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Dirac particles in Rindler space 
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We show that a uniformly accelerated observer experiences a "thermal" flux of Dirac particles in the 
ordinary Minkowski vacuum. 

It  has  been known for  s e v e r a l  years l "  that the 
part ic le  interpretat ion of quantum field theory in 
a genera l  Riemannian manifold is not unique, but 
depends on the observer ' s  coordinate f rame.  The 
part ic le  concept,  endowed with a nonlocal nature 
by the uncertainty relation, depends on the global 
topological s t ruc ture  of that submanifold which is 
naturally connected with the observer ' s  s ta te  of 
motion. 

In th i s  a r t i c le  we  show that a uniformly acce le r -  
a ted o b s e r v e r  in Minkowski space  31i experiences 
a flux of Di rac  part ic les  in  the ordinary Minkowski 
vacuum. T o  do this  we  utilize a method of ~ u m ~ f  ,4-7 

allowing one to define part ic le  and ant ipart ic le  
s t a t e s  in  quite genera l  c ircumstances.  

Owing t o  the  dynamics of the uniformly a c c e l e r -  
a ted o b s e r v e r ,  two-dimensional Minkowski space  
is divided into four  s e c t o r s ,  as can  be Seen f rom 
Fig. 1: right (I), left (D), future (F), and past ( P )  
with respec t  to  the or igin x =t  = 0. Minkowski co-  
ordinates  ( t ,x )  may be  t ransformed into Rindler 
coordinates (v,u) according t o  [the following con- 
ventions a r e  used: E = c  = 1, ( x 0 = t , x 3  =X) in 312, 
( ~ O = V , X ~ = U )  in I U 11, and ( x 0 = u , x 3 = v )  i n  FUP] 

t = U  sinhv , x=zc coshv , 
in 1,II ( l a )  

v = arctanh(t/x) , u =sgnx(x2 - t2)i12 , 
t = u c o s h u ,  x = u s i n h v ,  

in  F,P ( l b )  
V = arctanhjx/t) , u = sgnt(t2 - x ~ ) " ~  . 
This  l eads  to  the line element 

It is well  known that a world line u = const in  I 
corresponds to  the t ra jec tory  of a uniformly a c -  
celerated observer .  In I the t imelike coordinate V 

is connected with the observer ' s  proper  t ime  via  
V =gr where  g is the observer ' s  accelerat ion.  We 
s t a r t  calculating Di rac  wave functions in  the four 
s e c t o r s  of Minkowski space.  The covariant Di rac  
equation readss  

L e t  us  f i r s t  concentrate on s e c t o r  I. av being a 

(timelike) Killing vec tor ,  we  may solve f o r  s t a -  
tionary s t a t e s  d ) ( ~  , U )  =d(u)  exp(- i w u ) :  

F o r  spin-up s ta tes  the only normalizable solution 
r e  ad sg 

with $bi obeying the differential equation 

It i s  interest ing to note that the difference in  the 
boson c a s e  is the t e r m  Si in  Eq. (6) which does not 

FIG. 1. Owing to the dynamics of the uniformly ac-  
ce le ra ted  observer ,  two-dimensional Minkowski space  
i s  divided into four par t s :  r ight  (I), lef t  (11), future 
(F), and past  (P). 
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appear in the Klein-Gordon Equation. This  te rm 
a r i s e s  due to  the nonvanishing derivative of H, 
[Eq. (411. Let  us denote the solution of the Dirac 
equation in sec tor  I a s  

indicating that IC3n i s  the support of I&,. The 
norm of I&, i s  given by 

where the Dirac s ca l a r  product ( , ) i s  defined as 

on some spacelike hypersurface C.  In the future 
sec tor  (F), u and V interchange their  meaning a s  
spacelike o r  timelike Coordinates. Equation (3) 
therefore takes the form 

where is the Dirac matr ix in Minkowski space. 
We obtain the following two independent solutions 
for  Eq. (10): 

with 

We obtain analogous wave functions in I1 and P 
through 

I1 &,( t ,~)='&,(- t ,  -4, 
P d!, t a )  ( t , ~ )  =Fdi;'(-t, - X )  . 

We may now obtain the usual quantum field the- 
ory in Minkowski space by constructing an ortho- 

normal basis of particle (antiparticle) wave func- 
tions &F' of the homogeneous Dirac equation in a l l  
3K by joining '"'L and TO this end we use 
Rumpf's definition of particle and antiparticle 
modes: A solution of the Dirac equation is an  out- 
going/ingoing particle (antiparticle) mode if it ad-  
mits  an analytical continuation in m such that i t  
remains regular ,  except in the past/future, i f  m 2  
acquires a negative/positive (positive/negative) 
imaginary part. 

