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The unified model and the collective giant-dipole-resonance model are unified. The resulting energy 
spectrum and the transition probabilities are derived. A new approximate selection mle involving the sym- 
metry of the y vibrations is established. It is verified that the main observable features in the photon- 
absorption Cross section are not influenced by the odd particle, despite the considerably richer spectrum of 
states as compared to even-even nuclei. 

I. INTRODUCTION compared to the already quite rich level structure of the 
T H E  previously developed complete collective even-even nuclei. 

theory of the nucleus, unifying the low-energy arid TWO aspects can be distinguished in the addition of an 
the high-energy collective degrees of freedom,ls2 iee., the odd particle. The first is the change of the kinematic 
rotations, surface vibrations and the dipole oscillations, features of the system, the change in its symmetries; and 
still lacks one feature, namely, the possibility of having the second is the change in the dynamic characteristics, 

nonvanishing ground-state the present the appearance of new dynamic variables and interaction 
we intend to remedy this arid we set ourselves terms in the Hamiltonian. The first aspect is of quite 
the task of unifying the unified rnodel arid the giant- general validity being based only on angular momentum 
resonance hydrodynamic model in completely and parity conservation and on the assumptions of the 
quantum-mechanical treatment. symmetries of the deformed intrinsic nuclear system. 

The reasons for &ing it are manyfold. Firstly, experi- The dynamic asPects d e ~ e n d  in detail On the specific 

ments are being performed on odd-A nuclei which do assumptions of the model. We are goi% to use the 
have a finite ground-state Spin. ~t has been frequently Nilsson Hamiltonian to describe the odd particle and 

stated that the last ,,dd particle will have negligible its interactions with the collective degrees of freedom. 
effect On the giant resonance,3 but this statement has to Naturally, one cannot expect a quantitative description 

be made quantitative. ~ h i ~  is particularly important of the "single-particle" aspects of the nucleus by this 

since odd-A nuclei frequently are monoisotopic and simplified treatment. 

therefore the finer details, e.g., the line shape of the lower In Sec. 11 uTe write down the Hamiltonian of the 
energy peak, are not washed out as they may be in an System arid discuss the magnitude arid the importance 
isotope mixture. Furthermore, experiments involving ~f the several terms. Omitting the less important terms 
nuclear orientation require a finite ground-state we establish the Hamiltonain which we then proceed to 

For a consistent description of such experiments the s01ve in Sec. 111, arriving a t  the energY SPectrum and 
incorporation of an odd particle is indispensable. the wave functions. I n  Sec. IV we derive the dipole 
particular, the tensor polarizability of a nucleus vanishes Operator in the intdnsic System. We write it as a Power- 
for a zero-spin ground state. Also, the details of the series expansion retaining terms qiiadratic in the de- 

elastic arid the Raman scattering of depend formation Parameter and linear in the vibrational CO- 

essentially the ground-state of the nucleus. ordinates. I n  Sec. V we write down the transition matrix 
Finally, the presence of further angular momentum, eiements and indicate the selection rules which arise 

viz., the particle angular momentum, provides for from the symmetries of the wave function. I n  Sec. V1 
large number of ways for the cystem to couple to given we discuss the results obtained and estimate their 
total angular momentum. A considerable enrichment of accuracie~. We als0 give an 0Utline 0f the possible WayS 
the structure of the spectrum thus is to be expected, 0f im~roving the Present treatment. 

11. T H E  KAMILTONIAN 
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1. Rotations when R, d, and j are the angular momenta associated 

the intrinsic coordinate the shape of with the rotation, the dipole oscillatio~i, aad the single- 

deformed niicleus can be specified by particle, respectively. In  the rotational eiiergy T„*, 

R=Ro[1+(Po+OYzo+r1(~22+ Y2-211 , (1)  3 h2Ry2 
when Po is the equilibrium deformation parameter and Trat= C --V- 7 

~ ' 1  2Jv(E,v) 
(3)  

( and 7 are the vibrational c~ordinates.~ The total 
angular momentum, I ,  then is one can express R in terms of I, d, and j. A straight- 

I=R+d+j, (2) forward calculation yields 

where I*= I i i t i I z ,  etc. The moments of inertia J ,  are 
given in terms of the shape parameters by5,6 

JL.= B[2v2+3(ßd- 1)2=k(24)112(ßo+i)nl, 
J3=8Bq2. 

We assume, as usual, that the vibrational amplitudes 
are small, i.e., 

It/ßoI<<l, Iv/Pol<<l. (6)  
One then can expand the moments of inertia iii (4). 

