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distributions rather well, whereas only the (d,p) frq-2 

angular distributions are fitted by the calculations, and 
these require a 5 F cutoff radius. In Fig. 2 the shapes of 
measured f 6 l 2  transitions from the ( d , ~ )  and (p,d) 
reactions are conlpared with those from f Y l 2  transitions. 

From Figs. 1 and 2 it is apparent that the forward 
angle J dependence is significantly less in the present 
data than in the 56Fe(p,d)55Fe reaction. This may 
simply reflect the difference in the Q values between the 
studied (d,p) and (p,d) reactions. However, if the Q 
dependence is predicted correctly by the DWBA calcu- 
lations, these data strongly Support the explanation of 
the forward angle J dependence in terms of configura- 
tion mixing effects since the DWBA predictions for the 
nonconfiguration mixed f 7 / 2  transitions closely agree 
with experiment while the fslz data are only fitted where 

the transferred neutron should be well described by a 
single-particle wave function (though one should note 
that a 5 F cutoff radius is needed to fit the fslz data, 
while the f 7 p  data is fitted without a cutoff). It is also 
apparent from the data that there is a residual J 
dependence which is possibly a consequence of the D 
state of the deuteron as has been suggested by Johnson 
and S a n t o ~ . ~  Since the calculations by Johnson and 
Santoss were not able to reproduce the full J dependence 
observed in the 1=3 @,.E) reactions, i t  will be of par- 
ticular interest to See whether their method of calcula- 
tion can reproduce the present data, in which con- 
figuration mixing effects are of lesser importance. 

The authors thank Dr. D. A. Bromley for helpful 
discussions concerning this manuscript, and Dr. B. 
Zeidman for his kind loan of the 4sTi foil. 
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The total particle-particle SJ matrix of OIE for spin J= 1- and excitation energies between 15 and 27 MeV 
has been calculated in the eigenchannel reaction theory for several parameters of the Saxon-Woods potential 
and the two-body force. The many-body problem has been treated in the 1-particle-1-hole approximation. 
The photon channels have been included by perturbation theory. Surprisingly, the most important structure 
of the experimental Cross sections is reproduced quite well in this simple approximation. 

1. INTRODUCTION 

T HE proper theoretical treatment of the nuclear 
continuum has been one of the important chal- 

lenges to nuclear theorists in recent years. Attempts 
have been made by various groupsl-" to solve the 
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problem a t  least for that case where only one nucleon is 
in the continuum, i.e., below the two-nucleon threshold. 
Since a nuclear reaction can be described onlv as a 
particular continuum state of the nuclear-system target 
plus projectile, it is clear that unambiguous statements 
about the target structure can be madeonly by a correct 
treatment of the continuum problem. 

The calculations in the present paper are performed 
by applying the methods of the eigenchannel theory. 
The formal aspects of this theory have been presented 
earlier.7~~2 In  this paper, first, we supplement the earlier 
treatment7 by giving the details necessary for an actual 
calculation and, second, we discuss the results obtained 
in a computation of the 1- compound system Oie in the 
1-particle-1-hole approximation. Thus, our calculation 
encompasses the N16+p and the O15+n reactions as 

l1M. Marangoni and A. M. Saruis, Phys. Letters 24B, 218 
(1967). 

12 M. Danos and W. Greiner, Z. Physik 202, 125 (1967). 



894 W A H S W E I L E R ,  G R E I N E R ,  A N D  D A N O S  170 

well as the reactions induced by photons incident on 0l6. 
Our results indicate that the main features of the 
photon-absorption process can be reproduced by an 
appropriate choice of the nuclear parameters. 

The basic idea of the eigenchannel theory is to con- 
struct, at  a given excitation energy of the A-particle 
system (i.e., the system target plus projectile), a com- 
plete set of scattering states, the eigenchanngel states, 
which diagonalize simultaneously the nuclear Hamil- 
tonian and the S matrix. If a t  that energy there are N 
Open "experimental" channels, then the S matrix is an 
N X N  matrix and there are N eigenchannels. Because of 
unitarity the eigenvalues of the S matrix can be written 
in ternis of real phases 6(") as e2is"'. If the channels of 
the actual many-channel problem are decoupled the 
system is reduced to the simple case of the scattering of 
particles by a real potential. Then the eigenphases 6") 
go over into the potential-scattering phases, and the 
eigenchannels become indentical with the experimental 
channels. In general, the eigenchannels are linear super- 
positions of the experimental channels such that there 
are standing waves in all experiment channels which all 
have a common phase shift, the eigenphase. Denoting 
the amplitudes of the experimental channels c in a given 
eigenchannel V by V C ( Y ) ,  the S n~atrix is given by 

Thus it can be easily coinputed once the eigenchannels 
are known. Therefore the central point is the problem 
of findiilg such an eigenstate of the Hamiltonian which 
is an eigcnchannel rather than a superposition of 
eigenchannels. This problem was solved by employing 
a search which leads directly to the eigenchannels. 

In  the present paper, as in the other calculations, the 
Proton and the neutron states were treated inde- 
pendently since the Coulomb energy is much too large 
to be neglected; and the center-of-mass (c.m.) motion 
has not been properly taken care of. Therefore, the 
results will be uncertain to some extent because the 
spurious states are contained in the nuclear wave func- 
tion. The accuracv of the results is also affected bv the 
size of the set of basis states actually used in the com- 
putations and by the magnitude of the matching radius. 
These points will be discussed below in detail. 

This calculation is, strictly speaking, incomplete in 
that it neglects the more complicated reactions involv- 
ing the emission of (Y particles, of deuterons, or of an 
unbound proton-neutron pair.12 To that end one would 
have to include many-particle-many-hole states in the 
nuclear wave function. These components would also 
lead to fine structure in the cross sections?O Such a 
calculation is in preparation. 