To  apply this definition, we use the asymptotic 
representation of <p: for large t imes U (in sector  
F ) :  

From the properties of the complex exponential 
function i t  i s  obvious that F~:' must be clas  - 
sif ied a s  part of a particle (antiparticle) mode. 
The mode classification in P is obtained from Eq. 
(13). Thus,  by Rumpf's definition, d!: may be ex- 
pressed a s  

where the constants a, and bi have to  be de ter -  
mined by the requirement that d(, should obey the 
homogeneous wave equation in 371. 

Since the wave functions " "ib„ F,P&;' vanish 
outside of their  support they a r e  not solutions of 
Dirac 's  Eq. (3) in 'X but possess distributions a s  
source t e r m s  on the light cone through the origin 
of 313. By calculating the source t e rms  for the 
various wave functions the following complete, 
orthonormal Set of wave functions is obtained: 

The usual quantum field theory on 'Jn is obtained 
by means of the following spec t ra l  representation 
of the Dirac operator  3: 

(s now Sums over spin states) .  
Suppose a uniformly accelerated observer  moving 

on a U =const  trajectory in IC3n (Fig. 1). Unruh 
and ~ u m p f ~ ' *  have shown that he measures  only 
wave functions on s ec to r s  which a r e  causally con- 
nected with himself. His world is therefore de- 
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sc r ibed  by the  unique normalized wave functions 
of the homogeneous equation in B =I U F U P :  

I 1  
Note that  CL, does not contain dl, because the ob- 
s e r v e r ' s  information is decoupled f rom IIC3n. It  
is a t  th i s  point where  the global aspect  of the sub- 
manifold B plays a c ruc ia l  role  fo r  the part ic le  in-  
terpretat ion of $. 

The observer  modes a r e  related to  the Minkow- 
s k i  modes according to 

*W =aWS: +ßw$W (18) 

with 

n w / 2  - = W  / 2 

CYw =[2 cosh(nw)]l 'W = [2 cosh(nw)]ln ' 

Now unruh3 and o thers  have shown that the acce l -  
e ra ted  o b s e r v e r  experiences a spec t ra l  represen-  
tation of according to positive and negative val-  
ues of W :  

defining the B vacuum 

l o B ) = d W \ o B ) = ~ .  (1  9b) 

We may calculate the number of B part ic les  in  the 
ordinary Minkowski vacuum a s  (W, W '  > 0) 

(0. jc^W,,E,,,,, I O , ~ ) = R , ~ ~ ( ~  - ~ ' ) 6 „ ,  . (20) 

This  can be  interpreted that the o b s e r v e r  mea-  
s u r e s  a number of c rea ted  part ic les  per  unit in- 
t e rva l  of p roper  t ime : 

where  the factor  of 2 is introduced by the twospin 
projections. T h i s  means that he m e a s u r e s  a 
" thermal"  flux of Di rac  part ic les  where  the e f fec-  
tive " temperature" is the Fulling-Unruh tempera-  
t u r e  

Thus one expects that the action of the Di rac  
field onto a part ic le  detector  corresponds to  the 
action of an isotropic t empera ture  bath of t emper -  
a t u r e  T,. Note that the change f rom the boson to 
fermion s ta t i s t i cs  resul ted from the detai ls  of the 
Di rac  equation, i.e., the additional t e r m  Si in  the 
Di rac  equation changes the  behavior of the wave 
functions a t  u = 0 a s  compared to the Klein-Gordon 
equation. T h i s  leads to ß, = (e2"W + 1)-'I2 instead 
of P,=(e 'liw - 1)-'I2 a s  was  found by ~ u l l i n ~ '  and 
~ u m ~ f ~  for  s c a l a r  particles. 

We finally note that a pure quantum s t a t e  defined 
on the whole Minkowski manifold may appear  a s  a 
mixed s t a t e  when measured  on a submanifold fo r  
the following reason:  Since the o b s e r v e r  modes 
1/,, vanish on s e c t o r  I I C X ,  S B  genera tes  only a 
subalgebra of the whole Minkowski field algebra.  
L e t  P, be the  projector  onto the s e t  of a l l  s t a t e s  
generated by 10,). Then PB IO,,,) wil l  be a mixed 
s t a t e  containing particle ant ipart ic le  excitations. 
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