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A method for the description of spin-isospin phase transitions in nuclear matter is developed. It aliows a 
complete description of the pion condensation phase transition in the framework of the Landau-Migdal 
Fermi liquid theory. The equation of the order Parameter is derived and the condensation energy is 
calculated. We study the influence of pion condensation on the nuclear equation of state and the 
temperature dependence of pion condensation. 

LEAR STRUCTURE Description of pion-condensed ground state by Green's  
function technique. 1 

I. INTRODUCTION 

Recent high energy heavy ion experimentsl  point 
out the relevance of the  investigation of the  nuclear 
equation of s ta te  with respect  t o  the possible oc- 
cur rence  of Pion condensation,' density i ~ o m e r , ~  
o r  o ther  abnormal  s tates .  The theoret ical  predic- 
t ions of pion condensation (or  m o r e  precisely,  
p-h condensation) rely mainly on two different 
approaches: The  propagator f ~ r m a l i s m ~ - ~  in the 
normal  ground s ta te  was  applied t o  the  determin- 
ation of the  phase t ransi t ion point and t o  the  study 
of i t s  t empera ture  d e p e n d e n ~ e . ~ ' ~  T h i s  method i s  
not able  t o  descr ibe  the condensed phase beyond 
the  t ransi t ion point. The second approach i s  based 
on the  ch i ra l  a modelg of t h e  n-N interaction, 
which explicitly contains the  possibility of pion 
condensation. The a model is in principle a l so  
appllcable t o  the  condensed phase but it is dif- 
ficult t o  fix t h e  value of the coupling constants: 
In the  mean field approach the  n model does not 
allow f o r  a second minimum in the  equation of s ta te  
i f  i t s  p a r a m e t e r s  a r e  adjusted t o  descr ibe  normal  
nuclear  matter.1° 

In t h e  present  paper  we apply t h e  F e r m i  liquid 
theory" of nuclear  m a t t e r  t o  calculations of the 
p roper t i es  of a p-h-condensed nuclear  phase. 
The p a r a m e t e r s  of t h i s  model a r e  adjusted t o  the 
normal  nuclear  phase and can be smoothly extra-  
polated t o  t h e  condensed phase. There  i s  no need 
t o  introduce any additional assumptions. 

11. THE LANDAU-MIGDAL FERMI LIQUID THEORY 
OF PION CONDENSATION 

Up t o  now the use of Landau-Migdal F e r m i  liq- 
uid theory in t h e  contexi of pion condensation cal- 
culations w a s  res t r i c ted  t o  t ake  into account the 
short  range nucleon-nucleon correlations. '  In t h e  
p resen t  paper  we  take a different point of view: 

The Migdal12 interaction 

. . 
1 L 6 6 Ti yk-ak_ 

+ g O a ~ y a ~ 6  a y  B6 2 0  u y  86 u y  86 

(1) 
is taken a s  basic  interaction f o r  the particle-hole 
degree of freedom in nuclear  mat te r .  In Eq. (1) 
a, ß, y ,  . . . denote the isospin and Z,$, F,. . . de- 
note the  spin indices. The  coupling constants 
f„ . . . , g; contain the  usual f ac to r  C = (df/d~,)p=po-i 
and a r e  assumed t o  be  momentum independent. 
Therefore  U corresponds t o  a Zero range Skyrme 
interaction. It approximates  the  U -  and p-meson 
exchange par t  of the  nuclear-nucleon interaction 
but does not take into account the long range pion 
exchange part .  The implementation of one-pion 
exchange (OPE) wil l  be  described la te r .  In our  
approximation we have replaced the  single par-  
t i c le  exchange by an effective interaction 

It must  be  s t r e s s e d  that  t h e  effective interaction 
(1) can be  calculated f r o m  part ic le  exchange.13 
Therefore  a l so  multiparticle exchange can be in- 
cluded in the effective coupling constantsf„  . . . ,g&; 
i.e., by changing the coupling constants we  may 
simulate  a l l  the essent ial  f e a t u r e s  of the  part ic le-  
hole degree of f reedom which a r e  otherwise incor- 
porated in  pion condensation es t imates  only v i a  
lengthy calculations, e.g., A- resonance formation,  
w-p exchange, etc. 

