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The theory of Raman scattering is extended to include electric-quadrupole radiation. The results obtained 
are used to compute the elastic and Raman scattering cross sections of heavy deformed nuclei. The dipole 
and quadrupole resonances are described by a previously developed theory which includes surface vibrations 
and rotations. The computed cross sections are compared with experimental data for all those nuclei where 
both absorption and scattering cross sections are available. Some discrepances still exist in certain details; 
however, the over-all agreement between theory and experiment is very good. 

I. INTRODUCTION strength is associated with the giant resonance, or, to 
what-accuracy can the shape of the cross section be THE present has two In the first.parf7 quantitatively described, etc. I t  will be Seen that very 

the t h e o r ~  of elastic Raman scatterlng ls few nuc]ei have been investigated with a sufficient 
extended t0 quadrupole radiatiOn including di~ole-  accuracy for an analysis of the kind attempted here. 
quadrupole interference' Together with the well-knom I t  wou]d also be exceedingly desirable to have available 
results for dipole radiati~n, '?~ the formulas obtained are high-quality data concerning nuclei from the transition 
used to compute the photon-scattering cross sections region, i.e., from the region where the deformations 
On the basis of the d~namic  cO1lective theor~"6 of the become smal]. Examples of such nuclei are neodymium, 
giant resonance in heavy deformed nuclei. In the second arid The data should include the 
part, we attempt to obtain as complete as possible region above 20 MeV, i.e., the location of the giant 
theoretical fits to the presently available high-resolution quadrupole resonance.L6 
experiments, taking together both absorption and The theoretical part of the paper is contained in 
scattering data. In  other words, our aim is to determine SecSm II through IV4 The formulas for the electric 
how consistent is the totality of the information con- quadrupole elastic arid Raman scattering including 
cerning the nuclear giant resonance. interference with dipole radiation are developed in 

We believe that this is the correct time for such an Sec. 11. The scattering amp]itudes are griven in terms of 
attempt. The development of both theory arid experi- reduced matrix elements of the multipole operators. 
ment of the photonuclear effect over the last 15 years The final formulas for the diverse scattering cross 
has led from a qualitative picture to a quantitative sections are worked out for nonaligned targets. In a 
de~cription.~ In other words, the qualitative features description of experiments performed with aligncd 
are quite well understood. The Open questions are of a t a r g e t ~ , ~  one would have to use directly the expressions 
quantitative nature; e.g., what fraction of the oscillator for the scattering amplitudes. A r6sunl6 of the nuclear 

theory is given in Sec. 111, and the reduced matrix 
elements needed in the formulas for the different cross 

"ork supported in Part by the Deutsche Forschungsgemein- sections are evaluated in Sec. IV. The second part of schaft with a contract on nuclear-structure studies, and by the 
Deutsches Forschungsministerium. the paper, i.e., the detailed comparison between the 
' G. Placzek, in Marx Zlafidbuck der Radiologie 6, 2 (1934); experimental data and the theoretical predictions, is 

6, 205 (1934). 
2 U. Fano, National Bureau of Standards (U. S.) Technical cOntained in Sec. V. We have analyzed the of all 

Note 83, 1960 (unpublished). cases where both absorption and scattering Cross 
3 M. Danos and W. Greiner, Phys. Rev. 134, B284 (1964). sections, i.e., a complete set of data, are available. 
4 M .  Danos, W. Greiner, and C. B. Kohr, Phys. Rev. 138, 

B 1055 (1965). Section V1 contains a summary and a discussion of the 
6 M. Danos, U'. Grciner, and C. B. Kohr, Phys. Rev. 151, 761 results obtained. 

(1966). 
BR. Ligensa, W. Greiner, and M. Danos, Phys. Rev. Letters 

16, 363 (1966). 8 E. Ambler, E. G. Fuller, and H. Marshak, Phys. Rev. 138, 
7 M. Danos and E. G. Fuller, Ann. Rev. Nucl. Sci. 15,29 (1965). B117 (1965). 
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11. SCATTERING AND ABSORPTION 
CROSS-SECTXON FORMULAS 

The transition probability for the scattering of incoming photons with wave vector k into outgoing photons k' 
is given byg 

du/& = ( k ' / h )  1 K t f  1 ' , (1) 
the nuclear state changing from i to f. 

JVe devote this section to the description of the rnatrix elements KZr.  We begin by developing the general 
fornlula for arbitrary photon inultipolarity. Later we specialize to the case of dipole and quadrupole scattering. In  
general we have 

In  this equation eklh, and ekx are the polarization unit vectors of the photons for circular polarization, E is the 
incoming photon energy, H is the nuclear Hainiltonian normalized so that the nuclear ground-state energy equals 
zero, and 

A (k) = ekleZk .r ( 3 )  

is the vector potential. The imaginary Part of the energy denorninators is to be taben in the limit 7 -  0. 
In  Appendix B of Ref. 10 i t  was shown that under certain circumstances the absorption Cross section of a 

damped giant resonance state I GR) can be approximated by a Lorentz line, i.e., that it is described by the forward 
scattering arnplitude f (E)  which has an  iniaginary part given by 

One Sees that the Same imaginarq- Part is obtained if in (2)  one replaces formally the eigenstates / rz) of the 
nuclear Hamiltonian by the giant resonance state [ GR) and introduces a finite width T which formally replaces 
7 in the energy denominators. 

