estimating packet onset times with
the algorithm illustrated in Figure 13.1. For each time step, spikes are summed
across all units, and the resulting time series is smoothed several times with a
Gaussian kernel (curve plotted below dot display in Figure 13.1). The smoothed
curve is used to define maxima as points after an increase of at least 3 ms and
before a decrease of at least 3 ms duration. With this restriction, tiny peaks
could be ignored in the sample data set, while the fraction of undetected packet
onsets remained relatively small1. To determine the packet onset as precisely
as possible, these maxima are not used directly as onset times because they
are less well defined than points with higher slope. Therefore, the time when

1Since the erroneous identification of a non-existing packet falsely produces two small IPIs,
while a packet that is not detected produces only one big IPI, the algorithm primarily decreases
the number of falsely detected packet onsets.
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the function reaches 60% of the maximum within a window of 10 ms before
the identified maximum is defined as packet onset (vertical lines in Fig. 13.1).
Although packet onsets are detected too early with this method, IPIs can be
estimated more precisely than only on the basis of the maxima.
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Figure 13.1: Estimation algorithm for IPIs. Spikes of different units are shown as dots in
different lines. Spikes are cumulated across all units, and the resulting function is smoothed
several times with a Gaussian kernel (smoothed function plotted below). ‘Maxima’ are defined
as points between at least 3 ms increase and 3 ms decrease, and packet onset times are deter-
mined as the points at which 60% of the maximum is reached within a window of 10 ms before
the maximum (packet onset times indicated by vertical lines).

The distribution of IPIs derived with this method is plotted in Figure 13.2
A for stimulation condition 1. One can see that the empirical distribution is
far enough from zero, such that the theoretical fraction of negative IPIs can be
neglected. Moreover, some packets are not detected by the algorithm, mostly
because the criterion of at least 3 ms increase before and 3 ms decrease after
the maximum is too strict. Therefore, an unexpectedly high number of large
intervals (i.e., larger than 50 ms) are counted. If these are ignored, the mean IPI
is µ̂ = 24.8 ms, and the standard deviation is σ̂ = 8.1 ms. The density of the
corresponding normal distribution is added to the plot and agrees relatively well
with the empirical histogram. Finally, the correlation between successive IPIs is
r = 0.03, which is in accordance with the assumption that successive IPIs are
independent.

13.1.2 Distribution of spikes within packets

In order to investigate whether the assumption that the firing intensity decays
exponentially from the time of the packet onset can be considered plausible, the
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Figure 13.2: Distributions of IPIs and of spikes in packets in stimulation condition 1. A: Dis-
tribution of IPIs determined with the algorithm described in Figure 13.1. Normal distribution
curve with µ = 24.8 ms and σ = 8.1 ms added to the histogram. B: Smoothed distribution of
spikes of units 1-5 relative to the packet onsets determined with the algorithm in Figure 13.1.
Units 1-5 are colored from black to light gray.

spikes in each unit are counted relative to the packet onset times estimated in
section 13.1.1. The resulting smoothed spike distributions are shown in Figure
13.2 B for the units 1-5. The curves correspond reasonably well to the assumed
exponentially decaying firing intensity. As described above, the identified packet
onsets are earlier than the onset of the firing activity, and accordingly, the main
mass of the curves is located about 4 ms after the identified onsets. Furthermore,
the plotted functions resemble more a smoothed exponential decay than a sharply
defined onset. Thus, the function from equation (11.2) might be replaced by a
less sharp function, e.g., by a sum of two exponentials. However, since packet
onsets cannot be identified precisely by the described algorithm, even a steep
increase in the firing intensity may be blurred by the imprecision with which
packet onsets are determined. Therefore, the curves in Figure 13.2 B do not
clearly indicate deviations from the assumed exponentially decaying intensity.

In addition, Figure 13.2 B shows a high accordance with the model assump-
tion that the decay in the firing rate differs across units. In particular, one can
see that the curves differ in their ‘burstiness’, i.e., in the tendency of spikes to
be clustered in short time windows. For example, the spikes of unit 5 are closer
together than the spikes of the other units. Also, the intensity of unit 3 decays
more slowly than the intensity of the units 1 or 5.
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13.1.3 Stability of firing rates

Finally, it is investigated whether firing rates can be considered stable both across
trials and within trials. The changes in the firing rate across trials are shown in
the first panel of Figure 13.3 in which every curve represents the spikes counted
in one particular unit. Each curve shows only small changes across trials, except
for trial 15 in which the firing rate is enhanced. However, these changes across
trials are comparable in all units and thus, as discussed in section 12.1.2, they
do not affect the predicted relation between the ACF and the CCF.

In contrast, the changes in the firing rate within trials differ across units, as
is shown in the other panels of Figure 13.3. In each panel, the 20 gray curves
indicate the spikes counted in one particular unit in each of the 20 trials. For
every unit, these fluctuations are comparable across trials. Therefore, the average
is plotted in black and indicates the mean rate change of this unit within each
trial. For example, unit 2 has an increased firing rate at the end of each trial,
while in unit 5, more spikes are observed at the beginning, and unit 3 fires more
spikes in the middle of each trial.

In summary, rate covariations across trials are similar in all units and should
not affect the direct applicability of the model, whereas rate covariations within
trials differ across units and should therefore be taken into account when applying
the model to the sample data set (cf. sect. 12.1.2).

13.2 Fitting ACFs to ACHs

Fitting procedure and estimates To investigate whether the described
model can be useful in the representation of a data set, the ACHs derived from
stimulation condition 1 of the sample data set are normed (i.e., divided by the
length of the recording, 40,000 ms) to represent the number of coincidences per
ms while keeping the original time resolution of δ = 1/32 ms. Then, the ACF
from equation (12.1) with the norming for spike trains in discrete time is fitted
to these normed ACHs with the nonlinear least squares algorithm described in
section 3.2.2. In order to get simultaneous estimates of the global parameters
µ and σ across all units, all 14 ACHs were first fitted simultaneously. Thus,
estimates of µ, σ, τ1, . . . , τ14, α1, . . . , α14 and β1, . . . , β14 were obtained. Among
the estimates of the background intensity, only β2, β3, β6 and β9 deviated more
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Figure 13.3: Number of spikes in each unit in stimulation condition 1. The first panel shows
the overall number of spikes in each trial. Each unit is indicated by one curve. The other
panels show rates within trials for each unit. For each trial, the number of spikes is counted in
windows of 200 ms and plotted as a gray curve. The mean number of spikes is shown in black.
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from zero than expected on the basis of their variance.2 Among those, only the
estimate of β3 was negative, and it showed the smallest deviation from zero.
Therefore, in a second step, all ACHs were fitted again simultaneously, while
only the background intensities for the units 2, 6 and 9 were estimated, and all
others were set to zero.

The resulting curves and parameter estimates are shown in Figure 13.4. The
first panel illustrates the implications that the estimated parameters µ̂ ≈ 25.3
ms and σ̂ ≈ 7.2 ms have on the distribution of IPIs. Given a packet at time
0, the densities of the three successive packets is drawn on the time axis. The
parameter µ̂ ≈ 25 ms indicates that the predominant oscillation frequency is
close to 40 Hz. The estimate of σ, 7.2 ms, is nearly 0.3µ, which yields curves
comparable to the CCFs plotted in Figures 12.4 & 12.5. In the other panels, the
raw ACH counts are plotted in light gray. Note that due to the spike detection
algorithm, spikes occurring within a window of 1.2 ms after a detected spike are
ignored. Thus, the counts in the ACH start at a delay of 1.2 ms. The black
curves in Figure 13.4 show the smoothed counts, and the fitted curve is plotted
in medium gray. One can hardly distinguish the black smoothed curve and the
fitted ACF, which indicates that they agree closely and thus, that the theoretical
ACFs can describe well the shapes of the empirically derived ACHs.

A high variability of ACH shapes is taken into account simultaneously. While
for example unit 5 fires relatively regularly with dense packets, unit 6 shows
nearly no oscillatory behavior at all, which is indicated by the high difference in
the respective estimates of τ . For those ACHs without background, the param-
eter estimates of τ vary between τ̂5 = 4.0 ms and τ̂12 = 8.8 ms. The estimates
for the units with background are bigger and take values up to τ̂9 = 12.5 ms. All
estimates of τ stay in the range up to µ̂/2, most estimates being much smaller
and taking values around µ̂/4 (cf. Fig. 12.4 B).

The estimates of the packet intensity α vary between α̂10 = 1.4 and α̂4 = 4.4
spikes per packet. To make the background intensity comparable to α̂, β̂ is
multiplied by µ̂, yielding the expected number of spikes in the background in
one packet. The estimates of βµ stay below α̂ and take the values 1.8, 1.7 and
1.3 spikes for the units 2, 6 and 9, respectively.

The total estimated firing intensity, (α̂i + β̂iµ̂) · T/µ̂, is comparable to the
observed number of spikes in each unit (data not shown). However, the theoret-

2The variability of the parameters was estimated on the basis of their approximate variances
as derived by the nonlinear least squares algorithm implemented in R. The algorithm returns
a numerical estimate of the standard error of every parameter estimate on the basis of which
deviations from zero are evaluated.
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Figure 13.4: Theoretical ACFs fitted to experimental ACHs. Upper left: distribution of three
successive packets following a packet at zero with µ̂ = 25.3 ms and σ̂ = 7.2 ms. Panels 2-15:
Gray: normed ACHs obtained from stimulation condition 1 in the sample data set. Black:
Counts smoothed with a Gaussian kernel with a standard deviation of 1 ms. Medium gray:
theoretical ACF fitted to the ACH.
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ical firing intensity overestimates the number of spikes by about 10%. This can
be explained by the spike detection algorithm which ignores spikes that follow
within 1.2 ms after a detected spike. Thus, the deviation between the theoretical
firing intensity and the empirical number of spikes is not in conflict with the
model assumptions. However, one should note that the model assumes that a
relatively high number of spikes, most of them occurring within the packets, has
not been detected.

Residual analysis The last paragraph shows that all parameter estimates
meet the restrictions in Table 11.1. In addition, the assumption of indepen-
dence and normal distribution of the residuals should be investigated because it
provides a basis for the nonlinear least squares algorithm. Since the residuals
represent simple counts of coincidences, the normal distribution is highly likely
to approximate the distribution of the residuals. Nevertheless, the distribution
and the serial correlation of the residuals are investigated here. All units yield
comparable results, and the analysis of unit 5 is presented in Figure 13.5. Panel
A shows the distribution of the residuals between the fitted ACF and the em-
pirical ACH together with the normal distribution fitted to the data. One can
see that the empirical distribution agrees closely with the theoretical Gaussian
distribution. Panel B shows that the serial correlation of the residuals of unit
5 stay below 0.1 up to a lag of 50 ms and that they do not show an apparent
temporal structure. These results are in agreement with the model assumption
of independence and normal distribution of residuals.

