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Magnetic neutrino scattering by crystals 
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The magnetic dipole scattering of neutrinos by the electrostatic potentials of single atoms as well 
as crystals is investigated. It is shown that scattering by a rigid cubic lattice can amplify the 
neutrino-atom cross section by a factor of N I ' ? ,  IV being the number of scatterers. However, com- 
paring the results with typical weak-interaction cross sections, the effect seems to be not observable 
in experiment. 

The question whether neutrinos have a magnetic mo- 
ment P, or  not is quite topical, especially in the context 
of the discussion about the solar-neutrino On 
the one hand, the available direct measurements give an 
upper limit of about 

P CL, 
- 10-10- 10-9 , 
Po 

where po is the electron Bohr magneton.* On the other 
hand, an extension of the Standard electroweak gauge 
model to massive neutrinos yields a magnetic moment of 

PCL, -- - 3 . 2 ~ 1 0 - ~  1% 1 
Po 

due to radiative c o r r e c t i o n ~ . ~  So it would be very useful 
to find processes which would allow for more accurate 
measurements of P , .  A possible candidate for such a pro- 
cess is coherent scattering of highly energetic neutrinos 
on crystals. As it is well known the axial scattering 
(channeling) of relativistic particles in crystals provides 
very strong electromagnetic fields in the rest frame of the 
particle due to the Lorentz contraction of the crystal 
f i e l d ~ . ~  Since strongly focused beams are required in such 
experiments, neutrino channeling is only possible at Su- 
perconducting Super Collider energies. The typical 
transverse energy of about 30 MeV would yield a neutri- 
no  beam spread of 6 prad at an energy of 10 TeV. As- 
suming a neutrino mass of the order of 1 eV and neutrino 
energies in the multi-TeV range, one obtains Lorentz fac- 
tors of order y - 10lO. Therefore considerable spin-flip 
amplitudes in neutrino channeling are conceivable 
despite the small interaction Parameter P,,, Given a 
sufficiently large cross section such a helicity flip could 
even be observed in elastic collisions, due to the resulting 
reduction in the number of left-handed neutrinos avail- 
able for weak interactions downstream. With this idea in 
mind we investigate the scattering of a neutrino by a cu- 
bic array of atoms. 

We first evaluate the T matrix for the scattering by one 
single atom. A massive neutrino moving in an external 
field is described by the Dirac equation 

For reasons of simplicity we perform the calculation in 
the rest frame of the atom, where we do not have to deal 
with magnetic fields. Separation of the harmonic time 
dependence exp( - iet ) reduces Eq. (3) to 

For the atomic potentials we use parametrizations of the 
Thomas-Fermi potential, which were introduced by 
~ i n d h a r d ~  and ~ o l i e r e ~  and are often used in channeling 
cal~ulations.~" They yield the electric fields, which enter 
Eq. (4): 

Here 

denotes a screening length and 

are fitting Parameters. The T matrix is now evaluated in 
first-order Born approximation, since the interaction 
Hamiltonian Hirn = - ip,y .E is very small. The initial 
and final states are taken as Dirac plane waves 

which are normalized to delta functions, and eigenfunc- 
tions of the helicity Operator. In order to consider also 
inelastic scattering we choose different energy values for 
the initial and final state: 
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E~ = E ~  +AE . (8) T c  J d 3 r  p > ( r ) ~ , , , , p ~ ( r )  

The transition matrix element then reads in a more explicit form 
I 

The values mi and m denote spin projections of the neu- 
trino before and after the collision, respectively. The in- 
tegrations are conveniently carried out in spherical coor- 
dinates, choosing the z axis in the direction of the in- 
cident neutrino and the X-z plane as the scattering plane. 
We abbreviate the radial matrix element by 

1 
~ ( q ) = - -  J mdr r 2 ~ ( r ) j l ( q r )  , 

Zea o 

where q = / k, - k I denotes the momentum transfer. For 
the Lindhard ( 5 )  and the Moliere field (6) the integral can 
be performed analytically: 

Equations (12) and (13) show that R (q  vanishes for Zero 
momentum transfer, i.e., for forward scattering. R L ( q )  
and RM(q ) are plotted in Fig. 1. The results for the 
spin-flip ( + -+ - ) and the helicity-conserving ( + -+ + ) 
scattering amplitudes are 

(ki+kf12 ,Bf  
I Tif / : , - = p t ( ~ ~ ~ ~  ) 2 ( 4 ~ ) 2  sin - 

4 2 

r 
where Of is the scattering angle. For small energy 
transfers, i.e., AE << E , ,  the helicity-conserving collision is 
strongly suppressed compared to the spin-flip process and 
in the elastic channel, E,  = E ~ ,  the former vanishes com- 
pletely, i.e., elastic scattering always results in a helicity 
flip. 

It is now a simple matter to construct the differential 
cross section for the magnetic neutrino-atom scattering 
from Eqs. (14) and (15). But since we are only interested 
in an estimate of the order of magnitude for that process, 
we confine ourselves to the elastic case. When we take 
into account q =2k sin( 0 /2 ), if k = ki = k f ,  and neglect 
the indices i and f ,  Eq. (14) reduces to 

According to Fermi's "golden rule" the differential cross 
section that corresponds to the T matrix [(14) and (15)] is 
given by 

The flux 4i of the incident particle and the momentum 
density nf are8 

yielding the differential cross section per solid angle, 

and the total cross section 

J 
For the Moliere matrix element RM the integral can be 

- - performed analytically, with the result 
- Lndiard 

Mdiare 3 

o t o t = 2 ( ~ e p v ) *  2 aiajIij , 
i,j=l 

(2 1) 