With these substitutions, we thus have 
Im f (E) = ImK (E). (6) 

Then frorn the dispersion relations it follows that also the real parts of K ( E )  and j(E) are equal if ReK(0) = Re f (0). 
This is so because the real Part of the scattering amplitude a t  Zero energy is given by the Thornson arnplitude in 
both cases. We emphasize that the above replacee~erits are only appro'iin~ately valid and refer to Ref. 10 for a 
discussion of the limits of validity. If several giant resonances are present, which is the case in heavy nuclei, then 
their contributions to the scattering amplitude add. Thus we finally have for the coniplete scattering amplitude 

\V. Heitler, The Quczniunz T h e a ~ y  o j  Radiation (Clarendoii Press, Osford, Cnglsnd, 1954). 
l0 M. Danos and LV. Greiner, Phjs. Rev. 158, E876 (1963). 



157 P H O T O N U C L E A R  E F F E C T  I N  H E A V Y  D E F O R M E D  N U C L E I  11 11 

In  the following we shall drop the notation I GR,) and replace i t  by In), where n now stands for the state of the 
izth giant resonance. 

We now perform a multipole expansion of the vector potential," i.e., 

which is an expansion in nlultipole fields A L M  defined in a rotated coordinate system. The arguments of the rotation 
matrices BMKL are the Euler angles specifying the orientation of the rotated system. The phase convention used 
in this paper is that of Biedenharn and Rose.I2 Then (7) becomes 

In  the following we restrict ourselves to electric-dipole and -quadrupole radiation. We now rewrite Eq. (9) in 
terins of the nuclear polarizabilities !j3LPL, which are implicitly defined by the equation 

I t  will be shown in the Appendix that  this definition leads to the following explicit expression for the polariza- 
bility tensor : 

The reduced matrix elements of the ffigner-Eckart theorem are defined by 

To compute the scattering Cross section we need the absolute Square of Kir. Using 

M. E. Rose, Eletwentavy Slzeoly o j  Angular A4onze?ztui~z (Interscience Puhlishers, Inc., New I'ork, 1957). 
'2 L. C. Biedcnharn and M. E. Rose, Rev. Rfod. Phys. 25, 729 (1953). 



1112 A R E N H Ö v E L ,  D A N O S ,  A N D  G R E I N E R  

we obtain from (11)  

This is the final forinula which can be written before 
specifying the polarization of the beam and of the 
target nucleus. In the general case where the nuclei may 
be aligned or polarized one will have to use (16)  
directly, e.g., in the density-matrix formalism,13 to 
describe the experimental situation. We shall, however, 
a t  this time specialize to a nonaligned target. Then the 
cross sections are obtained by an incoherent averaging 
over the initial direction, i.e., summing over Mi. We 
also shall take the photons to be unpolarized. The cross 
section then is given by averaging over both orientation 
and polarization of the initial state of the nucleus and 
the photon, Mi and p, respectively, and summing over 
the same quantities in the final state, Mf and P'. In 
this case we obtain 

We now turn to the multipole matrix elements. By 
virtue of Siegert's theorem we have 

J 

du 1 k' 2 2L 
J 

where 
-=-- C C gLIKL(e)sp~lLsp~lK*, (17)  
df2 21,+1 k L,K=1 L1=O Y L M .  (24)  

where Introducing the multipole moment 

gLtKL(0) 
QLM= P ~ ~ Y L M ~ T ,  = (-)L+K+L'C [I+ ( - ) " + w J ] ( 2 ~ ' +  1)  ( 2 I +  1 )  S (25)  

J we finally have 

Obviously there holds 
The time derivative in (25) is simply 

I- 

(19) 
I: 

g L , ~ L  (e)  = gLIL= . & L M = ~ - Q L A ~ .  
h 

(27) 
The functions g ~ , K L ( 0 )  describe the different angular 

distributions. So K = L =  1 describes the dipole photon We note that QLM in (25)  is normalized differently 
scattering. L1=O is the scalar part, L'= 1 is the vector than usually in that Y L ~  is used instead of the usual 
part, and L'= 2 is the tensor part. Similarly, K= L= 2 Legendre polynomial PLM.  
describes the quadrupole scattering. L' here goes from Using Eqs. (26)  and (27), Eq. (12)  becomes 
0 to 4. The dipole-quadrupole interference is given by 41r the terms K =  1, L=2. These terms vanish a t  0=90°. 

~ „ i = -  C 
L' If ri 

We have explicitly 3(hc)' n ( I ,  1  I}''' 

ZZe2 
la U .  Fano, J .  Opt. Soc. Am. 39, 859 (1949); Phgs. Rev. 90, +Oif6~l~(-)21i[3(21i f  1)]112- 

577 (1953). A M c 2  , (28)  
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and Here the dipole and the quadrupole Cross sections are 

The absorption cross section then is given by 

and 
1 Sn2 e2 

= - - - 
2Ii-I-1 75 

respectively. 
Writing for the scattering cross section 

one finally obtains explicit expressions for the partial 
cross sections by inserting (28) and (29) in (17). 

Z2e2 + ] + s , j a L f o ( - ) 2 ~ ~ ~  <21~+ 1 ) 1 1 1 2 ~ )  
X[E,(E::~L En+E1+$iTn AMc 

In  the special case I i = O  (even-even nuclei) only the term Lr=If  contributes. Here also only the scalar part 
occurs in the elastic scattering. 

