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On the basis of the two-center shell model a theory is developed for the excitation of loosely bound 
nucleons in heavy ion collisions. These nucleons move in the two-center shell rnodel potential generated by all 
the nucleons and are described by molecular wave functions. The model is applied to calculate the cross 
sections for the elastic and inelastic 13C-"C scattenng. The cross sections show intermediate structures 
caused by the excitation of quasibound resonances in the molecular nucleus-nucleus potential. 

LEAR REACTIONS (13c, 13c) molecular wave functions, clynamical two- 
Center shell model, quasimolecular resonances, radial and Coriolis coupling, 

coupled channel calculations for U(@). 1 
I. INTRODUCTION 

In th i s  paper  we study the  dynamics of loosely 
bound nucleons in heavy ion collisions. We a s s u m e  
that  the  loosely bound nucleons move in mole- 
cu la r  o rb i t s  during the reaction. Collective mole- 
cu la r  effects in nucleus-nucleus collisions a r e  
observed in s y s t e m s  such a s  lZC-lZC and 12C-160 
in resonances which have been interpreted a s  
a r i s ing  f r o m  nuclear  m o l e ~ u l e s . ~ - ~  Molecular 
single-particle effects a r e  not yet well established 
in heavy ion collisions. Recently molecular  wave 
functions w e r e  used  t o  describe polarization ef- 
fec t s  in proton t r a n s f e r  r e a ~ t i o n s . ~  

The theory of molecular  o rb i t s  in nucleus-nu- 
c leus  collisions began with the introduction of the 
two-center shel l  model (TCSM) by Holzer et al.' 
Up to now the  two-center shel l  model w a s  mainly 
applied f o r  s ta t ic  calculations of nucleus-nucleus 
 potential^.^^^ Dynarnic t rea tments  of molecular 
o r b i t s  in nucleus-nucleus collisions w e r e  in- 
vestigated by P a r k  et aL.,' von Oertzen and 
Nörenberg,' and Becker  et al.lo In th i s  paper  we  
extend the  theory of P a r k  e t  a1.' to  a s ta te  of 
pract ical  applicability. The  theory is based on the 
idea that the loosely bound nucleons move in a 
two-center shel l  model potential generated by a l l  
nucleons. The  nuclear  sur face  defines a rotating 

quantum mechanically. Therefore,  in our  f o r -  
mulation a l l  asymptotic t ransi t ion m a t r i c e s  van- 
ish. T h i s  causes  problems in atomic physics  
where special  asymptotic t ranslat ion fac tors  have 
t o  be  introduced to c o r r e c t  the asymptotic t rans i -  
tion matr ices . l l  

In Sec. I1 we  formulate  the  theory of the part ic le-  
c o r e  model in the framework of the symmetr ic  
TCSM. The formulation of the  theory does not 
depend on the special  type of molecular  wave 
functions. Tlie fo rmal i sm is applied to the 
13c-13c collision in the framework of the h a r -  
monic two-center shel l  model,12 J3 The  13C nuclei 
can be described by a 12C c o r e  and a rieutron. The 
two neutroris move in the symmetr ic  TCSM poten- 
t i a l  generated by the  13c nuclei. We study the  ex- 
citations of the neutrons leading to excited "C 
s ta tes  a f te r  the reaction. T r a n s f e r  react ions a r e  
easily included in the theory, but have been left 
out of the discussion. Finally, in Sec. I11 we  com- 
p a r e  the coupled channel calculations f o r  the 
elast ic  13C-13C Cross section with the experimental  
data of Helb el aL.,14 which have measured the 
elast ic  90" excitation function up to E „  = 13.75 
MeV. The predicted inelastic 13C-13C Cross s e c -  
tions show s imi la r  intermediate  s t ruc tures  a s  the  
experimental inelastic '2C-12C Cross s e c t i ~ n s . l * ~  

body-fixed sys tem with i t s  z' a x i s  fixed in the 11. TME PARTICLE-CORE MODEL IN NUCLEUS-NUCLEUS 
direction of the relat ive coordinate. In complete 
analogy t o  the  Nilsson model we a s s u m e  a s t rong SCATTERING 

coupling between the  loosely bound nucleons and T h e  scat ter ing of 13C On 13c is studied in the  
t h e i r  shel l  model potential. f r a m e  of the  part ic le-core model. The 13c nuclei 

The  quantum mechanical t rea tment  of molecular  a r e  thought to  b e  built up  of lZC c o r e s  and neutrons 
orb i t s  in rotating coordinate s y s t e m s  i s  exten- [Fig. l (a )  I. F o r  simplicity we have res t r i c ted  t h e  
sively studied in atomic physics. In contrast  to  theory to the  elast ic  and inelastic scat ter ing of 
atomic physics  we  t r e a t  the  relat ive motion a l so  13C on 13c without the neutron t rans fe r .  
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FIG. 1.  (a) Schematic sketch of the particle-core 
model. (b) The tmo-center potential (cut along the z' 
axis). The hatched area indicates the levels occupied 
by the nucleons of the cores. (C) The definition of the 
laboratory z axis and the intrinsic z' axis fixed by the 
direction of the relative coordinate. 

A. The particle-core model 

The  model descr ibes  the  nucleus-nucleus sca t -  
t e r ing  with two c o r e s  and N ex t ra  particles.' The 
Hamiltonian of the sys tem i s  given by 

N 

H =  Tc1 + TcZ + Wclc2(rClc2) + C 
I=, 

The f i r s t  t h r e e  t e r m s  of H a r e  the  kinetic energ ies  
of the c o r e s  C, and C, and the i r  interaction Wclc2 
which depends on the relat ive distance 

+ - 
= R c l  - R„ of the  c o r e s  (Fig. 2). The kinetic 
energy of the cen te r  of m a s s  is subtracted. The  
ex t ra  par t i c les  a r e  described by the  coordinates  
* 
r , .  They move in a time-dependent, average field 
generated by the cores .  The i r  dynamics is de- 
scr ibed by the sum of single-particle Hamiltonians 
and by two-body interact ions acting between the 
ex t ra  part ic les .  The  single-particle Hamiltonians 
a r e  taken in the  f o r m  of the  two-center shel l  
mode15: 

The formulation of the following theory does not 
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depend on t h e  exact f o r m  of the two-center poten- 
t i a l  U. It can be  taken a s  rea l i s t i c  Woods-Saxon 
wel l s  a s  used  by P r u e s s  and Lichtner4 o r  in the  
f o r m  resulting f r o m  self-consistent H a r t r e e  Fock 
calculations done by FlocardZ6 o r  Zint and Mosel." 
F o r  reasons  of simplicity we  assume a two-center 
osci l la tor  [Fig. l(b)].  In that c a s e  U contains a l so  
a l2 t e r m  in addition t o  the  spin-orbit interaction. 
T h e  harmonic two-center osci l la tor  f o r  identical 
nuclei is discussed in Appendix B. 

The two-body interactions in Eq. (1) a r e  part ly  
included in the two-center potential if we a s s u m e  
that the  single-particle potential U represen ts  the 
average interaction between a l l  nucleons and not 
only the average interaction between a n  ex t ra  
par t i c le  and the c o r e  nucleons. Assuming that U 
is the average potential generated by a l l  nucleons, 
we have to rep lace  the  two-body t e r m s  in Eq. (1) 
by the residual  interaction. The  residual  inter-  
action becomes important f o r  the neutron t rans fe r  
p r o c e s s  in the  13c-13c scat ter ing where  asymp- 
totically the  14C nucleus consis ts  of a "C c o r e  
and two neutrons. T o  reproduce the 14C s ta tes  a 
residual  interaction between the  ex t ra  neutrons 
h a s  necessar i ly  t o  be  taken into account. 

