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Test of the proximity theorem for deformed nuclei 
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We compare a proximity-type potential for two interacting nuclei with the double-folding 
method. Both spherical and deformed systems are considered. Special "orientation windows" are 
found for two deformed nuclei giving rise to nuclear cohesion. If the same nucleon-nucleon interac- 
tion is utilized, the proximity and the double-folding potentials agree fairly well for a 
spherical + deformed System. However, deviations are found in the case of two deformed nuclei. 

I. INTRODUCTION 

As proposed by ~ a s s '  and by Blocki et U Z . , ~  the interac- 
tion potential V between two nuclei can be approximated 
by an expression of the form 

The dependence upon the surface separation s is complete- 
ly determined by the function #s); the shapes and relative 
orientations of both nuclei are described by a geometrical 
factor F. This approximation, called the "proximity 
theorem," can be understood in the following way: Using 
nonrelativistic many-body theory it is straightforward to 
derive the double-folding potential 

Equation (2) holds for small overlaps of the nuclear densi- 
ty distribution where exchange effects (Pauli principle) 
can be neglected. The effective nucleon-nucleon interac- 
tion v depends upon the relative distance q2 and momen- 
tum of the nucleons, as well as their spins and iso- 
spins. 

Let us suppose that the distance s between the two nu- 
clear surfaces (see Fig. 1) is small (on the order of a few 
fm). Due to the short-range character of v (5 ,  . ) the 
interaction will be confined to a small region in space 
characterized by the volume elements V ,  and V 2 .  If we 
assume these volume elements to be infinitesimal, for sim- 
plicity, Eq. (2) reduces to 

The size of the interacting volume elements dVi de- 
pends on the range of the interaction and on the radii of 
curvature of the corresponding surface areas. Therefore, 
Eq. (3) reduces to (1) for given densihy distributions. Up 
to now, the proximity potential has been derived for two 

spherica12 and for one spherical and one defonned nu- 
c l e u ~ . ~  In Sec. 11, we carry out the above ideas to describe 
the nuclear interaction of two deformed nuclei. Our 
derivation is quite different from that given in a recent 
publication,4 but the final formulae are equivalent. We 
give here the first application of the proximity potential 
for two deformed nuclei. In principle, the proximity 
theorem should hold for an arbitrary short-range interac- 
tion. We shall solve the double-folding integrals numeri- 
cally for various nucleon-nucleon potentials and compare 
the exact results for spherical and deformed systems with 
the proximity prescription. Limitations of the latter are 
discussed. 

11. PROXIMITY POTENTIAL FOR TWO 
DEFORMED NUCLEI AND COMPARISON 
WITH THE DOUBLE FOLDING METHOD 

The deformations of the two nuclei will be expressed in 
terms of the collective surface variables 

Ri(fLi)=Roi l + C a ~ ~ ~ ~ ~ ( f l ~ )  , i = 1 , 2 ,  (4) I I 
where the z axes of the laboratory systems of nucleus 1 
and 2 are chosen in the direction of the internuclear dis- 
tance ?. The coordinate axes xi and yi are parallel to each 
other. This is illustrated in Fig. 2. 

FIG. 1. Two nuclei with surface separation s and interacting 
volume parts. 

29 477 - @ 1984 The American Physical Society 



SEIWERT, GREINER, OBERACKER, AND RHOADES-BROWN 

FIG. 2. Choice of the laboratory Systems. 

By a transformation to the intrinsic frames of reference, 
we can separate the deformation and onentation degrees 
of freedom 

The Euler angles specify the relative orientation of the nu- 
clei with resvect to the two-center distance r. and the ten- 
sors an, denote the intrinsic deformations. The problem 
can be simplified considerably if the following conditions 
are fulfilled: 

(i) The intrinsic nuclear shapes are axially symmetric; in 
this case, the potential is independent of the Euler angles 
Yi .  

(ii) The body-fixed symmetry axes z', and zi are in the 
same plane (see Fig. 3). Hence, the problem does not de- 
pend anymore on ai . 

The interaction potential between the two nuclei is now 
a function of three collective Coordinates only: 
VN = VN(r,ß1,ß2). Making use of the above approxima- 
tions, we can write (see Fig. 1) 

The minimum distance between the two nuclear surfaces, 
specified by the angles Cl?, is determined by a numerical 
iteration procedure. The iteration must be carried out 
separately for any given set of deformation and orienta- 
tion variables and for every internuclear distance r. 

In Ref. 2 the geometrical factor F was determined for a 
gap between two elliptic paraboloids with tip distance s, 
with radii of curvature Pi and pi in the principal planes of 
curvature through the tip of paraboloid i, and an azimu- 
thal angle 4 between the principal planes of curvature of 1 
and 2 (see Fig. 4): 

FIG. 4. Geometrical properties of the two paraboloids. 