The photon channels are treated, as usual, by 
perturbation methods. The electromagnetic interaction 
induces a transition between the ground state and a 
general scattering state, This is permissible since, in 
contrast to iricoming particles, photons interact with 

the nuclear system only weakly. A direct inclusion of 
photon channels into the S rnatrix thus is totally 
unnccessary. 

The paper is organized as follows. In Sec. 2 the defini- 
tions of all relevant quantities are given and the 
expressions for the particle cross sections in terms of the 
eigenchannel parameters are written down. I t  turns out 
that the form of these expressions is completely analo- 
gous to the form of the scattering cross sections for 
potential scattering. The photon absorption process is 
discussed in Sec. 3. Some care has to be taken in the 
evaluation of the density of the final states because, in 
general, the final state contains more than one Open 
charinel and the moinenta of the oiitgoing particles in 
the different channels are, in general, different. The 
procedures of the actual calculations and the choice of 
the model parameters are described in detail in Sec. 4. 
This section also contains the discussion of the different 
Darameters which affect the accuracv of the calculations 
and a description of the tests which were performed to 
check the degree of validity of the results. Finally, the 
results are discussed and compared with experiment 
in Sec. 5. 

2. PARTICLE-PARTICLE REACTION 
CROSS SECTIONS 

In this section me give the expressions of angular 
distributions, partial and total cross sections for particle- 
particle reactions in terms of the eigenphases and the 
eigenvectors of the S matrix. We closely follow the 
treatment of Ref. 13. 

Let us first recapitulate the case of elastic scattering 
of a single spinless particle by a central force (potential 
scattering). There the particle cross section da is 

du = j f (B) 1 2d0 , (2.1) 

with the following scattering amplitude : 

are the scattering phases which here simply are the 
eigenphases of the one-dimensional S matrices, one for 
each angular momentum 1, and X denotes the wavelength 
of the scattering particle. By applying the addition 
theorem for spherical harmonics, one obtains 

d~~/dCi= X2 2 B ~ P ~ ( c o s 0 )  , 
L=O 

(2.3) 

with 

m 1+L 

BL= C C (21f 1)(2Et+ 1) 
l=O Z1=]l-LI 

~[(11 '00/  L0)le siri8l sin&t cos(6~- 6 ~ ) .  (2.4) 

'3 J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258 
(1952). 
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Then the integrated cross section is given by 

The cross sections thus can be readily calculated if the 
eigenphases (scattering phases) of the S matrices are 
known. In the general case of interacting channels, the 
cross section is given by an analogous expression which, 
besides the eigenphases, also contains the amplitudes 

We now turn to the description of the general case. 

A. Nuclear Wave Function 

\Ve begin by considering the region r<a of the 
ordinary space where the influence of the nuclear inter- 
actions is non-negligible. There we describe the A-par- 
ticle system by an expansion into particle-hole con- 
figurations. As stated in the Introduction, we shall con- 
sider only the 1-particle-1-hole terms. Since the space 
r i a  is finite, we have to deal only with discrete states. 
Thus the 1-particle-1-hole basis functions can be put 
into the form 

1 nunA ; ja jAmrA ; JM))  = C (-)fA-" 
m 

X ( ja  j ~ M + m  - ml J M )  I (lass) j,M+m)* 

Our nomenclature corresponds to that used by Gillet.14J5 
Quantum numbers with upper-case subscripts or super- 
scripts refer to particles and those with lower-case sub- 
scripts or superscripts refer to holes. Since the Proton 
and neutron radial wave functions may differ strongly 
in the continuum, we do not use the isospin formalism, 
but treat neutrons and Protons separately. The kets in 
(2.6) containing T characterize the charge of the nucleon. 
n is the radial quantum number. This completes the 
definition of the set of basis functions in which the 
Hamiltonian will be diagonalized. 

In deriving the cross-section formulas (see Sec. 2 C 
below), we shall need a wave function in which the iV 
orthogonal eigenchannel functions have been superposed 
in such a way that they asymptotically represent an 
incoming plane wave plus outgoing spherical waves. 
For well-known reasons i t  is advantageous to do this in 
the channel spin representation. Thus we introduce the 
channel spin s by coupling the spin SA of the scattering 
particle to the nuclear spin ja of the (A-1) particle 
system: 

The channel spin then can be coupled to the angular 

'* V. Gillet, thesis, Saclay, 1962 (unpublished). 
l5 V. Gillet and N. Vinh Mau, Nucl. Phys. 54, 321 (1964). 

momentum LA of the particle to give the spiri J of the 
compound system 

Finally, we define the internal function of the (A-1) 
system: 

Here a denotes the set of quantum numbers nalaj,mTA. 
Now the basis functions (2.6) can be rewritten in the 
form 

where 

The recoupling coefficients K fulfil the orthogonality 
relations 

2 K m s ~ j ~ K a s ~ ~ ~ =  6jj, ,  
8 (2.12) 

C KusUJKas,ljJ= ass,. 
j 

However, we will not define the "experimental 
channel" c in the channel spin representation, but we 
shall characterize it by the quantum numbers a, la, 
and jA.  The "channel function" $, is introduced by 

where u denotes the Same radial fuiiction as in (2.10). 

B. Eigenchannels of the S Matrix 

Now we turn to the asymptotic region r>a. For the 
convenience of the reader, we will collect a few relations 
concerning the eigenchannels and the S matrix which 
will be needed later. They all result from the unitarity 
of the S matrix. 