Since we  a s s u m e  in Eq. (2) a two-center poten- 
t i a l  f o r  the ex t ra  nucleons, we  anticipate that 
the  ex t ra  par t i c les  move on molecular  o rb i t s  
during the  collision of the nuclei. A molecular 
picture f o r  the  scat ter ing p r o c e s s  is justified if 
the  relat ive velocity of the cen te rs  is smal le r  
than the  orbiting velocities of the ex t ra  nucleons. 
At relat ive velocities much higher than the  o r -  
biting velocities of the  nucleons the  nuclear  mat-  
t e r  becomes compressed during the interpene- 
t rat ion of the nuclei.15 At that energy the f i r s t  
stage of interpenetration may be  described in 
t e r m s  of atomic s t a t e s  (one-center s ta tes)  cen- 
t e r e d  around the  two moving nuclear centers .  

FIG. 2 .  The definition of-the various coordinates of 
the particle-core model. R„* =center of mass coor- 
dinate, F= relative coordinate, S i ,  S 2 =  center of mass of 
nucleus with A A 2  nucleons, Sci, Scz=center of mass 
of the cores with C i , C 2  nucleons, TiA , ,  ,=nucleon co- 

+ 
ordinates measured from Si, S „  r i c m =  nucleon coord- 
inates measured from the center of mass. 
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However, in the 13c-13c system a t  energies 
slightly above the Coulomb barr ie r ,  the reaction 
and orbiting t imes  a r e  of the same magnitude of 
order,  so that the molecular picture has  to be 
applied. Transi t ions of the extra nucleons oc- 
curring outside the interpenetration region a r e  
sufficiently well described in t e r m s  of atomic 
states. However, for  reactions happening in the 
interpenetration region, molecular s tates have 
necessarily to .be taken into account. Although 
the atomic states centered at  the nuclear centers  
form a complete set  of s tates for  the extra par -  
ticles, they do not possess the unique advantage 
of the molecular s tates to include the average 
interaction of the extra nucleons with all the nu- 
cleons. 

In the Hamiltonian (1) we have assumed that 
the cores  remain unexcited. It i s  straightforward 
to include in Eq. (1) the core  excitation according 
to the method outlined in Ref. 16. For  that we have 
to introduce the collective kinetic energy 
TClC2(a I:, CY E, ?C1C2) depending on the multi- 
pole deformation parameters  ct„ of the nuclear 
surfaces and the core-core distance. The mass  
parameters  in the collective kinetic energy can be 
calculated with the cranking model a s  shown iri 
Ref. 25. Also the core-core potential and the two- 
center potential will depend on the intrinsic core  

(1) (2 )  coordinates, e.g. Wclc2 (Fclc2, <Y r m ,  CY Im) ,  and 
include al l  the potential t e r m s  needed to describe 
the collective rotations and vibrations. For rea-  
sons of simplicity and clarity we have omitted the 
core  excitation in the present work. 

B.  The kinetic energy in molecular coordinates 

In Eqs. (1) and (2) the single-particle coordi- 
nates a r e  measured f rom the coordinate origin of 
the laboratory system. Since we want to describe 
the extra part icle motion in the framework of the 
two-center shell model, we introduce mo1ecul;ir 
single-particle coordinates measured from the 
center of mass  of the total system (see Fig. 2): 

with 
N 

+ 1 
R (c,E„ + C,E„ + F,). ( 3 4  

i = 1  

The system consists of C, and C, core  nucleons 
and N extra nucleons. The total number of nu- 
cleons i s  A. The relative coordinate is given io r  
the partition of the extra part icles i 6 N, t o  nu- 
cleus Al and NI + 1 G i G N to nucleus A2 by 

As shown in Appendix A the total kinetic energy 
of the system can be transformed into the co- 

+ 
ordinates R,.,, , F, and Sii,,, and their  canonically 
conjugate momenta P,,,, , G,, and and r e -  
sults in 

Here, ,U =A1A2 kvA i s  the reduced mass. The 
f i r s t  t e rm in Eq. (5) is the kinetic energy T c m  
of the center of mass  which i s  subtracted out in 
Eq. (1). The second t e r m  i s  the kinetic energy of 
the relative motion, the third t e r m  the kinetic 
energy of the extra nucleons in the center of mass  
system. The last  t e rm in (5) can be neglected for  
N1/Ai « 1, whereas the fourth t e rm has to be 
taken into account which can be recognized if 6, 
i s  replaced by P?,: 

This t e r m  regards  the effect of the relative velo- 
city of the nuclear centers  on the motion of the 
extra nucleons. The t e rm vanishes only in the 
limit of small  relative velocities C,. For  very 
small  relative velocities the orbits  of the extra 
part icles change adiabatically from the one-cen- 
t e r  orbits  to the molecular one. The neglect of 
the t e r m  leads to unphysical excitations of the 
extra nucleons in the asymptotic region." The 
Progress  of th is  work l ies  in the consistent t rea t -  
ment of the kinetic energy, so that no difficulties 
with unphysical asymptotic transitions occur. 

C. The rotating coordinate system 

Since the two-center shell model is conveniently 
written in a coordinate system in which the cen- 
t e r s  l ie  on the z axis, it i s  advantageous to  intro- 
duce a rotating coordinate system with a z' axis 
along the direction of F [Fig. l(c)]. The rotating 
coordinate system is fixed with respect  t o  the 
laboratory system by the Euler  angles cp, 8 which 
a r e  the spherical polar angles of the relative co- 
ordinate F. The third Euler  angle +, describing 
a rotation about the z' axis of the rotated system, 
i s  irrelevant and has no phy sical significance. 

The canonical transformation to the relative co- 
ordinates r, b, 9, the particle coordinates Si„ 
in the rotating f rame and their  canonically con- 
jugate momenta, yields the following expression 
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f o r  the  kinetic energy, which is derived in Eq. 
(Al  5) of Appendix A: 

N 
( I -  5,)2 1 +------- 

2 p r 2  + - C $;C", 
2 M  i = ,  

(6) 
with the abbreviations 

T h e  atomic coordinates  if:A2 a r e  defined in 
Appendix A and depicted in  Fig. 2 .  The  operator  

i s  the  total  angular momentum operator  of the 
system and opera tes  on the Eule r  angles. The 
operator  (T- ja)' is the  square of the  angular mo- 
mentum operator  of the  relat ive motion and h a s  
only asymptotically the eigenvalues 1(Z + 1)E2. 
We note that the  kinetic energy opera tor  in  the  
f o r m  (6) does not induce unphysical t ransi t ions 
f o r  l a r g e  separat ions of the nuclei. 

With the  kinetic energy in the f o r m  of Eq. (6) 
and assuming that the core -core  potential M$lc2 
depends approximately on the relat ive coordi- 
nate  instead of the core -core  coordinate we  r e -  
w r i t e  the  Hamiltonian [see Eq. (I)] as follows: 

with 

In H we have neglected the l a s t  two kinetic en- 
e r g i e s  in Eq. (6), which a r e  smal l  cor rec t ions  

f o r  N,/A~ << 1, and the two-body interact ions 
between the e x t r a  nucleons. T h e  Hamiltonian H, 
is the two-center shel l  model Hamiltonian of the  
ex t ra  nucleons, wri t ten in the  rotating coordinate 
system. The  c e n t e r s  of the  c o r e s  l i e  on the  z '  
axis. F o r  equal c o r e s  a s  in  the 13c-13c sys tem 
the cen te rs  have the coordinatesz '  = iz, withz, =r/2. 
The  p r e c i s e  f o r m  of the  single-particle Hamil- 
tonian h is given i n  Appendix B. In H, we have 
subtracted the asyinptotic energy E _  of the ground 
s ta te  of the e x t r a  part ic les .  

D. Tlie wave functions 

F o r  the elast ic  and inelastic scat ter ing of the 
two 13C nuclei we  introduce the  following ansatzs 
f o r  the,wave function with total angular momen- 
t u m  l: 

The  radialfunctionR,„,(r) depends on the orbi tal  
angular momentum 1, the channel spin J, and the  
angular momentum I of the system. The  function 
9 „ descr ibes  the intr insic  degrees  of f reedom of 
the  nuclei. Since the 12C c o r e s  a r e  assumed to be  
unexcited, it  is unnecessary to  introduce intr insic  
wave functions f o r  the  cores .  Therefore,  the 
function + „ depends only on the coordinates  of 
the  two neutrons and the relat ive coordinate F. 
The  operator  A(1, 2 )  an t i symmetr izes  the  wave 
function f o r  the exchange of the two neutrons. In 
addition the  wave function should be  antisym- 
met r ic  f o r  the  exchange of the 13c nuclei. 