The result is 

Trot=Hrot+Hrot vib+grot dip+Hrot part+Hint 
SHvib d i p f  Hpart dip+Hpart vib , ( 7 )  

where 
HrOt = (h2/2Jo)[12- 132-d32- j32] 

+(h2/2J3)[(13-j3-d3)2- 11,  
h2 1 h2 17 

Hrot vib= --(I2-Ja2)------ -(I+2+ L2)- , 
Jo Po ( 4 6 )  Jo Po 
h2 1 h2 17 

Hvib d i p =  --(d2- ~f~~)-- - - -  -(d+?+ d-2)- ) 

Jo Po ( 4 6 )  Jo Po 
Hrot d i p =  - (h2/2Jo)(J+d-+I-d+) 7 

Brot W„= - (h2/2Jo)(I+j-+I-j+) , 

Hwrt d i p =  + (h2/2Jo)(j+d-+j-d+) , 
h2 1 A2 11 

vib(l)  = -- ( j a -  j32)----- -(j+Z+j-2)-- , 
Jo Po ( 4 6 )  J o  Po 

11 h2 
- (j+d++ ,Y-d-)I-+-C(I+j-+I-j+) 

Po Jo 
E + (I+d-+I-d+> - (j+d-+ j-d+)l-, (8 )  

Po 
4 The coordinates .$ and 7 introduced here are identical with the 

coordinates ao' and az' respectively of Refs. 1, 6-9. 
6 A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 

26, No. 14 (1952). 
6 A. Faessler and W. Greiner, Z. Physik 168, 425 (1962). 

and where 

The meaning of the various terms is clear. Hin$ 
describes an interaction of three degrees of freedom; 
e.g., rotation-particle-vibration, etc. We have done the 
expansion of the moments of inertia only up to first 
order in the vibrational coordinntes. We further have 
left out the terms (h2/2Jo)(j2+d2) since they are pure 
single-particle and dipole terms, respectively, and it is 
understood that they will be contained in the Hamil- 
tonians for the single-particle and for the dipole 
oscillations. 

Many of the energies of Eq. (8)  occur already for 
even-even n~clei,6-~ and it is here only of interest 
whether a strong coupling exists betweeii the odd 
particle and the dipole oscillation. We see from the 
above that Hpart d i p  is of the order of the rotational 
energies, i.e., 50 keV. If we neglect this coupling, the 
energies will be uncertain by 50 keV which is about 
0.3% for the dipole states, but about 10-15% for the 
single-particle states on top of thc giant resonances 
relative to each other (the single-particle energies are 
of the order of 300-500 keV). 

Another coupling of the dipole modes with the odd 
particle takes place via the cluadrupole vibrations: the 
dipole oscillations are strongly coiipled to the quad- 
rupole vibrations (=I  MeV) and the odd particle is 
coupled to the quadrupole vibrations via H„,t ,ib(l) of 
(8) .  The latter coupling is, however, very weak ( - 5  
keV) and therefore the odd-particle structure on top of 
the giant resonances will be only disturbed by -1% 
as a result of this coupling. 

7 A. Faessler and W. Greiner, 2. Physik 170, 105 (1962). 
8 A. Faessler and W. Greiner, 2. Physik 177, 190 (1964). 
9 A. Faessler, W. Greiner, and R. K. Sheline, University of 

Maryland Technical Report No. 345, 1963 (unpublished). 
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2. Quadrupole Vibrations 

The structure of this energy is clear from earlier 
p a p e r ~ ~ - ~  and the quadrupole vibration Hamiltonian is 

3. Dipole Oscillations 

The Hamiltonian of the collective dipole motion in 
the core has been derived earlier.' In  the classical three- 
axial ellipsoid three eigenmodes exist: 

$,= ,i~(k,r)*,, P=O,  =tl (10) 
where 

* p =  (Ylp+PYl-,)/fl, 
k,= (2.08/R,)[l+O.O8(AR,/Ro)]. (11) 

If we introduce anniliilation and creation operators 6, 
and b,', respectively, for the states (10), the dipole 
energy in the adiabatic approximation is 

where the energies hG, depend on the deformation 
Parameters, e.g., the vibrational coordinates. Therefore 
(12) exhibits not only the pure dipole energy but also 
its interaction energy with core vibrations. If both are 
separated, one obtains in lowest order in 5,  q 

where, introducing the abbreviation ß= (5/4~)~1~ß,,  

and 
G ~ =  G-l= (5/16~)~/~[(1-0.5ß)-~-0.08], 

G,= - (~ /4~)~~~[ ( l fß ) -~ -0 .08 ] .  (15) 

The last term in (13) describes then the interaction of 
the dipole oscillations with the quadrupole vibrations. 
In  (14) K is the symmetry energy parameter and M* is 
the effective nucleon mass.l 

4. Single-Particle Hamiltonian 

The complete single-particle Hamiltonian with its 
interaction with the quadrupole vibrations has been 
recently discussed by Faessler.lo We follow his treat- 
ment. Thus we have 

l0 A. Faessler, Nucl. Phys. 59, 177 (1964). 

where HPart(O) is the well-known Nilsson Hamiltonianll 

where F, is the energy parameter of the shell-model 
potential well, and HWrt ,ib(2) is the interaction of the 
particle with quadrupole vibrations 

The difference between HWrt,ib(l) in Eq. (8) and 
Hw,t,ib(2) is that the first arises from the rotational 
energy while the second arises from the shell-model 
potential energy. Both terms (8) and (18) together with 
Hdip "11, lead to a coupling of the dipole oscillations with 
the odd particle (see the remarks a t  the end of Sec. 11.1). 
The term (h2j2)/(2Jo) which we mentioned after Eq. (8) 
is included in (17), since 

and the terms l2 and 21.s are understood to be absorbed 
in the constants Cu1 and C, of (17), respectively. The 
term (s2h2)/(2Jo) yields only a constant which can be 
left out, since s2x= (3/4)X for each Nilsson function X. 

