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%Using an iterative procedure for obtaining Jg (sub-
tracting from AE, _, contributions due to spin devia-
tions before assuming the molecular field model), we
improve the results, 6E =11.3 for RoMnF; and 12.2 for

KMnF;. The value for MnF, decreases by less than 0.1
-1
em™,
101,. R, Walker, unpublished memorandum.
UM, Peter and J. B. Mock, Phys. Rev. 118, 137 (1960).
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The complete 3~ part of the S matrix for 0% has been computed in the one-particle,
one-hole approximation. In the continuum states the isospin invariance is totally broken;
analogous partial cross sections for protons and neutrons show large differences.

In a recent publication®’ a method has been
described by which the eigenstates of the S ma-
trix, i.e., the eigenchannels, can be directly
computed. We have tried out this method in
the case of the 3~ states of O in the one-par-
ticle, one-hole approximation. In this Letter
we report briefly the results of this calcula-
tion. The details will be given elsewhere.

The essential points of the method are as
follows: The eigenstates of the S matrix are
standing waves in all experimental channels
with a common phase shift, say 5(B). There
are as many eigenstates as there are open chan-
nels at this energy. We denote the amplitudes
of the standing waves of an eigenstate of the
S matrix in the experimental channel ¢ by Vc(ﬁ).
In terms of these quantities the S matrix is
given by

scc,=Z>BVC(B)exp(Zié(B))Vc,(B)*- (1)

A knowledge of the V(B) and G(B) as functions
of the energy thus allows the complete descrip-
tion of all one-particle reactions. For exam-
ple, the total cross section then is (I=spin

of target nucleus, s =spin of incident nucleon)

c = 272
tot (2I+1)2S+1)

7 @

xz;J(zJ+ I)Z}C[I—Rescc
where the summation over ¢ is restricted to
those channels which contain only the ground
state of the target nucleus. We compute here
only the term with J=3. The form of the eigen-
channel wave function in the asymptotic region,

i.e., for v;2a, is

v =Ech(ﬁ)[cos6 (B)FC (kcrc)
—siné(B)Gc(kcrc)];bc, @3)

where the F and G are the regular and irreg-
ular radial functions of the continuum particle;
for a neutron they are simply j;(k,7.) and
ny(ko7c), respectively. The channel wave func-
tions zﬁc contain in addition to the wave function
of the daughter nucleus (i.e., the hole state)
the angular momentum part of the continuum
particle,

The computation of the eigenchannels was
done as follows: At a given energy, say E,
the wave numbers k., are known for all open
channels from the binding energy and the spec-
trum of the bound states of the daughter nucle-
us. Assuming a phase shift, say 6, the loga-
rithmic derivatives of the radial wave functions
in all open channels are computed from (3)
at v,=a. Sets of single-particle wave functions
for the different channels are now obtained
for a real Saxon-Woods potential® using these
logarithmic derivatives as the boundary con-
ditions. Arbitrary boundary conditions can
be used for the states appearing only in closed
channels. An orthonormal set of particle-hole
states is now constructed with these single-
particle wave functions and the Hamiltonian
is diagonalized in the space of these one-par-
ticle, one-hole (1p-1h) states. A zero-range
force® with exchange was employed. The eigen-
values obtained are plotted as a function of
6 in Fig. 1 for the case E =20 MeV. The eigen-
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FIG. 1. The eigenvalues of the 3~ compound system
as a function of the common phase shift 6 of the single-
particle continuum states. The boundary conditions ap-
plied in this case are those for E =20 MeV, where four
channels are open.

phases are found as the crossing points of an
eigenvalue curve with the line E, i.e., as the
roots of the equations E ,(6)-E =0. The eigen-
vectors V (B) of the eigenchannels then are giv-
en, except for normalization by the eigenvec-
tor associated with the eigenvalue E V(G(B)).
The eigenphases are plotted in Fig. 2 as func-
tions of the energy. In the region between 12.2
and 15.7 MeV only one channel is open, viz.,
the (dy,,p,,”") proton channel, At 15.7 MeV
the equivalent neutron channel opens. By the
time the first eigenphase goes through 90° at

s(v)
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FIG. 2. Eigenphases for the 3~ states as a function
of the excitation energy of the compound system. The
numbers on the different curves label the channels pre-
sumably predominant in the neighbourhood of the cor-
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responding threshold. The sequence is (1) (dg /2P3 /2_1)7“
@) @5/203/2 Y, () @5/201/27 m, (@) @3/203/2~ p,

(5) (d5/2P3/2_1)p, (6) (d5/2p1/2'1)p. The arrows indi-
cate the various thresholds.
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about 17.8 MeV two more channels have appeared,
viz., the (dy,p4,~") and (dg,,p,,~*) proton
channels, At 18 MeV the four open channels

of the resonating eigenchannel have the follow-
ing amplitudes (the subscripts # or p stand

for neutron or proton particle-hole pair):

0.95 (d5/2p1/2—1)p; -0.29 (d5/2p 1/2_1)1’l;
0.07 (d3/2p3/2™")p; —0.07 (d5/2P3/27")p.