The  channel spin 3 is asymptotically fixed by 
the spins of the  nuclei 3 =C +G. F o r  unexcited 
12 C c o r e s  the  channel spin of the  13c nuclei i s  
given by the sum of the  angular momenta of the  
e x t r a  neutrons: 3 = jl +L. 

I .  Wave functiorts in the roratirzg coordinate System 

The  transformation of the  wave function (8) on 
t h e  rotating coordinate sys tem i s  outlined in Ref. 
8. The  relat ion connecting the laboratory in- 
krinsic function Q „, with the intr insic  function 
9 , ( J ) ,  in the  rotated sys tem is given by 

9 ~ J M  = ZD,~%'(<P> @7 Y ) ~  a( J ) .Mt  . (9) 
.M ' 

The parentheses around the  quantun number J of 
the  channel spin should indicate that  J is a good 
quantum number only f o r  l a r g e  internuclear  dis- 
tances.  We u s e  Eq. (9) a l so  in the  react ion region - 
where  <P ,( J )  is no longer  an eigenfunction of the 
channel spin 3. Equation (9) is assumed a s  the  
definition of the intr insic  wave function f o r  a rb i -  
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t r a r y  internuclear  distances. f e c t s  of the  antisymmetrization opera tor  A ( l ,  2) 
Inser t ing Eq. (9) into Eq. (8) we  obtain the  fol- on the  coordinate a r e  smal l  a s  long a s  t r a n s f e r  

lowing form: p r o c e s s e s  a r e  disregarded w e  neglect these  effects 

21+1 ''2 
in Eq. (10)  and commute A(1,  2) with the 5 depen- 
dent f a c t o r s  of the wave function. F o r  con- 

a , l . ~  venience we  introciuce the following abbreviation 
f o r  the  ant isymmetr ized intr insic  wave func- 
tions: 

H e r e  we have used  the  identity 
2. The intrinsic wave functions 4; fJiM 

Since the opera tor  3 of the  total angular momen- 
t u m  opera tes  on t h e  E u l e r  angles  only, one veri-  
f i e s  immediately that  the wave function (10)  h a s  
good angular  momentum Z and good projection M 
on the space-fixed z axis. Since the intr insic  wave 
function <P ,( J )  h a s  asymptotically the  good quan- 
tum number J, the  wave function (10)  becomes 
asymptotically a n  ant isymmetr ized superposi- 
tion of e igenstates  of the  orbi tal  angular momen- 
tum 1' =(T- 5,)' in  addition t o  P. Since t h e  ef- 

The  two neutrons a r e  described by the  single- 
par t i c le  functions q m(F[c.m, , + r / 2 )  in the  
rotated system. The  angular momentum J i s  only 
asymptotically a good quantum number. F o r  l a r g e  
separat ions the neutron functions a r e  concen- 
t ra ted  a t  the nuclear  cen te rs  which l i e  a t  z l =  * r /2  
on the z'  ax is  of the  rotated frame:  

T h e  single-particle functions will  be  specified in  
t e r m s  of two-center wave functions in Sec. I1 D 3. 
Using the functions < p x ( „ ,  u7e can wr i te  the  in- 
t r ins ic  wave functions a s  

with t h e  abbreviations 

ai = { ~ i >  ( j  i)), a={@i, 0121. 
H e r e  we  have used the  following phase convention 

( 1 3 4  
of the single-particle wave functions: 

The wave functions (13)  a r e  ant isymmetr ic  f o r  V X O ) ~ ( X ' ,  -Y1 ,  - z 1 - y / 2 )  
the  exchange Of the ex t ra  neutrons. It is straight- 
forward to general ize these  functions t o  describe = ( - l ) i - 2 m ( p  h( j ) - m ( ~ f ,  yt,  2' + ~ / 2 )  . (15)  
the  neutron t rans fe r .  When the  13C nuclei a r e  ex- 
changed, the  direction of the  z' a x i s  i s  reversed.  In ca r ry ing  out the antisymmetrization operation 
The  effect of th i s  operation on the  intr insic  wave in Eq. (13)  we neglect the fact  that  a l so  the re la -  
function can be  obtained by rotating the intr insic  t ive coordinate i? is affected by the exchange of the 
coordinate sys tem by the angle n around the  X' ex t ra  particles. Also the ant isymmetr izat ion of 
axis .  It r e s u l t s  with the  operator  P, f o r  nucleus the  ex t ra  nucleons with t h e  c o r e  nucleons is 
exchange: neglected f o r  simplicity. T h e  wave functions 6* 
pN$,(& M ( l ,  2, Y )  = - ( - I ) ' +  , ( n - w ( 1 , 2 , ~ ) .  (I4) a r e  normalized a s  follows: 

F o r  deriving th i s  resu l t  we  have used  the normalization of the  single-particle wave functions 
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As can berecognized from Eq. (16) the wave 
functions @ A  a r e  orthonormalized when we r e -  
s tr ict  the quantum number a = {a„ a2) on the sub- 
se t  with a, -( %. The subset of wave functions 
with a, < cr, i s  superfluous because of the relation 

3. The single-pa,rticle wave functions ip, (j,m 

The single-particle wave functions cpUj,,,, needed 
for  the intrinsic wave functions (13) have to ful- 
fill the asymptotic condition (12), the phase condi- 
tion (15), and the orthonormalization (17). The 
wave functions qAcj„ a r e  asymptotically concen- 
trated at  z r = r / 2  o r  z r  = -r/2. However, the eigen-, 
functions of the symmetric two-center model used 
for  the 13C-13C system have good parity and, there-  
fore,  a r e  concentrated asymptotically at both cen- 
te rs .  To obtain the required asymptotic behav- 
i o r  we subtract and add the asymptotically degen- 
erated eigenfunctions X of the two-center Hamil- 
tonian: 

The functions xg and X" a r e  the eigensolutions of 
the symmetric two-center shell model for even 
and odd pari ty,  respectively, 

x ( x ~ (  j)m(F',zo) - ~ ; f ( j ) , ( F ' , z ~ ) ) .  with 

The single-particle Hamiltonian of the symmetric 
two-center shell model i s  discussed in Appendix 
B. The phases of the wave functions xg and xU a r e  
Chosen under the condition that xg and xU become 
equal for  zo -  and z > 0. The phase factor (-1)'" 
in Eq. (19) is the parity of the asymptotic single- 
particle wave function q„j)m(F',izo) with respect 
to the centers a t  z ' = i z „  where 1, denotes the 
asymptotic quantum number of the orbital angular 
momentum. The phase factor i s  obtained from the 
asymptotic propert ies of the two-center wave func- 
tions [See Eq. (B8) of Appendix B]  and is needed in 
order to fulfill the relation (15) which connects the 
phases of the single-particle wave functions 
( ~ ~ ( ~ ) , ( f ' , + z ~ )  arid < P ~ ( , > ~ ( F ' ,  -zo). 

Inserting Eq. (19) into the wave function (13) we 
obtain finally 

In order  to calculate the matrix elements with the 
wave functions zA we e x ~ a n d  the two-center wave 
functions xgVU in the eigenfunctions of the symme- with ß={rz , ,~~,m' ,r i? ,=m -mJ ) .  
t r ic  two-center harmonic oscillator a s  discussed The basis  functions zj, can be expressed in t e rms  
in  Appendix B: of higher analytic functions. 

