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Different deformations of proton and neutron distributions in nuclei 
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Different collective deformation coordinates for neutrons and protons are introduced to allow for both stretching 
and y transitions consistent with expenments. The rotational actinide nuclei 234~23aU and 232Th are successfully 
analyzed in this model. 

STRUCTURE 2 3 2 ~ h ,  2 3 4 - 2 3 8 ~  calculated B ( E 2 )  values,  collective 
model. 1 

In constructing the quadrupole operator of col- 
lective models, one of the basic a s s u m p t i o n ~ ~ * ~  is  
the homogeneous charge distribution (HCD) with a 
uniform rat io of the neutron and proton densities. 
The qualitative systematic agreement but quanti- 
tative disagreement of calculated B(E2) values 
with experimental data in the r a r e  earth and acti- 
nide nuclei contradicts this assumption. Further - 
more,  it i s  a well-known fact that the collective 
model in the standard formulation yields vanishing 
probabilities for M1 transitions among any col- 
lective nuclear ~ t a t e s . ~ ' ~  This,  as well as the 
lowering of the g,  factor from Z / A ,  has been r e -  
medied in ear l ie r  investigations .3'4 Therefore 
several  attempts have been made to generalize 
collective models in order to describe magnetic 
nuclear properties c ~ n s i s t e n t l y . ~ ' ~  In these works 
different shapes for the neutron and proton distr i-  
bution a r e  introduced to allow for an individual be- 
havior of neutron and proton liquid: 

&P, and a; a re  independent degrees of freedom but 
they a re  coupled strongly via the symmetry energy 
which prevents very large differences in the spa- 
t ial  distributions of protons and neutrons. This 
suggests the introduction of the center of gravity 
coordinate ff ,  and the difference coordinate 4,: 

t,=a!; -.P,, (2) 

where B, and B,, a r e  the proton and neutron mass 
pararneters. 

The Hamiltonian i s  now decomposed as 

H=H„,(ff)+H„(S)+H,(ff, 51, (3)  

where H„„ describes the common collective mo- 
tion, 

where both the kinetic a s  well as the potential 
term a re  rotational invariants, which may also be 
expressed in te rms of the Euler angles B ,  and in- 
trinsic variables U „  U,. The principal axes a re  
determined by requiring that the products of in- 
e r t ia  of the kinetic energy contained in Eq. (4) 
vanish. H„(f,) describes the surface oscillations 
of protons against neutrons. Its typical energy is 
of the order of giant resonance energy, i .e . ,  
1 5  MeV (see also estimates by Faessler5). Because 
of the small  amplitudes involved, a harmonic ap- 
proximation seems to be appropriate for this pro- 
ton-neutron-asymmetry degree of freedom. 

The coupling Hamiltonian HI (ff , t ; )  in lowest order , 
being also rotationally invariant, must be of the 
form 

This Hamiltonian has ten degrees of freedom, 
five for each kind of nucleori. With the assumption 
of a homogeneous charge distribution ap= a n =  ff 

o r  t = 0, the number of coordinates i s  reduced to 
fjve and the Hamiltonian becomes the well-known 
H„, of Eq. (4). It is  our goal now to find a more 
realistic condition to reduce the number of degrees 
of freedom. We consider the potential energy 

Determining the t; value of the potential minimum 
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for  fixed a!, we obtain 

which leads to 

Considering only excitations near the ground state,  
the core  i s  forced to oscillate along the direction 
of the vibration with a constant rat io (/a. The 
rat io (8) i s  constant for the potential of the form 
(7) because the potential parameters  C,! and C, 
a r e  constants. For more  involved interactions be- 
tween the 5 and a! degrees of freedom this i s  no 
longer so. This constancy implies the introduction 
of new coordinates 

(Y, =U,  C O S ~ ,  5 ,  =U, s in6 .  (9) 

The Hamiltonian i s  then reduced to five dimen- 
sions,  

H(u)= (SB, cos26+ SB, sin26+ B„ cos6 sind) 

X [EI X + ($C, sin26 + C,, cos6 sind) 

X [U xxu]C+ v'(u) 

=SB,[; X ;]Co1+ f ( u ) ,  (10) 

where we included all the rotationally invariant 
t e rms  constructed out of uCZ1 in the potential ?(U).  

The mathematical form of the Hamiltonian cor-  
responds to the usual formulation of collective 
modes in the coordinates uCZ1; the energy levels 
and eigenfunctions will not be modified compared 
to ear l ie r  calculations by this procedure. The 
quadrupole operator , defined as2 

depends only on the proton deformation a!; which 
can be written, a s  follows, in t e rms  of the co- 
ordinates uC2' using Eqs. (2) and (9): 

---- neutron surface 
- proton surtace 

FIG. 1. Proton and neutron distribution for ß =0.26. 

FIG. 2. M(E2) values plotted a s  a function of spin I 
for 2 3 2 ~ h ,  2 3 4 7  2 3 6 ~ .  The experimental data a re  taken 
from Ref. 6 .  The predictions of the present work (solid 
line) are  compared to the rotation-vibration model with 
homogeneous charge distribution (dashed-dotted lines) 
and the interacting boson approximation in the SU(3) 
limit (dashed lines). 

Hence, the quadrupole operator depends on the 
proton-neutron deformation difference 6: 

6 = 0 corresponds to the old assumption of equal 
proton and neutron deformation. As an illustra- 
tion, the proton and neutron distributions for 
6 =  30' a r e  shown in Fig. 1. Obviously the neutrons 
oscillate with a la rger  amplitude than the protons . 
Considering rotational excitations the centrifugal 
stretching i s  mainly done by the neutrons whereas 
the proton distribution i s  more or  l e s s  constant. 
This effect i s  clearly Seen in Fig. 2. There ,  for 

FIG. 3. Different branching ratios for different iso- 
topes. The calculation of the homogeneous charge dis- 
tribution (HCD) and the present work a re  compared to 
experiment (Ftef. 9).  
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the nucleus 232Th and some U isotopes, the M ( E 2 )  
values a r e  plotted a s  a function of the spin I. The 
experimental values6*' follow the rigid rotor as 
if the proton distribution remains constant. In 
our calculations we use the rotation-vibration 
modelL2 and the reduction of the proton stretching 
according to the quadrupole operator of Eq. ( 1 3 )  
and compare the old and new model predictions 
with various experiments (Figs.  2  and 3). 

The predictions6 of the interacting boson ap- 
proximationS seems to be unrealistic for higher 
spins. The proton-neutron deformation difference 
6 in these calculations i s  fitted to the transition 

proves considerably the agreement of the theory 
with the B ( E 2 )  transitions within the ground-state 
band a t  high spins and also with various intraband- 
interband branching ratios. In addition, there is 
the well-known lowering of the collective g, fac- 
tors  from Z /A and also the collective M 1  transi- 
tions explained by the Same idea (mechanism). 
We may thus conclude that there is considerable 
evidence for different proton and neutron deforma- 
tions in nuclei, the neutrons having the larger 
deformations. This may be due to the smaller  
pairing force of the neutrons compared to the one 
of the ~ r o t o n s .  

from the P to the ground-state band. We obtain 
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Obviously the introduction of different deforma- his thesis. 

tions for the proton and neutron distributions im- 
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