With this ansatz, the nuclear surface is well reproduced 
near the s axis, where the interacting volume elements dV1 
and dV2 are located. 

Due to the short-range character of the nuclear force, it 
is assumed that only these two infinitesimal volume ele- 
ments contribute to the integral, Eq. (2). To a good ap- 
proximation, the nuclear shapes may be replaced by para- 
boloids in the neighborhood of the distance vector X .  The 
radii of curvature must be taken at the surface points 
specified by the angles fl? and in the direction of their 
tangential plane. Due to the requirement that s be the 
minimum distance between the nuclear surfaces, 

+s' + - S 
and - 

1s I I S  I 
are the normal vectors of the tangential plane of nuclei 1 
and 2, respectively. 

For axially symmetric nuclei, the principal radii of cur- 
vature are in the direction of the intnnsic unit vectors Zg 
and Zp (see Fig. 5). An arbitrary plane through the vector 
3, includes the Center of mass (see Figs. 3 and 4). There- 

FIG. 3. Definition of the orientation angles ß1,ß2. 

FIG. 5. Approximation of the nuclear shape by a coaxial el- 
liptic paraboloid. The tangential plane is parallel for both sur- 
faces. 
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FIG. 6. Geometrical properties for the calculation of p. 

FIG. 7. Nuclear potential of two 2 3 8 ~  nuclei 
(S2=0.264,S4=0. 106) as function of the two Center distance r 
and the orientation angles ßi and ß2 in the proximity approxi- 
mation. The dashed line indicates the touching point of the two 
surfaces. 

fore the radius of curvature P along Z8 is simply given by 

The derivation of the radius of curvature p along Zp is 
somewhat involved (see Fig. 6). We first define pl as the 
radius of curvature with the principal plane parallel to the 
intrinsic z axis. 

The theorem of Meusnier yields a connection between the 
radii of curvature of curves through the same point but in 
connection to different planes, in our case: 

P1 =p  COSY , (11) 

where y is the angle between the normal vector and pl. 
The angle ß between R and the normal vector is easi- 
ly calculated to be 

Summarizing the results of Eqs. (10)-(121, we finally ob- 
tain 

This formula holds for aM#O. It is easy to see that 
p(aM=O) ~ ~ ( 6 ~ = 0 ) .  Equations (7), (91, and (13) deter- 
mine the geometrical factor F completely. 

In the original paper (Ref. 21, the proximity function 
#(s) was calculated in the Thomas-Fermi approximation 
using the Seyler-Blanchard N-N interaction5: 

This phenomenological interaction is of a Yukawa type; 
the momentum dependent term simulates compression ef- 
fects in the overlap region. The resulting heavy-ion poten- 
tial function +(s) [see Eq. (I)] is given by the "pocket for- 
mula": 

+(s 2 1.2511 fm)= -3.437 exp( -s 10.75 fm) . 
Negative s values correspond to the overlap region. It 
must be mentioned, however, that in this case the defini- 
tions of s and fiy become somewhat arbitrary. Therefore, 
we choose the direction of s to be parallel to F in the over- 
lap regions. With increasing overlap, the proximity model 
becomes more and more inaccurate since the interacting 
volume elements do not remain small. In this case, the 
description of the potential in terms of a single distance 
coordinate s between the surface elements breaks down. 
In addition to the nuclear heavy-ion potential, we have to 
determine the Coulomb interaction 
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FIG. 8. Flat surface areas facing each other for two special 
orientations (schematic). 

The double-folding integral (16) can be evaluated numeri- 
cally for two arbitrary charge distributions using 
several Fourier transformations and multipole expansions. 
If the Fourier transform of a function f ( S i )  is denoted by 
f( C), we find 

Expanding all ''plane waves" exp(ik.R) into their mul- 
tipole components 

exp(ik.~)=4'Tr 2 iLjL(k~)yLM(kh)yiM(Rh) , (18) 
L,M 

a general formula has been derived which involves only 
one-dimensional integrals. It is then possible to calculate 
the Coulomb interaction potential numerically to an accu- 

E (MeV) 
r 800'- ' 

700 

,V, (MeV) 208pb-208pb 

FIG. 10. Comparison of the nuclear potential calculated with 
the proximity method using a Seyler-Blanchard N-N interaction 
on one hand to the result of the double-folding integral using the 
M3Y force. 

racy of about 10-~.  (For details see Ref. 6.) We have 
evaluated the proximity potential for two deformed nuclei 
in complete analogy with the principles and methods of 
the original including the special choice of $(s). It 
is interesting to See how the results are modified consider- 
ing deformation effects. Therefore, we study the nuclear 
votential of two 2 3 8 ~  nuclei as a function of the orienta- 
tion angles ßi and the two-center distance r. The result is 
displayed in Fig. 7, where we use the deformation parame- 
ters &=0.264, S4=0. 106,~ and Ro =7.44 fm. Remark- 
able minima occur for orientations ß1=ß2=55" and 
ßl = 115", ß2=65". 