E. The ~oupled equations 

In this section we derive the system of coupled equations for the relative wave functions R„,,, defined in 
Eq. (8). The scattering wave function has t o  fulfil the stationary Schrödinger equation: H\k = EXJ. The 
coupled equations a r e  obtained by projecting with the channel wave functions 

( [ i z ~ , @ @ , , ] F 1 I ~ -  E I*) = O .  (23) 

Inserting the Hamiltonian given in Eq. (7) and substituting R,,„(Y) =zm1u; ,,(V)/Y we find the following sys- 
tem oI coupled equations: 
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I .. 
with k ={a, I ,  ~ ) , k ' = { a ' ,  I ' ,  J'}. J' i s  defined a s  the angular momentuin of the ex- 
The complex potential W(Y ,  E ,  I) will be discussed t r a  neutrons measured  with respec t  to z' = 0: 
in  Sec. 111. The intr insic  wave functions, given in - + . .  J ' = j ; + j ; ,  
Eq. (21), a r e  used in the i r  ant isymmetr ic  and non- * 
ant isymmetr ic  vers ions  in  the mat r ix  elements. ~ , = r / 2 e , .  X (6; - 6;). (2 6b) 
In deriving th i s  resul t  we noticed that tile Hamil- 
tonian commutes with the antisymmetrization op- 
e r a t o r  and took the antisymmetrization of the re l -  
ative coordinate approximately into account in o r -  
d e r  to obtain Hermit ian coupling potentials. In the 
13C-13C c a s e  the opera tor  D i s  given a s  

The sys tem of equations (24) fo r  the unknown func- 
tions U: has to be solved numerically. F r o m  the 
asymptotic behavior of the radial  functions z r a  we 
obtain the S matr ix  and then the Cross sect ions 
which a r e  derived in Appendix C. 

F. Matrix elements 
(2 5 )  The mat r ix  elements  in the coupled equations 

(24) a r e  easily evaluated by reducing them to the 
The 'perator '. is the of the momenta matrix elements of the symmetr ic  two-center 
of the ex t ra  neutrons measured  with respec t  to z f  cillator.  In this section we presen t  only the im- 
= * ~ / 2 ,  portant points in the calculation of the mat r ix  ele- 

* 
J, = G: - Y/~Z,.)  X 6; + 3 + (5;. Y / ~ Z ~ , )  ments. Fur ther  detai ls  can b e  found in Ref. 12. 

X:;+%. (26) I. The rnatrix elenrenrs of H, 

It can be replaced by the difference 5, = 5' - 5, ac-  With H, defined in Eq. (7b) and the eigenvalues 
cording to Eq. (A12) of Appendix A. The operator  E"' defined in Eq. (20) we obtain ( k =  { a , l ,  J}) 

with Y =  (X, ( j ) ,  zn). 
In the actual  calculations we take only s t a t e s  with j, =j2 = $ into account. For  this special  c a s e  the sum-  

mation over  tn, and w 2  can be  immediately c a r r i e d  out, s ince the two-center energies  depend only on 1 V ?  I :  

(@M/~, IT$ ,M,)=  6M1,,,6jj,6aa,$[l+ ( - l ) l + l ' ] [ $ ( ~ ~ l + E Y l +  €Y2+ E ~ ~ ) - E ~ ] .  (28) 

Inserting th i s  resu l t  into Eq. (24) we find that the mat r ix  elements  of H ,  in Eq. (24) a r e  diagonal. Abbrev- 
iating these mat r ix  e lements  by E ,  we obtain for  j ,  = j, = 3 

E ~ = ~ ( ~ ~ 1 ~ / 2 ) i / z + ~ ~ 1 ~ / z ) i / z + ~ ~ 2 ~ ~ / ~ ~ ~ / ~ +  ~ I f i u / z ) 1 / z )  -E,. (29) 

2. The rnatrix elements of ö l  ör + D  

The sum of the coupling t e r m s  with the opera tors  a /o r  and D in Eq. (24) i s  Hermit ian,  but not s o  f o r  the 
single t e r m s .  We r e a r r a n g e  these t e r m s  such that the resulting t e r m s  a r e  individually Hermitian. It fol- 
lows that 
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The opera tors  AM„ depend on the t ransi t ion potentials M„„ and their  f i r s t  derivatives. These potentials 
a r e  easily reduced to mat r ix  elements  of the two-center wave functions defined in Eq. (19): 

w i t h y l =  y2={a2, m 2 ) ,  ~ 2 = y 1 = { ~ l , ~ l ) .  
With the aid of the exparision (22) of the functions xgd' the mat r ix  elements  in (31) can be reduced to the 

mat r ix  elements between the s t a t e s  of the symmetr ic  two-center occillator.  The coupling potentials 
M„. ,  vanish asymptotically because of the relation [ V =  22„ See Eq. (B8)]  

The Same method can be applied to  calculate the mat r ix  elements  of the potentials (30c). 

3, The rnatrix elenterlts of (1 -. -. 
Theangular  momentum operator  ( I  - J, has to be wri t ten in components of the intrinsic coordinate sys -  

tem. With the proper t i es  of the D functions we obtain f o r  the mat r ix  elements  needed in Eq. (24) 

- 
Asymptot~cal ly the intr insic  wave functions a 4 > „ a r e  eigenfunctions of the Square of the angular  momentum 
operator  J, : 

.. - - 
l i m  Ja2@„= J(J + 1)A2@m . 
T+'= 

(34) 

In that c a s e ~ t h e  above mat r ix  elements  (33) can easily be evaluated. Inserting the asymptotic mat r ix  ele-  
ments  into Eq. (24) we obtain the usual centrifugal potentials 

'("l) ~ 2 ~ :  . i im C = - 
V+'= k ' ,  \l',~Vl'' 2yy2 

In complete analogy to Eq. (31) we get the following expression f o r  the mat r ix  elements  of 5,: 
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- .  - 
xOYiYj,(S((~;f 17 Ix:~~)  + (xuyi 1 j' /xYj,)) 

-aye,*x ((X;; IPI I X;!,) + (P' IX;,.))) . 
Using Eqs. (26a) and (26b) we rewr i te  the mat r ix  elements  of 5,' in a more  explicit form: 

* t  y2 - 
( Z w  1 G$&,)  + H.C. = 2(ZhM l(j; + j;)2 1 6 i t M )  + T I G ~ ,  X (E; -Z ; ) )~I  

- r [ (GkM I i 2 + 5 ) ( e f l  X G\ -5; ) )  I +H.c . ]  . (37) 

The reduction of these  mat r ix  elements  to expres -  
s ions with two -center wave functions is straightfor  - 
ward.  In the actual  calculations presented in Sec. 
I11 F e  have replaced the orbi tal  angular  momentum 
in J, defined in Eq. (26) by a n  expression which i s  
a l s o  used f o r  the calculation of the 1'; and 1 po- 
t e n t i a l ~  of the two-center shel l  model ( s e e  Appen- 
dix B): 

The operator  3, has the advantage to be symmetr ic  
in the part ic le  coordinates and gives the s a m e  
mat r ix  elements  a s  5, fo r  l a rge  and s m a l l  re lat ive 
dis tances Y. 

111. APPLICATION T 0  THE I3c-l3c SCATTERING 

In th i s  section we apply the theory to  the 13c- 
13C scat ter ing.  Figure 3 p resen ts  the s t a t e s  of the 

13C nucleus and the i r  explanation in  t e r m s  of the 
excitation of the "C c o r e  and the valence neutron. 
Tlie s t rongest  transition f r o m  the ground s ta te  
is  of E1 type and connects the $- ground s ta te  (gs)  
witll the f i r s t  S' (3.09 MeV) s t a t e  As shown in 
Fig. 3 the t ransi t ion is  caused by the valence neu- 
t ron going f rom the 1p$ to the 2sS state. In the 
present  calculation we have res t r i c ted  the channels 
to  the elast ic  one ( g s , g s ) ,  to the single excitation 
of the S t  s ta te  in one of the I3C nuclei ( g s ,  S') and 
the mutual excitation of the $ +  s t a t e  in both 13c 
nuclei (+*,$'). A s  already stated, we d i s regard  
the neutron t rans fe r  and c o r e  excitation channels. 