111. WAVE FUNCTPONS AND ENERGIES 

1. Details on the Solution of the Hamiltonian 

In  this section we solve the ''basic" Hamiltonian 

All the other terms discussed so far for completeness, 
will be neglected, because they result onIy in small 
perturbations (at least for low Spins). The wave function 
of (19) consists of terms of the form 

The factors describe rotations, dipole oscillations, the 
odd particle, and quadrupole vibrations, respectively. 
K and Q describe the projections of the relevant angular 
momenta along the equilibrium symmetry axis. The 
subscript p denotes, according to ( l l ) ,  certain combina- 
tions of projections of the dipole angular momentum on 
the symmetry axis. Since (19) is invariant under the 
symmetry operators: 

(sl) rotations through T around z' axis; 
(s2) rotations through T around x' axis; 
(s3) rotation through 7r/2 around z' axis and simul- 

taneous replacement 17 --+ - q ;  

the wave functions are required to obey the Same sym- 
met r ie~ .~  The first symmetry leads to the condition 

The second symmetry operation transforms 

l1 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 29, No. 16 (1955). 
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Since Xn is not an eigenfunction of j2, the phase (-)j  has The wave functions and energies are thus 
to be understood as an Operator which acts on the 
different j's contained in Xo. A wave function invariant Ur,no(E) = (a/2no)ii2~114Hen,[a(~- E,)] 

under operation (22) is therefore of the form Xexp[-+a2(E- &J2]; 

a4=  BC"/h2, *= ~ ~ ~ n ( t , ~ ) $ p  
(31) 

X [ D ~ ~ ~ ' x ~ +  ( - ) t ( i - p ) p + N ~ ~ r ~  - U], epno= (no+S)Eß-A,, 

LY=I+K+p+ j+Q+l. (23) EB= h(Co/ß)lI2, 
A , = $ ( ~ u , G , ~ ~ , / E ~ ) ~ E R .  

According to (21) we have (32) 

The q vibrations (y vibrations) are described by the 
K = Q & ~ + ~ V = Q - ~ ,  ~ f l ,  ~ f 3 ,  . U .  differential equation 
I = K ,  X+1,  K+2, . . . .  h2 (K- Q)2+p2- 1 

Note, that K can never be zero, since D in (24) is 16B 
integer, while p and 2v are integers. If we insert (23) into 

v 2  

and multiply from the left by 
Except for the term linear in q it has the form of the 

ij/p[DArKrXQ+ ( - )a(l-p)'+N~MMKrxXn] radial part of a three-dimensional harmonic oscillation 
with a centrifugal barrier resulting from an angular 

and integrate over all coordinates except and 7 we momentum 
obtain the following equation for the vibrational wave I= -$+$[p2+(K-Q)2]1/2. 
function: 

(34) 

If we drop the linear term, (33) has the solution~1~5~~ 

Defining the rotational energy Parameter and the energies 

the energy, excluding the energy E of (26), is given by 
Maximon has treated the Eq. (33) by a perturbation 
method12 and has obtained the first two correction 

E-E= [I(I+ I ) - - ~ z - p ~ -  D ~ ] E ~ +  hup+ E ~ + ,  (28) terms for the energy 

the single-particle energy eo+ being given by the Nilsson i ~ n 2 p =  i ~ n w ( 0 ) f  C ~ ~ ~ l b K n t ( ~ ) f  ~ " Y P ~ ~ K ~ ~ ( ~ ) ] E ~  
Hamiltonian : ~ K ~ ~ , ( O ) +  A K ~ ~ ,  (37) 

HpnrtXn+= en+Xn+. (29) as well as the first-order correction to the wave func- 
tions. For the first-order correction to the energy, the 

The subscript '+ for al' the quantum second term of (37), leads to the Splitting of the upper 
numbers which are, in addition to Q, the principal resonance reported in an earlier paperi,2; it is the 
quantum number '7 the projection of the 'Pin On first term in the energy which depends On the Sign of 
the symmetry axis 2, arid the asymptotic quantum we give here the expression ((1): 
number X,. 

Equation (26) separates immediately into equations (-*In2 r(l+2) 
describing f and q vibrations. The vibrations (ß vibra- z~nz"'=----- 

tions) are described by a harmonic-oscillator equation nz! F@+$) 

where the potential minimum has been shifted because X82(-nz, $, 1+2; 2-nz, L+$; I ) ,  (38) 
of the term linear in from E = O  to 

Y =  -6h,G,ß0(2E~/ 'E,~)~l~.  (39) 
f , = - 6ß02G,E~ h,/EB2 . (30) lz L. C. Maximon (private communication, to be published). 
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FIG. 1. Schematical level scheme of the giant-resonance region. All states with up to one surface-vibration phonon are shown. The angu- 
lar momenta of the members of the rotational bands increase in steps of 1 beginning with the value Imin ;  i.e., they are Imi„ Imin+l ,  

Imi,+2, The intensities of the E1 ground-state transitions are also iiidicated schematically: heavy solid lines represent strong tran- 
sitions; heavy dsshed lines represent wealcer transitions; light dashed lines indicate negligible transition strengths. 