For spherical nuclei in this mass region, minima in the 
nuclear potential are not observed. Special geometries of 
the nuclear surface seem to amplify the attractive nuclear 
force. 

The U nucleus has flat surface areas due to its hexade- 
cuvole deformation. In such orientations, where two flat 
areas face each other, the number of nucleons which come 
into nuclear contact is considerably increased compared to 
the situation of two curved surfaces. (See Fig. 8.) Clearly 
these types of nuclear "cohesion" minima, due to facing 
flat surfaces, are strongly dependent on the hexadecupole 
deformation. Figure 9 shows the potential using various 

FIG. 9. The dependence of the nuclear potential on the hexa- experimental daia of deformation iarameters. ~owever ,  

decupole defomation as function of for the orientation an- these results differ drastically from those of a double fold- 

gles ß,=ß2=5w. deformation parameters are 62=0.277, ing calculation6 using the M3Y interaction of Love and 

64=0.013 (dashed line) from myonic rays (Ref. 8), S2=0.226, satch1er.l' We now anaiyze the reasons for these devia- 
64=0.052 (dotted line) from proton scattering ( ~ ~ f .  9); tions. The proximity description consists of a new princi- 

S2=0. 261, S4=0. 087 (solid line) from electron scattering (Ref. Pa1 idea [the ~ r o x i m i t ~  theorem: VN =F(geometr~ 1 
10); arid S2=0.261, S4=0.106 (dashed-dotted line) from and a more technical prescription [the caicuiation of @ s )  
Coulomb excitation (Ref. 7). using the Thomas-Fermi method with the Seyler- 
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208pb-238U 

sphericol 
M 3  Y 

FIG. 1 1 .  Fit of the proximity-function $(s) (straight line) to the double folding method (dots) for the Systems 208Pb-208Pb, 
zospb_238U, arid 2 3 8 ~ - 2 3 8 ~  . ~h e U nucleus is assumed to be spherical in these fits. 
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FIG. 12. Comparison between the double-folding integral 
(dots) and the proximity method (straight lines) fitted in Fig. 11. 
We show two orientations of the deformed U nucleus: ß=O0 
(solid line) and ß=90" (dashed line). Two nucleon-nucleon in- 
teractions were utilized, the M3Y force (a) and the delta force 
(b). 

Blanchard N-N interaction.] 
In order to clarify to what extent the deviations between 

the double-folding and the proximity potentials are caused 
by the proximity theorem and by the technical method in- 
volved, we first calculate the nuclear potential for two 
spherical Systems (e.g., 208~b-208~b)  and compare the result 
with the double folding method. We use the half-density 
radius Ro = 6.6 fm and the density distribution measured 
by Heisenberg et al. l2  for '08pb 

with c =6.3032 fm, z =2.8882 fm, and W =0.3379. The 
result is displayed in Fig. 10. Apparently, the two models 
yield quite different results. The proximity potential with 
the Seyler-Blanchard interaction, Eq. (141, takes the 
compression energy into account (sudden potential), and 
therefore increases at negative s values. On the other 
hand, the double-folding potential with the M3Y force 
continues to decrease, because compression effects are not 
considered (adiabatic potential). We conclude that the de- 
viation between the two models is caused to a large extent 
by different assumptions about the effective N-N interac- 
tion itself. In addition, the Thomas-Fermi approximation 
is expected to give rise to some differences. Physically, 
the fact that the potentials differ is well understandable, 
because the proximity potential is constructed with respect 
to an application to fusion Cross sections, whereas the 
double folding model in the present form must be regard- 
ed as a fit to elastic scattering. The corresponding nuclear 
potentials are not expected to agree everywhere. Fusion 
may occur following direct transitions to nonelastic chan- 
nels as well as from the entrance channel itself. Conse- 
quently, we expect the two potentials to deviate when the 
nuclei come into contact. For a test of the proximity 
theorem, we must ensure that the proximity function $(s) 
is based on the Same N-N interaction as used in the double 
folding model. Therefore, we modify the proximity func- 
tion #(s) in such a way that the double-folding potential is 
reproduced for spherical nuclei. In analogy to the Bass 
potential,1 we write the new function $(s) in the form 

The parameters W and a are fitted to the M3Y calculation. 
This is shown in Fig. 11 for Pb on Pb using for simplicity 
a logarithmic scale (Bass potentials are straight lines). 
The parameters are easily determined: 

log( - VN )-log36.32=log( - W)-s/a loge , 

with 

R O  
R=-=3.3 f m ,  

2Ro 

and the shorthand notation 
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FIG. 13. Comparison as in Fig. 12, but for the double-U sys- 
tem. We show three orientations: ß1=ß2=00, solid line and FIG. 14. Comparison of different multipole components for 

circles; ß1=ß2=4s0, dashed-dotted line arid triangles; arid the System 2 3 8 ~ - 2 3 s ~  using the proximity method (straight lines) 
ßl =ß2=9W, dashed line and full circles. and the double-folding integral (dots). 