III. RESUME OF THE COLLECTIVE MODEL 

I n  this section we give a short review of the dynamic collective inodel of the giant resonance mrhich has been 
developed in a series of earlier p a p e r ~ . ~ - ~  

The Hamiltonian for the collective surface degrees of freedoin, the collective internal degrees of freedom, for the 
odd particle, and the various interactions between these degrees of freedom is 
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with 
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b ( l )  and b ( 2 )  are the annihilation Operators for the dipole and qiiadrupole giant resonances, respectively. For 
Hmrt we use the Nilsson Haniiltonian 

The refinernents included in this Paper which go beyond the treatment of tlie earlier work are the following. 
Firstly, the differential equation for the 17 vibrations has been solved nunierically since the accuracy of the perturba- 
tion treatment used previously was not sufficient. Secondly, the off-diagonal term 

has been taken into account. lThe first change resulted in a slight increase in the energy spacing of the tipper 
states and in a substantial change in the absorption strengths of the vibrational satellites. The second Change 
increases the spacing between the main upper lines by about 150 keV. 

The wave functions for the Hamiltonian (36), excluding the off-diagonal term (39), are 

where 
X + - 1 + n - 2 ~  K-n I nz,ms,nt (7)) (40) 

sgn ,u=p / j~ /  for p#O, sgn0=0. 

The meaning of the quaiitum numbers is the following: I, M ,  aild K are the total spin and its projection on the 
laboratory and intrinsic axis, respectively; Q and a: are the quantum numbers of the Nilsson state; n2  arid wo 
describe the 7 and 5 vibrations, respectively ; m and give the number of dipole and quadrupole giarit resonance 
phonons, respectively, and s and t are their Cartesian classifications. Since a Nilsson wave function does not have 
a good angular momentum, the symbol ( - ) I  is to be considered as an Operator. The off-diagonal interaction (39) 
mixes the Cartesian giant resonance components s and -s, and separalely t and - t. 

The symmetries contained in (40) impose the following conditions upon the states. 
For m = 1, n= 0 m7e have15 

and for m= 0, n= 1 mre have 

Ii=Q-It,Q-jtl+2,12-jt1+4, . . .  , I = I K l ,  lKl+1, IKI+2 j a  . . . (42) 

The energies correspondirig to tlie wave fiinctions (40) are 

E ~ ~ , ~ ~ , ~ ~ , ~ ~ , ~ „ ~ ~ =  [I(I+l)-KZ-s2- t 2 - Q 2 ] E ~ +  ( ? ~ o + ~ ) E ~ - r n ( h w , ( ~ ) G , ( ~ ) : E ~ ) ~  

-- 
X ~ E R ~ ~ ~ - ? Z ( ~ W ~ ( ~ ) G ~ ( ~ ) / E ~ ~ ~ ~ E & ~ + ~ Z ~ ~ ~ ~ ~ ) + ~ ~ ~ +  ,n2,ms,nt. (43) 

14 This term has also been considered by C. F. semenko, Phys. Letters 13, 157 (1964) ; Sadernaya Fiz. 1, 414 (1965) [English trarisl. : 
Soviet J. Nucl. Phys. 1, 293 (1965)l. X e  thank her for a private communication. 

16 The selection rule, as given in Ref. 4, contains ari error for Cl=*. 
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The last term in (43) gives the energy of the 17 vibrations. For s=O, t=O, 2 i t  can be given explicitly : 

E l ~ - ~ l n ~ , r n ~ , n t =  {2fi2+i[(K-Q)2+6]112}E. (44) 
For the other cases this energy has been obtained by numerical solution of the equation for the 7 vibrations. 
As final step we now consider the off-diagonal operator (39). Tbat nieans that we still have to diagonalize a 

two-by-two matrix which has diagonal elenients given by (43) and off-diagonal elements which have to be com- 
puted numerically. They are 

(1) For one giant dipole phonon, 

(2) For one giant quadrupole phonon, 

3Enßo293(13- j a )  
(I'K' ,0'a',nz'~z,,',OO,lt - ---I I K , ~ ~ ~ , ~ ~ ~ ~ ~ ~ , O O , I L ~ )  I 16i12 

This completes the computation of the energy spectrum. 

1V. PHOTON-INTERACTION MATRIX ELEMENTS 

Iii the computation of the reduced matrix elements of the multipole operators (25) needed in (30) and (32), two 
steps can be distinguished : (i) The operators (25 )  have to be written in terms of the giant resonance and surface 
coordinates in the intrinsic system. (ii) The matrix elemerits of these operators between the various states have to 
be evaluated. After expressiilg the operators in the intrinsic system they can be expanded in terins of the surface 
parameters. We shall limit ourselves to terms quadratic in the static deformatioii Parameter ßo and to terms linear 
in the vibrational ainplitudes E and 7. This leads to the following expressions for the intrinsic coinponents of the 
dipole and quadrupole operator : 

with 

and 
(46') 

Q2P=dl r l (2 ) { [ i~~~~~(b le l (2 )?+b lP l (2 ) ) -~gn~ i s~~ i z (b - lP l ( 2 ) t+b - i p l ( 2 ) ) ]  
X [1+SP(2)$]- [is~~~l(b2-l,l t+b2-lpl (2))+sgnl.L ( b l r i - ~ (2 ) t+b ;p l - 2 (2 ) ) ] ~ (~~ )a~~~10 .49717 }  , (47) 

with 
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The Parameter a has been introduced originally to account for the exchange forces in terms of an effective nuclear 
mass. Here i t  is used strictly as a scaling factor to adjust the absolute magnitude of the cross sections in a giveri 
iiucleus. 