The vth eigenchannel V,lhJsv of the S matrix S J  for 
a compound state of angular momentum J is defined by 
the eigenvalue equation 

where ~ , ~ = e ~ ~ " ~ ~  and the real quantity 6J(v) is the vth 
eigenphase of the S J  matrix. There are as many eigen- 
phases as there are Open channels and the VcJrv form a 
quadratic matrix. Equation (2.14) is, explicitly, 
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The coefficients VCJsv are orthogonal and can be 
normalized to unity. They can be assumed to be real. 
In  terms of the VJrY's and 6(')'s the S matrix is given by 

In the channel spin representation {aslA), the 
S matrix is given by 

The recoupling coefficients K are defined in (2.11). 
In  accordance with the definition (2.14), the correctly 
normalized vth eigenchannel wave function in the 
asymptotic region is given by 

where $, is the channel function of channel C introduced 
in (2.13) and V, denotes the relative velocity of the 
particle in this channel. The ingoing and outgoing 
radial functions I, and 0, are defined by16 

Here, FZ and G1 are, respectively, the regular and the 
irregular solution of the radial differential equation, 
i.e., they are the Coulomb functions in the case of 
Protons and the spherical Bessel and Neumann func- 
tions multiplied by k s  for neutrons. The Coulomb 
Parameter q,  and the phase W, are given by 

Because of (2.19) the asymptotic eigenchannel func- 
tion (2.18) can be brought into the form 

The radial parts occurring in (2.21) are real and the 
eigenchannel functions are standing waves in all experi- 
mental channels. They thus resemble a superposition of 
single-particle radial functions for a real potential. The 
amplitudes VcJsv can now be determined by equating in 
the asymptotic region the form (2.21) of the nuclear 
wave function to that obtained by the diagonalization 
of the nuclear Hamiltonian in the basis set (2.6). Let us 
write such a state as 

The index V on the particle-hole functions indicates that 

'BE. Vogt, Rev. Mod. Phys. 34, 723 (1962). 

the particle continuuin states obey the boundary condi- 
tions of the vth eigenchannel. 

The normalizations of the wave function (2.22) and 
of (2.21) are different because (2.22) contains Open as 
well as closed channels and the particle radial functions 
are normalized to unity in a sphere of radius a, while 
(2.21) contains only the Open channels and the radial 
parts are normalized to unit flux. To obtain continuity 
of the nuclear wave function a t  r = a  we replace in 
(2.21) the VC7s by unnormalized coefficients CcJjv. By 
equating the thus modified expression (2.21) and the 
expression (2.22) a t  r = a  and integrating over ali 
coordinates except r we obtain the matching condition 

vC-112CcJ~v[Gc (k ,a) sin (&(V)- W,) 

Finally, the amplitudes V of (2.21) can be obtained by 
normalization : 

V C J ~ Y = C C J ~ Y / N ~ , v ,  (2.24) 

C. Formulas for the Reaction Cross Sections 

The different possible particle cross sections are 
defined by an experimental situation in which an in- 
coming wave exists only in one experimental channel 
and outgoing waves exist in all channels. The situation 
can be characterized by the quantum numbers asu. a 
indicates the target nucleus and the charge of the pro- 
jectile, s is the channel spin, and p its projection. 
Asymptotically, for large Y, the properly normalized 
wave function which describes the process is given by 

has been defined in (2.7) and q, in (2.9). By 
expanding the incident particle wave in terms of 
asymptotic eigenchannel functions, one obtains for the 
scattering amplitude 

where the dependence of SJ on the eigenchannel 
parameters 6'") and VJsY can be Seen from (2.17) and 
(2.16). The partial cross section for the reaction 
(YS -+ a's' follows from 
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Using the proper statistical weights, one obtains for a 
process where the channel spin is not observed 

s~ denotes the spin of the scattered particle and j, the 
nuclear spin of the target. Inserting (2.28), (2.27), 
(2.17), and (2.16) in (2.29) and expanding the angular 
distribution in terms of Legendre polynomials, we 
finally obtain 

X P~(cos0) , (2.30) 
where 

= (-)ja-112 C C j t t l i-12 

lljl lzlz 

X (111~00 1 LO) W ( J J 9  ji j ~ ;  L ja) 

The Sums over vl and v z  go independently over all 
eigenvectors of the S matrix. Equation (2.30) gives the 
angular distribution for a Drocess a-ta'. where a 
characterizes the charge of the particle as kell as the 
charge and excitation of the residual nucleus. This 
formula gives the elastic scattering cross sections and 
the various particle-particle reaction cross sections. In  
(2.31) the eigenphases occur in the Same manner as the 
scattering phase shifts do in (2.4). 

By integratiii: (2.30) over the solid angle, one obtains 

Summing over the final target states leads to the total 
cross section for bombarding an initial target state a: 

3. PHOTONUCLEAR CROSS SECTIONS 

As already mentioned in the Introduction, the photon 
channels can be treated by perturbation methods. Thus 
photon emission and absorption processes are described 
as transitions between, say, the ground state of a 
nucleus and a particular eigenchannel state. A transition 
involving a linear combination of eigenchannel states, 
e.g., the process O16(y,pi)N16*, is then described by a 
suitable superposition of the matrix elements for these 
eigenchannels. 

Thus, we Want to compute 

for the absorption cross section.17 Here, the subscripts 
=t refer to the photon polarization and, specializing-to 
electric dipole transitions, 

where the state I f )  is, say, an eigenchannel state of the 
form (2.21). In (3.1) and (3.2) the density of the final 
states p~ and the normalization of the final-state wave 
function I f) must be defined together in a consistent 
manner. We do i t  by using the eigendifferential method 
of Weyl. According to that method a continuum state is 
made normalizable to unity by integration over a finite 
but small energy interval AE. We shall denote such a 
state by If). Then the density of states is simply 

As long as AE is very small the radial wave function is 
modified only a t  very large radii. Thus the modification 
of the wave function needed for convergence of the 
normalization integral is confined to extremely large Y, 

say to r>b, so that all calculations for the matrix 
elements and the diverse matchings to be discussed can 
be performed with the nonmodified form of the wave 
function. 