484 SEIWERT, GREINER, OBERACKER, AND RHOADES-BROWN - 29 

with Vo= 1 MeV. With the choice of & Y ) ,  the models are 
nearly equivalent for spherical systems. As a next step, 
we consider the spherical + deformed system Pb-U. For 
the U nucleus, we use the following density and shape 
parametrizationlO: 

Ro=6.8054 f m ,  S2=0.261 , 

The proximity function &V) for this system has been fit- 
ted to the L =O component of the M3Y double folding 
potential, i.e., 

The two models are compared for the spherical + de- 
formed system Pb + U in Fig. 12. We find excellent 
agreement for all orientation angles. We observe that the 
potentials for different orientations have the same slope, 
which proves the validity of the proximity theorem in this 
case because 

238,- - 23eU 

deformed 

FIG. 15. Comparison of the nuclear and Coulomb potentials 
in a linear scale. The arrows indicate the surface touching point, 
i.e., the Fermi densities of both nuclei add to the normal equili- 
brium density. Solid lines correspond to the double folding 
method, dashed lines to the proximity potential. We show three 
different orientations of the deformed nuclei, ß1=ß2=W, 
ß, =ß2=45', and ß, =ß2=9O0. 

Furthermore, we calculated the double folding potential 
using a delta function for the N-N interaction. The fit of 
4(s)  has been determined with the same method, leading 
to the results displayed on the right-hand side of Fig. 12. 
Also in this case, we find excellent agreement between the 
double-folding and the proximity methods. As an exam- 
ple for two deformed nuclei, we study the U-U system. 
The function +(SI  is fitted to the monopole-monopole 
component of the double-folding result using the expan- 
sion 

U(r7ßl,ß2)= I: ULL,M(~)YLM(PI,Q)=O) 
LL'M 

corresponding to Eq. 15 of Ref. 6, i.e., the potential of two 
spherical U nuclei. The comparison leads to remarkable 
deviations for both types of interactions (Fig. 13). The 
proximity method has a tendency to underestimate the nu- 
clear potential; the strongest deviations occur for the 
orientation ß1=ß2=45". The analysis of the different 
multipole components (see Fig. 14) shows that the devia- 
tions are mainly caused by the multipole-multipole com- 
ponents. This corresponds to the fact that we find reason- 
able agreement for systems with one spherical and one de- 
formed nucleus, where the multipole-multipole com- 
ponents vanish. The nuclear plus Coulomb potential is 
plotted in Fig. 15. The qualitative behavior of both 
models is the same for all orientations. 

The Coulomb barriers of the proximity potential are 
about 20 MeV lower than in the M3Y calculation. In con- 
trast to the results shown in Figs. 7 and 9, the most 
favored orientation to overcome the Coulomb barrier is 
now ß1=ß2=00 The reasgn for this change is the dif- 
ferent proximity function +(s). The increase of the nu- 
clear attraction due to flat surfaces facing each other is 
visible also in this calculation. The decrease of the voten- 
tial taken at the surface touching point (arrows) is strong- 
est for the orientation ß1 =ß2=45". The conclusions 
about a possible pocket in the 2 3 8 ~ - 2 3 8 ~  potential6 remain 
unchanged using the proximity method. 

111. SUMMARY AND OUTLOOK 

In the last section, we have shown that the proximity 
method yields results which are quite similar to those ob- 
tained with the double-folding method provided that at 
least one of the nuclei has a spherical shape and that the 
same nucleon-nucleon interaction is utilized in both ap- 
proaches. Baltz and ~ a ~ m a n ~  arrived at a similar con- 
clusion considering a 6 force. They also investigated an 
improved calculation of the geometrical factor F in Eq. (1) 
("two term proximity model") as suggested by Brink 
et a1.13; this extended version of the proximity model 
gives rise to an even better agreement with the double- 
folding theory, but the deviations in the case of two de- 
formed nuclei remain. In applying the proximity poten- 
tial to the 2 3 8 ~ - 2 3 8 ~  s ystem, we find the remarkable result 
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that the nuclear interaction potential is changed dramati- 
cally for certain geometrical conditions, e.g., for flat sur- 
face areas, due to a strong hexadecupole deformation. In 
this context, certain "orientation windows" of the nuclei 
play an important role. Hence, in calculating the 
nucleus-nucleus potential, it is important that we include 
higher multipole moments (1  =2,4,. . . ) of the density dis- 
tribution and that we do not simply Start from a potential 
averaged over all orientations. 
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