Precision of parameter estimates In order to investigate the precision with
which the parameters can be estimated, two different procedures are performed.
First, every estimate is equipped with its standard deviation as estimated by
the algorithm (see footnote 2 on page 129). On the other hand, the parameter
estimates derived independently in the ACHs obtained from the odd and from
the even trials are compared. According to the two procedures with which the
variability of a parameter estimate is approximated, Figure 13.6 shows two ver-
tical lines for each parameter estimate. The left line indicates the interval of ±2
standard deviations around the global estimate, and the right line connects the
two estimates obtained in odd and even trials. One can see that both estimates
of the variability agree to a high degree. This allows a rough evaluation of the
precision with which a parameter can be estimated. However, one should keep in
mind that each of the two estimates is affected by different variables. On the one
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Figure 13.5: Analysis of residuals between the fitted ACF and the normed ACH of unit 5 in
stimulation condition 1 of the sample data set. A: Distribution of residuals and curve of normal
distribution. B: Serial correlation of residuals. The correlation between the vector of residuals
and the shifted vector is plotted for time lags between 1/32 ms and 50 ms.

hand, the standard deviation estimated by the algorithm can only approximate
the real variability because it is based on numerical approximations and on the-
oretical assumptions. On the other hand, the difference obtained between odd
and even trials represents only a simple estimate of the variability, and it may
also represent real variability in the parameters. For example, the high firing
rate in trial 15 is likely to be reflected in consistently higher estimates of α in
the odd trials. Nevertheless, Figure 13.6 indicates that the parameters µ and σ
as well as most of the τi are estimated with a precision higher than 1 ms. The
fact that the imprecision of τi is bigger for the units 2, 6 and 9 can be explained
by the additional parameter β. This can also be observed in the high variability
of α2, α6 and α9 in panel D. One should keep in mind that parameters that
cannot be estimated precisely enough can yield suboptimal fits. Therefore, the
following investigations will also take into account the precision with which the
parameters have been estimated.
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Figure 13.6: Variability of estimated parameters in the simultaneous fit of the normed ACHs
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ground firing intensities βj for the units 2, 6 and 9. D: Estimated packet intensities α1, . . . , α14.
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13.3 Prediction of CCHs

The results presented in the previous section indicate a good correspondence be-
tween the model and the experimentally obtained ACHs. However, to show that
the model provides an adequate description of the data set, also the CCFs have
to agree with the empirical CCHs. In this respect, one should note that all free
parameters have been estimated in section 13.2 and thus, that the theoretical
CCFs can be computed on the basis of the derived parameter estimates and do
not have to be fitted to the CCHs. The comparison between these predicted
CCFs and the empirical counts can show whether the model can predict interac-
tions between units on the basis of statistics of single spike trains. It can serve
to investigate whether the model assumption that packet onsets occur simulta-
neously across units yields an adequate description of the interaction and thus,
whether the model as a whole can provide a suitable representation of the data
set.

To investigate whether the CCHs can be predicted from the shapes of the
ACFs, the empirical CCHs are compared to the theoretical CCFs. The latter
are derived with equation (12.2) (and norming for discrete time spike trains)
by insertion of the parameters estimated from the ACHs. In addition, as men-
tioned in section 12.1.2, the height of each CCH is corrected with respect to the
variability in the firing rates. Since the firing rates of all units covary across
trials but change from the beginning to the end of every trial, the height of each
CCF is corrected on the basis of the rate estimation performed in section 13.1.3.
Mathematical details and effects of the rate correction can be found in section
13.3.3.

13.3.1 Good fits

Among all 91 CCHs, all 36 between the units 1,3,5,7,8,10,11 and 14 agree well
with the theoretically predicted CCFs. Three of these are shown in Figure 13.7.
One can see that the black smoothed curve and the theoretical CCFs plotted in
medium gray agree to a high degree. Obviously, many different shapes can be
represented very closely by the CCFs, including differences in the baseline level,
variability in the height and width of the central peak as well as asymmetry with
respect to zero lag.
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Figure 13.7: Comparison of empirically obtained CCHs and theoretically predicted CCFs for
three unit pairs within the group 1,3,5,7,8,10,11,14. Empirical counts are plotted in light gray.
The black curve shows counts smoothed with a Gaussian kernel with a standard deviation of
1 ms, and the theoretical CCF is plotted in medium gray.

13.3.2 Suboptimal fits

Among the remaining 55 unit pairs, not all predicted CCFs agree as nicely with
the empirical CCHs as those in Figure 13.7. As can be seen in panels A-D of
Figure 13.8, lack of agreement can have different forms.

First, the asymmetric shape of the central peak may not be described exactly
(e.g., panels A & D). Since the asymmetry is reflected in the parameter τ , esti-
mation imprecision of this parameter may cause such effects. This corresponds
to the finding that the variability of the estimate τ̂ is smaller for the units with
the good predictions, 1,3,5,7,8,10,11 and 14.

As a second effect, the height of the CCH can differ from the height of the
CCF (panels B & D). In fact, all CCHs involving unit 6 are higher than predicted,
suggesting that the rate variation is overestimated in this unit.

Finally, also the strength of oscillation can differ between the theoretical and
the empirical CCH, as can be observed in CCHs that include unit 13 (Fig. 13.8
C). This may be caused by a suboptimal estimation of σ, which is in disagreement
with the model assumption that σ is a global parameter. Therefore, differences
with respect to the strength of oscillation cannot be accounted for in the present
model but may therefore indicate possible modifications of the model and thus,
provide additional information about the temporal interaction of the units.

In spite of the fact that some CCHs between units of the ‘good’ group
{1,3,5,7,8,10,11,14} and the remaining units {2,4,6,9,12,13} show suboptimal
fits, other CCHs between the remaining units can be predicted relatively well.
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In particular, all CCHs between the units 2,9,12 and 13 agree well with the
theoretical predictions (Figs. 13.8 E & F).

In summary, many CCHs can be predicted well with the parameters estimated
only on the basis of spike characteristics of single units, while some CCHs differ
from the theoretically derived CCFs. In the sample data set, these differences
are usually small. Although some of these differences cannot be accounted for
in the model, in most cases, disagreement between the predicted CCF and the
empirical counts may be caused by suboptimal estimation of the parameters.
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Figure 13.8: Comparison of empirically obtained CCHs and theoretically predicted CCFs for
six unit pairs. Conventions as in Figure 13.7.
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13.3.3 Rate correction

To correct the height of each CCF with respect to the rate variation across
units, it is assumed that the firing rates of every unit change according to a step
function that is given by the black curve in the panel of Figure 13.3 which belongs
to this unit. Thus, the firing rate of each unit is assumed to be stable across
trials, and the firing rate within all trials is approximated by a step function
that jumps every 200 ms. This rather large distance between jump times was
chosen to counteract random variations in the number of spikes. However, the
abrupt changes of the step function might also overestimate the variability in
the firing rate. Therefore, the assumed step function can only provide a rough
approximation of the underlying changes in the firing rate.

For technical reasons, the packet intensity α and the background intensity β
are assumed to covary because background and packets cannot be distinguished
on the basis of raw spike events. The overall firing intensity is denoted by λ.
The correction factor is computed according to the derivation in section 12.1.2.
If the intensity of unit k, λk, can be described by a step function with equidistant
jumps and values λ1,k, . . . λmT ,k, the estimate of the intensity λk that results from
the fit of the ACHs is given by

λ̂k =

√√√√mT∑
i=1

λ̂2
i,k.

Thus, the estimate λ̂k1λ̂k2 for the CCF in equation (12.2) is computed as

λ̂k1λ̂k2 =

√√√√mT∑
i=1

λ̂2
i,k1

mT∑
i=1

λ̂2
i,k2

.

However, the estimated factor in the CCF should instead be

mT∑
i=1

λ̂i,k1λ̂i,k2 ,

which is smaller or equal to the previous term according to the Cauchy-Schwartz
inequality. To correct for this effect, the estimated firing rates λ̂i,k from section
13.1.3 are used to compute the following correction term for each CCF:

ck1k2 =

∑mT

i=1 λ̂i,k1λ̂i,k2√∑mT

i=1 λ̂2
i,k1

∑mT

i=1 λ̂2
i,k2

. (13.1)
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The correction factors resulting from equation (13.1) are plotted in Figure 13.9
A. As one can see, the correction reduces the height of a CCF only by about 5%
in the mean. However, this effect can be crucial for the agreement between the
predicted CCF and the empirical CCH, as can be seen in panels B & C. The
black curve shows the smoothed CCH between the units 4 and 5. In panel B, the
uncorrected CCF is added in medium gray. The difference between the two curves
is obvious, and the uncorrected height evokes the impression that the theoretical
curve might be shifted to the left. However, after a simple multiplication with
the correction factor c45 =0.89, the theoretical curve matches nicely the empirical
CCH (panel C). This effect can be observed in most of the CCHs.
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Figure 13.9: Effect of rate correction on the agreement between the theoretically predicted CCF
and the empirically derived CCH. A: Histogram of rate correction factors derived with equation
(13.1) for all 91 unit pairs in stimulation condition 1 of the sample data set. B: Smoothed CCH
between units 4 and 5 (black) and theoretical CCF (gray) before rate correction. C: Gray curve
shows theoretical CCF after rate correction.
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13.4 Simulation of spike trains

In the previous sections, application of the present model to experimentally de-
rived ACHs and CCHs showed that the model can be useful for the description
and quantification of several properties concerning the shape of both ACHs and
CCHs. Furthermore, the data were consistent with the model assumptions in so
far as CCHs, i.e., pairwise interactions across units, could be predicted on the
basis of parameters estimated from the ACHs, i.e., from single spike trains.

In addition, it remains to be investigated whether the model can also be used
to represent and simulate raw spike trains. Section 13.4.1 shows an example
in which spike trains recorded experimentally are compared to artificial data
obtained by simulation. Closely related to the issue whether raw spike trains
produced by the model are comparable to experimentally obtained spike times,
the variability of coincidence counts in ACHs and CCHs represents the final
parameter mentioned in chapter 10 with which a principal feature of an ACH or
a CCH can be described. The question whether the variability of counts can be
represented and reproduced in the present model is addressed in section 13.4.2.

13.4.1 Spike trains

In this section, spike trains that originate in processes which conform with the
model assumptions are compared to experimentally recorded spike trains. To
this end, parallel point processes are simulated in two steps: First, the POP
is produced by simulation of a random walk with independent and N (µ, σ2)-
distributed increments. For the given POP, parallel, independent Poisson pro-
cesses with firing intensities as in equation (11.2) are generated. In the last step,
the point processes in continuous time are converted into spike trains in discrete
time with time resolution δ by

S(j) = I{X([j,j+δ))≥1}, j = 0, δ, . . . , δ · (T − δ)/δ.