A. Tlie complex potential 

The complex potential W(r, E , I )  in Eq. (24) con- 
s i s t s  of the complex interaction between the "C 
c o r e s  and of a n  absorpt ive potential f o r  the inter-  
action of the ex t ra  part ic les  with the cores :  

The r e a l  and imaginary potential between the c o r e s  

C C R E  V E U i A O N  C A L C  i s  completely determined by the e las t i c  and in- 
e last ic  " c - ~ ~ c  scat ter ing.  The additional imagin- 

312 8 2  P *  I d ,  - 
312 7 58 2. 2s , a r y  potential W„ i s  caused by the neglectedtrans-  

- --- 
7 5 $: . E 87 2' : d c L  f e r  and inelastic channels of the ex t ra  part ic les .  

I .  The real potewrial V(r) 

I3c 
FIG. 3 .  Spectrum of 13c from Ref. 17.  On the right- 

hand side of the figure, the 13c states are  interpreted 
with the collective excitation of the 12c core and the 
excitation of the loosely bound neutron. The last column 
presents the neutron states of 13c calculated with tlie 
shell model parameters given in Eq. (42). 

The r e a l  12C-12C potential i s  taken f r o m  Mcrovic 
and  greine^-,^ who Ihave calculated r e a l  potentials 
fo r  the scat ter ing of identical nuclei. They used 
the Strutinsky method with s ingle-part ic le  energ ies  
of the symmetr ic  two-center shel l  model (TCSM). 
The potential of the symmetr ic  TCSM i s  given in 
Appendix B and shown together with the correspon- 
ding niclear shapes  in Fig. 4. In the adiabatic ap-  
proximation of Morovi; and Greiner7 the resulting 
potential energy sur face  of the 1 2 ~ - 1 2 ~  sys tem de-  
pends on the distance between t h e  cen te rs  ( Y =  22,) 
and on the inner b a r r i e r  height h defined in Fig. 
4. This  potential energy sur face  (PES) i s  shown in 
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FIG. 4. The two-center shell model potential with 
the corresponding nuclcar shapes for two different 
bvo-center distances. Left side: compound nucleus. 
Right side: separated nuclei (from Ref. 7). 

Fig. 5. The inain feature of the PES i s  that the 
Coulomb b a r r i e r  i s  situated a t  r =  5.4 fm. The 
PES minimum a t  r = 3  f m  and h= 0 reproduces the 
"Mg ground state .  One es t imates  Y =  3 .16  f m  f o r  
the measured  quadrupole moment of 2 4 ~ g  in t e r m s  
of the two-center distance of the TCSM. In the 
PES of Fig. 5 we have indicated the adiabatic path 
chosen for  the 12c-12c collision. The resulting 
core -core  potential i s  shown by the heavy line in 
Fig. 6.  

2 The imaginary potential Wcc 

A s  suggested by Helling et a1 .18 and Fink et a1.,16 

the imaginary potential f o r  the e las t i c  channels can 
be written 

r i fn i l  

FIG. 5. The potential energy surface for the 1 2 ~ - 1 2 ~  

system in adiabatic approximation as  function of the 
two-center distance r and the height h of the inner 
barrier OE the potential defined in Fig. 4. The values 
oI the equipotential lines are given in units of MeV. 
The dashed line is assumed as  the path of the "C nuclei 
in an adiabatic collision (from Ref. 7). 

FOR THE E L A S I I C  
"C-"C CHANNELS 

I-10 I 

> 12 12 - C -  C potential 
- "C-'~G elactic ~oientiai 1 

energes and cen+rifugaI, 
potential I 

FIG. G .  Selected potentials for the elastic 13c-13c 

channels. The adiabatic core-core potential (heavy 
line) is obtained from the PES of Fig. 5 (path along the 
dashed line in Fig. 5 ) .  The 13c-13c elastic potentials 
(light lines) are  calculated by adding the r-dependent 
single-particle energies of Fig. 9 and the centrifugal 
potentials to the ' 2 ~ - ' 2 ~  potential. Asymptotically the 
potentials are degenerated for fixed orbital angular 
moment~un l .  

with 

For  Q we have assumed the moment of iner t ia  of 
two equal rigid s p h e r e s  with the "C radius R= 3.11  
f m  and relat ive distance Y. The excitation energy 
E* = E - V(Y) of the precompound nucleus i s  mea-  
sured  with respect  to the adiabatic potential V(Y) 
shown in Fig. 6 .  The function N(Y) i s  the number 
of nucleons in the overlap region of two s p h e r e s  
with homogeneous densities. The touching distance 
d i s  chosen s o  that it a g r e e s  with the position of 
the Coulomb b a r r i e r ,  namely d =  5.4 f m  ( s e e  Fig. 
6). Finally we have fitted the only f r e e  parameter  
ff to the experimental 90" Cross sect ions for  e las -  
t ic  ''C -''C scat ter ing.  
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'I 
7 9 11 13 15 17 19 2; h 

C m E N t r G Y  I M e V I  
FIG. 7. The 90"-differential cross section for elastic 

' 2 ~ - ' 2 ~  scattering. The experimental data a re  taken 
from Ref. 24. The calculations a re  carried out with 
the real ' 2 ~ - ' 2 ~  potential shown in Fig. 6 and the ima- 
ginary potential given in Fig. 8. Since we have coupled 
the single and mutual excitation of the first 2 +  state in 
12c to the elastic channel, the theoretical cross section 
reveals intermediate structures. 

IMAGINARY POTENTIAL W„ 

r i f m l  

SURFACE IMAGINARY POTENTIAL W„ 

r l f m l  
0 2 i r,6 8 1 0 r 0 1 2  14 

FIG. 8 .  (a) The imaginary ' 2 ~ - ' 2 ~  potential for various 
total angular momenta at Eam0 = 15  MeV. @) The addi- 
tional surface imaginary potential for i 3 ~ - ' 3 ~ .  

F igure 7 shows the theoret ical  90" c r o s s  sect ion 
f o r  e last ic  1 2 ~ - 1 2 ~  scat ter ing obtained by fitting 
the f r e e  parameter  a. It  r esu l t s  in a = -0.1 MeV. 
In the calculations we have coupled the s ingle  
and mutual excitation of the f i r s t  2' s t a t e  in "C 
according to the method described in Ref. 16. The 
imaginary potential used f o r  the e las t i c  channels 
is drawn in Fig. 8(a) f o r  E,.,. = 15 MeV. 

3. The additional imaginary pntenfial W=, , 

Since we t rea t  only a very res t r i c ted  number of 
channels fo r  the extra  part ic les  in our  calculations, 
we have to approximate the disregarded s ingle-  
par t ic le  channels by a n  ex t ra  absorpt ive potential 
in the elast ic  13c-13c channels. This  potential 
a r i s e s  part ly  f rom the neglected neutron t rans fe r  
channels. Therefore,  we localize this  potential 
in the touching Zone by the following ansatz:  

= 0 otherwise. 

The p a r a m e t e r s  Wo, r i ,  and Y, a r e  taken a s  the 
only f r e e  p a r a m e t e r s  to  f i t  the experimental e las -  
t i c  c r o s s  sect ion of l3c-I3c. The resulting 
surface-absorptive potential i s  drawn in Fig. 8(b). 
It i s  assumed that this  additional potential gets  
strongly reduced if the neutron t rans fe r  channel i s  
explicitly included in the sys tem of coupled equa- 
tions (24). 

B. The TCSM for the extra nucleons 

The theory formulated in Sec. I1 i s  independent 
of the special  type of the two-center she l l  model 
(TCSM). To simplify our calculations we a s s u m e  
a n  harmonic two-center osci l la tor  fo r  the potential 
of the ex t ra  neutrons. The simplification does not 
influence the g r o s s  s t ruc ture  of the radial  and r o -  
tational coupling potentials,  and i s  justified a s  
long a s  we d i s regard  polarization effects and the 
neutron t rans fe r  channels. 

The p a r a m e t e r s  of the TCSM described in Ap- 
pendix B have to be Chosen such that the asymptotic 
single-particle s ta tes  a r e  reproduced. A s  shown in 
Fig. 3 the 13c s ta tes  have the peculiarity that the 
2s S s t a t e  l i es  lower than the l d %  state .  Kurath and 
LawsonL7 have explained the spec t rum assuming  
weak coupling between t he deformed 12C c o r e  and 
the  neutron. Since f o r  simplicity we  do not take 
any c o r e  deformation into account, we have to 
adjust the asymptotic p a r a m e t e r s  E o ( r -  a ) = E w „  
P,  and K, of the TCSM in order  to  reproduce the 
relat ive positions of the I&, 2sS, l d g ,  and 
ld; s t a t e s  in the 13C spec t rum ( s e e  Fig. 3). 

