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The complete 3- part of the S matrix for ot6 has been computed in the one-particle, 
one-hole approximation. In the continuum states the isospin invariance is totally broken; 
analogous partial cross sections for protons and neutrons show large differentes. 

In a recent publicationl a method has been 
described by which the eigenstates of the S ma- 
trix,  i.e., the eigenchannels, can be directly 
computed. We have tried out this method in 
the case  of the 3- s ta tes  of 016 in the one-par- 
ticle, one -hole approximation. In this Let ter  
we repor t  briefly the resul ts  of th is  calcula- 
tion. The details will be given elsewhere. 

The essential  points of the method a r e  a s  
follows: The eigenstates of the S matrix a r e  
standing waves in a l l  experimental C hannels 
with a common phase shift, say 6 (6). There 
a r e  a s  many eigenstates a s  there a r e  Open chan- 
nels a t  th is  energy. We denote the amplitudes 
of the standing waves of an eigenstate of the 
S matrix in the experimental channel C by Vc(ß). 
In t e r m s  of these quantities the S matrix is 
given by 

A knowledge of the ~ ( ß )  and 6 ( ß )  a s  functions 
of the energy thus allows the complete descrip- 
tion of a l l  one-particle reactions. For exam- 
ple, t h e t o t a l  c r o s s  section then is (I = spin 
of target nucleus, s = spin of incident nucleon) 

i ,e , ,  for  vc 2 a ,  is 

where the F and G a r e  the regular and i r reg-  
ular radial  functions of the continuum particle; 
for a neutron they a r e  simply j l (kc rc )  and 
nl (k ,~, ) ,  respectively. The channel wave func- 
tions contain in addition to the wave function 
of the daughter nucleus (i.e., the hole s ta te)  
the angular momentum par t  of the continuum 
particle. 

The computation of the eigenchannels was 
done a s  follows: At a given energy, say E ,  
the wave numbers kc a r e  known for a l l  Open 
channels f rom the binding energy and the spec- 
t rum of the bound s ta tes  of the daughter nucle- 
us. Assuming a phase shift, say 6, the loga- 
ri thmic derivatives of the radial  wave functions 
in a l l  Open channels a r e  computed f rom (3) 
a t  rc =a.  Sets of single-particle wave functions 
for  the different channels a r e  now obtained 
for a r ea l  Saxon-Woods potential2 using these 
logarithmic derivatives a s  the boundary con- 

2nX2 ditions. Arbitrary boundary conditions can 
U 

to t= (21+ 1)(2S + 1) be used for  the s ta tes  appearing only in closed 
channels. An orthonormal se t  of particle-hole 

X E  J ( 2 J +  l ) ~ c [ l - ~ e ~ c c [ J 1 ] ,  (2) s ta tes  is now constructed with these single- 
particle wave functions and the Hamiltonian 

where the summation over C is res t r ic ted to is diagonalized in the space of these one-par- 
those channels which contain only the ground ticle, one -hole ( lp- lh)  states.  A zero-range 
state of the target nucleus. We compute here  force3 with exchange was employed. The eigen- 
only the t e r m  with J= 3. The form of the eigen- values obtained a r e  plotted a s  a function of 
channel wave function in the asymptotic region, b in Fig. 1 for  the case  E = 20 MeV. The eigen- 
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about 17.8 MeV two more channels have appeared, 
viz., the (d31,P31,-') and (d„,P„,-'1 proton 
channels. At 18 MeV the four Open channels 
of the resonating eigenchannel have the follow - 
ing amplitudes (the subscripts n  o r  P stand 
for  neutron o r  proton particle-hole pair): 
0.95 ( d 5 / 2 P  1 / 2 - 1 ) p ;  -0.29 ( d 5 / 2 P 1 / 2 - 1 ) n ;  
0.07 ( d 3 / 2 $ 3 / 2 - ' ) p ;  -0.07 ( d 5 / 2 P 3 / 2 - ' ) p .  
It is interesting that the energy interval over 
which the eigenphase r i ses ,  i.e., the width 
of the resonance, is of the order  of only 0.5 
MeV despite the high kinetic energy of the pro- 
ton in the channel ( d 5 / 2 p 1 / 2 - 1 ) p  which is about 
2  MeV above the maximum of the combined 
Coulomb and angular -momentum barr ier .  This 
resul ts  from the fact that in the nuclear wave 
function 94% of the intensity is associated with 

FIG. 1. The eigenvalues of the 3- compound system the bound configurations and only 6 %  is asso-  
as  a function of the common phase shift 6 of the single- 
particle continuum states. The boundary conditions ap- ciated with all the Open The width 

plied in  this case a r e  those for  E =20 MeV, where four 0f the peak thus is b~ factOr 0f the 

FIG. 2. Eigenphases for the 3- states  a s  a function 
of the excitation energy of the compound system. The 
numbers on the different curves labe1 the channels pre- 
sumably predominant in the neighbourhood of the cor- 
responding threshold. The sequence i s  ( 1 )  (d3/2p3/2- i )n ,  
(2) @5/2 ~ 3 / 2 - ' ) n ,  ( 3 )  ( d 5 / 2 ~ 1 / 2 - ' ) n ,  (4) ( d 3 / 2 ~ 3 / 2 - ' ) p ,  
(5) ( d 5 / 2 ~ 3 / 2 - 1 ) p ,  (6) ( d 5 / 2 ~ 1 / 2 - i ) p .  The arrows indi- 
cate the various thresholds. 

channels a r e  open. 