Figure 13.10 A shows real spike trains of the units 5, 8 and 11 recorded in
stimulation condition 1. As one can see, every spike train consists of reoccurring
packets with 1-5 spikes, IPIs ranging between 10 and 40 ms. Although packets
occur roughly at the same time across the three units, packet times are not
obvious only on the basis of the raw spike trains. The same behavior can be
observed in panel B. It shows artificial spike trains S5, S8, S11 simulated with the
parameters µ = 25.3, σ = 7.2, α5 = 3.7, α8 = 3.4, α11 = 2.2, τ5 = 4.0, τ8 = 4.9,
τ11 = 4.3, and β5 = β8 = β11 = 0 in the original time resolution of δ = 1/32 ms.
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To account for the spike detection algorithm in which spikes occurring up to 1.2
ms after a detected spike are ignored, such spikes which would be ignored by
the algorithm are plotted only in light gray. The simulated spike trains show a
pattern very similar to the recorded spike trains: Packets reoccur with a variable
IPI length, and packet onset times are hard to identify only on the basis of
the spike trains. Also the variability in the number of spikes across packets is
comparable to the one in the recorded spike trains.

Thus, the spike train model can not only describe special interval statistics
such as ACHs and CCHs but can also be used to generate spike trains that are
comparable to those recorded experimentally. It should be noted, however, that
the conclusions concerning Figure 13.10 are only based on visual examination.
Comparability in this respect does not imply that the present model can describe
the recorded spike trains in every aspect, including all inter spike interval statis-
tics or the variability of spike numbers across different packets. However, spike
trains simulated with the present model can be used to investigate any of these
aspects. One of the most interesting issues concerns the variability of counts of
coincidences in ACHs and CCHs. This is investigated in the following section.
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Figure 13.10: Comparison of recorded and simulated spike trains of the units 5, 8 and 11. A:
Spikes obtained experimentally. B: Spikes obtained by simulation according to the model with
the original time resolution of δ = 1/32 ms. Spikes following an earlier spike more closely than
1.2 ms are plotted in light gray.
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13.4.2 Variability of counts in ACHs and CCHs

In this section, experimentally obtained ACHs and CCHs are compared to ACHs
and CCHs that result from simulated spike trains obtained from point processes
that comply with the model assumptions. The most important issue in this
respect concerns the investigation of whether the variability of coincidence counts
is accounted for in the present model. In other words, the parameters α, β, τ ,
µ and σ are sufficient to describe the theoretical AC- and CC-functions that
are obtained if ideal spike trains of infinite length were recorded. However,
it is not clear whether such spike trains which are simulated in the original
time resolution and with the given length and number of trials also result in a
comparable variability of counts around the theoretical functions.

To investigate whether the variability of coincidence counts is accounted for in
the present model, spike trains are simulated with the same time resolution and
for the same duration as in the real data. For the simulated spike trains, ACHs
and CCHs are computed. To allow a direct comparison, the units illustrated
in Figures 13.4 & 13.7, which showed a high correspondence with the model
assumptions, are chosen here. The three panels in the first row of Figure 13.11
show ACHs of spike trains simulated with the parameters of the units 5, 8 and
11. The comparison with Figure 13.4 shows that the variability of counts agrees
closely with the one obtained from experimentally recorded spike trains. The
same holds true for the CCHs between the unit pairs 5-8, 10-11 and 11-14 in the
second row, which are highly comparable to the experimentally obtained CCHs
shown in Figure 13.7.

For quantification purposes, the sum of squares of residuals of the raw counts
and the theoretical functions are shown in Table 13.1 for every graph in Figure
13.11 and for the respective ACHs and CCHs obtained from the sample data set.
One can see from the sums of squares that for every comparison, the variability
of counts obtained in the artificial spike trains agrees closely with the variability
obtained in the experimental data set. Thus, the present model can not only
describe the theoretical shape of both ACHs and CCHs that is obtained for
theoretical spike trains of infinite length, but it can also be used to simulate
spike trains such that the variability of coincidence counts in ACHs and CCHs
is replicated accurately.

In conclusion, chapters 12 and 13 show that the model presented in chapter
11 meets the requirements necessary for the description and representation of
experimental data in the sample data set. The model can be used to describe
and quantify various principal properties of ACHs and CCHs, and changes in a
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Figure 13.11: Normed ACHs and CCHs derived from simulated spike trains that comply with
the model assumptions and which have the same parameters as estimated in section 13.2 and
the same time resolution and length of the analysis window as in the original data set. Plotting
conventions as in Figures 13.4 & 13.7.

ACHs CCHs
unit exp sim

5 4.12 4.07
8 3.44 3.39
11 1.54 1.50

unit pair exp sim
5 - 8 8.33 7.13

10 - 11 1.78 1.80
11 - 14 3.29 3.28

Table 13.1: Sums of squares of residuals (·105) between raw coincidence counts and theoretical
functions. Left: Comparison of the theoretical ACFs with the experimentally obtained ACHs
(column entitled ‘exp’) and with ACHs derived by simulation (column entitled ‘sim’) for the
units 5, 8 and 11 (upper row in Fig. 13.11). Right: Comparison of theoretical CCFs with
experimentally obtained CCHs (‘exp’) and CCHs derived with simulations (‘sim’) for the unit
pairs 5-8, 10-11 and 11-14 (bottom row in Fig. 13.11).
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few parameters can account for a high variability in the shape of CCHs. This
variability is not arbitrary but follows closely the variability of shapes found in
experimental data. Moreover, the model can not only in theory provide an expla-
nation for different shapes, but it can also provide a framework in which several
statistics can be interpreted and related in a consistent manner. Among those,
single spike trains, but also the variability of counts in both ACHs and CCHs
as well as the relation between ACHs of individual units and CCHs representing
pairwise interactions have been investigated. Thus, also the predictions that
can be derived from the model assumptions agree closely with experimental data.

As a last step, one should note that the present spike train model was de-
veloped to provide a mechanism that can explain the origin of phase offsets in
central CCH peaks. Since a phase offset that differs from zero can only originate
in an asymmetric central peak, the part of the model that deals with sources of
asymmetry is of special importance here. Chapter 14 will investigate whether
the asymmetry that is taken into account by the present model can also provide
an explanation for the existence of non-zero phase offsets as discussed in Part I,
as well as for their linear structure, which has been investigated in Part II.
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Chapter 14

What then is a phase offset?

Recapitulation Before discussing the relation to the linear structure of phase
offsets, the most important results of the Parts I and II will be sketched again
shortly. In Part I, predominant spiking delays – so-called ‘phase offsets’ – between
pairs of units were estimated by fitting a cosine function to the central peak of the
respective CCH. The point at which this cosine function reached its maximum
was taken as the estimated phase offset between the two units in question. Phase
offsets were determined for a number of unit pairs in the sample data set and were
found to have absolute values smaller than 2 milliseconds. These phase offsets
could furthermore be estimated with high precision (i.e., < 1 ms), indicating that
the deviation from zero of numerous phase offsets was unlikely to be caused by
measurement error. Moreover, phase offsets were found to vary systematically
with the stimulation condition. These results suggested that phase offsets might
be related to information processing.

Therefore, the structure of phase offsets was investigated in Part II. In partic-
ular, the idea that phase offsets represent predominant spiking delays motivated
the search for an additive, linear structure inherent in a set of phase offsets. By
application of an analysis-of-variance approach, experimentally obtained phase
offsets were found to be additive to a high degree, i.e., for any triplet of units
i, j, k, the sum of phase offsets ϕij + ϕjk corresponded approximately to the
direct measurement ϕik. This allowed an (n − 1)-dimensional representation of
all units on the time axis in which pairwise distances between units represent
measured phase offsets and which, thus, indicates the ‘predominant firing order’
of all units.

The positions of the units 1, 3, 5, 7, 8, 10, 11, and 14 (stimulation condition
1) on the time axis that were derived in Part II are plotted in Figure 14.1 A

145
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(cf. Fig. 8.1 A). The question addressed here is the following: Can the spike train
model from chapters 11 and 12 explain how small phase offsets arise between spike
train pairs? And if so, why should phase offsets be additive? In other words:
What can the spike train model tell us about the relevance of the linear structure
of phase offsets for cortical information processing?
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Figure 14.1: Linear configurations obtained from phase offsets and from the spike train model
in stimulation condition 1 from the sample data set. A: Linear configuration of units 1, 3, 5,
7, 8, 10, 11 and 14 on the time axis as derived in Part II. B: Exponentially decaying firing
intensities after packet onset according to the model assumptions for the units 5 (black) and
10 (gray). C: The parameter estimates of τi for all i ∈ {1, 3, 5, 7, 8, 10, 11, 14} as derived in
section 13.2.

Phase offsets in the spike train model As discussed earlier, a non-zero
phase offset can only be caused by an asymmetric central peak. Thus, in terms of
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the present spike train model, only the parameter τ can be relevant for generating
phase offsets that differ from zero. As shown in section 12.2.2.3, an asymmetric
peak in the CCH of two units i and j is reflected in different parameters τi and τj.
More explicitly, at any height of the central peak, the relation between the width
on the right and the width on the left hand side, sr/sl, can be approximated
by the quotient τj/τi (cf. Fig. 12.5 and p. 120). Thus, if τi < τj, the peak is
broader on the right than on the left hand side. As a consequence, a cosine
fitted to the central peak is shifted slightly to the right, i.e., to the side with
the bigger τ , producing a positive phase offset (Figs. 14.2 A & B). This effect
takes place in spite of the fact that the maximal count of coincidences is at delay
zero. This is because the edges contribute more information about the location
of the peak than the maximum and because the counts at zero are excluded
anyway to eliminate artifacts in the recording (cf. Fig. capt. 3.2). As a result,
the phase offset extracted from a cosine function should be directly connected
to the difference τj − τi. Figure 14.2 C illustrates this relation for the parameter
set σ = 0.28µ and different combinations of τ1 and τ2 by showing the lines where
ϕ is constant. The connection between ϕ and τ2 − τ1 is nonlinear for τ1 6= τ2.
However, the two quantities are closely related in two respects: First, the sign
of ϕ equals the sign of τj − τi, and second, for constant τ1 + τ2, |ϕ| grows with
|τ2 − τ1|.
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Figure 14.2: Phase offsets of cosine functions fitted to CCFs (µ = 25.3 ms, σ = 7 ms). A, B:
CCF with τ1 = 4 ms, τ2 = 6 ms and cosine function fitted to the central part; |`| ≤ 10 ms.
Since τ1 < τ2, the phase ϕ12 is positive. C: Phase estimates ϕ in milliseconds that result from
fitting a cosine function to the central peak as shown in A & B.
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In addition, a closer look at the raw spike trains supports the idea that the
parameter τi should be related to the position of unit k on the time axis as
extracted with the phase offsets estimated with a cosine function. As pointed
out in section 11.2, τ represents the expected delay between a packet onset and
the time of a spike in this packet. As a result, the expected time of a spike in
unit k relative to packet onset is τk. This is shown exemplarily in Figure 14.1
B for the units 5 and 10 from the sample data set. The parameter τ5 ≈ 4 ms
indicates the center of mass of 1/τ5 · e−t/τ5 , and τ10 ≈ 7 ms indicates the center
of mass of 1/τ10 · e−t/τ10 . As a result, in spite of the fact that the packet onset
occurs simultaneously for both units, unit 5 tends to fire earlier than unit 10
because the spikes tend to be closer to the packet onset than the spikes of unit
10. This interpretation of the parameter τ also suggests that the preferred delay
between two units i and j should be directly related to the difference τj − τi.