The evaluation of the matrix elements of these operators using the wave functions (40)  is lengthy but straight- 
forward. The final results are 

(1) Even-even nuclei : 

X ( ( ~ ~ ' n z ' l ~ 0 0  1 (~~ns0000)(~ng'l~OO / ~ + S P ( ~ ) [ /  uno0000) 

+ ( - )S (S+1) '2 ( ( lpK 'nz11~00/  (1 ~ I d 6 j S v ( ' ) ~  I <~~ns0000)(~no~l~OOI un,0000)). (48)  
Here n, is the parity of p ~ ~ ~ o o o o .  

- (&,2-1 ul+sgnt6-t.2-~ v ~ ) ( u „ ~ ~ ~ l t  l ~ ~ ~ o o o o ) ( c n ~ ~ „ ~ o o i t  / t 'Z(fl /2)qi. i10.49Tr I p ~ ~ o o o o ) ) .  (49) 
(2) Odd-A nuclei: 

These matrix elements coiitain overlap integrals of 
the s-vibration wave functions, which have been 
evaluated numerically.16 

V. ANALYSIS OF EXPERIMENTAL DATA 

Up to now, scattering experiments have been per- 
formed only for four heavy deformed nuclei, namely, 

' V h e  matrix elements for the dipole operator in odd-A nuclei 
as given in Ref. 4 contain an error in the phases. As a result of 
this error the 4-parity selection rule discussed in that paper is 
wrong. \Ve acknowledge discussions u-ith E. G. Fuller concerning 
this point. - 

Tb, Ho, Er, Ta. lVe shall try to give as conlplete as 
possible an analysis for these four cases. 

The analysis proceeds in the following manner. 
Among the parameters determining the theoretical 
cross sections the three parameters ER, E?, and Eb are 
taken from the low-energy spectra. The deformation 
parai~ieter ßo can, in principle, also be deterniined froin 
the low-energy data. We still consider ßo to be an 
adjustable parameter, both because i t  is not too well 
determined by the Coulomb-excitation experinient, aiid 
in order to check for over-all consistency between the 
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values of ßo obtained by both methods. The other 
parameters determine, crudely, the position, absolute 
magnitude, and widths of the resonances. For the width 
of the different dipole resonances we assume that they 
only depend on the excitation energy and we describe 
this by a pomrer law, i.e., we put 

All widths thus are described by two parameters 
and 6. Finally, we are left with two Parameters, namely, 
Eo, the position of the low-energy giant resonance, 
and CL, the exchange correction to the integrated cross 
~ection'~J8 (effective-mass correction of the hydro- 
dynamic model). 

The adjustment of the five parameters mrould be an 
almost insurmountable job. Fortunately in this case, 
different features of the cross section have different 
sensitivity with respect to the different parameters. 
Thus the parameters Eo, To, and ai are practically fixed 
by the low-energy peak of the absorption cross section. 
The remaining two parameters ßo and 6 are then de- 
termined by the over-all splitting and by the height of 
the upper bump, respectively. The fitting thus consists 
in an iterative procedure going through the above se- 
quence of parameter adjustments until a satisfactory 
fit has been obtained. 

In odd-A nuclei the low-eilergy Parameters are not 
necessarily available from the low-energy data. In  such 
cases parameters froin neighboring nuclei were used. 
This procedure evidently introduces some uncertainties. 
This is particularly true for the vibrational energy E,. 
In these cases, therefore, E, was also varied while 
fitting the theoretical curve to the experimental data. 

The precision with which the different paranleters 
could be determined was highest for E. (less than lyo), 
Po (about 5Ya), and ßo (about 100jo). I t  should be noted 
that the different parameters can be slightly changed 
by making small changes in other parameters. A correct 
determination of the region of best fit would have 
required extensive numerical computations. These were, 
however, not carried out. The above-quoted uncer- 
tainties include an estimated uncertainty resulting from 
this interrelation of the parameters. Unfortunately, the 
accuracy in the absolute magnitude of the experimental 
cross sections still seems to preclude a complete inter- 
comparison between absorption and scattering data. 
The conclusions of our paper are thus based mostly on 
fits to the energy dependence of the different cross 
sections, and no definite conclusions can be drawn 
concerning the parameter ar, i.e., on the magnitude of 
the integrated cross section. 

We now proceed to the discussion of the different 
nuclei. 

l7 J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950). 
l8 M. Gell-Mann, M. L. Goldberger, arid W. E. Thirring, Phys. 

Rev. 95, 1612 (1954). 

TABLE I. Resonance parameters for erbium. 

E R  E? E s  E0 ro 
(keV) (keV) (MeV) (MeV) (MeV) ßo 6 Q 

Erbium 

The photon-absorption experimentlg has been per- 
formed only on natural erbium in which the abundances 
of the different even-even isotopes are 33.4y0 for 160Er, 
27.1y0 for lG8Er, and 14.9y0 for 170Er. The low-energy 
spectra are well known for lMEr and 168Er, not so well 
known for 170Er. The low-energy parameters are practi- 
cally the Same for 160Er and 168Er. The computations 
thus were performed with the parameters of the most 
abundant isotope IG6Er. The fit obtained is shown in 
Fig. 1. The parameters are given in Table 

The level scheme and the dipole strengths for the 
giant resonances are shown in Fig. 2. The dashed line 
shows the position and the strength of the transversal 
mode if the coupling to the surface vibrations is omitted 
(Danos-Okamoto picture). The main effect of the 
coupling to the surface mode is a splitting of the 
transversal mode by almost 2 MeV. Many vibrational 
satellites also appear. However, only one of them 
acquires an appreciable dipole strength. 