Imin 
KR 

The ex~ression for E ( ~ )  is given in Appendix 11. In  (38) function the correct symmetries. The function defined 
we have used the abbreviation ( ~ ~ ) ~ = c y ( c u f l ) ( a f  2 ) .  . by (35) is normalized for the interval Osq_< W .  

( f f f ß -  1). 
The potential barrier in Eq. (33), is impenetrable. 2. Com~lete Wave Functions arid Level Scheme 

The wave function for ?>0 therefore can be chosen Up to now we have not incorporated the third sym- 
inde~endently from that for q<0. This freedom is very metry (s3). Under this operation the wave function 
important and must be used to give the total wave (23) transforms 

n n-2 n a n-I a-3 n-I n-I ati nti nti n-I n-I n-a n-I nti nti n+i 
0 2 0 0 - 1  -3 -1 -I I I 1 - 1 - 1  - 3 - 1  I I I 

P O O  0 0 1  I I I I I I -I -I  I -I -I -I - I  
n , O O  I 0 0  0 0  I 0 O I  O O O I O O I  
" 0 0 0  I 0  0 0  0 0 I 0  0 1 0 0 0 l 0  

Therefore, the complete and properly normalized and symmetrized wave functions are 

K = Q ,  Q+2, Q f 4 . . .  for 0=4, 

The functions <p~-n+~, ' (?)  and cpK-Q,-fiwT(-?) are elsewhere.13 One Sees that, compared to the giant- 
normalized and defined for 1120 and 7 5 0 ,  respectively. resonance spectrum of a deformed even-even nucleus, 

One sees from Eq. (33) that cp~-n,,.„,'(r) has the many new levels appear in the giant-resonance region of 
same value (up to a phase factor) as (p~-o,-„~:(-q) for an odd-A nucleus. However, we have to study in detail, 
the same 1 71. The phase factor has to be chosen, in which states can be reached with the dipole operator 
order that from the ground state. We will See that several selection 

(42) 
rules limit the number of such states appreciably. 

< P K - Q , ~ , ~ , ' ( + ? ) ~  <~K-n, - i i~nz ' ( -q) .  

With this convention (41) fulfills all symmetries. The 
energies for the wave functions (41) are 

IV. DIPOLE OPERATOR 

1. Introductory Remarks 
EK,~,no,n2.rr= [ I ( I + ~ ) - K ~ - P ~ - Q ~ I E R + ~ ~ W ~  In  Ref. 1 the dipole operator has been derived for an + ~n++ (no+3)Eo-Ar+ (2nz+lf 4 even-even nucleus (the core in the present case) in the 

+ + x ~ z ~ ~ ~ ( I ) + + x ~ ~ ~ : K ~ ~ ( ~ ) ) E ~ .  (43) lowest order in ßo and E .  The dependence was explicitly 

The level scheme is shown qualitativel~ in The M. Danos, W. Greiner, and C. B. Kehr, University of Mary- 
wave functioi~s of the different states are given in detail land Technical Report No. 381, 1964 (unpublished). 
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neglected there, siilce for transitions from the ground- 2. Potential-Energy Constants 
sta-te linear terms of the dipole operator in 7 do not 
contribute. In this section we will establish tlie operator 

They are obtained in the hydrodynamic model from 
the relation 

in higher orders in the vibrational coordinates; this is 
needed. for the estirnate of the magnitude of diverse v (~)=c ,  +hpl c , l 2  
correction terms to the transition amplitude, as will 
become clear later. 

The dipole operator in the laboratory system (B,) is = K / (  1 ~0-2~,(core) I 2 / ~ ~ ) d ~ + c o n s t ,  (51) 

related to the components in the intrinsic system (D,) by 

Dp= Cv fUW1Dv, 
where po is the unperturbed matter density. Substitut- 

(44) ing (48) into (51) and eapanding yields 
where 

and is calculated in the classical model. P, is the charge -4, R, (~po)*( , , , (~ ) /po)~ ,  pp j,jl(k,r)a,dT 
density of the intrinsic nucleus and is giveri by the sum J 
of theiharge density p, (core) of the c&e and the charge 
density of the particle p, (particle). The latter is jiist a 
6 iunction +4+ l p p ( o ) ~  P C I* f . ( ~ , Y ) @ ' P  I 2 / ~ ~ l d ~ + ~ ~ n ~ t ,  (52) 

where e,ff= - (Z/A)e for an odd neutron and = ( N / A ) e  
for an odd proton. Therefore 

We nomr compute D,(core) in the classical model, as 
done in Ref. 1. The chnrge density of the core consists of 
the unperturbed charge density p,(O) and the charge 
density associated with the dipole oscillation P„,: 

The f, are normalization factors which drop out later 
and therefore need not to be specified. Here T, are the 
amplitudes of the dipole oscillations, which are definecl 
by writing tlie total classical dipole energy 

where Apo=p0-2p,(0). The first term of (52) is a con- 
stant and the const can be chosen to cancel it. The 
second term vanishes because of parity selection rules. 
Therefore only the last term of (52) needs coilsideration. 
We obtain 

+similar cross terms involving Go . (53) I 
The cross terms, including the term written down 
explicitly, all vanish when performing the angular inte- 
grations. This can be Seen by writing for the relevant 
integral 

~ l * f l * t  lf-l/ / ~ ~ * ( k ~ ~ ) j ~ ( k - ~ ~ ) ~ ~ d ~  

X (Yii*+ Yi-i*)(Yii- Yi-l)dQ. 

