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Strong indirect evidence exists for the existence of attractive forces between nuclei making 
surface contact. Experimentally, the recent observations of spontaneous positron production 
in heavy-ion collisions can only be understood if nuclei stick together for times long com- 
pared to the collision time. We show that any such tendency for nuclei to attract implies the 
existence of nuclear molecules with entirely new kinds of collective modes. We present a 
simple model for these modes and apply it to 2 3 8 ~ - 2 3 8 ~ .  

PACS numbers: 25.70.Jj, 21.30.+y 

There seems to be little doubt that spontaneous 
positrons have been observed in recent', * heavy-ion 
experiments. The theoretical ana~ysis l-~ of the data 
requires the nuclei to stick together for times T of 
order 10-l9 sec. Because the experiments are done 
at nominally sub-Coulomb energies, it was initially 
difficult to understand how the nuclei could get suf- 
ficiently close together for attractive nuclear forces 
to act. However, double-folding-model calcula- 
tions4 have shown that the nuclear plus Coulomb 
interactions of strongly deformed nuclei show a 
dramatic dependence on nuclear orientation. These 
calculations predict the formation of potential bar- 
riers which are lower by 100 MeV when the nuclei 
approach with their symmetry axes collinear than in 
the least favorable case, in which they approach so 
that their equators touch. Although the folding- 
model predictions cannot be relied upon at shorter 
distances where there is significant overlap of nu- 
clear densities, they suggest the very real possibility 
that a potential energy minimum exists in the nu- 
clear surface- a "pocket, " depending on orienta- 
tion, which can capture the nuclei. Improved po- 
tential models are under study, and preliminary cal- 
culations5 suggest the existence of pockets. The 
purpose of this Letter is to show that pockets of 
only a few megaelectronvolts in depth are needed to 
produce a rich spectroscopy of quasimolecular reso- 
nances, and to present a simple model for the struc- 
ture of some of these states of heavy nuclear 
molecules. 

Quantum mechanically capture behind a barrier 
and the resultant delay time imply a resonance, of 
width related to delay time T according to 

The "sticking times" required correspond to 
50-100 keV. A simple estimate can be made of the 
minimum depth D needed to produce a resonance 
this width. Consider the potential V sketched in 
Fig. l (a) .  A resonance is expected at the energy 

1 
~ f i w  above the bottom of the pocket. The width of 
this resonance can be estimated from the Hill- 
Wheeler penetrability formula6: 

In Eq. (1) we have assumed that the curvature 
(fiw) of the barrier top is the Same as that of the 
minimum. It can be estimated in the following 
way, from essentially dimensional considerations: 
Let the Coulomb potential, which varies slowly 
compared to the nuclear potential, be approximated 
in the region of contact by a linear function. Let 
the nuclear contribution fall off exponentially, as 
exp( - r l a  ) .  Then, at the potential maximum, we 
have 

For the U-U System, the Coulomb repulsion 
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FIG. 1. (a) Sketch of potential with an attractive pock- 
et, showing the location of the lowest energy resonance. 
(b) Simple model for the "butterfly" and "belly dancer" 
modes, showing the symmetry and the principal axes of 
rotation. 

changes by 30-40 MeV per femtometer in the sur- 
face region. a is of the order 1.0 fm, so that the 
"spring constant" is of the order 30 Mev/fm2, and 
hw is about 3 MeV. Assuming a width of 100 keV 
results in D = 2 MeV. These estimates agree well 
with the curvature of the double-folding barrier. 
Another feature of these molecular resonances is 
that they should exist with rather large values of an- 
gular momentum. Because of the large moment of 
inertia of these Systems, the depths of the pockets 
in the effective potential energy (potential energy 
plus centrifugal stretching) vary slowly with angular 
momentum I; the pockets persist up to values of 
I = 100-200, or more. A pocket several megaelec- 
tronvolts deep will result in one or more rotational 
bands of hundreds of levels. These bands will cov- 
er an energy of 10-20 MeV. This is an important 
consideration in connection with the positrons. Be- 
cause of straggling in the target, the effective beam 
energy has spread of order 10 MeV. As a result an 
isolated resonance of width - 100 keV would be 
unlikely to have an observable effect in such an ex- 
periment. The molecular model does not suffer 

FIG. 2. (a) Energy level diagram for the vibrational 
states of the giant nuclear molecule 2 3 R ~ - 2 3 8 ~  and (b) dis- 
tribution of angular momentum states in a 10-MeV win- 
dow. 

from this difficulty; it predicts many resonances, 
spread over several megaelectronvolts. The calcu- 
lated level density, if supplied by the excitation of 
individual P-y vibrations of the two nuclei, yields 
the order of magnitude of the observed Cross sec- 
tion. Moreover, recent calculations7 of the influ- 
ence of such resonances on the positron production 
show that the band structure plays an essential role 
in the positron production theory. 

This oversimplified treatment is essentially one 
dimensional; it treats vibrational states in the rela- 
tive motion. There are also quantized motions in 
the orientation variables. These motions corre- 
spond physically to hindered rotations of the de- 
formed nuclei, each moving in the quadrupole field 
produced by the other. Two of these new kinds of 
collective vibrations are pictured, along with the vi- 
bration in the r coordinate, in Fig. 2(a). We call 
these "butterfly" and "belly dancer" modes of vi- 
brations. Some of the new molecular collective 
modes can also play a role in the fission of nuclei.' 
A simple collective model for these motions is 
given below. 