In the asymptotic region, but before the Weyl 
modifications Set in, the final-state wave function has 
the form 

I f)= I j)=fl-l C v;1/2V,ze~,(r)$, Y <  b (3.4) 
C 

' ' M .  Danos, Photonuclear Physics Lectures, University of 
Maryland, 1961 (unpublished). 
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which, except for the norrnalization constant fl, is an 
abbreviated version of (2.21). 

For the Weyl function we introduce the notation 

Here the normalization constant W, is chosen such that 
for the nonmodified region of the Weyl function there 
holds 

G,(r)=w,(r) for r<b. (3.6) 

Then I f )  goes over to I f) upon replacing W, by @, in 
(3.4). The normalization condition for the wave function 
(3.4) thus becomes 

This completes the general formulation. 
We now go over to the details. We begin with 

Eq. (3.5). In the region r = b  the function w,(r) 
has already the completely asymptotic form wc(r)  
=sin(hcr+6-$la)/r. The addition of the logarithmic 
Coulomb phase in the case of charged particles is of no 
importance in the present context. We therefore can do 
the matching (3.6) using this asymptotic form of w,(r). 
This then leads to the equation 

Here Mred is the reduced mass, and we have used the 
abbreviation y = ABM„d/ (h2k2). It has the physical 
meaning of defining the energy interval of the integra- 
tion in (3.5) in terms of the nlomentum variable, i.e., 
if the limits of the integration are k1 and kz, then 
k 2 =  h1 ( l+y ) .  With (3.8) we have for the normalization 
of the Weyl functions 

Finally, we obtain for the over-all normalization 
constant m2= + T ~ ( I / A E ) .  (3.10) 

We now turn to the detailed form of the matrix 
element (3.2). Because of the normalization (3.6) the 
matrix element computed with the Weyl function ( f )  is 
the Same as that computed with the unmodified function 
1 f). We thus can insert (3.4) in (3.2), or more precisely, 
the equivalent inside solution (2.22) supplemented with 
the normalization constant ( N N ~ „ ) - ~ .  Here ~ V J „  ac- 
counts for the different normalization of the eigen- 
channel functions for 7<a and r>a and is given 
by (2.25). 

This way we finally obtain for the total dipole 
absorption cross section 

element M, is given by 

We now turn to some examples of partial cross sec- 
tions. We begin with the differential cross section of a 
process leading to a final state specified by ai. Writing 
qaV for a wave function (2.22) in which the summation 
over a has been omitted, and introducing the notation 

we have for the differential cross section 

For the coefficients of the angular distribution we 
obtain 

The constant q converts the angular distribution (3.14) 
into an absolute cross section. The summation over the 
channel spin s can be perfornled explicitly. This way the 
product of three Racah coefficients in (3.15) reduces to 
a product of two Racah coefficients. Integrating over 
the solid angle we have for the partial cross section 

/ ( d g . / d ~ ) d ~ =  4**(~.\ 

= 47r2 (e2/ hc) (h)C I C ei"(') V a~jlsvM, 1 ' .  (3.16) 
Lj U 

4. SOLUTION OF THE NUCLEAR PROBLEM 

A. Single-Particle Wave Functions 

The radial single-particle wave functions unu(7) are 
obtained from an optical model, i.e., by solving the 
differential equation 

d2un 2Mred 1(1+l)h2 -+-(..--- dr2 h2 
2Mredr2 

The potential V ( r )  is taken to be real and of the Saxon- 
Woods type including a spin-orbit term and, in the case 
of protons, a Coulomb term. The charge distribution is 
assumed to be homogeneous so that 

where, using the wave function (2.22), the matrix 
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FIG. 1. Position of the 
bound proton and neu- 
tron states for the po- 
tential~ A and B given 
in the text, compared 
with the experimental 
level scheme. Potential 
A yields a good fit to 
the experimental level 
scheme above the Fermi 
siirface; potential B fol- 
lows from neutron scat- 
tering. 

MeV MeV MeV 

VcOU1= (Ze2/2Rd[3- ( ~ / R o ) ~ ] ,  for r<Ro 

= Ze2/r,  for r 2 R 0 .  (4.2') 

Ro denotes the radius and Z the charge of the residual 
nucleus, M is the particle mass, and y is a constant. 
Further, 

~ ( r ) =  [l+expip( (r-Ro)/t}l-', (4.3) 

where t is the surface thickness Parameter of the Fermi 
distribution. 

The wave functions of the 016 compound System 
were computed with two different sets of potential 
parameters, 

illustrates the density of positive-energy states which 
arises when using the value (4.5) for the matching 
radius a. A fixed boundary condition can be represented 
by a horizontalline whose points of intersection with the 
cotangent-shaped curve determine the discrete pnrticle 
energies for the states with different radial quantum 
numbers. 

Suppressing the radial quantum numbers, there are 
10 1-particle-1-hole configurations contributing to the 
1- compound states of 016 l 4 ? l 5  which we take into 

Ro=3.15 F ,  t=0.65 F ,  V,= -50 MeV, y=35. (4.4b) (10) (~1125112)~. 

These two sets of parameters have the following We shall use the above numbering of the channels 
characteristics. Both sets yield the correct Position of throughout the rest of the Paper. So, e.g., G= 6 will refer 
the first level above the Fermi surface, i.e., of the to the d312Z;31Z proton channel. 
ldj12-neutron state (see Fig. 1). The set A reproduces 
the energies of the bound states, i.e., the s-d shell levels, 016 
reasonably well, including the 1.s splitting, while the '0' 

set B has the correct 1.s  splitting for the p shell and 
agrees with neutron scattering data.18 '4 12 F & B. In the calculations we use for the particle energies 2 

directly those given by the optical model. However, ,o- 
the hole energies are taken from experiment as is 
custornary in particle-hole calculations. This is essential $ Ob\' JO 30 so MCV 

in order to obtain the correct particle thresholds. 8 G -10- 
---+C 

The boundary surface was placed at  2 

a= 12 F.  