It r esu l t s  in 
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AOIABATIC E X L I I A T I O N  ENERGIE5 ~ 
I 

- 1 .  L - -L-- - -> , 1 
0 2 4 6 8 10 12 l 4 * 1 6  

r l frnl 
FIG. 9. The sum of the adiabatic single-particle en- 

ergies for the channels (gs, g ~ ) ,  (gs,$'), and (F , g ) 
calculated according to  Eq . (29). 

Au,= 6.95 MeV, K ,  = 0.127, P,= -0.479. (42) 

The small  value of the oscillator frequency in- 
dicates that the extra neutron is  loosely bound to 
the "C core  and simulates the effects of the de- 
formation of the ''C core. Figure 9 presents  the 
excitation energy of the neutrons in the considered 
channels calculated with the single -particle en- 
ergies of the adiabatic TCSM which a r e  inserted in- 
to Eq. (29). 

C. The coupling potentials 

Using the TCSM wave functions for  the neutrons 
we have calculated the various coupling potentials 
in Eqs. (24) by the methods outlined in Sec. I1 F. 

Figure 10 shows the constituents of the radial 
coupling matrix element given in Eq. (31) for  a 
special transition. A s  already mentioned the 
asymptotic radial coupling matrix elements van- 
ish. In the present calculations we have taken only 
the radial matrix elements of Eq. (30a) into ac -  
count and disregarded the higher order t e rms  
given by Eq. (30c). The radial coupling matrix 
elements of Eq. (30a) have no diagonal contribu- 
tions. 

The matrix elements of the angular momentum 
operators a r e  calculated accor_ding to Eq. (33) 
where the angular momentum J, of the extra neu- 
trons is  replaced by the symmetric operator ?, 
defined in Eq. (38). This replacement is  done 
only for numerical simplification and will be r e -  
vised in future c a l c u l a t i o n ~ ~  

The matrix elements of (I - 7, )' have diagonal 
contributions since they approach the values 
1(1+ 1 ) R 2  for  Y In Fig. 6 we have added the 
centr  ifugal potential and the single-particle ex- 
citation energy for  the elastic channels ( see  Fig. 

L - 1  - i _ d  

- 2  60 2 L 6 8 10 12 14 16 
r [ fml 

FIG. 10 .  The radial coupling potential for  the special 
transition 

- - ( a A ( g s , g s ) ,  L = I ,  J = I ,  M = - I / D ,  1 6 A ( g ~ , $ + ) , o , ~ ,  
2 F  

- 1) 

with the following choices of D, : Curve 1: D1= 28 /ä r .  
Curve 2: ~ , = a / 8 z i  - alaz l , .  Curve 3: D,=D,+D,. 

9) to the adiabatic core-core potential. Asympto- 
tically the potentials a r e  degenerated for fixed 
orbital angular momentum, whereas in the over-  
lap region the potentials split for  different total 

only -2IS, , 
- - - oniy TS2 

r i f m l  
FIG. 11.  Selected nondiagonal matrix elements of the 

rotational coupling; 
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angular momenta I. This  effect removes  the 
degeneracy of the vir tual  and quasibouild reso-  
nances. Therefore,  the resonance s t a t e s  a r e  
spread  over  a l l  energ ies  and a r e  not s o  well 
separa ted  as the ' Z ~ - ' 2 ~  resonances ( s e e  Ref. 3). 
The r ichness  of resonances in the potentials of 
Fig. 6 leads to  a n  enhancement of the intermediate 
s t r u c t u r e  in the 13C-13C c r o s s  sections. Figure 11 
shows nondiagonal mat r ix  elements  of the opera -  
t o r  ( I  - ?, )2  which increase  rapidly a t  s m a l l e r  re la -  
tive dis tances because of the l/r2 factor .  

D. Results of coupled chaiinel calculations 

Coupled channel calculations have been c a r r i e d  
out with the above selected 13c-13c channels 
( g s , g s ) ,  (gs ,S i ) ,  and ( S  + , $ + ) .  

In Fig. 12 we compare  the calculated elast ic  90" 
differential c r o s s  section with the experimental data  
of Helb et aZ.l4 In this  calculation we have fitted 
the s t rength of the absorpt ive sur face  potential 
given in Eq. (41). A s  shown in Fig. 12 the 90"- 
excitation function can  be  reasonably reproduced in 
the measured  energy range between 7 and 13.75 
MeV. The angular  distributions a r e  compared 
with the experimental data  in Fig. 13. 

The  inelastic 13C-13C c r o s s  sect ions f o r  single 
and mutual excitation of the S* (3.09 MeV) s t a t e  
in  'V a r e  drawn in Fig. 14 (solid lines).  A s  in 
the inelastic ' 2 ~ - 1 2 ~  c r o s s  section the inelastic 

100 

9„ = 9 0 °  

M U T 1  

13 

i 

I 
1 

r 
r - - -  Exp 
1 - Colc 

coupled igs .gs) .  igs.32.1, (I!;, l l ~ ' )  1 
j 

0  1 1 - L  --.LA 
7 9 1 1  13 15 17 11 21 23 

FIG. 12. The 90"-differential cross section for the 
elastic 13c-13c scattering. The experimental data are  
measured by Helb et d. I4In the calculation we have 
coupled the channels (gs,gs), (gs,ki),  ($+,+'). 

E L A S T I C  C R O S S " S E C T I O N  ' C - 1 3 c  I 1 - - -  E X P  
I -Calc I 

coupled i g s  gs)  igs 117') i ' i z  I/,') 

L __I- 

20 40  6 0  81i*6080+0 
cm SCAT IERNG A N G L E  l d e g  I 

FIG. 13. Angular distributions of the elastic 13c-13c 

scattering. The experimental data are  measured by 
Helb et al. (Ref. 14). The same channels as in Fig. 12 
have been coupled. , 

13c-13c excitation functions reveal  intermediate  
s t r u c t u r e s  which a r i s e  by the excitation of quas i -  
bound resonances via  the double resonance mech- 
anism.lg Up to now no experimental  data  have 
been published for  a comparison with the theoret-  
ical  curves.  

To investigate the influence of the radial  and 
rotational coupling potentials we have calculated 
the inelastic excitation function separately with 
the radial  coupling and with the rotational one. A s  
shown in Fig. 14 the rotational coupling i s  of 
minor influence on the inelastic c r o s s  section. The 
s trength of the radial  coupling grows  with increas -  
ing relat ive velocity s ince the radial  mat r ix  
elements  in Eq. (30a) a r e  multiplied by the re la -  
tive momentum p, . 

The influence of the channel coupling on the inter-  
mediate s t r u c t u r e  in the e las t i c  90"-excitation 
function i s  i l lustrated in Fig. 15. When only the 
ground-state channels a r e  coupled [dashed line in 
Fig. 15(a)]  the elast ic  excitation function i s  com- 
pletely smooth. On the other  hand when a l l  con- 
s idered channels a r e  coupled [sol id line in Fig. 
15(b) ] ,  the excitation function shows strong in- 
termediate  s t ruc tures .  

IV. CONCLUSIONS 

The intention of this  paper  w a s  t o  develop a 
pract icable  method f o r  the use  of molecular  single- 
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t ' 3c-13~ 
ELASTIC CROSS SECTION 

t 8„= 90' 

' cvuplec chonnels 
- l g s .  951. i gs.'l!'l 

- - - - l g s  gs!  - di coupling potential  
- --  only radial coupling 
- - only rotational coupling 

1 3 ~  [ 1 3 ~ , 1 3 ~ ' j  13~ ' ( 11~ ' )  

coupled 
(gs,  gs i ,  i g s  'll'i. 1'!2','12'1 

ELASTIC CROSS SECTION 
-3„ = 90' I 

coupled chonnels 
- ( 3 s  gs) ( g s  12') 02' '12') 
- -  13s gs)  14s ' 1 ~ ' )  I! 