The scattering cross sections, which result with the 
above obtained parameters, are shown in Figs. 3 to 5. 
Both the elastic and the Raman scattering cross 
sections are given. The largest cross sections are shown 
in Fig. 3. The elastic scattering here is purely scalar, 
since the ground-state spin vanishes. Tensor scattering 
is included in Fig. 3, leading to the first rotational state 

E, M e V  

FIG. 1. y-absorption cross section of Er, experimental data 
from Refs. 19 and 20. 

19 E. G. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962). 
1°As a result of a redetermination of the neutron-detector 

efficiency, the cross sections in Refs. 19 and 28 have to be multi- 
plied by 0.67 and 0.75, respectively [E. G. Fuller and H. Gersten- 
berg (private communication)]. 
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(2+) aiid to the y-band head. The latter cross section 
is reniarkable. I t  is by about an order of magnitude 
larger than the vibrational Railian scatteriiig cross 
sections shown in Figs. 4 and 5 .  The reason £01- this is 
the following. The scattering strengths [see Eq. (48)] 
contain overlap integrals between the 7-\ibrational 
wave functions. They are in general very siiiall and 
would even vanish exactly except for the presence of 
the rotation-vibratioii and dipole-vibration interaction. 
Explicitly, this effect results from the presence of the 
term (Ia2+d32)/ (16Bg2), Eq. (36). Thus the differential 
equation for the wave function of the r] vibrations is 
different for different baiids. However, the overlap 
integrals are still sniall for those wave functions which 
would have been orthogonal in the absence of the above 
terin. The striicture of the g-~ribration band head, as 
seen from its quantuni nuinbers I=2,  K =2,  nz=O, 
and no= 0, actually involves no 7-vibration phonon. I t  
merely indicates a liind of centrifugal stretchiilg resiilt- 
iiig from the finite K, which leads to a dynaniic perma- 

FIG. 2. Level sclieme and dipole 
strengths of the giant dipole reso- 
nance states of Er. The dashed 
line shows position and strength of 
the transrerse mode for an axially 
syinmetric deformation. 

ilent triaxially deformed shape. The energy of this state 
is connected witli the genuine g-vibration energy via 
the restoring forces. The absence of a vibrational kinetic 
energy also shows up in Eq. (44). An energy 2E, is 
associated with a genuine vibration while these pseudo- 
vibrations are associated with energies E,. 

The quadrupole scattering associated with the E2 
giant resonances has also been compiited. I t  is not 
separately shown, since its magnitude is generally 
small. However, i t  shows up in interference effects with 
dipole scattering. The espected angular distributions 
are plotted for several energies in Fig. 6. The pure 
dipole distributions are iildicated by dashed lines. The 
only experimental dataZ1 available a t  this time are also 
plotted. One cannot claiin agreement betmieen theory 
and experiment a t  20 MeV, where the interference 

FIG. 3. Calculatecl elastic and inelastic scattering uoss sections 
ol E r  for scattering into the ground-state band (C*,ZC) and the 
y band (2'+). 

FIG. 4. Calculated inclastic scattering cross scctions 
of Er for scattering iiito the ß band. 

Loiscaux, and Nucl. 
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effects are l a r g e ~ t . ~ ~ o w e v e r ,  the agreement is satis- 
factory at lower energies. 

The total quasi-elastic scattering cross section a t  
140" is shown in Fig. 7 .  The experimental points are 
from Ref. 21. The agreement is excellent, bearing in 
mind that no adjustments have been made in the 
parameters obtained froili a fit to the absorption data. 

Holmium 

As conipared with erbium, the sitiiation in liolmium 
is, oii the one hand, clearer because the niicleus is mono- 
isotopic; on the other haiid, it is niore uncertain because 
no consistent analysis of the low-energy data is available 
aq yet. However, two y-band heads with spins and 
11/2- a t  514 and 687 keV,23 respectively, seein to be 

FIG. 1. Sotal quasi-elastic scattering cross section of E r  ~ i t h  
experimental data from Ref. 21, multiplied by 7/9. 

E, M e V  

FIG. 5. Calculated iilelastic scattering cross sectioils 
of Er for scattering into the liigher y baiid. 

FIG. 6. Angular 
distributions of the 
total quasi-elastic 
scattering cross sec- 
tion of E r  for differ- 
ent energ-ies. The 
dashed line shows 
the angular distribu- 
tion for pure dipole 
scatteririg. Tlie ex- 
perimental points are 
talren fronl Ref. 21. 
Top: 11.5-14 MeV, 
niiddle : 1617.3 
MeV, bottom: 17.5- 
20 MeV. 

22 A similar observation has already been made by E. G. Fuller 
(private communicatioil). Ba 

23 R. &'I. Diamond, B. Clbek, and F. C .  Stephens, Kucl. Phys. 
43, 560 (1963). 

indicated. This would yield for the 7-vibration param- 
eter about E,= 500-700 IreV. Such a value for E, would 
also agree with the systeinatics of thc 7-vibrational 
energies in the neighboring n ~ c l e i . ~ ~  Because of these 
uncertainties, we toolr E, to be a free parameter. 

TABLE TI. Resonance parameters for '"Ho. 

IZ,i E,  Eg  E0 ro 
(ke\') (MeV) (MeV) (MeV) (MeV) P O  6 a Ref. 