It  is a common feature that a sys tem of interac- 
ting par t i c les  in its "normal" ground s ta te ,  sud- 
denly becomes unstable and undergoes a phase 
t ransi t ion t o  a new condensed s ta te  having com- 
pletely different propert ies .  It  is well known that  
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the  new ground s ta te  cannot be  described by per-  
turbation theory based on t h e  old noncondensed 
ground state.14 The  actual  reason f o r  t h i s  fai lure  
i s  the occurrence of anomalous propagation pro- 
c e s s e s  in the  condensed s ta te  which descr ibe  spin 
o r  isospin flip. We there fore  have t o  replace the  
usual Green's function G i s  where i denotes the  iso- 
Spin and s the  spin, by a 4 X 4 mat r ix  of the follow- 
irig type: 

where,  e.g., G,+.t= (9, / ~ { c , + c l , t ) ]  9,) propagates 
a neutron with spin up into a proton with Spin down. 
It is obvious that  in the  normal  noncondensed 
ground s ta te  only the diagonal mat r ix  elements  of 
(3) a r e  nonzero. A s  soon a s  condensation occurs ,  
anomalous propagation processes  yield nonzero 
off-diagonal mat r ix  e lements  f o r  (3). 

F o r  the  mat r ix  propagator (3)  we use the  follow- 
ing ansatz:  

* * * - -  
Gaß,aiß(k, W )  =+ ig(k, W) Öaß6zB + 6(Yß501ß. S(k, W )  

+ ?aß6,0T(k, W )  

+ [Fo,. T(k,  d ) ] [ Ü Z ß  S(k, W)] ) .  

(4) 

The unknown functions g (k ,  U) ,  $(G, W),  T(;, U)  a r e  
determined-from the  solution of the  Dyson equation 
f o r  G„,,$(k, W). The various components of the 
Green 's  function a r e  related t o  physical observ- 
ables  in the follo~ving way16: 

where p(k) i s  the nucleon density in momentum 
space and C i ,  t i ,  and p„ a r e  the components of the 
spin-, isospin-, and spin-isospin densi t ies ,  r e -  
spectively. To  obtain t h e  Dyson equation, we cal- 
culate the  Hartree-Fock seif-energy with the  in- 
teract ion (1) and t h e  Green's function (4). It is 
given by 

where the direct  par t  C, is 

+ 

X G6ß,bß(k, w)e-""- 

(7) 

and the exchange par t  

A straightforward calculation yields 

c ~ ~ , , ~  =Plp6ar6,r + F z 6 ( Y y u % Y ~ Z  

+ ~ , ~ , ~ t ~ 6 ~ ~  + F 4 ~ ~ y u ~ y p i k ,  (9) 

where p, C i ,  t „ and p ik  a r e  the  quantities (5) in- 
tegrated with respect  t o  k and 

The Dyson equation is 

C : „ , , ~ = ( ~ ~ , ~ ~ ~ ~ - ~ - C ~ ~ - ) - ~ = A I  ~ Y ( Y Y  7 ---I 9 (11) 

where 

M„,? = F 6  6-- - E' 6 ~ L - C .  ur e r  2 (YY u r  I 

-F3rLrt i  ÖIYy - F 4 ~ ~ y ~ ~ Y p i k  (1 2) 

with F =  W - ( E , -  ,U) - F,p+i6. The f r e e  propagator 
is diagonal, i.e., 

GotayzY = 0 6 (YY 6-- (YY ) 

where 

As we a r e  mainly interested in the pion related 
spin-isospin degree of f reedom, we neglect the 
pure  spin and isospin part  in (12), i.e., we put 
F, = F , = O .  Now (12) can be inverted and we obtain 

and 
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with 

ß = f o  -fo - gti - 3go 

and 

We have assumed that only p =P,, is different f r o m  
Zero which corresponds t o  the  usual assumption 
that  the pion condensate i s  descr ibed by a plane 
wave in z direct ion in the  infinite system. 

Introducing the  quasipart ic le  energ ies  

we may define quasipart ic le  propagators  

allowing u s  t o  rewr i te  (1 5) and (16) a s  

g ( k , w ) = 2 [ g + ( k , w ) + g -  ( k , ~ ) ] ,  
(20) 

P ( k ,  w)=2[g*(k ,  (L. . )-g- (k, W ) ] .  