I , . =  ' 
J J  

(2ak)' i f i = j ,  
ln 1'' [F j 2 ] -  ß ? + ( 2 ~ k ) ~  

2 

L n [ +  ßf -13; 1-1 i f i + j .  
0 0 

0 I 2 3 L 5 6 7 

q i2n/dl Obviously U„, exhibits a logarithmic energy dependence. 
The choice of Z = 3 2  (germanium) and p v = l ~ - l l p o  

FIG. 1. Radial matrix elements of Eqs. (12) and (13). yields for a neutrino energy of 10 TeV a Cross section of 
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the order 10-l9 barns. This number is much below typi- 
cal neutrino cross sections caused by weak interactions, 
which grow linearly with the neutrino energy. For exam- 
ple, the total electron-neutrino cross section at 10 TeV 
due to W- or Z-boson exchange has a value o P  

Now we shall investigate the question, whether coherent 
scattering by an oriented crystal leads to a considerable 
amplification of the total magnetic cross section. We 
consider only the simplest case, namely, a cubic lattice, 
assuming that all lattice sites are occupied by identical 
atoms and neglecting all lattice vibrations. The linear ex- 
tension of the crystal is N1I3d, where d is the lattice con- 
stant and N the total number of atoms in the array. The 
positions of the crystal atoms are denoted by vectors R I :  

The triple of integers 1 =(Ix, I,, 1 , )  defines a certain atom 
within the array. The corresponding reciprocal lattice is 
of the same form, but has the lattice constant 2a/d.  
Describing all atoms by the same electric field (5) or (6) 
the total field of the crystal becomes E„,(r) 
= x , E ( r - R , ) ,  so that Eq. (10) yields 

Obviously the term I x i e x p ( i q . ~ , ) 1 2 ,  which contains all 
effects caused by the lattice, takes the value N2, if the 
momentum transfer q is equal to any reciprocal lattice 
vector TI. For all other values of q it becomes very small, 
because of destructive interference of the terms in the 
sum. In fact, this is just the Bragg condition. In  order to 
obtain the total cross section from Eq. (231, we have to in- 
tegrate over the solid angle: 

To determine, which power of N enters the total cross 
section, a convenient representation of z l e x p (  iq.R, ) 1 is 
required. For a cubic crystal the summations are simple 
geometric progressions and hence we can write1° 

This function exhibits the properties mentioned above. It 
has large peaks of height N2, if all components of q are 
near an integer multiple of 2n-/d. The width of these 
peaks is 2.5 in each dimension, where ~ = 2 n - / N ' / ~ d  is the 
distance between a maximum and the following Zero of 
the numerator. To get a form of (25) which can be han- 
dled, we approximate the main peaks of the function 
s i n 2 [ ~  "3qx ( d  /2 ) ]  /sin2[qX ( d  /2 ) ]  by triangles of height 

N213 and basis width 2.5 and neglect the remainder. 
Averaging this over the peak width then yields, for the 
three-dimensional case (25), 

$N2 if 7 - E < ~ < T + E ,  

0 otherwise . (26) 

Here E is just the vector (€,€,E).  Equation (26) seems to 
be a crude approximation of the rapidly oscillating func- 
tion (23,  but it still contains its main features. The q in- 

2-k2  tegration over a sphere defined by q: +(q, - k  ) - , 
reduces now to a counting problem. Only those recipro- 
cal lattice points contribute to the cross section, that are 
closer to the sphere than E (cf. Fig. 2). Since E is very 
small compared to the reciprocal lattice constant 2n-/d, 
the counting cannot be replaced by an integration and be- 
Comes quite difficult. But there is a simple way to esti- 
mate the cross section. Because of the behavior of the ra- 
dial matrix element R those reciprocal lattice points con- 
tribute most, which correspond to q values of about 
2n-/d. There are in the qx-q lane four of those Bragg 

Y P. 
points surrounding the q = O  point and the minimum ra- 
dius of the sphere to reach them is 

Considering the q dependence of R in the asymptotic 
region the contributions of all other Bragg points are 
negligible. The cross section obtained in this manner is a 
lower limit, but it should be close to the exact value. 

To give an example we choose the numbers d =1 A 
and 107. This corresponds to a crystal length of 1 
mm and a minimum neutrino energy of 62 GeV. Z and 
pCL, are the same as above. Taking into account a solid an- 
gle of 

for each reciprocal lattice point we obtain from (24) and 
(26) a total cross section per atom of 

FIG. 2. Solid-angle integration in q space. 
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This is only about a factor 50 larger than the electron- 
neutrino cross section due to weak interactions, which is 
about 10-l5 barn at 60 GeV (Ref. 9). Increasing the ener- 
gy with N fixed, i.e., taking into account additional Bragg 
points, does not yield a considerable amplification of the 
cross section because of the argument given above. At 10 
TeV, a „ , / N  is only about 3 or 4 times larger than at 60 
GeV. In order to enhance the coherent cross section one 
has to increase the number of scattering Centers N togeth- 
er with the energy. 

To summarize, we have calculated the total cross sec- 
tions for the elastic magnetic neutrino scattering by the 
electric field of a single atom and a cubic array of atoms. 
The neutrino-atom scattering turned out to be much 

smaller than a comparable weak-interaction process, 
while the neutrino-crystal cross section exhibits an 
amplification due to coherence. However, we note that 
this result is strongly based on the assumption of a rigid 
lattice. If the crystal would pick up a little energy of 
about f i c ~ = 1 0 - ~  eV, e.g., by phonon excitation, we 
would have to integrate over the whole phase space d 3kf 
instead only over da, - .  D„, were then proportional to N 
and the coherence effect would vanish. However, since 
the elastic cross section exceeds the weak interactions 
only by one or two orders of magnitude, it is difficult to 
observe magnetic neutrino scattering in experiment. 

We thank Dr. A. Schäfer for helpful discussions. 
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