10.5 0.6 1.46 12.0 2.1 0 2 8  1.5 0.05 19 
10.5 1.0 1.46 12.0 2.3 0.24 1.6 0.13 25 

Two absorption experiinents exist in the l i t e r a t ~ r e . ~ ~ ~ ~ ~  
IVe matched theoretical absoiption cross sections to 
both sets of experimental data. The parameters ob- 
tained are listed in Table II.20 

The cross section corresponding to the data of Ref. 25 
is shown in Fig. 8. These data suggest the onset of the 

I I I I I I . J  
3 10 12 14 16 18, 20 22 

E. M e V  

FIG. 8. y-ahsorption cross section of lG5Ho from Ref. 25. The 
theoretical curve is computecl with the second parameter set of 
Table 11. 

2%. Faessler, \V. Greiner, and R.  K. Sheline, Nucl. Phys. 70, 
33 (1965). 

26 R. I,. Bramblett, J. T .  Caldxi,ell, G. F. iluchampaugh, aiid 
S. C. Fultz, Phys. Rev. 129, 2723 (1963). 
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FIG. 9. Level scheme and dipole strengths of the giant 
dipole resonance states of lB6Ho. 

E2 giant resonance a t  about 21 MeV.kZ6 The cross 
section corresponding to the data of Ref. 19 is not 
shown separately, since i t  is practically indistinguishable 
from Fig. 1. 

The spectriim and the strengths of the dipole states 
which are computed with the first Parameter Set of 
Table I1 are shown in Pig. 9. The spectrunl now is 
considerably richer. However, the dipole-strength 
distribution has reinained practically unchanged com- 
pared to the even-even case. Thus, summing the 
strengths of the different main peaks, we have the 
distribution 86: 51: 20: 79 for I6"3o as compared to 
86:58:17:80 for 16%r. This is a quantitative test for 
the assumption that the odd particle has no influence 
on the distribution of the dipole strengths. However, 
the dipole strength is split up irito several~components 
lying a t  exceedingly close energies. 

The different contributions to the scattering cross 
section are shown in Figs. 10-13. Because of the finite 

10 12 14 I6 E, MeV I8 

- 

ground-state spin, the elastic scattering now has both 
scalar tensor contributions. The scalar contribution is 
indicated separately by the dashed line in Fig. 10. Now 
two rotational Raman lines of the ground-state band 
can be reached. They are also showil in Fig. 10. Figure 
11 shows the Raman scattering into the states of the 
y bands. In  the lower y band ( K = 3 )  five rotational 
states can be reached. The corresponding scattering 
cross sections are plotted except for the transition into 
the state I =  11/2, Ii=$, which has too small an in- 
tensity to be plotted. Because of the dipole selection 
rules only the band head of the K=11/2 y band can 
be reached. The total scattering iiito the y bands 
corresponds to the scattering into the y-band head in 
eveil-even nuclei as discussed in detail above. 

The Rainan scattering into the ß band and the 
higher y band are shown in Figs. 12 and 13. The total 
quasi-elastic scattering cross section is shown in Fig. 14, 
together with the available experimental data.2's27 

FIG. 11. Calculated inelastic scattering cross sections 
for scattering into the two y bands of 1B6Ho. 

I 1 I . I  I I 

1, 

E, M e V  
FIG. 12. Calculated inelastic scattering cross sections 

FIG. 10. Calculated elastic and inelastic scstterinn cross sections for scatterine into the ß band of 166Ho. 
for scattering into the ground-state band of 16jHo. 

P. A. Tipler, P. Axel, X. Stein, and D. C. Sutton, Phys. 
2G R. Ligensa and W. Greiner, Nucl. Phys. A92, 673 (1967). Rev. 129, 2096 (1963). 

i 
, II I ,  

- 
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The quasi-elastic scattering cross section computed 
with the parameters obtained from the fit of the 
absorption cross section to the Fuller-Hayward data19~20 
is shown in Fig. 15. Both Sets of parameters evidently 
give reasonable agreenient with the scattering data. 
However, considering the total mass of data together, 
the Fuller-Hayward data give a more consistent over-all 
picture. Firstly, the parameter E, is more in line with 
the value expected from the low-energy spectrum (see 
above). The Same holds for the deformation parameter 
Po, which in this region of atomic number is around 0.3 
instead of 0.24. Finally, the agreelnent with the scatter- 
ing data of the two theoretical curves seem to favor 
somewhat the Fuller-Hayward parameters. We believe 
that two systematic effects are responsible for the 
differentes between the betatron datalg and the positron- 
annihilation data.25 First, it seems that the resolution 
of the betatron experiment is higher. This shows up 
the difference in the values Tu, viz., 2.1 and 2.3 MeV. 
Second, the neutron multiplicity corrections seem to 
have been overestimated by the Livermore group. All 

FIG. 13. Calculated inelastic scattering cross sections 
for scattering into the higher 7 band of 166Ho. 

FIG. 15. Total quasi-elastic scattering cross sectioil of IG5Ho 
computed with the first set of parameters of Table 11, except 
u=O.l6; experimerital points as in Fig. 14. 

these discrepancies lie within the stated systematic 
uncertainties of the experiments. Each of our stated 
reasons by itself would not be sufficient to favor one 
Set of data over the other. However, talren together, 
we believe that they justify our conclusion. 

Terbium 

Measurements ori 15gTb have been performed by 
various groups, three of which were available to 
The obtained resonance parameters are given in 
Table 111. 