The last two factors in the integrand may be written 

In  the expansion of the Bessel functions a t  the upper 
The creation und a-nnihilation operators b:, b,  (12) are liinit of integration the between Y2n arid Y- related to the amplitudes b, b~ the we~l-known relation in the radius R Eq. (111 ensures that the terms 

[,= (t~w,/2h,)l/~(b,i+b,). (50) Yi12 and Y1-l2 will cancel nfter the integration. Now we 
calculate the diagonal terms of (53). The radial inte- 

The procedure for computing D,(core) is clear: (48) has gration yields 
to be inserted into (47) and the {, have to be expressed 
via (50) in terms of the creation and annihilation opera- 

+R3Cj12(K,R) - ,i0(k,R)j2(k,R)]= R3P(kPR). (54) 

tors. Therefore the constants h, of the potential energy Both arguments, k, and R, are functions of the vibra- 
have to be determined. tional coordinates, see Eqs. (1) and (11). We expand 
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P(k,R) about k,= k,(O) = 2.08/Ro and R= RO to terms of order E,  r ] ,  and Po2. Then 

R ~ =  ~ 0 a [ 1 +  3(ßof E)Yzo+3~(Yzzf Yz-2)+3ßo"zo2] 
ünd 

After some straightforward computations we obtain The radial integration gives 

IR(') = R3P(kpR) N ATo(")+fli(")[(ßo+ E )  Y20 
+rl(Yzz+ Yz-z)]+A'z(")ßo2~'zo2, (56) Dv(core) (R3/kp)jz(k,R)@,Y~ndQ. (62) 

where 

ATO(.) = Ro3{P(p)+ [ G P ( ~ - P ( ~ ) ~ ' ~ V ) ~  We again expand the integrand about K,(0)Ro and 
X R ~ ~ , ( O ) P ' ( P ) ) ~ = ~ ~ ( O ) R ~ ,  obtain after straightforward calculations 

LVl(p) = R O ~ [ ~ P ( P ) + R O ~ ~ ( O ) P ' ( P ) ~ P = ~ ~  (O)RO ( j 7 )  [R3j~ih,R)/k,l=M~+M~C(ß~+E)17~o 

Nz(fi)  = R O ~ [ ~ P ( ~ ) + ~ R O ~ , ( O ) P ' ( P )  + ~ ( Y z z f  Yz-z)]+ ~Wzßo2Yzo2, (63) 
++RO%,~(~)P~'(~)],=~,(O)RO. where 

The formula (56) exhibits explicitly the angular de- 
pendence of the radial integral in (53). Inserting (56) MO= [Ro3/k~(O)1{ ( 1 - G , [ { - ~ ( 6 ) ' / ~ ~ ] )  jz(p) 
into (53) and performing the angular integration gives + G P [ ~ - P ( ~ > " % I R O ~ ~ ( O )  ~ ~ / ( P ) } , , = F , ( O ) R ~ ,  

V ( [ )  = ~ K [ P , ( O ) ~ / P O ~  C ,  I f p f p  I jIp Y 
MI= C ~ O ~ / ~ , ( ~ ) I [ ~ ~ Z ( P ) + ~ O ~ , ( O ) ~ ~ ' ( P ) ~ „ ~ ( ~ ~ R ~ ,  (64) 

where Mz= CRO~/~~(~>IC~~~(P)+~RO~,(O) j2/(p) 
3 

(58) 
+ R ~ 2 k f i 2 ( 0 ) j d 1 ( ~ ) ] p = h f l ( ~ ) ~ g .  

I,= C I@",  
v=o We now write (63) as follows: 

IPo= N o + i V 0 ( f i ) ( l - ~ ( 6 ) ~ ' ~ ~ ) ,  
3 

I„= N ~ ( P ) ( ~ O +  ( ) ( 5 / 4 ~ ) ~ ~ ~ ( 2 0 1 ~  / lp)(2010 1 10) [R3jz(k,R)/kfiI= C J„, 
u=O 

(65) 

~Ni("(Po+t) f ip  9 mihere 
I ,2-pA - Y 1 ( P )  7(5/4~)1/2(221-  11 11)(2010/ 10) J,o= M O + M O ( ~ ) ( ~ - ~ ( ~ ) ' ~ ~ ~ ) ~ ~ ~ O + ~ J " ~ ~ ,  

=/.~Xl(p)v fz , ,  Jpi= ui(ßo+ 6 )  1'20, 
IP3 = X~(')ß02(5/4~)[(2020 / 00)2 

J,z= M1r(Y22+ Yz-2) , 
f (2020 j 20)(201p 1 lp)(2010 1 10)]= ATz("ßo2f3,. (59) 