Linear Structure By straightforward assignment of one real number τi to
every unit i, pairwise differences between these real numbers are necessarily
additive. Thus, the described spike train model is qualitatively in agreement
with the findings in the Parts I and II.

To investigate this relation in the sample data set, the estimates of τ are
plotted for the units 1, 3, 5, 7, 8, 10, 11, and 14 in Figure 14.1 C. This group
of units is chosen for the comparison because the estimated variability of the
parameter estimates is small and because their theoretical CCFs agree with the
empirical CCHs (cf. sect. 13.3.1). One can see that for the units 5, 8, 10, 11 and
14, the order on the time axis in panel A is exactly represented by the order of
the parameters τ in panel C, i.e., a unit has a bigger τ than another unit if and
only if its temporal position derived from the phase offsets is shifted to the right
(i.e., to a later position) with respect to the other unit. As mentioned above, the
exact distances between the points cannot be replicated with the parameters τ
due to the qualitative difference between the cosine function and the CCF peak.
However, the order of the units remains the same.

In contrast, the positions of the units 1, 3 and 7 do not agree perfectly across
the panels A and C. In particular, the estimates τ1, τ3 and τ7 are smaller than
is suggested by the position on the time axis in panel A. Since the model has
been found to agree closely with many statistics extracted from the sample data
set particularly for this set of units, deviations from the model assumptions are
unlikely to have caused the disagreement with the unit positions extracted with
the cosine fit. Therefore, deviations from the linear structure in Figure 14.1 A are
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more likely to be caused by a suboptimal estimation of the parameters τ . This is a
plausible explanation because these parameters have only been estimated on the
basis of the ACHs, which may not provide a data basis for a sufficiently precise
estimation of the parameters. In addition, this explanation is also suggested by
the goodness of fit of the relevant CCFs. Although, as mentioned in section
13.3.1, all predicted CCFs among the units 1, 3, 5, 7, 8, 10, 11, and 14 agree
relatively well with the empirical CCHs, only those among the units 5, 8, 10,
11, and 14 agree perfectly with the smoothed function of the empirical counts in
the center of the CCH (cf. Figs. 14.3 A & B). In contrast, those CCHs involving
the units 1, 3 and 7 show a suboptimal agreement with respect to the central
peak (Figs. 14.3 C & D). In addition, the deeper valleys and higher slopes of
the CCF in comparison to the CCH that can be seen on the left of panel C and
on the right of panel D indicate that the parameter estimates of τ3 and τ7 are
too small. The same holds true for all other CCHs involving the units 1, 3 and
7. This suggests that the disagreement between the positions of the units 1, 3
and 7 derived from the estimated τi in the spike train model and the positions
obtained from the cosine fit may have been caused by suboptimal estimation of
the parameters τ1, τ3 and τ7.

One should, however, keep in mind that the relation between the parameters
τ and the positions on the time axis derived with the cosine fit is not straight-
forward. The cosine function was chosen more or less arbitrarily to comply with
the oscillatory shape of the CCH. One should consider replacing the cosine with
a two-sided exponential function when fitting CCHs that comply with the spike
train model. On the other hand, the temporal positions extracted from the cosine
fit can still be useful for improving the estimates of the parameter τ .

Implications for coding mechanisms In the introduction it was hypothe-
sized that non-zero phase offsets might provide information additional to coin-
cident firing by introducing temporal structure on an extremely fine time scale.
As shown in Part II, such a structure can assign to every unit a very precise
position on the time axis, which is interpreted to indicate the preferred time at
which this unit fires action potentials relative to the other units in the group.

This structure should, however, not be confounded with the proposed mech-
anism of a temporal order code in which information is encoded in the relative
temporal order of spikes of different neurons in a population (cf. App. A.1, p.
158). In contrast, the spike train model from Part III suggests that the tempo-
ral order of firing is a phenomenon that can only become visible when delayed
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Figure 14.3: Optimal and suboptimal fits of the central CCH peak. Graphs show raw CCH
counts (light gray), smoothed counts (black) and predicted CCF (medium gray) for unit pairs
with good fits (A: 5-11; B: 8-10) and with less optimal fits (C: 3-5; D: 5-7) around the central
peak of the CCH, i.e., in the interval [-10 ms, 10 ms] in which the cosine function was fitted.

spike pairs are summed across relatively big analysis windows because ‘preferred
delays’ simply result from the mean delay between a packet onset and the time
of a spike, summed across many packets, and can thus not be observed in single
packets.

Essentially, the present spike train model suggests that a unit that has the
tendency to fire its spikes more densely at packet onset than the other units is
assigned an earlier position on the time axis. Another unit whose spikes are more
distributed and less locked to the global oscillation (or to the packet onsets) is
assigned a later temporal position. Further implications as well as limitations of
the model are discussed in chapter 15.



Chapter 15

Discussion and outlook

Summary In Part III, a spike train model was presented with which multiple
spike trains with a common oscillatory rhythm can be analyzed and with which
their ACHs and CCHs can be quantified and interpreted. The basic assumptions
are derived from common observations in experimental data that have been ver-
balized qualitatively (Engel et al., 1992; Singer and Gray, 1995). In contrast to
earlier approaches in which CCH features have been measured descriptively (e.g.,
Aertsen and Gerstein, 1985; Melssen and Epping, 1987; König, 1994; Nowak et
al., 1995) or in which properties of CCHs were compared to independent renewal
processes (Abeles, 1982a; Aertsen and Gerstein, 1985), the model presented here
grasps and quantifies important features inherent in coincident oscillatory spiking
activity, and all parameters have a direct interpretation.

The present model basically contains two different components: First, a
packet onset process produces independent and normally distributed inter packet
intervals (IPIs) and determines the simultaneous packet onset times of all units.
With this mechanism, a pseudo-oscillation is introduced in which the preferred
oscillation period is reflected in the mean of the normal distribution, µ, and in
which the variance of IPIs is given by σ2. Second, the spike intensities in every
unit are assumed to decay exponentially from the times of the packet onsets. In
particular, different units may have different decay constants τ , and accordingly,
the spikes of some units may on average occur more closely to the packet onset
than the spikes of other units.

With the presented model, many different theoretical shapes of ACHs and
CCHs can be explained. Furthermore, the model allows the approximation of
essential quantities in the CCHs such as the height of the peak or the baseline
level. For example, µ roughly determines the position of the first side peak,
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and the speed of decay of the coincidence counts towards baseline depends on
σ. More importantly, both the height and the width of the central peak relative
to baseline vary with τ , and the CCH of two units i and j with different decay
constants τi and τj shows an asymmetric central peak. In particular, on the side
with the smaller τ , the counts decay faster, the valley is deeper and the peak is
narrower.

The fact that the model is based only on a small number of parameters
allows the investigation of whether the model assumptions can be considered
plausible. To this end, the parameters were estimated by fitting theoretical
auto correlation functions derived with the spike train model to the empirically
observed ACHs. The parameters obtained with this procedure were used to
predict the shape of the CCHs under the model assumption that packet onsets
are synchronized across units. Most of the CCHs obtained with this procedure
were in high agreement with the experimentally obtained CCHs. In particular,
differences of the parameter estimates τ led to the same combination of features
in asymmetric central peaks that can be obtained theoretically.

Thus, the model provides a method with which inferences about pairwise
interactions can be made on the basis of single spike trains. In this respect,
not only a high agreement between the predicted CCHs and the observed CCHs
can provide useful conclusions about pairwise interactions, but also disagreement
between the prediction and the observation can indicate the existence of addi-
tional mechanisms and can motivate plausible model extensions. In particular,
the assumptions of independence and normal distribution of IPIs are sufficiently
general to allow the direct incorporation of several model extensions without
further technical effort.

Model extensions could involve modifications concerning the perfect coinci-
dence of the packet onsets across units. In the sample data set, unit 13 showed
less prominent oscillatory activity in the CCHs, i.e., in the interactions with
other units than was predicted on the basis of the ACH. In this case, the packet
onsets of this unit might only be partially locked to the global packet onset pro-
cess. In addition, also the exponentially decaying function that describes the
firing intensity within packets might be a candidate for modifications. In chap-
ter 13, mismatches between the predicted and the empirical CCH were mostly
assumed to result from a suboptimal estimation of the parameters τ . However,
they might also result from a disagreement between the model assumption of
exponential decay and the firing intensity within packets.
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Future investigations should also approach the question whether the mis-
match between the empirical observations and the theoretical predictions of the
model can indeed be explained by deficiencies in the parameter estimation. To
this end, it should be studied whether different parameter estimates of τ can
produce a better agreement between the model and the empirical CCH counts
in the cases where this agreement is not yet given. In this respect, the fitting
procedure in which only the ACHs were used to estimate the parameters should
be extended because the ACHs may be insufficient to determine the parameter
estimates precisely enough. One major problem is that the counts in the center
of the ACH are missing due to the spike detection algorithm. Thus, in order
to estimate the parameters more precisely, also the CCHs could be taken into
account.

Another possibility to improve the estimation of the parameters is to use the
linear temporal structure of the units as derived in Part II. As discussed in the
previous chapter, the position of unit i on the time axis as derived on the basis
of pairwise phase offsets should correspond to the size of the parameter τi in the
spike train model. Therefore, the position of unit i in the linear configuration
could help to improve the estimation of the parameter τi.

Implications The direct connection between the parameters τi and the tem-
poral positions of the units on the time axis can provide a basis for further
interpretation of phase offsets and their additive structure. In the spike train
model, a positive phase offset in the CCH between units i and j results from the
mechanism that the spikes of unit i tend to be more densely clustered at packet
onset, whereas the spikes of unit j tend to be distributed more regularly across
the oscillation cycle. As a consequence, unit j is interpreted to fire its spikes
later than unit i. However, this mechanism works only on average, i.e., when
summing up spikes across large analysis windows. In single oscillation cycles,
the only coordination that is assumed in the model is the simultaneous start of
the packets. Single spikes are not assumed to be coordinated and thus, observ-
able spike delays between units show a high variability across different oscillation
cycles.