In  Fig. 2, the numericaiiy obtained 
derivative for d3,z-neutron states (set B) 
plotted as a function of energy €2 
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FIG. 3. Example of the behavior of 
the eigenvalues of the many-body 
Hamiltonian (more accurateiy T A  =Ex 
-E) as a function of the common 
phase 6 which, together with the 
excitation energy E, determines the 
boundary conditions for the particle 
continuum states. 

In  the expansion of the nuclear wave functions ( 2 . 2 2 ) ,  can be cast into the form 
the particle states up to e= 30 MeV were included in the 
actual calculations. V b B ; a ~ . = ' ( v o / 4 ~ )  (-)"+"taSAibtB 

The hole states were computed with boundary condi- X j a j A j b j B  C C ( 1 ~ ~ 0 0  1 XO)  ( ~ ~ ~ 0 0  [ X O )  
tions a t  infinity, i.e., with exponentially decaying tails. A S=O,I  

The empirical thresholds for the various particle 
processes which have been used to fix the hole energies 
are listed in Table I. XG,~~T~, "+ ' (~S+ 1) 

B. Energy Matrix 

The effective two-body force which is responsible for 
the residual interaction is assumed to be of the form 

where T acts on the charge states of the particles or holes. 
In  our actual computations we employed a contact force 

Then the matrix elements of the residual interaction 

TABLE I. Energies of the hole states. 

Name of the Configuration 
residual representing the Type of 
nucleus residual nucleus particle 

Q 
(MeV) 

NI6 Pilz P 12.21 
0l6 P112 12 15.67 
NI6 Pa12 P 18.35 
0l6 lia12 V, 21.81 

2 
3 
7 
8 

10 

9 
4 

5 
6 
1 - 
MeV 

FIG. 4. Energy dependence of the eigenphases of the 1- 
compound system. The parameter choice is that of potential B 
and a zero-range force with a strength of - 1000 MeV F3. This 
combination is referred to as set I11 below. The numbers on the 
curves labe1 the channels presumed dominant close to the thresh- 
olds. The enumeration is explained in the text. The positions of 
the thresholds are marked by arrows. 
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C. Search for Eigenphases 

I - v ~ ( ~ )  V?) V?) The first value agrees with the standard model of Ref. 6. 

The nuclear eigenvalue problem is completely speci- 
fied if the asymptotic wave numbers k, and the common 
phase shift 6 are given specific values. Then the 
boundary conditions for the single-particle functions of 

0 

I*\ 
I \ 

Since the oscillator well which is equivalent to our 
[.L.-. / \ Saxon-Woods potential has a spacing &=I6  MeV 

\ 
\-- (length Parameter ß= 1.61 F), the value (4.12a) is close i !i \ 6 to the one used in particle-hole calculations for 016 

11 
(Vo/4rß3= - 11.46 MeV).20 The second value (4.12b) 

2 23 I 24 1 25 26 - .  'iMev has been tried in order to obtain better agreement with 
T</$-; ./*M - E  experiment . 
i '  , ,r-. /. !,. 

FIG. 6. The total photonuclear Cross section of OIE for the three 
For the strength of the zero-range force, two values different parameter Sets defined in the text, com ared with the 
were employed : total r-absorption data of Wyckoff et al. (Ref. 22f The scale on 

the right-hand side of the lowest figure is taken from Ref. 22. 
Vo= -650 MeV F3 (4.12~) Here, and in the foiiowing figures, the computations for set I have 

been done only above 19 MeV. and 
Vo= - 1000 MeV F3. (4.12b) z" 0. Bohigas, in Proceedings of the InternaGond Conference on 

Nudear Physics, Gatlinburg, Tennessee, 1966 (Academic Press Inc., 
l9 S. Meshkov and C. W. Ufford, Phys. Rev. 101, 734 (1956). New York, 1967). 

1 - 

I '  -. -.M/'-.- 

0 - 

-7 

122 23 24 25 26 27 MeV 
- E  

\ , --- --- 
I /' -------e-\ 

'"I '\ 

- 
m b 

FIG. 5. Examples of the behavior of the:amplitudes V,(u) 
as a function of the energy. 

where the exchange terms are 80 - 
G ~ ~ , , ~ ~ ~ =  (2- G„,„~)a0-36„,~~ra, 

60.. 

-36„„,1aa-3 (2- 6„,„~)a„, (4.9) 40.. 

Glm~mr'= - 6m,,m,ta0- (2- 6n2,,m,1)al 
20 - + (2-t 6mr,mlt)aa+ (4-58rn,,m,l)aaTt 
0 

and 2= (2x+1)'I2. The complete energy matrix is thus 
f 

mb - E  MeV 

given by roo - 2s 

6 - mb 
H ~ B ; ~ A =  ~ U ~ ~ A B [ € A - E U ] +  V / T ~ B ; ~ A  > (4.10) 

where the 2s are the independent particle energies dis- 60. 

cussed in the last section. The exchange mixture in (4.6) 
is taken to be of the Meshkov-Soper type19; 40 - 10 

20 - 
ao= 0.865, 

- 5 

U,= 0.135, (4.11) 

a,=a„=O. TOTAL PHOTONUCLEAR CROSS SECTION 
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TOTAL PHOTONUCLEAR CROSS SECTION 

IW 
mB 

i :: 
40 

20 

0 

I 
14 15 16 17 18 19 20 21 22 23 24 25 26 

E. MeV 

the various channels can be calculated and the corre- 
sponding particle-hole functions can be constructed. For 
the states appearing only in closed channels arbitrary 
boundary conditions can be employed. 