Inser t ing t h i s  into Eq. (5) we obtain a f te r  integra- 
tion with respec t  t o  W 

where 

and the  quasipart ic le  F e r m i  momentum is 

k; = [2nz ( p  - $ olp i $ ßp)]1i2 . (23) 

We now may per form the k integration t o  obtain 

P [ ( p  - a p +  $ ß p ~ , ) ~ "  P=- 

+ ( P  - $ a p  - $ ~ P M , ) ~ ' " ,  (24) 

1 ,v2 = - [((y - wp + a ß p ~ , , ) ~ ' ~  
2 € y 2  

- ( P  - % a p -  $ ß p ~ , ) ~ ' ~ ] .  (25) 

Here is the  F e r m i  energy 

and we have defined the spin-isospin polarization 
a s  

M, = p / p  . (27) 

By eliminating y f r o m  (25) and (24) we obtain the  
self-consistent equation for  M,: 

The actual value of M, depends only on the effec- 
tive coupling constant 

where B =f, -1; -go - 3gh i s  now dimensionless; p 
i s  the actual nuclear density and p, the nuclear  
equilibrium density. It i s  obvious f rom (28) that 
M ,  = 0 a s  long a s  ~ ~ / 2 < , < $ .  Equation (29) allows 
a solution with M, f 0 only if pp/2<, 3 $. Neverthe- 
l e s s  ?,In = 0 i s  a possible solution a l so  beyond this 
cr i t ical  point. T o  check whether :\.I, # 0 i s  indeed 
the solution beyond B ~ / ~ E ,  = 3 we have to calculate 
the total energy15 

As TrG(k, w)=g(k,  w ) = 2 k ( k ,  w)+g-(k,  U)]  we ob- 
tain with (18) 

where we have used p = J  d 3 ~ / ( 2 n ) 3 [ p + ( ~ )  + p-(P)] ,  
etc. Expressing h$ = ( 2 m ~ , ) " ~ ( 1  we obtain 
af ter  integration 

where we have introduced 

E = E / E , N .  

F o r  smal l  polarization M,« 1 the Taylor  s e r i e s  up 
to second Order reads:  

< +4(ffp/2<j?) L$(% - ßP/2<F)*Jff i (34) 

It i s  obvious, that f o r  ßp/2<, >4 the s tate  with 
M,# 0 h a s  lower energy, i.e., condensation real iy  
occurs  if ß>O, i.e., 8 > 0 .  

I fuiedisregard the spin-spin and isospin-isospin 
interact ionpart ,  we obtainp = f,- 3gh. F o r  the ein- 
p i r i c a l ~ a l u e s ~ ~ f , =  1 1  0.2 a n d g i ~ 0 . 7  + 0.2 we find 

<O. Therefore no condensation canoccur  with nor-  
m a l  Landau-Migdal parameters .  Since we have taken 
into account only the Zero range par t  of the inter- 
action, which 1s repulsive, this resu l t  is easi ly  
understood. As the finite momentum pion-nucleon 
interaction is the relevant degree  of f reedom which 
influences the spin-isospin interaction constant 
go, we have to use a "renorinalized" q, taking into 
account one-pion exchange. T h i s  has  been investi- 
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FIG. 1. The spin-isospin polarization M, a s  function 
of F e  nuclear density p i s  shown for  the different values 
of p. 

gated on the b a s i s  of a Reid soft core  model.17 
There  gh at tains  a minimal value of gh - -0.6 a t  
pion momenta of k ,  - (2 - 3)rn,. Hence 13 = 3  + 0.5 
is the range of relevant physical parameters .  The  
c r i t i ca l  densi t ies  can now be  obtained f rom (30) a s  

Pcr/P, = ( 4 m 3  , (35) 

i.e., pC./p,- 3 1 1.5 f o r  the actual values of B. The 
spin-isospin polarization M,(p) i s  shown in Fig. 1 
for  different values of 6. The width of the phase 
transition i s  easi ly  calculated to b e  

The s t rong  dependence of Ap and on B i s  
shown in Fig. 2. F o r  P =  3 the width of the phase 
transition hp-p, whereas  f o r  B = 1 Ap-44po, i.e., 
an extremely broad phase transition occurs  a t  a 
very  high density. Beyond the cr i t ical  density we 
a r e  interested in the condensation energy per  
part ic le ,  a s  a fraction of the F e r m i  energy: 

FIG. 2. The cri t ical  density p, and the density spread- 
ing Ap of the phase transition strongly depend on ß. 

FIG. 3. The condensation energy in uiiits of the (deii- 
si ty dependent) Fermi  energy is  a unique function of M, 
independent of F. 

By means  of Eq. (28) we reexpress  E„„ a s  a func- 
tion of M, alone: 

- &[(l +Mr)5 /3  + (1 

+ $ ~ , [ ( 1  +M,)'I3 - (1 (39) 

The maximal energy gain is obtained f o r  M ,  = 1, 
i.e., 

Th is  means  that the maximum energy gain i s  l e s s  
than 5% of the density dependent F e r m i  energy. 