The impact of the described spike train model on the interpretation of phase
offsets and their linear structure depends on whether similar mechanisms can be
observed in the activity of single neurons. As described in Appendix A.3, the
data set analyzed here contains multi-unit activity, i.e., every recorded channel
incorporates the firing activity of 1-5 single neurons. More precise temporal
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properties such as a temporal order code (Hopfield, 1995; Van Rullen et al.,
1998) might be hidden when the activity of several single units is merged. It is
also possible that the tendency of a multi unit to fire spikes more or less locked to
packet onset depends on the agreement between the neurons in the composition.
For example, if all single neurons respond in a similar way to specific stimulus
properties, the spikes in the multi unit might occur closer together than if the
units respond in different ways to the same stimulus property. In addition, the
tendency to fire spikes more or less locked to the packet onset might also depend
on the level of activation (Hopfield, 1995; König et al., 1995; Traub et al., 1997;
Wennekers and Palm, 2000).

Another possible connection of the presented model to recently proposed
coding mechanisms may be found in the work of Hopfield and Brody (2001),
who showed that an input pattern of different decaying currents with different
speeds of decay can evoke synchronous activity in the successive neurons. A
complete investigation of the degree to which the model presented here may
be related to information processing is beyond the scope of the present work.
However, the spike train model can be used as a framework for the analysis and
interpretation of oscillatory spiking activity.

In conclusion, the present model provides a method with which oscillatory
CCHs can be described and quantified and with which their commonly observed
features can be related to spike train characteristics. The model provides an
interpretation of important temporal properties such as near-zero phase offsets
and their linear temporal structure. It can be used to analyze temporal relations
between multiple spike trains recorded in parallel and can thus provide a way to
reduce the complexity in a highly dimensional data set. As a consequence, it can
represent a powerful tool in the analysis of the temporal structure in neuronal
spiking activity.



Appendix A

Neurophysiological Background

A.1 Neuronal information processing

The brain Neuroscientists from various disciplines are accumulating evidence
about the mechanisms of complex information processing in the brain. It is
commonly agreed that information is encoded and processed by the electric dis-
charges of special nerve cells, the neurons. In one single neuron, electric inputs
are collected at the dendrites and propagate to the cell body where they are
integrated. If the inputs are strong enough to lift the membrane potential above
a threshold, the neuron emits an action potential (spike), i.e. the membrane
potential rises rapidly, which is followed after about 1 ms by a period of hyper-
polarization, the refractory period. The emitted spike is propagated along the
axon to the synapses where the release of neurotransmitter evokes a depolar-
ization of the membrane potential at the dendrites of successive neurons (for a
detailed description see, e.g., Braitenberg and Schüz, 1991; Kandel et al., 1996).

The significance of this electric communication among neurons has to be
interpreted with respect to the connectivity structure. The human neocortex
consists of about 1014 neurons each of which receives about 104 inputs from
other cells (Larkman, 1991) (high convergence) and projects this information to
about the same number of units (high divergence). Those connections can be
feed-forward, feedback as well as intrinsic (DeYoe and Van Essen, 1988).

Coding: Single neurons or assemblies? There is an ongoing debate on
how this highly connective structure may be efficiently used in fast and precise
coding mechanisms. One of the first ideas was formulated by Barlow (1972) who

155



156 APPENDIX A. NEUROPHYSIOLOGICAL BACKGROUND

proposed that simple feature-detecting neurons from lower brain areas converge
onto specific cells that represent more and more complex feature combinations.
Information was assumed to be integrated and propagated by an enhancement
of the spiking (‘firing’) rates of the respective neurons. On the highest level, so-
called ‘cardinal cells’ were hypothesized to increase their firing rates in response
to entire objects. This place code theory led to insights into fundamental cortical
mechanisms. Simple feature detectors have been found in primary sensory areas
such as cells with selective orientation or color preferences in primary visual
cortex (Hubel and Wiesel, 1962). Additionally, there is evidence for the existence
of neurons responding to more complex features such as faces (Perrett et al.,
1982). On higher levels, localized lesions in different brain areas cause specific
behavioral deficiencies, indicating specialized contributions of different areas such
as perception or motor control. Many of these areas are in turn organized in
systematic maps such that nearby objects are represented in adjacent cortical
structures (see e.g. Kandel et al., 1996).

Barlow’s so-called ‘single-neuron doctrine’ was subject to criticism (von der
Malsburg, 1981; Engel et al., 1992; Singer, 1993). It was argued that the number
of neurons is too small to allow for the coding of every combination of features
and that numerous cells would have to be reserved for new objects. Also, apart
from a few exceptions, no evidence had been found for highly specialized cells,
which then in turn would not be capable of coordinating complex responses that
are represented in the activity of multiple neurons. Therefore, it was proposed
that the combined activity of assemblies of neurons may be used to represent
complex objects (Hebb, 1949; von der Malsburg, 1981; Abeles, 1982a; Gerstein
and Aertsen, 1989). With this mechanism, the combinatorial problem can be
solved because assemblies can group in a dynamical way, allowing each neuron
to participate at different times in different assemblies (Singer, 1993).

The binding problem and synchrony The use of assembly activity requires
mechanisms with which co-active neurons can be identified and related. Addi-
tionally, assemblies that represent different but overlapping features need to be
reliably distinguished to allow execution of complex tasks. This issue is com-
monly referred to as the binding problem (Gray et al., 1992). It could not be
solved if assemblies were formed on the basis of a coordinated increase in firing
rates because this would not allow separating overlapping assemblies and would
thus give rise to ambiguities. Furthermore, psychophysical studies showed that
complex pattern recognition can be achieved as quickly as 80-100 ms after stim-
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ulus presentation (Perrett et al., 1982; Thorpe et al., 1996), leaving too little
time per processing stage to allow detecting a firing rate increase. An alterna-
tive approach, reviving the Hebbian assumption that coincident activity leads
to a strengthening of connections between neurons (Hebb, 1949), proposed that
assemblies could be defined by the temporal correlation of discharges (von der
Malsburg, 1981; Abeles, 1982a; Singer, 1993). Neurons were hypothesized to syn-
chronize their responses on a fine time scale. This would allow fast processing as
well as coexistence and separability of different cell assemblies.

The mechanisms required for the establishment and propagation of precise
synchronous spiking activity have been found in the cortex. In the first place,
neuronal discharges can occur with high temporal precision (Reinagel and Reid,
2000, 2002). Both spike patterns and membrane potential changes can replicate
with a precision of about 1 ms (Mainen and Sejnowski, 1995; Ikegaya et al., 2004).
In addition, synchronous firing across groups of neurons as well as temporal
patterns in single neurons and pairs of cells was found to occur with a precision
of up to a few ms (Strehler and Lestienne, 1988; Lestienne, 1996; Riehle et al.,
1997). Second, neurons were found to be able to act as coincidence detectors, i.e.,
to identify and react to synchronous assembly activity (Abeles, 1982b; König et
al., 1996). Moreover, the assumption that precisely synchronized discharges can
propagate through the cortex (a concept called ‘synfire chain’ (Abeles, 1982a))
has found support on the theoretical basis (Diesmann et al., 1999) as well as
in experimental studies (Abeles et al., 1993; Lindsey et al., 1997; Prut et al.,
1998; Ikegaya et al., 2004). Finally, cells were found to form dynamically into
assemblies of synchronous firing activity, depending on the nature of the task
(Vaadia et al., 1995; Grün et al., 2002b), even in the context of higher level
functions such as expectation (Riehle et al., 1997).

Oscillation In addition to synchronous spiking activity, another phenomenon
seems to play an important role in the formation of cell assemblies: Especially in
the visual cortex of the cat, synchronous firing of multiple neurons is associated
with coordinated rhythmic discharges (Gray and Singer, 1989; Engel et al., 1992;
Gray et al., 1992). Due to its stimulus specific occurrence (Gray et al., 1989;
Kreiter and Singer, 1996), synchronous oscillation has been proposed to serve as
a binding mechanism for spatially separate groups of neurons (Gray and Singer,
1989), allowing cells to dynamically combine into different assemblies by changing
their phase relationships (Eckhorn et al., 1988). Going one step further, it has
been argued that information might be encoded in the temporal order of spikes
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of different neurons (Traub et al., 1997; Van Rullen et al., 1998; Delorme and
Thorpe, 2001; Delorme, 2003).

Connection: Synchrony and temporal order The two concepts of coding
by temporal order and coding by synchronous activity are linked by various con-
junctions. First, coincidence detection can be used as a decoding mechanism for
precise temporal delays in combination with delay lines (Jeffress, 1948; Carr and
Konishi, 1990). Also, in the concept of synfire chains, synchronous activity that
propagates through the network produces precise firing patterns across different
assemblies (Abeles, 1991). Furthermore, on the temporal micro-level, coincident
activity can only be defined with respect to a maximal jitter (Grün et al., 1999)
in which spikes may be ordered systematically, such that temporal order could
be hidden within activity that is classified as coincident. Similarly, as mentioned
before, small phase offsets in oscillatory activity can either be interpreted as vir-
tual zero delays or investigated more closely for systematic variations, which is
the principal intention of the present work.

A.2 ‘CCH’ - Terminology

The term ‘cross correlation histogram’ (CCH) is used in accordance with the
neurophysiological literature and does not precisely match the mathematical def-
inition. Mathematically, the term ‘cross covariance’ would be more appropriate.
For two time series f(t) and g(t) in continuous time, the cross covariance CCV
at time lag τ is described as ∫

f(t)g(t + τ)dt,

which simplifies directly to equation (1.1) for the discrete time case, with f = S1,
g = S2 and τ ∈ LL

δ . The cross covariance is only identical to the cross correlation
if both f and g have mean zero and variance 1. Although this does not hold
for spike trains in general, the term ‘cross correlation’, or ‘cross correlogram’, is
wide-spread. On the other hand, the terminology in the literature is not strict,
and the same name can refer to different quantities. In this work, ‘CCH’ always
denotes an empirical quantity computed between two discrete time spike trains
as defined in equation (1.1). In Part III, empirical CCHs are distinguished from
the theoretically derived ‘cross correlation function’ (‘CCF’).
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A.3 The sample data set

To show the practical relevance of the proposed analysis methods, they are
demonstrated exemplarily by application to a sample data set obtained from
electrophysiological recordings from the visual cortex of an anesthetized cat un-
der visual stimulation. Multi-unit responses that contain the activity of about
1-5 single neurons (König et al., 1995) were recorded extra-cellularly and in par-
allel at each of 16 electrodes (channels/ units). Fourteen electrodes showed good
responses and were selected for the analysis. The original time resolution was
given by the sampling frequency of 1/32 ms. Figure A.1 shows an exemplary
raster plot of five spike trains recorded in parallel.