Before we proceed, it is instructive to compare 
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the cohesive mechanism discussed here with that of For a very deep pocket these constraints are very 
the dual resonance9 of quasi-molecular states in reasonable. Even when the pocket is not so deep 
light nuclei. In collisions of 1 6 0  on 160, for exam- this model gives a good qualitative picture of some 
ple, internal excitations of the colliding, spherical of the motions. 
nuclei reduce their relative kinetic energy, so that The classical kinetic energy for the physical sys- 
they drop behind the barrier and are trapped. Com- tem in Fig. 1 (b) is given by 
pletely analogous would be the Situation in which ß 
and y vibrations of the U nuclei were excited. 
These have so far been neglected in our treatment; 
however, excitations of internal states play a key 
role here also. What is different in the present 
model is the strong dependence of Von the orienta- 
tion. Favorable orientations are achieved by 
coherent excitation of rotational states of the indivi- 
dual nuclei. Our description, in terms of rotations 
of the system as a whole, superimposed on coupled, 
hindered rotations of the individual nuclei, is 
equivalent to, but more effective and physically ap- 
pealing than, the description in terms of the mutual 
excitation of rotational states. 

We consider a system of identical nuclei such as 
2 3 8 ~ - 2 3 8 ~ ,  which are assumed to be axially sym- 
metric. They are constrained as shown in Fig. 1 (b) 
so that both symmetry axes lie in a common plane 
with the relative vector T. Also we require their 
orientation angles to be equal and opposite. 
E I  = - e 2  = E .  The butterfly mode is an oscillation 
in the variable E. The belly-dancer mode is a rota- 
tion of the plane containing the symmetry axes. 

I 

The ok are angular velocities measured in the in- 
trinsic frame, ßo is the deformation of the nuclear 
ground state, and B is the collective inertia parame- 
ter. The notation is that of Eisenberg and 
  reiner." The reduced mass of the sytem is p. 
The term proportional to i2 corresponds to the but- 
terfly motion. The belly-dancer motion is a rotation 
about the z, axis. The principal axes and moments 
of inertia of the system of Fig. 1 (b) are easily deter- 
mined. The moments are 

For the potential energy we choose 

Pauli quantization of this system is carried out as 
described in Ref. L0 including a change of volume 
element. When L; ( k  = 1,2,3) are the compo- 
nents of the angular momentum Operator in the 
molecular frame, we obtain for the Hamiltonian 

We assume small vibrations and approximate H by expanding in powers of E and T =  r - ro. The lowest-order 
Hamiltonian is 

with 

Equation (4) has the same mathematical structure as the Hamiltonian of the rotation-vibration model 
(RVM).'O*" Its eigensolutions are similar to those of the RVM with one difference: The projection of the 
angular momentum on the molecular z axis K is replaced by 2K, because of different factors of the terms 
- i b 2  and - E - ~ .  The wave functions must be symmetrized1° so that they are single-valued functions of 
the laboratory coordinates. The result is 

The function g is a one-dimensional harmonic oscillator function, and X is given in Ref. 10. The energy is 
given in Ref. 10. The energy is given by 
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with K = 0 , 2 , 4  , . . . ;  I = 0 , 2 , 4  ,..., if K = O ,  and 
I = K ,  K f l ,  K + 2  ,..., i f K f  0. Becauseasystem 
of identical nuclei is treated, the wave function 
must be symmetric under E -+ - E .  Because of this 
symmetry, K must be even. The structure of the 
energy eigenvalue formula shows that the r and E 

motions of the giant nuclear molecule are analo- 
gous to the ß and y motions of ordinary deformed 
nuclei. 

A calculated spectrum for the U-U system is 
shown in Fig. 2(a). The parameters C, and C, were 
taken from Ref. 5 ,  and the others from RVM treat- 
ments of 2 3 8 ~ .  This potential has fairly deep pock- 
ets, 20 MeV deep for the most favorable orienta- 
tion. The parameters are li2/200= 0.57 x 1 0 - ~  MeV, 
C, = 30 ~ e ~ l f m * ,  and C,= 279 ~ e v l r a d ~ .  Only 
bandheads are shown in Fig. 2(a). For each band 
there is a rotational band of closely spaced levels. 
Each band is classified by the quantum numbers 
(K,n„n,). For example, (2,0,0) I = 2 and (0,1,0) 
I = 0 are pure belly-dancer and butterfly modes, 
respectively. In order to illustrate the number of 
resonant states in a given energy range, we show in 
Fig. 2(b) the distribution in angular momentum of 
energy levels in an energy window of 10 MeV. The 
energy window is centered near the top of the bar- 
rier for I = 0. Not all states in this window are in- 
cluded, only those which would make a nonnegligi- 
ble contribution12 to the positron yield (1 keV 
< i- < 10 MeV). The widths were estimated using 

the Hill-Wheeler formula. The total number of 
states represented in Fig. 2(b) is of order 1000. 
The angular momentum distribution is peaked 
about an average value of (100- 120)ti. 

Not all of the collective modes of giant nuclear 
molecules have been treated here. In reality nuclei 
are not constrained to move so that their symmetry 
axes are in the same plane. Relaxing this constraint 
means that there need not be symmetry under 
E + - E ,  and K need not always be even. Numeri- 
cal calculations have been madeL3 which are free of 
these constraints, and they indicate that the odd-K 
bands have excitation energies of the Same order as 
the even-K bands. 

Clearly the existence of cohesive forces between 
the surfaces of deformed nuclei leads to a rich 
variety of entirely new collective modes. These 
quasimolecular states have properties needed to ex- 
plain the spontaneous positrons observed in heavy- 
ion collisions. Their existence would influence oth- 
er processes; for example, they may be "doorways" 
for sub-barrier fusion. 

We gratefully acknowledge many helpful discus- 
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