The dependence of E„„ on M, is shown in Fig. 3, 
whereas Fig. 4 shows the actual condensation 
energy f o r  different values of B. It shows that in  

FIG. 4. The condensation energy per particle a s  func- 
tion of the density i s  shown for different F. 
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FIG. 5 .  Shows the nuclear equation of state for K-= 100 

MeVunder the influence of pion condensation with P =  3 
and ß= 3.5. 

the relevant density region the condensation energy 
per particle i s  of the order of 10 MeV for B =  3. To 
investigate the relevance of spin-isospin conden- 
sation for the nuclear equation of state, we add 
the condensation energy onto a normal nuclear 
equation of state,18 e.g., 

where K i s  the compression constant and B, - -16 
MeV the binding energy of normal nuclear matter. 
This method i s  certainly not self-consistent in the 
sense that we do not describe the normal state anci 
the condensed state on an equal level. Neverthe- 
l e s s  it may give an idea of the possible influence 
of pion condensation on the equation of state. The 
energy per particle i s  given a s  

FIG. 6. An effective mass  of m * = 0 . 5  m-causes a sec- 
ond minimum in the equation of state foc ß= 3. 

FIG. 7. For a compression constant K=200 MeV even 
no van de r  Waals behavior shours up in the equation of 
state.  

The actual nuclear equation of state with Pion con- 
densation i s  shown in Figs. 5-7 for different 
values of K and 6. F o r  small  K (K - 100 MeV) and 
large 6 (i > 3 )  the normal equation of state i s  
strongly modified. At least an inflection point oc- 
curs which yields a noticeable modification in the 
behavior of nuclear matter in shock wave dynam- 
ics.' If we introduce an effective nucleon mass  
m*, the condensation energy increases. We there- 
fore obtain a reasonable second minimum in 
E / A  (Fig. 6). The amount of influence the pion- 
condensed mode exerts  on the equation of state 
strongly depends on the compression constant K of 
normal nuclear matter. Figure 7 shows that for  
K = 200 MeV the compression energy r i ses  much 
faster  than The influence of pion condensa- 
tion therefore shows up only a s  a slight modifica- 
tion in the sense of an effective compression con- 
stant K < 200 MeV. 

111. THE TEMPERATURE DEPENDENCE 

Another interesting question in this context i s  the 
stability of a pion condensate a t  high temperatures 
occurring in heavy ion collisions' a t  relativistic 
energies. Previous calculations7 utilizing the 
pion propagator formalism show that a Pion con- 
densate may be stable up to very high temperature 
and i s  not destroyed by the thermal fluctuations. 
The method put forward in the present paper can 
easily be extended to temperature dependent 
matrix propagators.16 Instead of (13) the free pro- 
pagator i s  
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where the d i sc re te  frequencies  

and the ansatz ( 4 )  is modified to 

g ( k , w , ) = $ k ( k ,  ~ , ) + b . S ( k ,  w,)+?.?(k ,  W, )  

+ [ i a ? ( h ,  w,)][Ü. @I;., W , ) ] ) .  ( 4 5 )  

The integrals  over  frequency in Eqs. (5) a r e  re -  
placed by Sums: 

1  
P =  -- 2 g ( k ,  ii,,)ridno+, etc  . 

ß n=-m 
( 4 6 )  

The essent ial  modification connected with the tem- 
perature dependence i s  the replacement  of 

where ß = l / k T .  Therefore ( 2 1 )  and ( 2 2 )  a r e  re-  
placed by 

where W ,  = E ,  +$ crpr$@p. The Equations ( 4 9 )  and 
( 5 0 )  may be  rewri t ten a s  

p = 2 ( 3 + + 3 - ) ;  p = 2 ( U + - 5 - ) ,  ( 5 1 )  

where 

and 

The integration over  E can be  performed by s e r i e s  
e x p a n ~ i o n ' ~  

Introducing iMn = p / p  a s  previously, we obtain f rom 
( 5 1 )  f o r  T E ,  

where = / J + / E ~  and f = T / E ~ .  Ci can be  el imi-  

FIG. 8. The ratio of critical densities p„ at T = 0 and 
T t 0 as function of the temperature in units of the Fermi 
energy at p, ( T  = 0) is shown. 

nated f r o m  (55 )  yielding again the spin-isospin 
polarization iZI, f o r  T # 0. 