O 1  7 9 11 13 15 17 19 21 23 
c m  ENEiGY i MeV1 

FIG. 15. The dependence of&he intermediate structure 
on the number of coupled channels in the 90"-differential 
cross section for elastic 13c-13c scattering. The coupled 
channels are  (a) (gs , gs) (dashed line), (gs, gs) and 
(gs , i t  ) (solid line); @) (gs, gs) and (gs, ) (dashed line), 
(gs, gs), (gs,St ), and ($* , i +  ) (solid line). 

- ali coupling potentiai  
- - -  only rad ia l  coupl ing 

LAJA 
I 

0 0 1  d 
9 11 13 15 17 19 21 23 

c m  ENERGY I M? V 1 

FIG. 14. The 90"-differential cross section for the 
single (a) and mutual (b) excitation of the first Sf state 
in I3c (solid line). The cross sections shown by the 
dashed and dotted-dashed lines demonstrate the effects 
of the radial and rotational coupling separately. One 
notes the importance of the radial coupling. 

s ta tes ,  concentrated around different nuclear 
cen te rs  and widely used in react ion theories ,  do 
not possess  this  orthogonality. However, , the 
molecular  wave functions a r e  re fe r red  to  a 
body-fixed, rotating coordinate sys tem and, there -  
fo re ,  rotational coupling e n t e r s  the Hamiltonian. 
Our calculations ( s e e  Fig. 14) show that  the diagon- 
a l  par t  of the rotational coupling i s  the important  
one. A much s t ronger  coupling a r i s e s  through the 

par t i c le  wave functions in nucleus-nucleus 
collisions. The molecular  method has the advan- 
tage that the mean  interaction between a l l  nucleons, 
represented by the potential of the two-center 
shel l  model, i s  t reated correct ly .  A fu r ther  
advantage i s  that molecular  single-particle s ta tes  
a r e  orthogonal. On the con t ra ry ,  single part ic le  



18 - h I O L E C U L A R  P A R T I C L E - C O R E  i B @ D E L  A N D  I T S  A P P L I C A T I O N  ... 279 

dependence of the molecular  wave functions on the 
two-center distance. The radial  coupling leads to  (-41) 
the excitation of nucleons when their  s ta tes ,  a t  
f i r s t  centered a t  the individual nuclei, pass  into 
the molecular  s ta tes  of the compound systern. 

The model can be extended in two main d i rec t -  
ions: the inclusion of the t rans fe r  channels and the 
excitation of collective s t a t e s  of the cores .  The 
t rea tment  of the t rans fe r  channels needs a careful  
investigation of TCSM potenti'als. Various kinds 
of rea l i s t i c  TCSM potentials a s  given in Refs. 4, 
5, 26, and 27 should be tested. Also the chnnge 
of the  relat ive coordinates  in the entrance and 
final channels has to be taken into a c c ~ u n t . ' ~  The 
c o r e  excitation and i t s  coupling to the single- 
par t i c le  motion leads to  a dynamical t reatment  of 
polarization effects.  

The molecular  s ingle-part ic le  s t a t e s  can be ex- 
perimentally verified by measuring inelastic ex-  
citation functions. A s  shown in Ref. 21 the inter-  
mediate s t r u c t u r e s  in the inelastic c r o s s  sect ions 
depend quite sensitively on the position of the 
resonance s t a t e s  in the nucleus-nucleus potentials. 
Analyzing the S mat r ix  we can explain the or igin of 
each individual s t r u c t u r e  in the calculated in- 
e las t i c  c r o s s  sect ion shown in Fig. 14. A s  a r e -  
sul t  we find that the positions of the s t r u c t u r e s  de-  
pend on the molecular core -core  potential, the 
excitation energy of the nucleons in the molecular  
o rb i t s ,  and the centrifugal potentials. 

Fur ther  work has to be done to reveal  specific 
s igna tures  in the inelastic c r o s s  sect ions which 
a r i s e  f r o m  the molecular  s ingle-part ic le  s ta tes .  
Especially the study of c ross ings  of molecular  
levels  can  become a n  important tool f o r  detecting 
molecular  s ingle-part ic le  effects in heavy ion 
collisions. At points of level crossing the ex-  
citation of nucleons becomes enhanced. This  
effect was  studied by Fano and Lichtenz2 for  the  
analogous excitation of e lectrons in  atomic col- 
lisions. 

We thank P r o f e s s o r  J a e  P a r k  for  fruitful d i s -  
cussions.  

APPENDIX A: KINETIC ENERGY IN THE PARTICLE-CORE 
MODEL 

The degrees  of f reedom in the part ic le-core 
model a r e  described by the coordinates of the two 

-C -C c o r e s ,  %C1 and Rcz, and the coordinates  T l , .  . . , r, 
of the  ,V e x t r a  par t i c les  which a r e  measured f rom 
a n  a r b i t r a r y  coordinate origin. If we denote the 
mo_ment~canonical ly conjugate to  the coordinates 
by PCP PCP and C„ the  kinetic energy in the 
part ic le-core model can be  expressed a s ß  

The c o r e s  have C, = A t  -Nt  nucleons (i = 1 , 2 )  where 
A t  i s  the  atomic number and NI the number of ex- 
t r a  par t i c les  of each nucleus. The relat ive motion 
of the two nuclei i s  descr ibed by the  relat ive 
coordinate F between the nuclei. Since the relat ive 
coordinate i s  not symmetr ic  in the  par t i c le  coor-  
dinates ,  a l l  coordinate t ransformations using the  
relat ive coordinate F lead to express ions  fo r  the 
kinetic energy which a r e  not symmetr ic  in  the  
coordinates  of the  particles. F o r  the partition 
of the e x t r a  par t i c les  is N, t o  nucleus A l  and 
N, + 16 i 6 N to nucleus A, the relat ive coordinate 
is given by 

In the following we consider  two canonical t rans -  
formations of the  k i n 9 i c  energy. We t rans form 
the coordinates iiCl, Rcz, and T, t o  the center-of- 
m a s s  coordinate 

with A = A l  +Az,  t o  the relat ive coordinate F and 
N independent part ic le  coordinates. Depending 
whether we use atomic o r  molecular  coordinates  
fo r  the ex t ra  par t i c les  we distinguish the  following 
two cases.  

(a )  In t h e  f i r s t  case ,  the coordinates  of the ex- 
t r a  par t i c les  a r e  measured f r o m  the c e n t e r s  of -. 
the individual nuclei a t  dA1 and RAZ (See Fig. 2): 

* 1 
r - ( + C c  f o r  i s N l ,  

N - 1 
= r t  - -  , + c ~ ~ )  f o r  i > N l .  

A 2  I = N l + l  

The atomic coordinates (A4) a r e  useful if one de- 
s c r i b e s  the motion of the e x t r a  par t i c les  by one- 
cen te r  shell model s t a t e s  concentrated around 
e a c h  center  a t  gA and dA Introducing the mo- -. * i '- 
menta P,.,. , p„ P,„, and p„, canonically con- 
jugate to  the coordinates ,.,., F, F,Al, and F„2, 
respect ively,  the  kinetic energy (Al )  becomes 
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where p. is the reduced m a s s  of the relat ive motion. 
(b) In the  second case ,  the  coordinates of the ex- 

t r a  p a r t i d e s  a r e  measured froin the center  of 
m a s s  at  R,.,, ( see  Fig. 2): 

The molecular coordinates (A6) a r e  applicable if 
the  motion of the ex t ra  par t i c les  i s  descr ibed by 
two-center wave functions. a s  we have done in our  
calculations. If the  moinenta canonically conjugate 
t o  a r e  denoted by Ci,.,., the kinetic energy 
i s  given by8: 

In Fq. (A7) the  las t  t e r m  can b e  neglected when 
the  number of the ex t ra  par t i c les  i s  smal l  com- 
pared  t o  the number of nucleons in the cores ,  i.e., 

The fourth t e r m  in (A7) contains the coupling be-  
tween the ex t ra  par t i c les  and the relat ive motion 
and has to  be  taken into account fo r  l a rge  relat ive 
velocities. Although the  m a s s e s  of nuclei AIM 
and A,M stand in the denominators  of thic  expres-  
sion, the t e r m  i s  not nrgligible fo r  snial l  r a t ios  
Ni/.4, « 1 a s  can be  seeii by the following argu-  
inent: Replacing 6, = one recognizes that the 
fourth t e r m  in E ~ .  (A7) i s  proportional to the  re la -  
t ive velocity and the differente of the moinenta of 
the  e x t r a  part ic les .  