E, is in good agreement with those of neighboring 
nuclei. However, the deformation Parameter ßo is in 
both cases smaller than that obtained from Coulomb 
excitation. 

Both Sets OE parameters give reasonable fits, as 
Figs. 16 and 17 show. The total scattering cross sections 
are given in Figs. 18 and 19. The scattering data are 
those of Ref. 21, except that they are multiplied by 
0.823 and shifted in energy in the plots of Figs. 18 
and 19. 

Tantalum 

For 181Ta we used the data of three g r o ~ p s , 2 ~ ~ ~ ~ ~ ~ ~  two 
of which coincide within the experimental e r r ~ r s . ~ ~ ~ ~ ~  

TABLE 111. Resoilance parameters of lj9Tb. 

ER Ey Eq Eo I'o 
(keV) (MeV) (MeV) (MeV) (MeV) ßo S ~u Re£. 

FIG. 14. Total quasi-elastic scattering cross section of lGhHo 
from Ref. 27 (open circles) and Ref. 21 (closed circles multiplied 
by 7/9). The theoretical curve is computed with the second set 
of parameters of Table 11. 

28 E. G. Fuller and M. S. U'eiss, Phys. Rev. 112, 560 (1958). 
29 0. V. Bogdankevich, B. I. Goryachev, and V. A. Zapevalov, 

Zh. Eksperim. i Teor. Fiz. 42, 1502 (1962) [English transl.: Soviet 
Phys.-JETP 15, 1044 (1962)l. 

30R. L. Bramblett, J. T.  Caldwell, R. R. Harvey, and S. C. 
Fultz, Phys. Rev. 133, B869 (1964). 
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FIG. 16. y-abs~rptio~l Cross section of I N ~ T ~  from ~ ~ f ,  30. ,1he FIG. 19. Total quasi-elastic scatlering cross section of lS9Tb 
theoretical curve is computed n i th  the first set of parameters computed ~ i i t h  the second set of parameters of Table ISS, except 
of Table 111. n=0.175; experimental points as in Eig. 18. 

E, M e V  

FIG. 17. 7-absorption cross section of lsgTb from Ref. 28l(circles, 
multiplied by 1.07) and from Ref. 29 (dots). Thc theoretical curve 
is coinputed with the second set of parameters of Table 111. 

FIG. 20. -, al-~sorption cross section of 181Ta from Reis. 23 aild 29. 
(Datafrom lief. 29 is multiplied by 0.652.) The theoretical curve 
is computed n i th  the first set of parameters of Table IV .  

E, M e V  

FIG. 18. Total quasi-elastic scattering cross section of 159'rb 
from Ref. 21 (multiplied by 0.823; energy scale is shifted up by 
0.6 MeV). The theoretical curve is computed with the first set 
of parameters of Table 111. 

The absorption cross sections are shown in Figs. 20 
and 21 and the fitting parameters are listed in Table IV. 

The fitting parameters differ in the values for E ,  and 

FIG. 21. 7-absorption cross section of 181Ta from lief. 28 (multi- 
plied by 0.704). The theoretical curve is computed with the 
second set of parameters of Table IV .  

slightly for Eo. In  this region one would expect E,= 1.2 
MeV, 60-0.2G0.25 from neighboring nuclei. The 
resulting total scattering cross sections in Figs. 22 and 
23 are both in reasonable agreement with the experi- 
inental data of Ref. 21. 
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FIG. 22. Total quasi-elastic scattering Cross section of 181Ta from FIG. 23. Total quasi-elastic scattering Cross section of 181Ta 
Ref. 21 (multiplied by 0.65 ; energy scale is shifted up by 1.0 AfeV). computed with the second set of parameters of Table IV. Experi- 
The theoretical curve ic computed with the first Set of parameters mental points as in Fig. 22 (energy scale is shifted up by 1.2 MeV). 
of Table IV. 

VI. SUMMARY 
TABLE IV. Resonance parameters for 181Ta. 

I n  this paper we have found good agreemeiit be- 'ß E~ '0 
(keV) (MeV) (MeV) (MeV) (MeV) Po S a: Ref. 

tmeen experimental data and theoretical predictions. 
The obtained nuclear paraineters were found to be :::: ::: :;:$ 2:; : 0::: 2$69 
consistent with the values expected from low-energy 
spectra. Also, the data on the damping paraineters of 
the giant resoiiance ro and 6 are consistent with ('high-energy deforinations" are slightly smaller than 
theoretical estii~iates.'~ the nieasiired Po's fi-om the low-energy spectrum, as 

However, there seems to be an indication tliat the shown in Table V?l 

TABLE V. The deformation Parameter ß~ of 15QTb, 165H0, 1e6Er, I81Ta, and neighboring eve11-even nuclei from Coulomb excitation 
(PO, CE) and from the giant-resonance splitting ( ß o , ~ ~ ) .  The B(E2) values are takeri from Ref. 31. ~ O , C E  is evaluated from 

Z A Idr Ifa B(E2;  I; -+ If) (ezlO-48 cm4) Po, GR (Ref .) 