Responses were recorded under visual stimulation with six different stimuli
(single and conflicting moving bars, Fig. A.2). Each stimulus was presented 20
times, its presentation randomized within the total 120 = 6 · 20 trials of all
stimulation conditions. Each trial lasted for 6 seconds, including spontaneous
activity and responses to stimulus onset and stimulus end, but only two seconds
in the middle of the trial were chosen for the analysis (Fig. A.3). This time
window is characterized by the highest rate responses, and most spike trains
showed ‘repetitive burst discharges’ (Singer and Gray, 1995).
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Figure A.1: Raster plot of spike trains recorded simultaneously in 5 electrodes.
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Figure A.2: The six different visual stimuli in the sample data set. Bars (thick black lines)
moved into the directions indicated by arrows. Conflicting bars moved simultaneously, crossing
at the receptive field (RF). Positions of bars in the center of the RF are indicated by gray bars.
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Figure A.3: The time course of a trial. A total duration of 6 seconds was recorded, including
1 s spontaneous activity at the beginning and end of the trial and 4 s stimulus presentation.
The time when the stimulus crossed the RF and evoked high rate responses (2250-4250) was
chosen as the analysis window.
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Notation

general
S, S1, S2, . . . spike trains
T length of spike train in ms
δ time resolution / bin size in ms
L maximal analyzed spike delay in CCH
N number of data points in a CCH
Z, Zij standard normally distributed random variables
ϕ, ϕij phase offset in a CCH (between units i and j)
N (µ, σ2) normal distribution with mean µ and variance σ2

Part I
A, ω amplitude and oscillation frequency of a cosine function
β0 additive constant of a cosine function
s shift of a cosine in percent of the period
f visible fraction of the cosine period
σ2 variance of the noise around the cosine
σ2

ϕ̂ variance of the phase offset ϕ

Part II
x = (x1, . . . , xn) unit positions on the time axis
∆ = (δij)i<j model distances between unit positions
Φ = (ϕij)i<j vector of phase offsets
Q error sum of squares
Mn subspace of Rm in which model distances are additive
σ2 global variance of measurement error of phase offsets
σ2

ij variance of measurement error of phase offset ϕij

Part III
B = (Bb)b∈Z packet onset process with N (µ, σ2)-distributed IPIs
XB cluster point process with packets starting at Bb

αj expected number of spikes in each packet in unit j
βj background intensity in unit j
τj speed of decay of packet spiking intensity in unit j
D0i(s) spike pairs with delay s in packets at B0 / Bi
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Zusammenfassung

Überblick

Spike Trains - Punktprozesse Eine zentrale Frage auf dem Gebiet der Neu-
rowissenschaften betrifft die Mechanismen bei der Verarbeitung und Integra-
tion komplexer Informationen. Daran ist eine hohe Anzahl an Nervenzellen
beteiligt, die mit Hilfe von kurzfristigen Ausschlägen des Membranpotentials
(‘Spikes’) kommunizieren. Bei der experimentellen Gewinnung von Spikezeit-
punkten kann nur auf einem Gitter bestimmt werden, ob im betroffenen Inter-
vall [jδ, (j + 1)δ) mindestens ein Spike aufgetreten ist. Daher werden die exper-
imentell beobachteten Feuerzeiten einer Zelle als zeitdiskrete binäre Zeitreihen
(‘Spike Trains’) dargestellt:

S(jδ) =

{
1 falls mindestens 1 Spike in [jδ, (j + 1)δ),

0 sonst.

Zeitliche Korrelationen Aufgrund der hohen Vernetzung der Nervenzellen
im Kortex wird der zeitlichen Koordination der Feueraktivität eine besondere
Rolle zugemessen. Um diese zu untersuchen, gewinnt man parallel die Spike
Trains S1, . . . , Sn von n Zellen (vgl. Fig. A.4 A, n = 2). Zur Analyse zeitlicher
Korrelationen zwischen zweien solcher Prozesse S1, S2 wird in der Praxis häufig
das sogenannte Kreuzkorrelations-Histogramm (‘CCH’) eingesetzt. Es stellt für
alle Zeitdifferenzen ` ∈ {kδ | k ∈ Z, |kδ| ≤ L} mit L > 0 die Häufigkeiten dar,
mit denen auf einen Spike in S1 nach ` Zeiteinheiten ein Spike in S2 folgt:

HS1S2(`) :=
∑

j

S1(jδ)S2(jδ + `).

Figur A.4 B zeigt ein Beispiel eines CCHs für zwei experimentell gewonnene
Spike Trains (L = 80 ms).

Programm Da CCHs in den Anwendungen sehr verbreitet sind, sollen in dieser
Arbeit verschiedene Aspekte dieser Statistik beleuchtet werden. Um die rele-
vanten Parameter zu schätzen, werden an die in der Regel verrauschten Daten
geeignete Kurven angepasst.



Im ersten Teil wird insbesondere die Position des Maximums im CCH unter-
sucht, die auch als ‘Phase’ bezeichnet wird. Oft nimmt das CCH sein globales
Maximum nahe ` = 0 an, was darauf hindeutet, dass die Spikes beider Zeitrei-
hen tendenziell zeitgleich auftreten. Wie in Figur A.4 C zu sehen ist, kann die
Phase von 0 abweichen. Kleine Abweichungen der Phasenschätzung vom Wert
0 wurden bisher der Messungenauigkeit zugeschrieben und in der Regel nicht
weiter analysiert. In den letzten Jahren häufen sich jedoch die Hinweise da-
rauf, dass die Informationsverarbeitung mit hoher zeitlicher Präzision geschieht
und damit auch kleine Zeitverzögerungen von Belang sein könnten. Daher ist es
wichtig, die Varianz der Phasenschätzung so genau wie möglich zu bestimmen,
um entscheiden zu können, ob kleine Abweichungen durch Messfehler zustande
kommen könnten. Dazu wird im ersten Teil dieser Arbeit eine Methode entwi-
ckelt, mit der sowohl die Phase geschätzt als auch die Varianz dieser Schätzung
bestimmt werden kann.

Die entwickelten Methoden werden auf einen Datensatz aus n = 14 expe-
rimentell gewonnenen Spike Trains angewendet. Auch sehr kleine Phasenver-
schiebungen von wenigen Millisekunden sind im analysierten Datensatz kaum
durch Messungenauigkeiten zu erklären, da die Standardabweichung σϕ̂ der
Phasenschätzung meist deutlich kleiner ist als die geschätzte Phase |ϕ̂| selbst.
Zusätzlich scheinen die Phasen in systematischer Weise zwischen verschiedenen
Stimulationsbedingungen zu variieren, was auf eine präzise zeitliche Koordina-
tion zwischen den Neuronen hindeutet. Um diese zu analysieren, wird in Teil II
der Arbeit versucht, die in

(
n
2

)
Phasen zwischen n Spike Trains enthaltene paar-

weise Information zu komprimieren. Dies geschieht auf der Basis der Annahme,
dass für alle Triplets von Spike Trains Si, Sj, Sk die entsprechenden Phasen
annähernd additiv sind, d.h. dass ϕik ≈ ϕij + ϕjk. Ist die Additivitätsannahme
erfüllt, kann die Menge der

(
n
2

)
Phasen in einer (n − 1)-dimensionalen Darstel-

lung erfasst werden, bei der jedem Spike Train Si ein Wert xi ∈ R zugeordnet
wird, so dass jede Phase ϕij der paarweisen Differenz xj − xi entspricht. In Teil
II wird ein stochastisches Modell entwickelt, mit dem die xi auch für einen Satz
nicht perfekt additiver Phasen geschätzt werden können, um die Phasen so gut
wie möglich durch paarweise Differenzen innerhalb der ‘linearen Konfiguration’
C = {x̂1, . . . , x̂n} zu repräsentieren. Bei der Anwendung dieses Modells auf den
experimentellen Datensatz zeigt sich ein starker Anteil additiver Struktur in den
gemessenen Phasen: Die Abweichungen der Phasen ϕij von den geschätzten Mo-
delldistanzen x̂j − x̂i in der linearen Konfiguration sind minimal. Zusätzlich sind
im analysierten Datensatz zwischen Konfigurationen C1, C2 aus Phasenmengen
unterschiedlicher Stimulationsbedingungen deutliche Unterschiede zu erkennen.



Die in den ersten beiden Teilen vorgestellten Methoden sind für die expe-
rimentelle Neurophysiologie aus zweierlei Gründen besonders interessant. Zum
einen bauen sie auf der verbreiteten paarweisen Analysetechnik der CCHs auf,
und zum anderen erlauben sie, Aspekte der zeitlichen Koordination einer ho-
hen Anzahl paralleler Spike Trains auf effiziente Weise zu analysieren. Da die
Methoden jedoch ausschließlich auf wenigen Parametern der paarweisen CCHs
beruhen, erlauben ihre Ergebnisse nur begrenzt, Rückschlüsse auf die Natur
der zugrunde liegenden Prozesse zu ziehen. Insbesondere bleibt unklar, welche
Eigenschaften der Spike Trains die extrahierten Phänomene kleiner Phasen und
ihrer additiven Struktur verursachen könnten. Daher wird im dritten Teil ein
parametrisches stochastisches Modell für n Spike Trains angegeben, mit dem
untersucht werden kann, welche Eigenschaften der Prozesse zur Ausprägung ver-
schiedener Formparameter oszillatorischer CCHs beitragen können. Dazu wer-
den n Spike Trains S1, . . . , Sn im Rahmen eines doppelt stochastischen Modells
durch parallele Punktprozesse X1, . . . , Xn modelliert. Das Modell generiert im
ersten Schritt einen stationären Punktprozess B = (. . . , B−1, B0, B1, . . .) mit
bevorzugter Intervalllänge µ. Gegeben B, werden n unabhängige, inhomogene
Poissonprozesse betrachtet mit Intensitäten

ρj
B(t) :=

αj

τj

∑
b∈Z,Bb≤t

e
−(t−Bb)

τj + βj, j = 1, . . . , n.