As discussed in Sec. I IC,  it  i s  convenient t o  in- 
t roduce a rotating coordinate sys tem with the z1  
ax is  coii~ciding with t h e  direct ion of F. The p a r -  
t ic le  coordinates in the  rotating f r a m e  a r e  denoted 

* * 
by %Al, r iA2,  and r: Here the coordinates 
i-'fAl and qA,, a r e  measured froni the  nuclear  cen- 

* - 
t e r s  and ri,.,, f rom the center  of the total inass. 
The t ransfornlat ion f rom the space-fixed sys tem 
to the rotating sys tem can b e  c a r r i e d  out by r e -  
placing the  rnomenta and pic.rn. by the 
corresponding momerita pfAl, piAZ, and of 

the rotating f rame.  The  momentum of the relat ive 
motion t rans forms  a s  follows: 

.. 
with e, = zg,, the total angular momentum? and the  
angular niomentum 5' of the e x t r a  n u c l y n s .  When 
the  coordinates and G2 a r e  used, J' is the 
s u m  of the angular momenta of the ex t ra  part ic les  
including their  spin with respect  t o  the two nu- 
c l e a r  Centers: 

In moleciilar coordinates  the  angular momentum -. 
J' of the  ex t ra  par t i c les  i s  measured f r o m  the 
center  of niass  in the  rotating f rame,  

With the angular m o n ~ e n t u m ? ~  of the e x t r a  par -  
t ic les  measured  f r o m  the center  of m a s s  of the in- 
dividual nuclei, the angular momentum 5' given in 
Eq. ( A l l )  can be  written in the fo rm - -. -. 

J' =J, t J. (A12) 

with 

Here  we have used the  relat ions 

A 
Ffc.m.=F;Al+ A for  is Ni 

and (A14) 

3,.,,. = ? f A 2  -&F fo r  i > N l .  
A 

Inserting (A12) into (A7) and using the relat ion 
(Ag) we finally obtain the following expression for  
the  kinetic energy (A7): 

(Al51 
with 
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If we replace 2.,. by $„ and PIAz and 
(A/i)(a/av + D) by (A/i)(8/8r) in (A15) we obtain the  
analogous expression of the kinetic energy T writ- 
t en  in atomic coordinates. The  kinetic energ ies  
in  the atomic and molecular  coordinates  differ 
in  the radial  Part of the operator  F:, since the 
molecular  s ingle-part ic le  wave functions depend 
on the relat ive dis tance Y in contrary to  the one- 
cen te r  single-particle wave functions. 

APPENDIX B: THE TWO-CENTER SHELL MODEL 

The wave functions of the symmetr ic  two-center 
shel l  model solve t h e  Schrödinger equation: 

According t o  Maruhn et aLZ3  the potential V(p, 2; 2,) 

in  ( B I )  i s  given for  identical and spherical  nuclei 
by 

where M i s  the nucleon mass .  T h e  potential and 
the corresponding nuclear  sur face  a r e  depicted 
in  Fig. 4. The constants  C and d a r e  fixed by the 
condition that the  potential and i t s  der ivat ive a r e  
continuous at  z = 0. The parameter  f, may be  ob- 
tained by minimizing the liquid drop energy of the  
nuclear  ~ y s t e m . ~  F o r  simplicity we have calculated 
tiie wave functions of the e x t r a  part ic les  with the 
two-center osci l la tor  potential, i.e., c = d  = 0 and 
f, = 1. 

In the  adiabatic approximation the osci l la tor  f re -  
quency w(z,) i s  determined with the condition of 
volume conservation. In that c a s e  the  equipotential 
sur face  describing the  nuclear  sur face  h a s  the  
value 

H e r e  R, denotes  the  radius:  R, =rO(A/2) ' l3  of the  
separated nuclei and W, the asymptotic frequency: 
w, = w(z, -m). In the sudden approximation the  f re -  
quency w i s  independent of Y = 22, and i s  s e t  equal 
t o  i t s  asymptotic value w, a l s o  in the interaction 
region. 

In addition the rea l i s t i c  two-center shel l  poten- 
t i a l  in ( B I )  includes the spin-orbit potential V „  
of Thomas-type 

and a 1' type t e r m  

T h e  second t e r m  of (B6) is diagonal in the  b a s i s  
s t a t e s  of the two-center osci l la tor  defined in (B7) 
because of the Kronecker symbol ijif. N = N p  +n, 
denotes  the principal quantum numbers  of the two- 
center  oscillator.  The P a r a m e t e r s  w„ K ,  and p 
a r e  interpolated between the  values of the united 
and separated s y s t e m s  a s  proposed in Ref. 23. 

The eigenfunctions and eigenvalues of the  two- 
cen te r  shel l  model a r e  obtained by diagonalizing 
the  Schrödinger equation (BI )  with the eigenfunc- 
t ions  of the  symmetr ic  two-center osci l la tor  given 
by 

The functions $ factor ize in the  coordinates  p, p ,  
and z and the spin part .  They can be  written in 
t e r m s  of Laguer re  polynomials and confluent hy- 
pergeomet r ic  functions as shown in Ref. 5. 

Asymptotically the wave functions &(Y„ approach 
a superposition of solutions q„,, of the one-center 
osci l la tor  shel l  model: 

The  phase fac tor  (-1)' i s  the pari ty  of the functions 
pxijn(?) with respect  t o  the  cen te r  of the  osci l la tor .  

APPENDIX C: THE S MATRIX AND THE CROSS SECTION 

The  total wave function (8) can  b e  wri t ten asymp- 
totically in  t h e  form1' 

The  abbreviations a r e  k = { a „  a„ 1 ,  J} and J, and 
0, for  the ingoing and outgoing Coulomb functions. 
s;, is the S matr ix ,  Y „  the orbi tal  wave functions, 
and the intr insic  wave functions a r e  taken a s  
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In the one-center wave function Y ,  we denote the 
positionof the cores by *F/2 to which the extra par-  
ticles 1 and 2 belong. The coefficients AiM a r e  de- 
termined by the asymptotic form of the wave func- 
tion iE. The wave function (C 1) has incoming and 
outgoing waves in the channels k, whereas in al l  
otlier channels only outgoing waves a re  present. 
To specify the initial conditions we assume that 
the nuclei a re  in the initial s tates,  defined by the 
quantum numbers p, ={x,,I, = J , ,  M,) and p, 
= {x„I, = j„lVI,). These conditions a r e  fulfilled by 

the coefficients 

Inserting (C3) into (C l )  and using the definitions of 
the Coulomb functions J k , O ,  and the wave function 
U,($) for the Coulomb scattering of two point 
charges we get the following expression for the 
asymptotic wave function (Cl):  

The Coulomb phase is denoted by 0,. The sum represents the waves scattered by the nuclear interaction. 
The nuclear par t  of the scattering amplitude for the scattering from the initial s tates p„ p2 into the final 
states F : ,  i s  derived from wave function (C4) according to the method given in Refs. 1 2  and 16: 

With the Coulomb scattering amplitude f,(8) we Since usually the magnetic quantum numbers a r e  
finally obtain for the differential c ross  section for not measured, we have to average over the initial 
the scattering from the initial s tates p, and p,  in- states and to sum over the final states: 
to the final states p; and 1; observed in the direc- 
tion 8 ,  cp and 7: - 8, p + n , respectively: 

1 

(U,+ l)(U,+ 1) 
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