J,3= Mzßo2Yzo2. 
Comparing (57) with (49) yields for the desired potential 
energy coefficients h, Equation (62) then becomes 

3. Intrinsic Components of the Dipole Operator where 

We calculate now the quantities D,(core) of (47). 
Inserting (48) into (47) yields 

f,Jpjl(k,r)@„]rYlvd7. (61) These quantities are given for ali relevant indiees in 
Appendix I. Using these results and inserting them into 

(69) we obtain 
Dl(core) =p,(O) { ( P i  f i f  Ti-f-i)(Iioif I i i i f  Iiai)+ (Ti f i -T- i f -1)  ( I ~ ~ I + I I o ~ ' ) }  , 

D-~(core) = p,(O) { (J-if i-l-if-I) (Iiaif I1ii-k 1 1 3 1 )  -k ( T i f  1- l -P-~f-1)  ( T m +  1 1 0 ~ ' ) )  , (69) 
Do(core) = pP(0)So fo(Iooof Ioio+Iozo+ 1030). 
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With Eq. (47) we now cail introduce the creation and annihilation Operators of the dipole quanta. Using (60) 
for the constants h, we find 

Di(core) =pp(0) {[(Au1/2Q1)~/~(bi~+bi)+ (h-1/2Q-i)'/~(b- '+b-i)](Iioi+Iiii+Ii3i) 
+ [(hui/2Qi)'i2(bi'+ bi) - (~-I/~Q-I)'~~(~-~'+~-I)](J~~I+~~OII)} . 

D-l(core) =pP(O) {[(hw J2Qi)'l2(blt+b~) - (f~w-i/2Q-i)1i2(b-it+b-i)](11~~+Iiii+Ii3i) 
+[(iwi/2Q1)"Yb '+bi)+(~~-1/2Q-i)'~(b-?+b-i)I(I~i+~mII)l , (70) 

Do(core) = p p ( ~ ) ( h ~ 0 / 2 ~ ~ ) 1 / 2 ( b ~ t + b ~ ) ( ~ ~ ~ ~ + I ~ ~ ~ + ~ 0 2 0 +  1030). 

These formulas can be written in a short way: 

This form of dipole operator is not suitable for actual calculations, since the quantities wlvl, BIv l ,  and Irvx depend 
on the vibrational coordinates E, r ] .  I n  order to obtain a form showing explicitly this dependence we expand thcse 
quantities to first order in 4, r]  and to second order in PO. Using (jg), (60), and (13) we find for h~ , /2Q,  

The dependence of I„x on the vibrational coordinates can be found in the Appendix. Using (72) and the Appendix 
and inserting this into (71) yields after some calculations 

~ ~ ( c o r e ) = d , { [ ( b ~ ~ ~ ~ +  b 1 ~ 1 ) + ~ ( b - i ~ i ~ + b - 1 ~ 1 1 C ~ o ( ~ ) + ~ l ( v ~ 4 1  
+ c ( b i v l ' + ~ l Y l - ~ ( ~ - l Y l t + ~ - l Y l ) 1 c ~ 2 ~ ~ ) + ~ 3 ( V ) ] ? l f ,  V =  f 1, 0, (73) 

where 
hW, 

No+ Nißofiv+-J72ß02 f3v 

Equation (73) is the dipole operator to be used in actual calculations. I t  is easily checked that in the case of E= 
it is identical with the result derived in (1). 

V. DIPOLE TRANSITIONS FROM THE GROUND STATE 

To obtain tlie dipole absorption Cross section it is necessary to compute the transition matrix element from 
the ground state $ r i = ~ , n ~ = o , ~ ~ = o , ~ ' ' ~  to the dipole state $ ~ ~ n ~ ~ ~ ~ f n ~ ~ ' ~ '  of Eq. (38), 

( J / K = O , ~ ~ = O , ~ ~ = O , O ' ~ /  I \ L K ' ~ ' ~ ~ ' ~ ' O ' ~ ' M ' ) ~ ~ .  (75) 

We are here interested only in the collective transitions and therefore the single-particle part of tlie &pole Operator 
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(44) is omitted. \Ve further restrict oiirselves to the main term of the intrinsic operator (73), i.e., mre ileglect its 
dependence on t ,  7. Using (38) and (73) thus the matrix element (75) is 

X#-,! c p ~ r ~ - n t , - ~ ~  ,n,fr'(- v ) } u ~ ~ ~ ~ ~ ( ( ) )  . (76) 
On collecting the different terms (76) becomes 

Using well-known relations of angular-momentum theory, Eq. (77) can be rewritten as 

The notatioii for the overlap integrals in (77) and (78) is the following: 

Becaiise of angular momentum conservation the sum 
reduces to the one term V =  Q- K'. Explicit expressions 
for (79) are given in Appendix 11. 