Man stellt sich die Bb als globale Paketanfangszeiten vor, die in allen Prozessen
simultane Pakete mit exponentiell abfallender Intensität auslösen. Anhand dieses
Modells können relevante geometrische Eigenschaften des CCHs zweier Punkt-
prozesse Xi, Xj in Beziehung zu den zugrunde liegenden Parametern α, β, τ, µ
und σ gesetzt werden. Der Parameter µ beeinflusst vor allem die Position des er-
sten Seitenpeaks. Die Geschwindigkeit, mit der die Höhe der Seitenpeaks abfällt,
wächst mit σ, und kleine Werte von τ produzieren hohe und schmale Peaks. Ins-
besondere erklärt sich eine von Null abweichende Phase im CCH zwischen Xi

und Xj durch eine Differenz der Parameter τj − τi: Für τi < τj fällt die Inten-
sität ρi nach jedem Paketanfang Bb schneller ab als die Intensität ρj, so dass die
Spikes von Xi im Mittel früher kommen als die von Xj. Additivität lässt sich
im Rahmen dieses Modells direkt durch die lineare Anordnung der Werte τi ∈ R
erklären.
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Figure A.4: Datenstruktur. A: Zwei parallele binäre Zeitreihen (Spike Trains) in diskreter Zeit.
B: Ein CCH zweier Prozesse zählt für jedes ` ≤ L die Anzahl der Spikepaare mit Abstand `
(hier: L = 80 ms). Das dargestellte CCH ist geglättet und hat eine oszillatorische Form:
Differenzen ` ≈ 0, ±25 ms, . . . werden bevorzugt; zwischenliegende Zeitdifferenzen treten
seltener auf. C: Zentrale Region (L = 10 ms, δ = 1/32 ms) mit geglätteter Kurve in grau.

Teil I

Modell 1: Kosinus mit unabhängigem, normalverteilten Rauschen
Zur Schätzung der Phase in verrauschten CCHs wird wegen der oszillatorischen
Gestalt vieler experimenteller CCHs folgendes stochastische Modell zugrunde
gelegt: Es wird angenommen, dass die Werte H(`) in der zentralen Region
des CCHs einer Kosinusfunktion folgen und mit unabhängigen, normalverteil-
ten Fehlern σZ` behaftet sind:

H(`) = A cos(ω(`− ϕ)) + β0 + σZ`, (Fig. A.5 A) (A.1)



für ` ∈ {kδ | k ∈ Z, |kδ| ≤ L} mit L > 0. Ausgehend von diesen Annah-
men wird mit einem nichtlinearen Kleinste-Quadrate-Algorithmus mit standar-
disierten Startwerten eine Kosinusfunktion an den zentralen Peak angepasst, um
die Parameter A, ω, β0 und die Phase ϕ zu schätzen. Die bei Anwendung auf
einen Datensatz mit 14 parallelen Spike Trains resultierenden 91 Phasenschätzer
nahmen sehr kleine Werte zwischen ±2 Millisekunden an.

Varianz von ϕ̂: Approximative Formel Die Varianz der Phasenschätzung
lässt sich im Rahmen des Modells approximieren. Unter der Annahme, dass ω
bekannt ist, folgt mit der δ-Methode, dass der Schätzer ϕ̂ approximativ nor-
malverteilt ist mit approximativer Varianz

σ̂2
ϕ̂ = V (ω,A/σ, N) ·G(s, f), (vgl. (4.29)-(4.33))

wobei N := #{kδ | k ∈ Z, |kδ| ≤ L}. Da V monoton fallend in jedem seiner
Argumente ist, wächst die Genauigkeit der Schätzung von ϕ mit jedem dieser
Werte. Der Term G erlaubt eine geometrische Interpretation; er hängt ab von
der Verschiebung s = ϕ/p des Kosinus im Verhältnis zur Periodenlänge p und
vom relativen Anteil der Periodenlänge f = 2L/p, an den die Kosinusfunktion
angepasst wird. Das wichtigste geometrische Prinzip, das aus diesen Parametern
abgeleitet wird, besagt, dass die Werte H(`) für solche `, an denen die Steigung
des Kosinus maximal ist, viel Information beitragen, wohingegen die Werte in
der Nähe der Extrema wenig informativ sind. Daher ist der Anteil der Punkte an
den Kanten im Verhältnis zum Anteil an den Extrema eine entscheidende Größe.
Sie hängt von der Phase s selbst ab sowie vom analysierten Anteil der Periode,
f .

Anwendbarkeit der Formel in der Praxis Um die Güte der approxi-
mativen Formel für σ̂ϕ̂ für unbekanntes ω und für praxisrelevante Werte von
N zu untersuchen, werden verrauschte Kosinusfunktionen mit realistischen
Parametersätzen simuliert und ihre Phasen geschätzt. Die empirische Streuung
der Phasenschätzungen σϕ̂ wird mit der Verteilung der in den Simulationen
durch die Formel geschätzten Werte σ̂ϕ̂ verglichen (Fig. A.5 B). Für einen
typischen Parametersatz beträgt σϕ̂ knapp 0.2 ms oder 1% einer Periode. Die
approximativen Werte σ̂ϕ̂ haben von σϕ̂ eine typische Abweichung von nur etwa
6.5% von σϕ̂. Sowohl diese Abweichung als auch die Werte σϕ̂ selbst wachsen
mit σ/A. Für alle Parametersätze ist die mit σ̂ϕ̂ normierte Phasenschätzung
approximativ normalverteilt, was die Konstruktion von Konfidenzintervallen



erlaubt. Für ein typisches σϕ̂ umfasst ein 95%-Konfidenzbereich weniger als eine
Millisekunde, so dass Abweichungen der Phase im Millisekundenbereich kaum
durch Messfehler zu erklären sind.

Zusätzlich wurde die Variabilität der Phasenschätzungen im experimentell
gewonnenen Datensatz mit der approximativen Formel verglichen. Dazu wurde
durch Teilung des Datensatzes jede Phase zwei Mal unabhängig geschätzt. Die
Verteilung der Differenzen der Schätzungen, normiert an der geschätzten Stan-

dardabweichung, Z := (ϕ̂1 − ϕ̂2) · (σ̂2
ϕ̂1

+ σ̂2
ϕ̂2

)
1/2

, zeigte keine nennenswerte Ab-
weichung von der Standardnormalverteilung, was darauf schließen lässt, dass die
approximative Formel die Variabilität der Phasenschätzung im experimentellen
Datensatz beschreiben kann. Daher wurden mit Hilfe der Formel zwei Men-
gen gepaarter Phasen aus dem experimentellen Datensatz statistisch miteinan-
der verglichen. Dabei zeigten sich signifikante Unterschiede zwischen Mengen
von Phasen, die unter verschiedenen Stimulationsbedingungen abgeleitet wur-
den, wohingegen Unterschiede zwischen mehrfachen Präsentationen desselben
Stimulus statistisch nicht signifikant ausfielen. Diese Ergebnisse legen nahe, dass
auch sehr kleine Phasenverschiebungen im Bereich weniger Millisekunden in sys-
tematischer Weise variieren können.
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Figure A.5: Modell 1. A: Es wird angenommen, dass sich die Datenpunkte eines zentralen
CCHs additiv zusammensetzen aus einer Kosinusfunktion und unabhängigen, normalverteilten
Fehlern. B: Die durch Simulationen ermittelte Variabilität von ϕ̂ wird durch die Verteilung
der in den Simulationen mit der Formel geschätzten Werte σ̂ϕ̂ gut approximiert, mit einer
typischen Abweichung von 6.5% von σϕ̂.



Teil II

Modell II: Verrauschte paarweise Distanzen auf der Geraden
Um zu untersuchen, in wiefern ein Datensatz aus

(
n
2

)
Phasenmessungen zwischen

n Prozessen in einer additiven Struktur erfasst werden kann, wird ein lineares
Modell verwendet: Jede Phase ϕij sei die Messung einer Distanz δij = xj − xi

zwischen Punkten xi, xj ∈ R, die mit unabhängigem, normalverteiltem Fehler
mit Erwartungswert 0 und Varianz σ2 behaftet ist:

ϕij = δij + σZij ∀ 1 ≤ i < j ≤ n. (Fig. A.6 B) (A.2)

Aus Gründen der Eindeutigkeit wird normiert auf
∑

i xi = 0. Analog
zur Interpretation der Phasenverschiebungen als bevorzugte Differenzen zwi-
schen den Spikezeitpunkten zweier Prozesse werden die Positionen xi als
bevorzugte Feuerzeiten der Prozesse relativ zueinander betrachtet. Eine Menge
C = {x1, . . . , xn} solcher Punkte auf der Zeitachse wird als lineare Konfiguration
bezeichnet.

● ● ● ● ● ●

A             B                                               
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Figure A.6: Modell 2: Additivität von Phasen in einem linearen Modell. A: Drei Phasen
zwischen drei Spike Trains. B: Jede Phase ϕij sei eine verrauschte Messung der Differenz
δij = xj − xi zweier Punkte auf der Zeitachse (R). Alle Messfehler seien unabhängig und
normalverteilt mit Erwartungswert 0 und gleicher Varianz σ2.

Schätzer Der Maximum-Likelihood-Schätzer für die Position xk hat die ein-
fache Form

x̂k =
1

n

∑
i6=k

ϕik.



Dieser Schätzer ist auch erwartungstreu. Die daraus resultierenden Schätzer für
die Modelldistanzen

δ̂ij = x̂j − x̂i =
1

n

(
2ϕij +

∑
` 6=i,j

(ϕi` + ϕ`j)
)

sind interpretierbar als gewichtete Summen aus direkten Messungen ϕij und
indirekten Messungen ϕi` + ϕ`j. Sie minimieren die Fehlerquadratsumme

Q :=
∑

i<j (ϕij − δ̂ij)
2, die die Abweichungen der Phasen von der additiven

Struktur angibt und mit deren Hilfe σ erwartungstreu geschätzt werden kann
mit σ̂ = Q/

(
n−1

2

)
. Geometrisch ist der Vektor der Schätzer der Modelldistanzen

∆̂ die orthogonale Projektion des Phasenvektors Φ ∈ R(n
2) auf einen (n − 1)-

dimensionalen Unterraum, den Modellraum Mn. Bei dieser Projektion wird ∆̂
so bestimmt, dass das Abstandsquadrat Q zwischen ∆̂ und Φ minimal wird.

Die im untersuchten experimentellen Datensatz gemessenen 91 Phasen
konnten gut durch die geschätzten Modelldistanzen δij repräsentiert werden
(vgl. Figur 8.2 A, und entsprechend Figur 8.5 B für permutierte Phasen).