Gadolinium 64 158 

Terbium 65 159 

Dysprosium 66 160 

Dysprosium 66 164 Of 2+ 5.6410.25 0.31 
9- Holmium 67 165 2 2 2.8 1 0 . 4  0.33 7- 

2.41~t0.07 0.31 
1- 
2 11/2- 0.6310.04 0.3 1 

0.6510.13 0.32 
0.28 
0.24 

(19) 

0.32 
(25) 

Erbium 68 166 OC 2+ 6.4 h0.6  
0.29 (19) 

Hafnium 72 180 Ot 21 4.931 0.35 0.26 
4.35f 0.20 0.24 

Tantaluni 73 181 I+ a+ 1.9 1 0 . 3  0.24 
2.1710.17 0.26 

5+ 11/2+ 0.59&0.05 0.26 
0.4810.08 0.24 

0.19 (25,291 
0.21 

0.24 
(28) 

Rolfram 74 182 OC 2+ 4.58f 0.40 
4.0010.20 0.23 
4.2 10 .5  0.23 
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The deformation paraineter for odd-A nuclei would result from the presencc of an additional scalar 
which are deduced from Couloinb excitation data are componcnt with a magnitude of about 15% indicated 
in good agreeiileiit with those of rieighboring eveii-even by the experi~neiits,~ a magnitude consistent with 
nuclei. This is expected from the collective property theoretical expectations about these nonresonating 
of PO. In  all cases, ß o , ~ ~  taken from the giant resonance processes. 
is smaller than ß o , ~ ~ .  More precise absorption and The sinall irregularities on the rising side of the cross 
scattering measurements are required to shom whether section are ver? likely the effects of the individual 
these indications are iiideed true. particle structure which in the Brown-Bolsterli modeP3 

Somc of these discrepancies may be associated with would give up all the dipole strengths to the collective 
the incoinpleteness of the employed model. First, of the states. Such states, perhaps, can be described in the 
nuclear siirface modes only the quadriipole mode has collective model bp spin-isospin waves first considered 
beeil treated dyiiamically, and higher multipoles of the by 147i1d.34 
nuclear deformation have been neglected. ~ ¿ e n  limiting The modifications of the predictions which would 
oneseli to ternls containing a t  most three amplitude arise if the thcory u~ould be refined to tabe into account 
functions, evidently a large nuinber of couplings with these effects can be expected to be si~iall. 1Vithin these 
the higher multipole modes are possible, e.g., limitations, agreement between theory and experiment 
b(')-b(2)ai("ji, wliere ~ . ( ~ j t  is the creation operator for is such that one has to conclude that the collective 
surface octupole oscillations. Also, the l-iigher static model is valid to a very high degree for iiuclei of the 
deforn~ations" can have an influence on the results. cleforined re,' 0'1011. 

The model also does not yet incorporate the low- 
energy tails of the nonresonating high-energy absorption ACKNOWLEDGMENTS 

mechanisms, viz., the direct photo-ionization processes We would like to thank E. G. Fiiller for fruitful 
and the quasideuteroii effect. The existence of these discussions and R. Ligensa for the calculation of the 
effects is suggested by the photon-absorption experi- quadrupole nlatrix eleinents. 
ments of Ainbler, Fuller, and Marshaks witli alignecl 
nuclei. Unfortunately, the experiments with nonaligned APPENDIX 
targets are not sufiiciently accurate to show the LYe write Eq. (9) in the case of only electric-dipole 
difference in the shape of various cross sections which and -quadrupole radiation: 

with 

The decompositioil of Rp&iL into irreducible parts leads to 
2L 

RPnfL= C (-) "+"(2Lf+ 1) L 
L'=O 

L L' )%„ M+p 
P M -M-P 

with 
L L 

P 
R,,.Vi-PL 

31 J. Lindskog, T. Sundstrom, and P. Sparmann, in Alpha-Beta- und Galiznta-Ray Spectroscopy, edited by K .  Siegbahn (Intersciencc 
Publishers, Inc., New York, 1965), Val. 11. 

33 G. E. B r o m  and M. Bolsterli, Phys. Rev. Letters 3, 472 (1959). 
34 W. Wild, Sitzher, Math.-Naturw. K1. Bayer. Akad. Wiss. Muenchen 1955, 371 (1955). 
32 M. Danos, W. Greiner, and C. B. Kohr, Phys. Letters 12, 344 (1964). 
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using the Wigner-Eckart theorem (14) for the photon-interaction matrix elements. The meaning of the &inL is 
given in (13). M' is restricted to M'= Mj-Mi .  The sum of three 3 j  symbols over shortens to a 3 j  and a 6 j  
symbol. 

L' If I % ) { L 1  I f  I i }  

iM' - M f  Mi I ,  L L 7  

L L  

P 

L' I f  I t ) { L 1  If I i ]  
. (A5) 

=(M' - M f  M ,  I, L  L  
If i= f, then M'= 0, and 

L L L' 
- (-1 .$-Mi ( - )Zr ;  (21i+ l)-lPA, ) = - ~ 3 6 ~ , , , ~  (0 Ii I ' ) -  

0 -Mi Mi 
(A6) 

P -P 0 

Inserting (A5)  and (A6)  in (A4) ,  we get 

R L ,  M ,  L= (- ) z / - l l f I  

L' I f  I i  Z2e2 
( - ) L [  J C ( - ) L ' ~ l n ~ +  6 2 < 1 ] - 6 ~ ~ 6 ~ 1 0 ( - ) 2 " [ 3  (21~+1)]'~~-) 

n In L  L AMC2 

= (-)'J-"/@L'+ 1)'12 
- M f  M i  

(A7) 

Therefore we get from ( A l ) ,  (A3) ,  and (A7) 

L=l L'& 

This is Eq. (11) with the polarizabilities (12). 