It is interesting that the energy interval over
which the eigenphase rises, i.e., the width

of the resonance, is of the order of only 0.5
MeV despite the high kinetic energy of the pro-
ton in the channel (d5/2p 1/2-1)17 which is about
2 MeV above the maximum of the combined
Coulomb and angular-momentum barrier. This
results from the fact that in the nuclear wave
function 94% of the intensity is associated with
the bound configurations and only 6% is asso-
ciated with all the open channels. The width

of the peak thus is cut down by a factor of the
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FIG. 3. Contribution of the 3~ states of the 0¥ com-
pound system to proton-induced cross sections. The
calculation has been done without inclusion of an imag-
inary part in the optical potential. Note that the (p,p,)
cross section has a very strong resonance at about 18
MeV.
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order 10 as compared to a corresponding peak
in potential scattering.

At about 22 MeV anomalies seem to appear
in the trends of the eigenphases of the open
channels. They could be related to the thresh-
old of the two channels at 21.8 MeV, viz.,
(dg/203/2™ )n and (d5/203/27")y. The rath-
er sudden jump of eigenphase 3 at about 18.7
MeV could also be associated with the thresh-
old at 18.35 MeV.

In Fig. 3 we have plotted the cross sections
for several reactions induced by protons inci-
dent on N5, It is remarkable that the “analog”
reactions, viz., (p,p,) and (p,n,) as well as
(p,p,) and (p,n,), are as different as shown.
The reason for this evidently is the large iso-
spin impurity associated with the large differ-

ence in the boundary conditions for protons
and neutrons. This difference does not appear
in a calculation which ignores the continuum
character of the unbound states.

*This work has been supported by the Deutsche For-
schungsgemeinschaft with a contract for studies in nu-
clear structure.

fPermanent address: National Bureau of Standards,
Washington, D. C. 20234

M. Danos and W. Greiner, Phys. Rev. 146, 708
(1966).

®The parameters of the Saxon-Woods potential V,
x{o(r)-2 h’/2MC)Z 1. 0) dp(v)/dr} with p(r) = {1 +exp[(r
—Rg)/bl}~! are V,=-50 MeV, @ =35, R,=3.15 F, b
=0.65 F; M is the nucleon mass.

3The parameters of the force Voé(rl—rz)[ao +a0(01

+T9)] are V;=—1000 MeV F3, ; @,=0.865, ag=0.135.
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In the theory of multiphoton processes there
would appear to be a considerable number of
conflicting views'™ as to the importance of the
various terms in the perturbation potential
given by the nonrelativistic limit of the Dirac
equation

V=Ei(e/mc)_f’i-;&(ri)+ (eZ/szZ)K(ri)-K(ri). (1)

It is possible to remove existing confusion and
to derive a simpler formulation of the theory

of multiphoton processes by employing an al-
ternative and completely equivalent formula-
tion of the interaction potential due to Richards®
and developed by Power and Zienau®:

V=1 /c )?i.@ /at)K(ri) + /mc)_ﬁi-[VK(ri)]-;l
+ Z/chz){[VK(;i)]-;i}z. (2)

The simplifications brought about by using (2)
rather than (1) are most easily seen by resolv-
ing the perturbation into component perturba-
tions corresponding to the various Fourier com-
ponents of the electromagnetic field. Writing

Af)=DAEY+A®ET),
k:l:

where

A(kT)=b, €, *expl —i(l?-r—wkt)]ak“L

kk

A(RT)=b exp[i(ﬁ-r-wkt)]ak

Lk
and

_ 2 Ve

bk = (2mc ﬁ/Vwk) ,

the perturbation potential V may be expressed
as

V=vikT) e T VRS R,). @3)
rE ktR,*

In terms of (2), V(k*) and V (k,*,k,*) may be

expressed as

V(k*)= -D-E(¥)+ M-H(k™)
+ e/2)&TIFERY), 4)

V (k" k%)= Gme)D-E(k,H)]D-E (k)] 0, 0,), 6)
where D= 2 er M= 23 e/ch)L and n is

a unit vector in the d1rect1on of propagation

of component k of the field. When (4) and (5)

are employed to calculate transition amplitudes,
it may be shown that amplitudes involving V(& ,%,
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