Varianzanalyse Um k lineare Konfigurationen C1, . . . , Ck auf Unterschiede zu
testen, wird das lineare Modell erweitert. Dabei wird der Vektor der Phasen

(Φ1, . . . , Φk) ∈ Rk(n
2) durch wiederholte orthogonale Projektion zerlegt: Die er-

ste Projektion auf einen k(n− 1)-dimensionalen Unterraum erzeugt individuelle

Schätzer (x̂
(`)
i )i=1,...,n für jede der k Konfigurationen (` = 1, . . . , k). Eine weitere

Projektion auf einen (n− 1)-dimensionalen Unterraum erzeugt globale Schätzer
der xi, mit denen die Nullhypothese repräsentiert wird, dass sich die zugrun-
deliegenden Konfigurationen nicht unterscheiden. Für eine solche Zerlegung ist
die Verteilung des Quotienten der Längenquadrate bestimmter Vektoren bekannt
und wird verwendet, um Unterschiede zwischen den Konfigurationen statistisch
zu untersuchen. Dabei fallen Unterschiede zwischen linearen Konfigurationen aus
mehrfacher Präsentation desselben Stimulus gering aus, wohingegen sich Konfi-
gurationen aus verschiedenen Stimulationsbedingungen deutlich unterscheiden.

Eine weitere Modellerweiterung betrifft den für die Praxis wichtigen Fall, in
dem nicht alle

(
n
2

)
Phasen gemessen werden können. Es wird ein Gleichungssys-

tem bereitgestellt, mit dessen Hilfe die ML-Schätzer berechnet werden können,
und eine notwendige und hinreichende Bedingung für ihre Eindeutigkeit gezeigt.



Teil III

Motivation Um die Frage nach der Ursache kleiner Phasen und ihrer addi-
tiven Struktur anzugehen, wird zunächst eine grundlegendere Frage formuliert,
die Eigenschaften paralleler Punktprozesse in Beziehung zu der Form ihres CCHs
setzt: Mit welchen Parametern sollte man einen Punktprozess beschreiben,
um die essentiellen Eigenschaften eines oszillatorischen CCHs vorhersagen zu
können? Zu diesen Eigenschaften gehören nicht nur die Asymmetrie des zen-
tralen Peaks, dargestellt durch das mittelgraue Dreieck in Figur A.7 A, sondern
auch seine Höhe und Breite sowie die mit abnehmender Amplitude periodisch
auftretenden lokalen Maxima.

ACHs Da das CCH primär Interaktionen zwischen zwei Prozessen beschreibt,
kann es nur indirekte Informationen über die Eigenschaften der einzelnen
Prozesse liefern. Aussagekräftiger ist das Autokorrelations-Histogramm
(‘ACH’), ein CCH eines Prozesses mit sich selbst, das ausschließlich Eigen-
schaften eines einzelnen Prozesses beleuchtet. Ein ACH ist im Unterschied
zum CCH per Definition symmetrisch. Jedoch können die beiden anderen
wichtigen Eigenschaften des CCHs auch im ACH sichtbar werden: Zum
einen können sich die Anzahlen um ` = 0 häufen, was darauf hindeutet,
dass die Spikes sich in Paketen sammeln, und zum anderen lässt sich eine
regelmäßige oszillatorische Form mit abnehmender Amplitude ausmachen, die
Hinweise darauf liefert, dass die Pakete mit einer gewissen Periodizität auftreten.

Modell III: Doppelt stochastische Punktprozesse
In Teil III werden n Spike Trains S1, . . . , Sn durch Punktprozesse X1, . . . , Xn

modelliert. Um einen Prozess X mit quasi-periodisch auftretenden Paketen zu
beschreiben, wird ein doppelt stochastisches Modell verwendet: Zunächst erzeugt
eine Irrfahrt auf R mit unabhängigen und N (µ, σ2)-verteilten Intervallen (σ > 0)
einen stationären Punktprozess B := (. . . , B−2, B−1, B0, B1, B2, . . .). Jeder Punkt
Bb löst einen Poissonschen Punktschauer mit exponentiell abfallender Rate aus.
Gegeben B, ist damit XB ein inhomogener Poissonprozess mit Intensität

ρB(t) :=
α

τ

∑
b∈Z,Bb≤t

e
−(t−Bb)

τ + β.

Zur Modellierung von n parallelen Punktprozessen X1, . . . , Xn wird angenom-
men, dass alle Prozesse vom selben stationären Mutterprozess B kommen



(Fig. A.7 B, n = 2). Die Parameter µ und σ sind damit global; die Param-
eter α, τ und β können zwischen den Prozessen variieren. Der Parameter αj

beschreibt die erwartete Anzahl an Ereignissen pro Paket in Prozess Xj, τj die
Geschwindigkeit des exponentiellen Abfalls der Intensität sowie das mittlere In-
tervall zwischen Paketstart B und einem Spike, und βj ist eine konstante, von den
Paketen unabhängige Hintergrundintensität. Für gegebenes B sind alle Prozesse
Xj unabhängige Poissonprozesse, und die einzige Form der Korrelation entspringt
den simultanen Paketanfängen.
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Figure A.7: Modell 3: Beziehung zwischen Eigenschaften paralleler Prozesse und Form ihres
CCHs. A: Formparameter eines oszillatorischen CCHs: Höhe, Breite und Asymmetrie der
zentralen Region sowie periodisch auftretende Peaks mit fallender Amplitude. B: Doppelt
stochastisches Modell: Simultane Pakete werden erzeugt von einer Irrfahrt auf R mit N (µ, σ2)-
verteilten Intervallen. Für gegebene Paketzeiten ist jeder Prozess ein Poissonprozess, dessen
Intensität nach den Paketzeiten exponentiell abfällt. Das zugehörige CCH setzt sich zusammen
aus verschiedenen Summanden, die die erwartete Intensität der Spikepaare aus verschiedenen
Paketpaaren beschreiben (zentrale Region: gleichzeitige Pakete, Region um 25 ms: nebeneinan-
der liegende Pakete, etc.).

ACF und CCF Im Rahmen dieses Modells wird eine Formel hergeleitet für die
Intensität der Ereignispaare mit Abstand s. In Analogie zur vorherigen Nomen-
klatur wird diese bezeichnet als die Auto- bzw. Kreuzkorrelations-Funktion
(‘ACF’/‘CCF’) an der Stelle s (vgl. (12.1) & (12.2)). Die ACF eines Prozesses X
wird berechnet als die umskalierte bedingte Intensität der Spikes in X, gegeben



einen Spike zur Zeit t, und damit als die umskalierte Intensität der Palmschen
Verteilung von X. Für die gegebenen doppelt stochastischen Prozesse setzt sich
diese Funktion aus verschiedenen Summanden zusammen, die in Figur A.7 B
unten durch Kurven dargestellt sind. Der zentrale Teil beinhaltet die Verteilung
der ‘Geschwister’ des Ausgangsspikes, die aus demselben Paket stammen wie
der Spike bei t; der Teil um 25 ms reflektiert die Intensität der Paare, die aus
aufeinander folgenden Paketen stammen, etc.

Bedeutung der Parameter Mit Hilfe der hergeleiteten Formel wird unter-
sucht, wie die Formen von ACF und CCF von den Parametern abhängen. Der
Parameter µ beschreibt approximativ die Position des ersten Seitenpeaks, und
die Stärke der Oszillation fällt mit wachsendem σ. Der Parameter τ bestimmt
sowohl Höhe als auch Breite der zentralen Region, wobei mit fallendem τ die
Höhe zu- und die Breite abnimmt. Die Differenz zwischen den Parametern τi

und τj ist die einzige Quelle für Asymmetrie in der CCF zwischen den Prozessen
i und j: Ist τi < τj, so fällt der Peak schneller, erreicht kleinere Werte und ist
schmaler auf der linken als auf der rechten Seite der zentralen Region. Damit
können mit wenigen, direkt interpretierbaren Parametern die prinzipiellen Eigen-
schaften eines CCHs beschrieben und gleichzeitig in Beziehung gesetzt werden
zu den Parametern der Punktprozesse.

Datenanalyse Um zu untersuchen, ob das vorgeschlagene doppelt stochasti-
sche Modell sich für die Analyse experimenteller Daten eignet, werden theo-
retische ACFs an empirisch gewonnene ACHs angepasst und so die Parameter
geschätzt. Die Formen aller ACHs werden durch die ACFs gut beschrieben,
mit globalen Parametern µ und σ. Aus den geschätzten Parametersätzen wer-
den Vorhersagen über die CCFs abgeleitet und mit den Formen der empirisch
gewonnenen CCHs verglichen. Meist können diese Interaktionen zwischen Paaren
von Prozessen mit Hilfe der Modellannahmen, dass die Prozesse vom selben Mut-
terprozess B erzeugt werden und, darauf bedingt, unabhängige Poissonprozesse
sind, präzise vorhergesagt werden. Auch ein Vergleich mit simulierten parallelen
Prozessen zeigt eine hohe Übereinstimmung der Variabilität der Datenpunkte
im CCH um die theoretische CCF. Diese Befunde legen nahe, dass das doppelt
stochastische Modell eine sinnvolle Beschreibung essentieller Charakteristiken der
beobachteten Spike Trains und CCHs liefern kann.



Fazit: Die Bedeutung additiver kleiner Phasen im Modell Anhand
des Modells wird schließlich untersucht, in welcher Weise die additive Struktur
kleiner Phasen für Kodiermechanismen eingesetzt werden kann. Durch Anpassen
einer Kosinusfunktion wird genau dann eine Phasenverschiebung im CCH iden-
tifiziert, wenn sich die Parameter τi und τj der Prozesse Xi und Xj unterschei-
den. Dabei wird anhand von zwei Argumenten der Zusammenhang zwischen der
Differenz τj − τi und der Phase ϕij deutlich: Zum einen ist ϕij aufgrund der
asymmetrischen Form des Peaks genau dann positiv, wenn τi < τj, d.h. wenn
τj − τi > 0. Zum anderen beschreibt τi die erwartete Position eines typischen
Punktes in Prozess Xi relativ zum Paketanfang, so dass die mittlere Differenz
solcher Positionen zwischen den Prozessen Xi und Xj mit der Differenz τi − τj

zusammenhängt. Wenn man auf diese Art jedem Prozess Xi als ‘bevorzugten
Feuerzeitpunkt’ seinen Wert τi zuschreibt, erhält man eine temporale Karte, die
mit der in Teil II entwickelten linearen Konfiguration verwandt ist. Additivität
der paarweisen Differenzen τj − τi erklärt sich dann in natürlicher Weise durch
die lineare Struktur von R.

Im Rahmen des Modells werden kleine Phasenverschiebungen zwischen
Paaren von Punktprozessen nicht auf kurzen Zeitskalen erkennbar. Erst durch
Integration über lange Analysefenster können kleine Phasenverschiebungen oder
Differenzen in den τi deutlich werden. Aufgrund der hohen Geschwindigkeit der
Informationsverarbeitung im Gehirn sind daher im Modell Kodiermechanismen,
die auf Differenzen der τi basieren, nicht plausibel. Es ist jedoch denkbar, dass
die Modellstruktur weniger zwischen einzelnen Paaren von Prozessen als vielmehr
im Rahmen großer Netzwerke eingesetzt werden kann.
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