At a given energy E of the compound system the 
wave numbers k ,  in the different experimental channels 
c are given by 

where Q, is the threshold energy. Thus, given an energy 
E the energy matrix (4.10) can be computed for any 
phase 6. By diagonalizing these matrices one then 
generates the eigenvalues Ei and the eigenvectors A 
(2.22) as functions of 6. Finally, the eigenphases 6( ' )  
are found as the solutions of the transcendental con- 
sistency equation 

Figure 3 gives an example for the behavior of Th as a 
function of the phase 6. We show a plot for the 3- states 
in O1%ince they are less involved than the 1- states. E 
is equal to 20 MeV a t  which energy four of the six 3- 
channels are Open. I t  is obvious from the figure that 
there are four eigenphases. 

The "kineinatics" of the plot (Fig. 3) is the following. 
Since the logarithmic derivative is a periodic function 
of 6 with a period a, the topology of the plot is that of a 
cylinder. The eigenvalue curves are thus interlaced 
helices which do not cross as they "wind their way up." 
This is simply a consequence of Wigner's no-crossing 
theorem : At any fixed value of 6 the eigenvalues of the 
Hamiltonian with an overwhelming probability are non- 
degenerate. Therefore, a no-crossing theorem holds also 
for the eigenphases with the Same kind of validity as for 
the eigenvalues of any Hamiltonian. The nunlber of the 
eigenvalue lines equals the nurnber of Open channels, as 
can be Seen by tracing each line "backwards." This is 
most transparent before switching on the residual 
interactions. Then each channel consists of a particle in 
the continuum together with an unperturbed residual 
nucleus in some discrete state. The energy of such a 
system then consists of a fixed energy of the hole state 

FIG. 7. Comparison of the theo- 
retical total photon absorption cross 
section (Set 111) and the measured 
data of Burgov et d. (Ref, 23). The 
experimental scale is on the right. 

plus the energy of the free particle, which can be read 
off a plot of the kind of Fig. 2 as a function of the 
logarithmic derivative. Each Open channel thus dis- 
appears a t  a particular phase shift. Switching on the 
residual interaction only shifts the energies somewhat 
and removes the level crossings. 

The energy dependence of the eigenphases of the 1- 
compound system of 016 is shown in Fig. 4. The param- 
eters here are those of (4.4b) and (4.12b). The step 
width was about 0.25 MeV for the greatest Part of the 
displayed energy range. The numbers on the curves 
indicate the channel which presumably is predominant 
near the respective thresholds and they correspond to 

- 
TOTAL fy .nl CROSS SECTDN 

FIG. 8. The total (-y,n) cross section. The arrangement of the 
figure is the same as in Fig. 5. The experimental curve gives the 

data of Hayward and Stovail (Ref. 24). The (Y,@) thresh- 
old is indicated. 
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TOTAL fy.plCROSS SECTiON 

100 
m b -  I 80- 

60- 

FIG. 9. Total (Y,$) cross section. The experimental curve is due 
to Morrison CR. C. Morrison, Yale University, thesis, 1965 
(unpublished) ; also See Ref. 61. 

the enumeration introduced in Sec. 4 A. The threshold 

CO- 

20 - 

0 - 
t ' t t r ' '  MeV 

- r E  

- I I  

energies are n~arked by arrows. 
In the numerical search procedure the 6 interval from 

0' to 180' was repeatedly divided into halves up to an 
interval length of about 1.4'. Since it is easy to deter- 
mine how many Zeros of Th are contained within some 
6 interval, empty halves could be skipped. Finally the 
eigenphases were determined by interpolation within 
the relevant 1.4' intervals. The interpolation was carried 
out such that the corresponding values of 1 T h 1  are 
smaller than 1 lieV. This accuracy exceeds by about a 
factor of 10 the accuracy of the single-particle con- 
tinuum energies ~vhich were taken from an interpolation 
formula. 

The accuracy of the eigenchannel method depends on 
two Parameters. The first is the magnitude of the func- 
tion space. Its influence on the accuracy is here the Same 
as in any shell-model calculations. I t  was found for the 
present calculation that a reduction of the function 
space by using three instead of four radial functions in 

1 

J 

each channel caused on the average a decrease oi the 
eigenphases by 0.9'. The second parameter is the match- 
ing radius. This parameter determines the channel 
orthogonality and also the orthogonality of the wave 
functions used to obtain the inside solution. As can be 
Seen by considering the character of the radial functions, 
orthogonality in the inside region between a bound 
state computed with boundary conditions a t  infinity 
and a continuum state is most difficult to fulfill near 
threshold; there the matching radius would have to be 
chosen larger than a t  other energies in order to achieve 
the Same degree of orthogonality. In any case, it was 
found that decreasing the matching radius a from 12 to 
11 F caused an average increase of the eigenphases 
by 0.3". 

A further test of the accuracy of our calculations is 
provided by the scalar products 

which should be Zero for V# V'. In  the present case their 
magnitude turned out to be 0.03 or less on the average 
except for small regions immediately above thresholds 
where they sometimes were considerably larger. 

The eigenvectors V J ~ V  of the S matrix are obtsined 
s im~ltaneousl~ with the eigenphases by making use of 
the continuity of the nuclear wave function a t  r = a  
[See (2.23), (2.24), and (2.25)]. They are sinooth but 

201 , At j d  
I .  

'. „ 
0 14 16 18 20 22 24 26 MeV 

-E 

0l6(y, n, OI5 ig. s.) 

FIG. 10. The partial cross section of the photoneutron reaction 
leading to the ground state of 016. The experimental curve is due 
to J. T. Caldwell et d., Phys. Rev. Letters 15, 176 (1965). 
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K 16 18 20 22 24 26 MeV 

FIG. 11. The partial cross section of the photoproton reaction 
leading to the ground state of N16. The experimental curve shows 
the relative yield a t  90' obtained by N. W. Tanner et al., Nucl. 
Phys. 52, 45 (1964). 

complicated functions of the energy E and it seems not 
to be worthwhile to exhibit them in detail. We give, 
however, some typical examples. In Table I1 are listed 
the eigenvectors of the S matrix. The excitation energy 
is 18.25 MeV, i.e., just below the threshold of the 
channels involving the @3/2 Proton hole state, and the 
Parameter choice is that of (4.4b) and (4.12b). At this 
energy four of the 10 1- channels are Open. The scalar 
products A„' in decreasing order are 0.039, -0.014, 
0.010, 0.004, etc. 