The most interesting aspect of (78) is the selection 
rule implied by the bracket containing only phase 
factors. The origin of this rule is the symmetry of the 
vibrational wave function under substitution T + -7, 
which thus can be called 7 parity. Transitions in which 
the V-parity changes are forbidden owing to the vanish- 
iiig of the overlüp integral. The possibility of having 
vibrational states degei~erate in energy but of opposite 
parity is a consequence of the impenetrability of the 
potential barrier a t  q = 0  in (33). Without this barrier 
the symmetry requirements of certain states could not 
be fulfilled. 

The 7-parity selection rule is, however, not exact. I t  
is broken by the terms in the dipole operator having 7 
as factor, as well as by the term H,t ,ib neglected in the 
present treatment. Both these terms are small and the 
strength of V-parity forbidden transitions is of the order 
of 10% of that of allowed transitions. The parameter 
which determines the strength of the forbidden transi- 

tion is ER/&. The selection rule thus loses validity as 
one approaches the region of vibrational nuclei. 

VI. RESULTS AND DISCUSSION 

We now summarize the main results of this Paper. 
To begin with, tlie assertion that the odd particle does 
not have an important influence on the giant dipole 
resonance has been borne out. As a matter of fact, this 
assertion is even better fulfilled than expected in that 
the v-parity selection rule discussed in the last section 
limits the number of the important upper dipole transi- 
tions to two, the Same number as in the even-even 
nuclei, while the lower peak splits into two roughly 
equally strong components separated by about 100 keV, 
a splitting masked completely by the width which for 
the lower peak is about 2 MeV. This is true despite the 
fact that here the number of states whicli can be reached 
by E1 transitions when considering only angular mo- 
mentum and parity conservation is considerably greater 
than in even-even nuclei. In fact, the q-parity selectioil 
rule is not exact and the photon absorption spectruin in 
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odd-A iiuclei will be somewhat different than in even- 
even nuclei. Because of the smallness of the symmetry- 
breaking terms this difference will, hoki~ever, be so small 
that it is not clcar whether it can be experimentally de- 
tected a t  all. 

The structure of the Hamiltonian and of the transi- 
tion matrix elements further shows that Brink's hy- 
pothesis14 is fulfilled to a large extent for our model. This 
hypothesis asserts that besides fulfilling the sum rule, 
dipole trailsitions originating in excited states of the 
nucleus resemble the transitions from the ground state 
even more closely in that in such transitions also a giant 
resonaiice appears a t  the Same photon energy. This is 
supposed to be true for transitions starting a t  every 
excited state. This hypothesis turns out to be fulfilled 
for the giant resonance '(based 011'' the excited single- 
particle states while only very small changes occur in 
the giant resonances "based on" the lower rotational 
and vibrational states. 

We would now liie to discuss the consistency of the 
model, the accuracy of the solutions, and the possibility 
of refinements of the theory. 

The model consists of two kinds of collective degrees 
of freedom and of a single particle moving in a potential 
well. The first two, the surface and the dipole modes, can 
be considered as resulting from the quantization of a 
continuous system, i.e., the treatment of their dcgrees 
of freedoni may be called quantum hydrodynamics. The 
parameters of the theory are to be considered as arbi- 
trary parameters to be determined separately, either 
from more fundamental theory or from experiment. This 
system will of necessity fulfill the classical dipole sum 
rule, and by introduction of an effective mass one may 
even include the effects of exchange forces. Depending 
on whether the odd particle is a Proton or a neutron the 
sum rule must be taken either as (M-1)Z/A or 
N ( Z -  l)/A ; the odd particle does not participate in the 
collective motions. However, in the denominator one 
has to retain A rather than changing to A- 1 since the 
odd particle participates in the recoil motion. The addi- 
tion of the odd particle to the model is, however, 
not completely consistent: de faclo, all particles par- 
ticipate in the collective excitations. For example, an 
f,,, valence nucleon can make a dipole transition 
to a gs,, state. When treating the dipole state in 
the shell model, this transition has to be admixed 
to the states making up the dipole state. It would 
therefore be wrong to expect to See a 3+ state with a 
single-particle E1 strength a t  the encrgy corresponding 
to the independent particle transition energy which here 
is the energy separation of the major shells, i.e., a t  about 
7 MeV. However, such a state would be predicted by 
the model. The reason for this inconsistency is ovbio~is: 
the model EIamiltonian is not symmetric in all psrticles; 

14 D. Brink, thesis, Oxford University, Oxford, England, 1955 
(unpublished). 

the A-  1 particles which make up the core are described 
by the collective variables while the valence particle is 
treated as an independent particle in a potential well. 
I t  is also not clear liow to formulate the antisymmetriza- 
tion of the wave function in the model, the coordinates 
of the core particles being hidden away in a nontrans- 
parent manrier. 

The above rather obvious remarks ivere made to 
iiidicate the limited validity of the model: it can be used 
to describe only a very limited number of "single- 
particle excitations." On the other hand, it is complete 
for the purpose of definiiig all the possible kinds of 
symmetries of the wave function of a deformed odd-A 
nucleiis. If one allows also integer values of fl one can 
similarly investigate the symmetries of the wave func- 
tion for odd-odd nuclei. In other words, this model can 
describe all the kinematics of heavy nuclei. I t  also can 
be expected to describe very wcll the dynamics of the 
collective aspects; however, the model is too primitive 
to describe the dynamics of the "particle-excitation 
spectrum." The kinematic aspects of the odd particle 
are, however, very important. They are, for example, 
indispensable in the description of the elastic and the 
Raman scattering of photons on nuclei and of experi- 
ments involving nuclear orieiitation. Fortunately, the 
kinematic aspects are siifficient for the description of 
these phenoniena, and the limitations of the model here 
are of no consequence. 