FIG. 3. Contribution of the 3- states of the 016 com- 
pound system to proton-induced c ross  sections. The 
calculation has been done without inclusion of an imag- 
inary part i n  the optical potential. Note that the ( p , p o )  
cross  section has a very strong resonance a t  about 18 
MeV. 

phases a r e  found a s  the crossing points of an 100 

eigenvalue curve with the line E ,  i.e., a s  the 
roots of the equations E ,@)-E = 0.  The eigen- 
vectors ~ ( 0 )  of the eigenchannels then a r e  giv- 
en, except for  normalization by the eigenvec- 
to r  associated with the eigenvalue E ,(6 ( P ) ) .  50 

The eigenphases a r e  plotted in Fig. 2  a s  func- 
tions of the energy. In the region between 12.2 
and 15.7 MeV only one channel i s  open, viz., 
the (d„,P proton channel. At 15.7 MeV 
the equivalent neutron channel Opens. By the 
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order  10 a s  compared to a corresponding peak 
in potential scattering. 

At about 22 MeV anomalies seem to appear 
in the trends of the eigenphases of the Open 
channels. They could be related to the thresh-  
old of the two channels a t  21.8 MeV, viz., 
( d 3 / 2 ~ 3 / 2 - ' ) n  arid (d5/2P3/2-')n. The rath- 
e r  sudden jump of eigenphase 3 at about 18.7 
MeV could also be associated with the thresh- 
old a t  18.35 MeV. 

In Fig. 3 we have plotted the Cross sections 
for  several  reactions induced by protons inci- 
dent on N I 5 .  It is remarkable that the "analog" 
reactions, viz., (p ,po)  and (p ,no)  a s  well a s  
@,Pl) and (p ,n l ) ,  a r e  as different a s  shown. 
The reason for  th is  evidently is the large iso- 
spin impurity associated with the large differ- 

ence in the boundary conditions for  protons 
and neutrons. This difference does not appear 
in a calculation which ignores the continuum 
character  of the unbound states.  

*This work has been supported by the Deutsche For- 
schungsgemeinschaft with a contract for  studies in nu- 
clear  structure. 
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' ~ h e  parameters  o_f the Saxon-Woods potential Vc 
X ( p ( r ) - 2 ( E / 2 ~ ~ ) ~ ( 1 .  U) d p ( r ) / d r }  with p ( r )  = {1 + exp[(r 
- ~ ~ ) / b l } - '  a r e  Vc =-50 MeV, ct = 3 5 ,  R =3.15 F ,  b 
=0.65 F ;  M is the nucleon mass. 

3 ~ h e  parameters of the force VoS ( r l - r Z ) [ a o  + au(Ül 
* 

.02)1 a r e  Vo=-1000  MeV F ~ ;  a o = 0 . 8 6 5 ,  au=0.135.  
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In the theory of multiphoton processes  there where 
would appear to be a considerable number of -+ -. 

A(kt) = b * exp[-i(k-Y-wkt)]aki, 
conflicting v i e w ~ l - ~  a s  to the importance of the k k  
various t e r m s  i n  the perturbation potential + -. 

A(k-)= b ; exp[i(k.r-wkt)]ak, 
given by the nonrelativistic limit of the Dirac k k  
equation 

and 
V = ~ ~ ( e / m c ) ? ~ . Ä ( r ~ )  + (e2/2mc2)Ä(ri),Ä(ri). (1) 

14: is possible to remove existing confusion and 
the perturbation potential V may be expressed 

to derive a simpler formulation of the theory 
a s  

of multiphoton processes  by employing an a l -  
ternative and completely equivalent formula- V = z V ( k * ) +  E V(k,*, k,"). (3 ) 
tion of the interaction potential due to Richards5 k * k ,*k ,* 
and developed by Power and Zienau6: 

In t e r m s  of (2), ~ ( k * )  and ~(k:, k2*) may be 
expressed a s  

V =E z .(e/c);;(a/af)Ä(~~)+ (e/mc)Pi.[~Ä(r,)l.;, 
V (k*) = -6-E (k*) + IM.H(k*) 

The simplifications brought about by using (2) ~ ( k  ,*, kZi)= (imc2)[D.%(k ,*)][D.E (k,*)](;;,-n,), (5) 
ra ther  than (1) a r e  most easily Seen by resolv- 
ing the perturbation into component perturba- 
tions corresponding to the various Fourier com- where 6 = z i e r i ,  M=& (e/2mc)Zi, and G is 
ponents of the electromagnetic field. Writing a unit vector in the direction of propagation 

-. -. of component k of the field. When (4) and (5) 

A ( r i ) = z [ Ä ( k t ) + Ä ( k - ) ] ,  a r e  employed to calculate transition amplitudes, 
k + i t  may be shown that amplitudes involving V (k * ,  