The effect of the noncrossing theorem is illustrated in 
the top part of Fig. 5, taking as an exaniple the channel 
( ~ i ~ z & / z ) ~ ,  i.e., the channel c=3. As can be Seen in 
Fig. 4, this is the clearest case of an almost undistorted 
eigenstate, which goes against the general trend of the 

TABLE 11. Eigenstates of the S matrix for the 1- 
at 18.25 MeV (4 Open channels). 

other eigenvalues and consequently has a series of 
crossings. Figure 5 shows that this state maintains a 
high degree of purity in between the crossings and 
('switches over" in a rather small energy interval. The 
bottom Part of Fig. 5 demonstrates how the eigen- 
channel v=3 "loses its identity." After the first cross- 
over, which here accidentally is very close to the 
threshold, the configuration c=3 switches over to the 
eigenchannel V =  7 (top part of Fig. 3) while the eigen- 
channel ~ = 3  becomes a niixture of several configura- 
tions, the largest of which are plotted in the figure. 

As is evident, on the whole the energy dependence of 
all quantities is rather smooth. No violent fluctuations 
are apparent, in particular around the giant resonance 
peaks, i.e., around 22-23 MeV. 

5. RESULTS AND DISCUSSION 

Results for three different sets of Parameters shall be 
compared with experiment : 

(I) Spin-orbit force which gives the correct splitting 
of the d shell (y = 20) and usual strength of the contact 
force (-650 MeV F3)-(4.4a) and (4.12a), 

(11) Spin-orbit force which gives the correct splitting 
of the p shell (y = 35) and usual strength of the contact 
force (-650 MeV F3)-(4.4b) and (4.12a), 

(111) Spin-orbit force which gives the correct splitting 
of the p shell (y = 35) and a strong contact force (- 1000 
MeV F3)-(4.4b) and (4.12b). 

To  begin with we shall consider the photodisintegra- 
tion processes. We will plot the experimental cross 
sections only on the figures corresponding to Set I11 
which seem to be most consistent with the experimental 
results. For Sets I11 and I the calculation was done in 
0.25-MeV steps, for Set I1 we have employed 0.5-MeV 
steps. 

The absolute magnitude of the theoreticaly-absorp- 
tion cross section integrated to 27 MeV,turns out to be 

FIG. 12. This figure corresponds to Figs. 10 (11) and 11 (11), 
respectively. The only difference is that the configurational space 
was limited to the (d5/22j3/2)  and (d3/21j1/2) neutron and proton cqn- 
figuration which predoininate in the main peak. The similarit~es 
with Figs. 10 (11) and 11 (11) will be noticed. 
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75 N ( p , ~ )  016 ongulor disfribufions 
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0- 
MO 90' lSO" E,  MeV 

FIG. 13. Comparison of theory (set 111) and experiment for the 
coefiicients a2 in a Legendre-polynomial expansion of the. angular 
distribution of y rays in the reaction N16(p,y~)018 assumlng pure 
dipole radiation, i.e., du(p,yo)/dl;2a l+azP2(cosB). The data were 
obtained from Earle et al. (Ref. 25). 

about 22 times as large as the experimental ~ a l u e . 2 ~  
Considering the height of the main peak the enhance- 
ment factor varies between 2 and 5. 

Figure 6 gives the total dipole absorption cross 
sections for the Parameter sets 1-111. In case I the main 
peak occurs 1 MeV too low. I t  has a shoulder on the 
high-energy side. There is a second well-developed peak 
at 24 MeV. The ratio of the two peaks is 8, whereas the 
experimental ratio is 1.3. 

In case I1 the main peak is still a t  the Same position 
as in case I but its shoulder has developed into a 
separate peak. Both these peaks in I1 result from a 
(d5/2@3/2) configuration with a strong (d3/2filI2) admix- 
ture. Still, the influence of the other configurations is 
very important as will be demonstrated below. The 
main contribution in Fig. 6 (11) a t  24 MeV results, how- 

21R. L. Bramblett, J. T. Caldwell, R. R. Harvey, and S. C. 
Fultz, Phys. Rev. 133, B869 (1964). 

ever, frorn a (d3/2fi3/2) configuration with (~l/2$8/2) 
admixture. Instead of the small peak Seen in case I 
now one observes a broad shoulder. In this respect our 
result resembles that of Ref. 6. 

In case 111, finally, the main peak occurs a t  the right 
position. The experimental curve is that of Wyckoff 
et ~ 2 . ~ 2  The main features are reproduced by the theo- 
retical curve; it should, however, be kept in mind that 
the energy resolution of this particular measurement 
was not too high. The Same theoretical curve has been 
plotted in Fig. 7 together with the experimental results 
of Burgov et ~ 6 . 2 ~  This figure seems to be even more con- 
vincing. The theoretical ratio of the 22.2-MeV peak to 
the peak a t  23.4 MeV is 1.9, i.e., it is much closer to the 
experimental ratio 1.3 for the heights of the 22.2- and 
24.3-MeV peaks than the corresponding values from 
Refs. 14, 4 or 10. Furthermore, our results seem to 
indicate that some fraction of the dipole strength of the 
experimental 23.3-MeV peak can already be explained 
by 1-particle-1-hole continuum calculations. 