We now turn to the discussion of tlie accuracy of our 
solutions and of the model Hamiltonian. Concerning the 
energies, the rotations and the ß vibrations could be 
treated exactly. The treatmeiit of the rnain splitting, 
i.e., the determination of hGo and hGix, is very accurate. 
The only relatively large uncertainty is associated with 
the subsidiary splitting, which is associatecl with the 
interaction of the dipole mode with the y vibrations, 
i.e., with the solution of Eq. (33). Homever, even that 
is not very important. According to Maximon,12 an 
educated guess gives for the uncertainty of the energies 
of the states with F =  f 1 a value of about f 50 keV, or 
about 0.3% of the dipole energy. Again, considering the 
width of the states, this uncertainty is trivially small. 

The accuracy of the dipole intensities is somewhat 
smaller. The inaccuracies are here associated with the 
dipole operator, with the matrix elements of the dipole 
operator ($,D$) and with the evaluation of the overlap 
(P  1 P) of Eq. (80) which, again, involves the solution 
of (33). The dipole operator has in the present treatment 
been evaluated by expanding it in powers of Po, E, and 
q.  The matrix elements were evaluated using spherical 
functions rather than spheroidal functions. Together 
with the uncertainties resulting from the evaluation of 
the above overlap integrals and the different small terms 
dropped frorn the Hamiltonian tlie accuracy of the line 
intensities is therefore not better than about f20%. 
The accuracy for the main transition is somewhat 
better. Some of these inaccuracies are eliminated if one 
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computes only relative line strengths where the ac- 
curacy is about 10%. 

As to thc possible refincments of the theory, very little 
can be done in the improvement of the model Hamil- 
tonian as long as one keeps the two kinds of dynamic 
variables, the collective and the single particle, which 
are not independent of each other. In  order to improve 
the description of the "single-particle" aspects oiie 
could think, for example, of includiiig more than the 
minimum number of particles in the "odd"-particle 
part of the Hamiltoilian, viz., one for odd-A nuclei and 
two for odd-odd nuclei. One could then do configuration 
mixing to improve the dynamics of the "single-particle 
spectrum." However, this is not advisable since one 
would then rob the collective degrees of freedom eveil 
further of their completeness. The possible improve- 
meilts of the collective Hamiltonian, as, e.g., the in- 
clusion of the diverse coupling terms dropped in the 
present treatinent, are of minor importance in the 
giant-resonance region. Also, improvements in the wave 

functions will have practically no effect concerning the 
energies of the states. However, the transition proba- 
bilities are much more sensitive to the accuracy of the 
wave functions. A more accurate solution therefore 
seems desirable. This would have to iiiclude a numerical 
treatmcnt of the y vibratioiis. Also, certain selection 
rules forbiddiilg, e.g., the transitions involving a change 
in 7 parity are broken by some of the neglected coupling 
terms. This last effect results again in a rather 
small change in the Cross section. However, all these 
small inaccuracies will have to be cleaned up if one 
aspires to compute the intensities to better than, 
say, 10%. 
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APPENDIX I 

The I „ h  are given by 

(C)"' M1 
Ioio=Mi(ßo+E) - (20101 10)2=-(ßo+E), 

d5n 

APPENDIX I1 

IVe quote here the results obtained by Maximon12 for the energies and the overlap integrals by means of a 
perturbation treatment for the coefficients of the power-series expansion of the solutions of Eq. (33). The notation 
is the Same as in (37) and (39) except that we omit the subscript 2 in ~ z z ,  and we write 

v=l+l.  (11.1) 
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The energies of Eq. (37) are 

1 r(vf 1) ( v + $ ) ~  11 W ( - ? Z ) ~ ( - J ~ ) ~ ~ ( V ~  f ) j  
~ ~ ~ ( 2 )  =- ----- - C C .  

4 r ( ~ + + )  n! 3-0 jl-o j!J"!(~++)~(v+$),t 

The overlap integrals, Eq. (79), are here given for transitions from the ground state, i.e., one of the functions is 
always the ground-state function pooo(n^), which is known exactly since the linear term is absent in the potential 
of the equation for the ground state; See Eq. (33). The wave functions for the excited states are normalized up to 
an accuracy linear in the perturbation Parameter y, i.e., 

(11.3) 

Then, up to terms linear iri y, there holds 

where 
3 F 2 = 3 F 2 ( - ~ ~ )  $, v+1; #-n, V+ +; 1). (11.5) 

Note that for iz=0 the first four summations are to be dropped. 
Very few terms in the series expansion of [d2Fl/dc]r,o are needed to obtain a good numerical accuracy for 

(11.2) and (11.4) since the argument of the fitnction is 4. 