The cr i t ical  density p„(T) can be  calculated ex- 
actly by defining /J' = p - i a p .  The condensation 
point i s  marked by the condition that ( 5 0 )  allows 
a solution with p i 0  f o r  the f i r s t  t ime.  With 
;(X) = (eß("-'" + I)-' we get f rom (49 )  and (50 )  by 
differentiating with respec t  t o  P: 

After  some formal  manipulations one obtains the 
boundary between the normal  and condensed phase 
in parametr ic  representation: 

and 

FIG. 9. The connection between the critical density 
p, and the temperature is shownf, 8 = 3 .  The dashed 
area denotes the temperature and density region obtained 
from shoclc wave calculations (Ref. 1). 
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V Ruck 

/ 8 : ~ s  

FIG. 10 .  Same as Fig. 9 for 8 = 3 . 5 .  1 denotes a pre- 
vious calculation by Ruck et al.  (Ref. 7). 

where 

and a =  p ' / ~ .  €C,' i s  the F e r m i  energy a t  the c r i t -  
ical  density P:,' and p„(O) is the c r i t i ca l  density at  
T = 0. 

The  resulting curve is shown in Fig. 8. F igures  
9 and 10 show the actual c r i t i ca l  density p„ and 
the corresponding tempera ture  f o r  ,3 = 3 and P = 3.5. 
The shock wave temperatures '  a r e  indicated by a 
dashed region. It is obvious that the pion conden- 
sation stability curves  a r e  c ross ing  the shock wave 
region o r  even l ie  below. In view of the r a t h e r  
schematic  nature of our  model there is certain 
chance f o r  a pion condensate to survive the tem- 
pera tures  occurr ing in relat ivis t ic  heavy ion colli- 
s ions.  This  is in qualitative, although not inquanti- 
tative, agreement  with previous c a l c u l a t i o n ~ . ~  

IV. CONCLUSIONS 

In th i s  paper we have presented a model of pion 
condensation allowing f o r  a descript ion beyond the 
phase t ransi t ion point without giving up analytical 
tractability. It a l so  allows to investiage the tem- 

perature dependence of the phase transition. The 
momentum dependence of the pion-nucleon inter-  
action was  taken into account phenomenologically 
by a suitable adjustment of the spin-isospin para -  
m e t e r  go. In principle, the k dependence of the 
interaction could b e  incorporated f rom the beginn- 
ing but  a t  the cost  of losing the analytical solu- 
bility of the model. It will be  subject  oi a future 
numerical  investigation. The adjustment of g-o 
leads to a prediction of the cr i t ical  density 
p„(T = 0 ) -  3 p ,  which a g r e e s  with previous calcu- 
1at ions.Q~ the condensation energy i s  of the 
o rder  of 10 MeV, the influence of pion condensa- 
tion on the nuclear  equation of s ta te  strongly de- 
pends on the normal  equation of state. If the ener -  
gy per  part ic le  r i s e s  too fast ,  i.e., if the ground 
s ta te  compression constant i s  l a r g e r  than 100-150 
MeV, no secondary minimum occurs .  Even a van 
d e r  Waals type behavior may be  suppressed. 
Moreover, we have disregarded in the p resen t  
consideration the destruct ive influence of the spin- 
spin and isospin-isospin interactions fh and go 
which will inhibit condensation appreciably. The 
cr i t ical  density may b e  shifted to p„-8po. At 
these high densi t ies  the influence of pion conden- 
sation on the nuclear  equation of s ta te  may b e  
completely negligible. We therefore conclude that 
the nuclear  equation of s tate  aloize may not give 
conclusive evidence of the condensation. Beyond 
that one mus t  look f o r  other  anomalies connected 
with the second o r d e r  phase transition, e.g., in 
the specific heat. 

We have a l so  investigated the temperature de- 
pendence of the cr i t ical  density. We find f o r  rea -  
sonable values of 3 that the phase t ransi t ion curve 
l i es  most ly within o r  even below the shock wave 
region, i.e., the stability of the pion condensate 
cannot be  definitely claimed. 

Nevertheless  precri t ical  phenomena,* which do 
not need a fully established condensation, may 
occur. These  phenomena a r e  a keystone in the 
justification of macroscopic concepts, e.g., hydro- 
dynamics in the description of high energy heavy 
ion collisions. It may be  possible to study the rele-  
vance of a phase transition even if i t  does not show 
up the equation of state. The investigation of these 
secondary effects is therefore of g r e a t  importance. 
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