Figure 8 gives the results for the (Y,%) process. I t  is 
Seen that the theoretical main peak is always split into 
two peaks and there is a small peak between 23 and 
24 MeV. The experimental data are from Hayward 
and St0va11.2~ 

In Figs. 9-11 we have plotted (T&), (y,no), and 
(y,po) cross sections, respectively. I t  should be men- 
tioned that the ratios of the ( y , p )  to (y,n) cross sections 
(integrated from 15 to 27 MeV) turn out to be 2.5, 1.9, 
and 2.1 in the three different cases 1-111. 

J -  TOmL CROSS SECTIONS 

III 

FIG. 14. Predicted inelastic particle-particle cross sections in the 
channels with Jff=l- for Protons incident of NI5. The lower part 
of the figure shows the experimental (p,n) cross section of Barnett 
and Thomas (Ref. 26). 

J. &IJI. Wyckoff, B. Ziegler, H. W. Koch, and R. Uhlig, Phys. 
Rev. 137, B576 (1965). 

23 N. A. Burgov, G. V. Danilyan, B. S. Dolbilkin, L. E. Lazareva, 
and F. A. Nikolaev, Zh. Eksperim. i Teor. Fiz. 43, 70 (1962) 
[English transl.: Soviet Phys.-JETP 16, 50 (1963)l. 

2' E. Hayward and T. Stovall, Nucl. Phys. 69, 241 (1965). 
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As already mentioned, the configurations (dbI~f i~ /~)  
and (d~~z~~~z)cons t i tu te  the major part of the wave 
function. To illustrate the effect of the minor compo- 
nents, we show Fig. 12 where they have been omitted 
from the calculation. Evidently they redistribute the 
dipole strength between the different peaks without 
affecting their positions. 

In Fig. 13 we compare the a2 coeflicients of the angular 
distribution l+azPz(cosO) for I5N(p,yo)l60 with experi- 
mentZ5 without, however, correcting for admixture of 
quadrupole radiation. The deviation from the experi- 
mental results is similar as in Ref. 6. 

Because of the large difference in threshold energies 
the complete treatment has been carried through 
treating protons and neutrons as different particles, 
i.e., the isospin formalism was not employed. I t  is of 
interest to note that in the giant resonance region, i.e., 
a t  21-23 MeV, the main configurations in the eigen- 
channels with large dipole moments are very pure T= 1 
states; the T=O admixture is there only of the order 
5-20y0 in amplitude. 

For completeness we show the proton-induced particle 
cross sections for the Parameter Set I11 in Fig. 14 to- 
gether with an experimental curve for the 16N(p,n)160 
reactionF6 It should be kept in mind that many angular 
momenta of the compound system contribute to the 
experimental cross section while the theoretical curve 
contains only the contributions of the 1- states. I t  is 
thus not surprising that the experimental cross section 
shows more structure than the theoretical curve. Our 
result accounts only for one peak each in the regions 
around 16, 17, and 18.4 MeV, respectively. Taking an 
over-all look a t  the several cross-section curves one 
notices that they cannot really be represented by a 
superposition of Lorentz lines. This is in fact gratifying. 
As it has been known to electrical engineers for a long 
time,2'and as nuclear physicists are beginning to realize, 
there exists an essential difference between the regions 
where only one channel is Open and where more than 
one channel is Open. In the language of electrical 
engineering, the former region corresponds to a two-pole 

26 E. D. Earle, N. W. Tanner, and G. C. Thomas, in Comptes 
Rendus d u  Congres' International de Physique Nucleaire, 11, 
edited by P. Gungenberger (Centre National de Recherche 
Scientifique, Paris, 1964), p. 385. 

26 A. R. Barnett and G. C. Thomas, in Cotnptes Rendus Congres' 
International de Physique Nucleaire, 11, edited by P. Gungen- 
berger (Centre National de Recherche Scientifique, Paris, 1964), 
P. $87. . 

27 See, for example, W. L. Everitt, C o m m u n i c a t h  Engineering 
(McGraw-Hiil Book Co., New York, 1932). 

network built of essentially lossless components: The 
only damping is provided by photon emission, which in 
that energy region is usually very small. Such networks 
can have onlv resonances. On the other hand. a t  the 
opening of a second channel the system becomes the 
analog of a four-pole network. The output load, i.e., 
the second continuum, now adds additional damping to 
the network and as a consequence it becomes a filter, 
which in addition to simple resonances may exhibit a 
more complicated behavior, such as pass-bands and 
stop-bands of varying shapes (not every filter trans- 
mission curve is nicely symmetric, as anyone who has 
tried to tune up an IF-strip can testify). Since the 
present case has up to 10 Open channels it corresponds 
to a 20-pole network and quite complicated cross- 
section shapes have to be espected. 

Finally, we may state that our results show more 
structure than those of other continuum c a l c ~ l a t i o n s . ~ ~ ~  
This is the main difference between these calculations 
and ours. Some of the fine structure may simply be 
calculational "noise." Recall, for example, that the 
orthogonality of the computed eigenchannels was not 
complete but of the order of 1% (Sec. 4 A). Since the 
cross sections result from coherent superpositions of all 
the eigenchannels, clearly, artificial fluctuations in the 
cross Sections are to be expected. On the other hand, 
the broad features, e.g., the splitting of the main 
~ e a k .  should not be affected bv these uncertainties. 
I I 

Indeed, our curves reflect a large part of the experi- 
mentally observed structure, in particular in the total 
photon absorption cross section. Undoubtedly the 
2-particle-2-hole and higher configurations, as well as 
ground-state impurities, are indispensable for the 
explanation of the remaining discrepancies between 
theory and experiment, both with respect to fine struc- 
ture -arid absolute magnitude of the cross sections. 
Anyway, it seems to us that one can account for the 
main features, and perhaps even for some of the fine 
structure already in the 1-particle-1-hole approxima- 
tion, simply by the choice of the model pararneters and 
by a careful treatment of the continuum. A calculation 
with inclusion of more complex configurations in the 
nuclear wave function is in Progress. Furthermore, the 
influence of quadrupole radiation will also be tested. 
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